Progress of Theoretical Physics, Vol. 114, No. 3, September 2005

Nonlinear Second Order Ode's

_ Factorizations and Particular Solutions -_

O. Cornejo-Pérez and H. C. Rosu
Potosinian Institute of Science and Technology, Apdo Postal 3-74 Tangamanga, 78231 San Luis Potosí, Mexico

(Received April 19, 2005)
We present particular solutions for the following important nonlinear second order differential equations: modified Emden, generalized Lienard, convective Fisher and generalized Burgers-Huxley. For the latter two equations these solutions are obtained in the travelling frame. All these particular solutions are the result of extending a simple and efficient factorization method that we developed in Phys. Rev. E 71 (2005), 046607.

§1. Introduction

The purpose of this paper is to obtain, through the factorization technique, particular solutions of the following type of differential equations:

$$
\ddot{u}+g(u) \dot{u}+F(u)=0
$$

where the dot means the derivative $D=\frac{d}{d \tau}$, and $g(u)$ and $F(u)$ could in principle be arbitrary functions of u. This is a generalization of what we did in a recent paper for the simpler equations with $g(u)=\gamma$, where γ is a constant parameter. ${ }^{1)}$ Factorizing Eq. (1-1) means to write it in the form

$$
\left[D-\phi_{2}(u)\right]\left[D-\phi_{1}(u)\right] u=0
$$

Performing the product of differential operators leads to the equation

$$
\ddot{u}-\frac{d \phi_{1}}{d u} u \dot{u}-\phi_{1} \dot{u}-\phi_{2} \dot{u}+\phi_{1} \phi_{2} u=0
$$

for which one very effective way of grouping the terms is ${ }^{1)}$

$$
\ddot{u}-\left(\phi_{1}+\phi_{2}+\frac{d \phi_{1}}{d u} u\right) \dot{u}+\phi_{1} \phi_{2} u=0 .
$$

Identifying Eqs. $(1 \cdot 1)$ and (1-4) leads to the conditions

$$
\begin{align*}
g(u) & =-\left(\phi_{1}+\phi_{2}+\frac{d \phi_{1}}{d u} u\right) \\
F(u) & =\phi_{1} \phi_{2} u
\end{align*}
$$

If $F(u)$ is a polynomial function, then $g(u)$ will have the same order as the bigger of the factorizing functions $\phi_{1}(u)$ and $\phi_{2}(u)$, and will also be a function of the constant parameters that enter in the expression of $F(u)$.

In this research, we extend the method to the following cases: the modified Emden equation, the generalized Lienard equation, the convective Fisher equation, and the generalized Burgers-Huxley equation. All of them have significant applications in nonlinear physics and it is quite useful to know their explicit particular solutions. The present work is a detailed contribution to this issue.

§2. Modified Emden equation

We start with the modified Emden equation with cubic nonlinearity that has been most recently discussed by Chandrasekhar et al., ${ }^{2)}$

$$
\ddot{u}+\alpha u \dot{u}+\beta u^{3}=0 .
$$

1) $\phi_{1}(u)=a_{1} \sqrt{\beta} u, \phi_{2}(u)=a_{1}^{-1} \sqrt{\beta} u,\left(a_{1} \neq 0\right.$ is an arbitrary constant $)$.

Then Eq. (1.5) leads to the following form of the function $g(u)$

$$
g_{1}(u)=-\sqrt{\beta}\left(\frac{2 a_{1}^{2}+1}{a_{1}}\right) u .
$$

Thus we can identify $\alpha=-\sqrt{\beta}\left(\frac{2 a_{1}^{2}+1}{a_{1}}\right)$, or $a_{1_{ \pm}}=\frac{-\alpha \pm \sqrt{\alpha^{2}-8 \beta}}{4 \sqrt{\beta}}$, where we use a_{1} as a fitting parameter providing that $a_{1}<0$ for $\alpha>0$. Equation (2•1) is now rewritten as

$$
\ddot{u}-\sqrt{\beta}\left(2 a_{1}+a_{1}^{-1}\right) u \dot{u}+\beta u^{3} \equiv\left(D-a_{1}^{-1} \sqrt{\beta} u\right)\left(D-a_{1} \sqrt{\beta} u\right) u=0 .
$$

