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1. Introduction. The feature-selection problem in pattern analysis is concerned with
the assignment of analytically or computationally tractable representations to patterns.
Two common goals in the mathematical analysis of this problem are to make the repre-
sentations precise in preserving salient characteristics of patterns, and concise in eliminat-
ing redundancy in the representations.

When the objects of the pattern analysis are curves, or line patterns, defined by
functions on a subset of the real line, then the feature selection procedure is conveniently
formulated in one way as an approximation problem. "Optimal" representations of
patterns are derived as best approximations of the patterns by members of a suitably-
chosen class of approximating functions. The motivation for the present study is the
feature-selection problem for line patterns that exhibit a characteristic quality of piece-
wise regularity. We are led to the analysis of problems of nonlinear approximation of
real-valued functions on the line. The connections between line-pattern analysis and the
approximation-theoretic problems will be drawn in greater detail in the next section.

The principal mathematical results of this paper belong to the area of approximation
theory. The classes of approximating functions that we consider are closely related to
extended Chebyshevian splines with variable knots on a finite interval of the real line.
They are defined by a linear differential operator L with constant coefficients. An ap-
proximating function <f> will satisfy L<t> = 0 except at a finite number of points h , • • • , tv
in the domain of interest, and at the points t, continuity constraints may be imposed
on 4>. The points t, are referred to as knots of <f>. The approximating classes include, in
particular, finite-order algebraic and trigonometric polynomials and splines.

For a line pattern identified with a function / we consider the problem of optimal
approximation of / by such a function <t> with respect to a norm on the space of line
patterns. Approximations are optimized with respect to dependence on knots and this
makes the optimization problem distinctly nonlinear. We concentrate on mean-square
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approximations, where the space of line patterns is L2[0, 1]. This choice of norm is more a
matter of convenience than of necessity and most of the results have immediately
recognizable extensions to the other Lv spaces. These extensions are explicitly pointed
out where the corresponding results for L2 are proven, since they may be of theoretical
interest. The results for least-squares and uniform approximation are the more important
ones from the practical point of view.

In Sec. 3 we seek characterizations of the classes of approximating functions and
consider first the question of existence of optimal approximations (Theorem 1). Sec. 4
illustrates the nonuniqueness of best approximations and directs us to questions of their
characterization which may be useful for computation, especially in the troublesome area
of optimizing knot locations.

In this direction Sees. 5 and G derive error bounds (Theorems 3 and 4) and sharp
estimates on the rate of convergence (Theorem 5) as the number of knots increases for
optimal approximations without continuity constraints at the knots—so-called pure-
segmented approximations. These asymptotic estimates yield tight bounds on the order
of convergence of optimal approximations when continuity constraints are imposed at
the knots, as in the case of variable-knot spline approximations.

The convergence analysis also leads to precise asymptotic characterizations of where
optimal knots are necessarily located. In Sec. 7 we use this characterization to define
procedures for computing asymptotically efficient pure segmented approximations
(Theorems 7 and 8).

In Sec. 8 we give the results of some computational experiments that relate the
approximation-theoretic analysis back to the feature-selection problem in pattern analysis
and compare nonlinear segmented approximations with certain best linear approxi-
mations.

The treatment we give to the consideration of the method of nonlinear approximation
is similar in flavor and in much of its detail to previous analyses of variable-knot poly-
nomial and Chebyshevian spline approximations. Some of the earlier work in this
direction anticipates the present results. Aside from the consideration of applications to
pattern analysis, the main departures in this paper from previous ones are in the classes
of approximating functions considered and in the nature of the convergence analysis.

