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We present particular solutions for the following important nonlinear second order dif-
ferential equations: modified Emden, generalized Lienard, convective Fisher and generalized
Burgers-Huxley. For the latter two equations these solutions are obtained in the travel-
ling frame. All these particular solutions are the result of extending a simple and efficient
factorization method that we developed in Phys. Rev. E 71 (2005), 046607.

§1. Introduction

The purpose of this paper is to obtain, through the factorization technique,
particular solutions of the following type of differential equations:

i+ g(u)a+ Flu) =0, (1-1)

where the dot means the derivative D = %, and g(u) and F'(u) could in principle be
arbitrary functions of u. This is a generalization of what we did in a recent paper for
the simpler equations with g(u) = v, where v is a constant parameter.!) Factorizing
Eq. (1-1) means to write it in the form

[D = g2(w)] [D — ¢1(u)]u=0. (12)
Performing the product of differential operators leads to the equation
d
i — %Uﬂ—¢1u—¢2u+¢1¢2u =0, (1-3)
for which one very effective way of grouping the terms is")
d
U — <¢1 + o + %u) U+ p1¢pou = 0. (1'4)
Identifying Eqgs. (1-1) and (1-4) leads to the conditions
d
o) == (61+ 00+ 20) (15
F(u) = ¢100u . (1-6)

If F(u) is a polynomial function, then g(u) will have the same order as the bigger of
the factorizing functions ¢;(u) and ¢2(u), and will also be a function of the constant
parameters that enter in the expression of F'(u).
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In this research, we extend the method to the following cases: the modified Em-
den equation, the generalized Lienard equation, the convective Fisher equation, and
the generalized Burgers-Huxley equation. All of them have significant applications
in nonlinear physics and it is quite useful to know their explicit particular solutions.
The present work is a detailed contribution to this issue.

§2. Modified Emden equation

We start with the modified Emden equation with cubic nonlinearity that has
been most recently discussed by Chandrasekhar et al.,?

i+ aut + fu® =0 . (2-1)

1) ¢1(u) = a1v/Bu, pa(u) = a7 /Bu, (a1 # 0 is an arbitrary constant).
Then Eq. (1-5) leads to the following form of the function g(u)

niw =~V (L) o, (22)

ai

2 — 2_
Thus we can identify o = —/3 (%;—;rl), or aj, = W, where we use a; as
a fitting parameter providing that a; < 0 for « > 0. Equation (2-1) is now rewritten

as

il — \/B (2a1 + al_l) uts + Bud = (D — al_l\/gu) (D —ay ﬁu) u=0. (23)
Therefore, the compatible first order differential equation is @ — a1y/Bu’ = 0, whose
integration gives the particular solution of Eq. (2-3)

1
U =———=——— O0r U] =

a1v/B(1 — 70)

where 7y is an integration constant.

(2-4)

4
(a £ /a? —8B) (T — 70) ’

2) ¢1(u) = a1v/Bu?, ¢po(u) = a;*v/B. Then, one gets

g2(u) = —v/B (a7" + 3a1u?) . (2-5)

Therefore, g9 is quadratic being higher in order than the linear g of the modified
Emden equation. We thus get the particular case GE = 33, A = 0 of the Duffing-van
der Pol equation (see case 3 of the next section)

i \/B (a7 + 30a?) i+ g = (D — a7 ' /B) (D~ ary/Bu)u=0,  (26)

which leads to the compatible first order differential equation @ — a;v/Bu® = 0 with

the solution ]

[—2a1v/B(T — 10)]/2

(2-7)

ug =
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§3. Generalized Lienard equation

Let us consider now the following generalized Lienard equation
i+ gu)u+F3=0, (3-1)

where F3(u) = Au + Bu? + Cu?®. We introduce the notation A = /B2 — 4AC, and
assume that A? > 0 holds. Then:

1) ¢1(u) = a1 (M + C’u) , da(u) =at ((B;CA) + u); g(u) takes the form

g1(u) = a

(B+ A) (B—A)
_[ 2 20

ayt + (2Cay + a;t) u] . (3-2)

For g(u) = ¢g1(u), we can factorize Eq. (3-1) in the form
_1 ((B—=A4) (B+4)
p-at(B=4) D—a (22 ~0. :
[ aj ( 50 —|—u>][ a1< 5 +Cu)|lu=0 (3-3)
Thus, from the compatible first order differential equation % — al(% +Cu)u =0,
the following solution is obtained

w = (B+A) (exp [ Ca ((ngA)) (r— TO)] - 0) o (3-4)

2) ¢1(u) = a1(A + Bu + Cu?), 2(u) = a;'; g(u) is of the form
92(u) = — [(m A+ a;') + 2a1 Bu + 3a10u2] . (3-5)

Thus, the factorized form of the Lienard equation will be

[D—a7!] [D —a Fi(bu)} w=0 (3-6)

and therefore we have to solve the equation @ — a3 F3(u) = 0, whose solution can be
found graphically from

1

1
ud N\ 24 20u+ B — A\ 24
“1<T—T°>—1“<F3(u>> ‘ln(m> - (37)

3) The case B =0 and C = 1: Duffing-van der Pol equation

The B = 0, C' = 1 reduction of terms in Eq. (3-1) allows an analytic calculation
of particular solutions for the so-called autonomous Duffing-van der Pol oscillator
equation3)

[

i+ (G+ Eu®)u+ Au+u =0, (3-8)

where G and E are arbitrary constant parameters. Since we want to compare our
solutions with those of Chandrasekar et al.,) we use the second Lienard pair of
factorizing functions ¢1(u) = a1 (A + u?) and ¢a(u) = a;'. Then

ga2(u) = — (Aa1 + al_1 + 3a1u2) . (39)
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Equation (3-8) is now rewritten
i — (e A+ a;' +3a1u?) u+ Au+u’ = (D — afl] [D—a1(A+ u2)] u=0. (3-10)