Therefore, the compatible first order differential equation is $\dot{u}-a_{1} \sqrt{\beta} u^{2}=0$, whose integration gives the particular solution of Eq. (2•3)

$$
u_{1}=-\frac{1}{a_{1} \sqrt{\beta}\left(\tau-\tau_{0}\right)} \quad \text { or } \quad u_{1}=\frac{4}{\left(\alpha \pm \sqrt{\alpha^{2}-8 \beta}\right)\left(\tau-\tau_{0}\right)}
$$

where τ_{0} is an integration constant.
2) $\phi_{1}(u)=a_{1} \sqrt{\beta} u^{2}, \phi_{2}(u)=a_{1}^{-1} \sqrt{\beta}$. Then, one gets

$$
g_{2}(u)=-\sqrt{\beta}\left(a_{1}^{-1}+3 a_{1} u^{2}\right) .
$$

Therefore, g_{2} is quadratic being higher in order than the linear g of the modified Emden equation. We thus get the particular case $G E=3 \beta, A=0$ of the Duffing-van der Pol equation (see case 3 of the next section)

$$
\ddot{u}-\sqrt{\beta}\left(a_{1}^{-1}+3 a_{1} u^{2}\right) \dot{u}+\beta u^{3} \equiv\left(D-a_{1}^{-1} \sqrt{\beta}\right)\left(D-a_{1} \sqrt{\beta} u^{2}\right) u=0
$$

which leads to the compatible first order differential equation $\dot{u}-a_{1} \sqrt{\beta} u^{3}=0$ with the solution

$$
u_{2}=\frac{1}{\left[-2 a_{1} \sqrt{\beta}\left(\tau-\tau_{0}\right)\right]^{1 / 2}} .
$$

§3. Generalized Lienard equation

Let us consider now the following generalized Lienard equation

$$
\ddot{u}+g(u) \dot{u}+F_{3}=0
$$

where $F_{3}(u)=A u+B u^{2}+C u^{3}$. We introduce the notation $\Delta=\sqrt{B^{2}-4 A C}$, and assume that $\Delta^{2}>0$ holds. Then:

1) $\phi_{1}(u)=a_{1}\left(\frac{(B+\Delta)}{2}+C u\right), \quad \phi_{2}(u)=a_{1}^{-1}\left(\frac{(B-\Delta)}{2 C}+u\right) ; g(u)$ takes the form

$$
g_{1}(u)=-\left[\frac{(B+\Delta)}{2} a_{1}+\frac{(B-\Delta)}{2 C} a_{1}^{-1}+\left(2 C a_{1}+a_{1}^{-1}\right) u\right]
$$

For $g(u)=g_{1}(u)$, we can factorize Eq. (3•1) in the form

$$
\left[D-a_{1}^{-1}\left(\frac{(B-\Delta)}{2 C}+u\right)\right]\left[D-a_{1}\left(\frac{(B+\Delta)}{2}+C u\right)\right] u=0
$$

Thus, from the compatible first order differential equation $\dot{u}-a_{1}\left(\frac{(B+\Delta)}{2}+C u\right) u=0$, the following solution is obtained

$$
u_{1}=\frac{(B+\Delta)}{2}\left(\exp \left[-a_{1}\left(\frac{(B+\Delta)}{2}\right)\left(\tau-\tau_{0}\right)\right]-C\right)^{-1}
$$

2) $\phi_{1}(u)=a_{1}\left(A+B u+C u^{2}\right), \phi_{2}(u)=a_{1}^{-1} ; g(u)$ is of the form

$$
g_{2}(u)=-\left[\left(a_{1} A+a_{1}^{-1}\right)+2 a_{1} B u+3 a_{1} C u^{2}\right] .
$$