The following references are representative of related work in approximation theory,
de Boor and Rice [1, 2] consider least-squares variable-knot cubic spline approximation
with emphasis on algorithmic approaches to the difficult computational problems. Rice's
book [21] discusses variable-knot spline approximation in both the L2 and L„ norms and
presents a number of interesting (and negative) results on questions of uniqueness.
Powell [18] analyzes problems of L2 spline approximation and presents characterizations
of best approximations that may be useful for computation of optimal knot locations.
Esch and Eastman [5] describe methods of variable-knot spline approximation in the
sup norm and relate results of numerical experiments. Karlin and Ziegler [9] give an
elegant and comprehensive treatment of extensions of the "classical" spline theory to
classes of Chebyshevian spline functions. Schumaker [25, 26, 27] considers approximation
in the uniform norm by Chebyshevian spline functions with variable knots and gives
thorough treatment to problems of existence and (non) uniqueness of best approximations
and their characterization by alternating properties. The existence theory of Hobby and
Rice [8] and Rice [21] for y-polynomial Lp approximation is pertinent to the similar
development in Sec. 3. Meinardus [12, 13] considers segmented approximations in the
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uniform norm by polynomials and obtains asymptotic results on the separation of optimal
knots. Phillips [16] gives error estimates for L„ approximation by polynomials which
point the direction for our discussion in Sec. 5. Burchard [3] has obtained useful error
bounds for best Lv approximations by variable-knot polynomial splines; these are similar
in form to but less sharp than the asymptotic estimates in Sec. 6. The early papers of
Ream [19, 20] and Stone [28] consider least-squares segmented approximation by straight
lines and discuss two areas of application of the technique. The sharp results of Sacks and
Ylvisaker [22, 23, 24] on L2 convergence of segmented polynomial approximations and of
Wahba [30] on L2 convergence of segmented approximations by Chebyshevian systems
anticipate the present results on convergence (Theorem 5 and its Corollary in Sec. 6)
and the sufficient conditions on efficient knot location (Theorem 7 in Sec. 7).

The view taken toward pattern analysis in this investigation is in the spirit of the
descriptive-generative approach which underlies the formalism developed by Grenandqj-
[6, 7]. Methods of approximation similar to the one considered here have been proposed
in the context of descriptive pattern analysis by Pavlidis [14], In a recent report [15]
Pavlidis has investigated piecewise-linear approximation as a technique for representing
data such as the trace of an electrocardiogram and has compared algorithms for comput-
ing balanced-error segmented approximations.

2. Analysis of line patterns. Feature selection is a fundamental problem in pattern
analysis. A feature-selection procedure specifies the vocabulary and grammar in terms
of which individual images can be represented. The representations assigned to the
patterns are the basic objects in terms of which subsequent descriptive analysis
or classifications are based.

The feature-selection problem in pattern analysis is aimed at devising good feature-
selection procedures and consequent pattern representations. The "goodness" of a
particular procedure depends naturally on the ultimate goal of the pattern analysis, be it
pure description or categorization and recognition of the patterns in the traditional sense.
The mathematical analysis of the feature-selection problem is concerned with assessing
the merits of alternative feature-selection procedures and with guiding the selection of
procedures that are optimal within a framework that takes account of structure in-
herent in the patterns and of the goals of the pattern analysis. Broadly speaking, the
mathematical analysis is directed to the search for pattern representations which are at
the same time precise in preserving salient structural characteristics of individual
patterns and concise in eliminating redundancy within the representations. The qualities
of precision and conciseness in the representations are of crucial importance for efficient
data compression when approximate representations are used for succinct pattern
description or in the commonly large-scale computations involved in pattern classifi-
cation or discrimination.

The present study is concerned with the feature-selection problem for line patterns.
By "line pattern" we mean a curve in finite-dimensional Euclidean space that can be
interpreted in turn through parametric representation as a vector-valued function of a
real variable. On the simplest level we concentrate our attention on plane curves de-
scribed a single real-valued function whose domain is a bounded interval subset of the
line. The theorems we derive can be interpreted in the broader context of curves with
vector-valued representations by appropriate extension of the norms to the vector-valued
counterparts of the single functions we treat in detail.
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For a line pattern described by a real-valued function on the line, the single real
variable on which the function depends is naturally interpreted in many contexts as
time. In this case, the patterns may be more appropriately termed "time patterns".
Grenander [6] draws such distinctions and relates the broad background in formal
pattern analyisis with numerous concrete examples.

Suppose the line patterns of interest are contained in a class fF of real-valued functions
on the bounded interval [a, 6], For convenience and without restriction we fix the interval
to be [0, 1], On the most basic level, each pattern / is described by the values it assumes at
every point in [0, 1], Such a description is practically useless for analysis of the patterns
and motivates consideration of alternative representations with the goals of precision and
conciseness outlined above for good feature-selection procedures.