Therefore, the compatible first order equation 7—a; (A+u?)u = 0 leads by integration
to the particular solution of Eq. (3-10)

B Aexp[2a1 A(T — 19)] 1/2 _ AGXP[_gAE(T —70)] 2 _
ui( )]> _i< ) e

1 — exp[2a1 A(T — 70 1-—- eXp[—%AE(T — 1)

where the last expression is obtained from the comparison of Egs. (3-8) and (3-10)
that gives a1 = —% and G = Ag—j;rg.
This is a more general result for the particular solution than that obtained

through other means by Chandrasekar et al.?) that corresponds to E = § and A = %
§4. Convective Fisher equation

Schonborn et al.¥) discussed the following convective Fisher equation

0 102 0

8—1; = §a—lg+u(1—u) —uua—z , or U421 —pu)i+2u(l—u)=0, (41)
where the transformation to the travelling variable 7 = x — vt was performed in
the latter form. The positive parameter p serves to tune the relative strength of

convection.

1) ¢1(u) = V2a1(1 —u), ¢a(u) = V2a;'. Then g(u) = —v2 ([a1 + a7 '] — 2a1u).

Therefore, for this g(u), we can rewrite the ordinary differential form in Eq. (4-1) as

1
i+ 2 <——(a1+a;1)+\/§a1u>u+2u(1—u) =0. (4-2)
V2
If we set the fitting parameter a; = —%, then we obtain v = £ + p~t. Equation

(4-2) is factorized in the following form:
[D - \/§a;1] [D V21 (1 — u)] w=0, (4-3)

that provides the compatible first order equation %+ pu(1—u) = 0, whose integration
gives
w = (14 explu(r — )" . (44)

2) Since we are in the case of a quadratic polynomial, a second factorization means
exchanging ¢;(u) and ¢a(u) between themselves. This leads to a convective Fisher
equation with compatibility equation u — ﬁaflu = 0, where now a; = —/2u,
having exponential solutions of the type

uz = Fexp[—p~H (1 — 7)) . (4-5)

220z 1snbny 0z uo1senb Aq 0¥8€Z8L/EES/E/ L L/olone/did/woo dnoolwepeoe)/:sdyy wol pspeojumoq



Factorizations and Particular Solutions 537
§5. Generalized Burgers-Huxley equation
In this section we obtain particular solutions for the generalized Burgers-Huxley

equation discussed by Wang et al.”)

au 58?1 82’& o Fy 5
E—i—au a—x—w—ﬂu(l—u)(u -v), (5-1)

or in the variable 7 = x — vt

i+ (v — aud)i + Bu(l — ud)(w’ — ) =0. (5-2)
1) ¢1(u) = v/Bai(1 —u?), pa(u) = v/Bay *(u® — ). Then, one gets
g1(u) = v/B (h0r" — a1 + a1+ 8) — a7 Ju?) (5:3)

and the following identifications of the constant parameters v = —/3 (al — yafl),
a=—B(a1(1+6) —a;'). Writing Eq. (5-2) in factorized form

[D —V/Bart(u® - ’y)} [D —/Bay(1 - u‘s)} u=20, (5-4)

the solution _ys
Uy = (1 + exp[—a; \/Eé(T — To)]) (5-5)

of the compatible first order equation @ — /Baju(l — u’) = 0 is also a particular
kink solution of Eq. (5-2). It is easy to solve the second identification equation for
a1 = ai(a, 3, 9) leading to

—a+/a?+45(1+9)
2v/B(1+96) '

Then Eq. (5-5) becomes a function u = u(1; e, 3,9) and v = v(«a, 3,7, 9).

(5-6)

a1y =

2) ¢1(u) = vBer(u? — ), pa(u) = /Bey (1 — u®). This pair of factorizing functions

lead to
g2(u) = \/B (’761 - efl + [efl —e1(1+ 5)]u5> (5:7)

and the v and o identifications: v = /B (e1y — efl), a = \/ﬁ(efl —e1(1+9)).
Equation (5-2) is then factorized in the different form

[D —/Bert(1 - u‘s)} [D —/Be1(u® — ’y)} u=0. (5-8)

The corresponding compatible first order equation is now 4 — v/Beju(u® — ) = 0,
and its integration gives a different particular solution of Eq. (5-2) with respect to
that obtained for the first choice of factorizing brackets:

B N 1/5 |
e <1 + exple1v/Byd(T — To)]) . (59)
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ue is different from u; because the parameter « has changed for the second factoriza-
tion. Solving the « identification for e; = ej(a, 3,d) allows to express the solution
given by Eq. (5-9) in terms of the parameters of the equation, u = u(7;«, 3,7,9),
and also one gets v = v(a,f,7,9). If we set 6 = 1 in Eq. (5-9), then from

2
a = /Ble]' — 2e1) one can get ey, = w that can be used to obtain

vy = v(a,3,7v). The solutions given by Egs. (5-5) and (5:6) and in (5-9) have
been obtained previously by Wang et al.?) by a different procedure.

§6. Conclusion

In this paper, the efficient factorization scheme that we proposed in a previous
study® has been applied to more complicated second order nonlinear differential
equations. Exact particular solutions have been obtained for a number of impor-
tant nonlinear differential equations with applications in physics and biology: the
modified Emden equation, the generalized Lienard equation, the Duffing-van der
Pol equation, the convective Fisher equation, and the generalized Burgers-Huxley
equation.
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