Thus, the factorized form of the Lienard equation will be

$$
\left[D-a_{1}^{-1}\right]\left[D-a_{1} \frac{F_{3}(u)}{u}\right] u=0
$$

and therefore we have to solve the equation $\dot{u}-a_{1} F_{3}(u)=0$, whose solution can be found graphically from

$$
a_{1}\left(\tau-\tau_{0}\right)=\ln \left(\frac{u^{3}}{F_{3}(u)}\right)^{\frac{1}{2 A}}-\ln \left(\frac{2 C u+B-\Delta}{2 C u+B+\Delta}\right)^{\frac{1}{2 A} \frac{B}{\Delta}} .
$$

3) The case $B=0$ and $C=1$: Duffing-van der Pol equation

The $B=0, C=1$ reduction of terms in Eq. (3•1) allows an analytic calculation of particular solutions for the so-called autonomous Duffing-van der Pol oscillator equation ${ }^{3)}$

$$
\ddot{u}+\left(G+E u^{2}\right) \dot{u}+A u+u^{3}=0,
$$

where G and E are arbitrary constant parameters. Since we want to compare our solutions with those of Chandrasekar et al., ${ }^{3)}$ we use the second Lienard pair of factorizing functions $\phi_{1}(u)=a_{1}\left(A+u^{2}\right)$ and $\phi_{2}(u)=a_{1}^{-1}$. Then

$$
g_{2}(u)=-\left(A a_{1}+a_{1}^{-1}+3 a_{1} u^{2}\right) .
$$

Equation (3.8) is now rewritten

$$
\ddot{u}-\left(a_{1} A+a_{1}^{-1}+3 a_{1} u^{2}\right) \dot{u}+A u+u^{3} \equiv\left[D-a_{1}^{-1}\right]\left[D-a_{1}\left(A+u^{2}\right)\right] u=0 .
$$

Therefore, the compatible first order equation $\dot{u}-a_{1}\left(A+u^{2}\right) u=0$ leads by integration to the particular solution of Eq. (3•10)

$$
u= \pm\left(\frac{A \exp \left[2 a_{1} A\left(\tau-\tau_{0}\right)\right]}{1-\exp \left[2 a_{1} A\left(\tau-\tau_{0}\right)\right]}\right)^{1 / 2}= \pm\left(\frac{A \exp \left[-\frac{2}{3} A E\left(\tau-\tau_{0}\right)\right]}{1-\exp \left[-\frac{2}{3} A E\left(\tau-\tau_{0}\right)\right]}\right)^{1 / 2}
$$

where the last expression is obtained from the comparison of Eqs. (3•8) and (3•10) that gives $a_{1}=-\frac{E}{3}$ and $G=\frac{A E^{2}+9}{3 E}$.

This is a more general result for the particular solution than that obtained through other means by Chandrasekar et al. ${ }^{3)}$ that corresponds to $E=\beta$ and $A=\frac{3}{\beta^{2}}$.

§4. Convective Fisher equation

Schönborn et al. ${ }^{4)}$ discussed the following convective Fisher equation

$$
\frac{\partial u}{\partial t}=\frac{1}{2} \frac{\partial^{2} u}{\partial x^{2}}+u(1-u)-\mu u \frac{\partial u}{\partial x}, \quad \text { or } \quad \ddot{u}+2(\nu-\mu u) \dot{u}+2 u(1-u)=0
$$

where the transformation to the travelling variable $\tau=x-\nu t$ was performed in the latter form. The positive parameter μ serves to tune the relative strength of convection.

1) $\phi_{1}(u)=\sqrt{2} a_{1}(1-u), \quad \phi_{2}(u)=\sqrt{2} a_{1}^{-1}$. Then $g(u)=-\sqrt{2}\left(\left[a_{1}+a_{1}^{-1}\right]-2 a_{1} u\right)$. Therefore, for this $g(u)$, we can rewrite the ordinary differential form in Eq. (4•1) as

$$
\ddot{u}+2\left(-\frac{1}{\sqrt{2}}\left(a_{1}+a_{1}^{-1}\right)+\sqrt{2} a_{1} u\right) \dot{u}+2 u(1-u)=0 .
$$

If we set the fitting parameter $a_{1}=-\frac{\mu}{\sqrt{2}}$, then we obtain $\nu=\frac{\mu}{2}+\mu^{-1}$. Equation $(4 \cdot 2)$ is factorized in the following form:

$$
\left[D-\sqrt{2} a_{1}^{-1}\right]\left[D-\sqrt{2} a_{1}(1-u)\right] u=0
$$

that provides the compatible first order equation $\dot{u}+\mu u(1-u)=0$, whose integration gives

$$
u_{1}=\left(1 \pm \exp \left[\mu\left(\tau-\tau_{0}\right)\right]\right)^{-1}
$$

2) Since we are in the case of a quadratic polynomial, a second factorization means exchanging $\phi_{1}(u)$ and $\phi_{2}(u)$ between themselves. This leads to a convective Fisher equation with compatibility equation $\dot{u}-\sqrt{2} a_{1}^{-1} u=0$, where now $a_{1}=-\sqrt{2} \mu$, having exponential solutions of the type

$$
u_{2}= \pm \exp \left[-\mu^{-1}\left(\tau-\tau_{0}\right)\right]
$$

§5. Generalized Burgers-Huxley equation

In this section we obtain particular solutions for the generalized Burgers-Huxley equation discussed by Wang et al. ${ }^{5)}$

$$
\frac{\partial u}{\partial t}+\alpha u^{\delta} \frac{\partial u}{\partial x}-\frac{\partial^{2} u}{\partial x^{2}}=\beta u\left(1-u^{\delta}\right)\left(u^{\delta}-\gamma\right)
$$

or in the variable $\tau=x-\nu t$

$$
\ddot{u}+\left(\nu-\alpha u^{\delta}\right) \dot{u}+\beta u\left(1-u^{\delta}\right)\left(u^{\delta}-\gamma\right)=0 .
$$

1) $\phi_{1}(u)=\sqrt{\beta} a_{1}\left(1-u^{\delta}\right), \phi_{2}(u)=\sqrt{\beta} a_{1}^{-1}\left(u^{\delta}-\gamma\right)$. Then, one gets

$$
g_{1}(u)=\sqrt{\beta}\left(\gamma a_{1}^{-1}-a_{1}+\left[a_{1}(1+\delta)-a_{1}^{-1}\right] u^{\delta}\right)
$$

and the following identifications of the constant parameters $\nu=-\sqrt{\beta}\left(a_{1}-\gamma a_{1}^{-1}\right)$, $\alpha=-\sqrt{\beta}\left(a_{1}(1+\delta)-a_{1}^{-1}\right)$. Writing Eq. (5•2) in factorized form

$$
\left[D-\sqrt{\beta} a_{1}^{-1}\left(u^{\delta}-\gamma\right)\right]\left[D-\sqrt{\beta} a_{1}\left(1-u^{\delta}\right)\right] u=0
$$

the solution

$$
u_{1}=\left(1 \pm \exp \left[-a_{1} \sqrt{\beta} \delta\left(\tau-\tau_{0}\right)\right]\right)^{-1 / \delta}
$$

of the compatible first order equation $\dot{u}-\sqrt{\beta} a_{1} u\left(1-u^{\delta}\right)=0$ is also a particular kink solution of Eq. (5•2). It is easy to solve the second identification equation for $a_{1}=a_{1}(\alpha, \beta, \delta)$ leading to

$$
a_{1_{ \pm}}=\frac{-\alpha \pm \sqrt{\alpha^{2}+4 \beta(1+\delta)}}{2 \sqrt{\beta}(1+\delta)}
$$

Then Eq. (5•5) becomes a function $u=u(\tau ; \alpha, \beta, \delta)$ and $\nu=\nu(\alpha, \beta, \gamma, \delta)$.
2) $\phi_{1}(u)=\sqrt{\beta} e_{1}\left(u^{\delta}-\gamma\right), \phi_{2}(u)=\sqrt{\beta} e_{1}^{-1}\left(1-u^{\delta}\right)$. This pair of factorizing functions lead to

$$
g_{2}(u)=\sqrt{\beta}\left(\gamma e_{1}-e_{1}^{-1}+\left[e_{1}^{-1}-e_{1}(1+\delta)\right] u^{\delta}\right)
$$

and the ν and α identifications: $\nu=\sqrt{\beta}\left(e_{1} \gamma-e_{1}^{-1}\right), \alpha=\sqrt{\beta}\left(e_{1}^{-1}-e_{1}(1+\delta)\right)$. Equation (5•2) is then factorized in the different form

$$
\left[D-\sqrt{\beta} e_{1}^{-1}\left(1-u^{\delta}\right)\right]\left[D-\sqrt{\beta} e_{1}\left(u^{\delta}-\gamma\right)\right] u=0
$$

The corresponding compatible first order equation is now $\dot{u}-\sqrt{\beta} e_{1} u\left(u^{\delta}-\gamma\right)=0$, and its integration gives a different particular solution of Eq. (5•2) with respect to that obtained for the first choice of factorizing brackets:

$$
u_{2}=\left(\frac{\gamma}{1 \pm \exp \left[e_{1} \sqrt{\beta} \gamma \delta\left(\tau-\tau_{0}\right)\right]}\right)^{1 / \delta}
$$

u_{2} is different from u_{1} because the parameter α has changed for the second factorization. Solving the α identification for $e_{1}=e_{1}(\alpha, \beta, \delta)$ allows to express the solution given by Eq. (5.9) in terms of the parameters of the equation, $u=u(\tau ; \alpha, \beta, \gamma, \delta)$, and also one gets $\nu=\nu(\alpha, \beta, \gamma, \delta)$. If we set $\delta=1$ in Eq. (5•9), then from $\alpha=\sqrt{\beta}\left(e_{1}^{-1}-2 e_{1}\right)$ one can get $e_{1_{ \pm}}=\frac{\alpha \pm \sqrt{\alpha^{2}+8 \beta}}{4 \sqrt{\beta}}$ that can be used to obtain $\nu_{ \pm}=\nu(\alpha, \beta, \gamma)$. The solutions given by Eqs. (5.5) and (5.6) and in (5.9) have been obtained previously by Wang et al. ${ }^{5}$) by a different procedure.

§6. Conclusion

In this paper, the efficient factorization scheme that we proposed in a previous study ${ }^{1)}$ has been applied to more complicated second order nonlinear differential equations. Exact particular solutions have been obtained for a number of important nonlinear differential equations with applications in physics and biology: the modified Emden equation, the generalized Lienard equation, the Duffing-van der Pol equation, the convective Fisher equation, and the generalized Burgers-Huxley equation.

References

1) H. C. Rosu and O. Cornejo-Pérez, Phys. Rev. E 71 (2005), 046607; math-ph/0401040.
2) V. K. Chandrasekar, M. Senthilvelan and M. Lakshmanan, Proc. R. Soc. London A 461 (2005), in press; nlin.SI/0408053.
3) V. K. Chandrasekar, M. Senthilvelan and M. Lakshmanan, J. of Phys. A 37 (2004), 4527.
4) O. Schönborn, R. C. Desai and D. Stauffer, J. of Phys. A 27 (1994), L251. O. Schönborn, S. Puri and R. C. Desai, Phys. Rev. E 49 (1994), 3480.
5) X. Y. Wang, Z. S. Zhu and Y. K. Lu, J. of Phys. A 23 (1990), 271.