A common approach in mathematical pattern recognition identifies the class 5 with
sample functions of a random process, say with mean value function zero and a continuous
covariance function R. Such assumptions on only the second-order properties of the
members of 5 already admit neat formulations of the "goodness" of linear feature
selection procedures and lead to the derivation of best linear procedures.

A linear representation procedure associates with each pattern / an expansion

/ - E 1.4>. (2.1)
f = l

where ^ is a family of continuous functions on [0, 1] which is complete in
and orthonormal with respect to the standard L2 inner product. The random coefficients
/, are given by the appropriately defined stochastic integrals, the inner products (/, \pv).

The crux of the linear feature-selection problem lies in choosing the family We can
measure redundancy in the representation (2.1) by the correlations of the coefficients

The representation is not redundant (in a sense, concise) if the /„ are uncor-
rected. Also we can discuss how precise the representation (2.1) is in terms of the speed of
convergence of total mean-squared-error to zero for the infinite series.

There is an optimal choice $ = for the class SE' in both regards; the coefficients
{(/> are uncorrelated and the total mean-squared-error of the compressed
representation

/*(0 = E (/, (2.2)
v = l

is as small as possible for the choice \p„ =</>„.
The optimal family is defined through the Fredholm eigenproblem

— [ R{t, s)<t>(s) ds, (2.3)

where the kernel R is the continuous covariance function associated with the class J.
From the symmetry, definiteness and continuity of R it follows that (2.3) admits solutions
A, <f> with the following properties. The eigenvalues A„ are nonnegative, countable in
number and can accumulate only at zero. The eigenfunctions <£„ associated with positive
eigenvalues A„ are continuous, only a finite number of linearly independent ones are
associated with a fixed positive eigenvalue, and eigenfunctions associated with distinct
eigenvalues are orthogonal with respect to the inner product ( , ). These properties of
solutions of (2.3) allow us to index the solutions, including multiplicities, according to
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diminishing magnitudes of the eigenvalues Xi > X2 > • • • > 0 and orthonormalize the
eigenfunctions </>„.

The resulting class $ = {<£„},-T obtained from (2.3) is optimal for the linear feature-
selection problem. Setting i/-„ = <f>, in (2.1) yields the familiar Karhunen-Loeve expansion
of the random process modelling SF. The coefficients /„ = (/, <£„) have variance X„ and are
mutually uncorrelated. Further, the ordering of the family $ is the optimal one as far as
the total mean squared error of compressed representations (2.2) is concerned. The
class minimizes JV E[j*(t) — f(t)f dt and gives the minimum value

mm f E[f*(t) - mr dt = Ex,. (2.4)
Jo v =N+1

This "best-linear" procedure and the expression (2.4) will be recalled in Sec. 8 as a
standard for comparison of nonlinear representation methods.

By thus appealing to the rather weak assumptions on second-order structure of a
class of patterns T we are led to natural measures of performance of a feature-selection
procedure. The precision is measured in terms of an average approximation error whose
specification is reasonable in view of the assumed weak structure. Conciseness is measured
in terms of correlations between representing functionals (/, \p,) and, in a related manner,
through the number of features necessary to attain a specified degree of precision in
compressed representations. In addition, by restricting attention to feature-selection
procedures of linear type, the weak structure assumed on the pattern class admits the
derivation of optimal procedures of this type.

We are here concerned with feature-selection procedures for the analysis of line
patterns that are based on deeper structure of a pattern class 57 than that assumed for
the familiar analysis of linear procedures sketched above. The procedures we investigate
are motivated by regularity properties of individual images / from a suitable class ff. Of
particular concern are functions / on the unit interval that exhibit conspicuous localized
irregularities. By this we mean isolated discontinuities in function values, isolated small
intervals over which the function varies rapidly, or isolated points or small regions where
low-order derivatives of the function are discontinuous or have large variations. Apart
from such localized regions of irregularity the patterns globally are more regular.

A piecewise linear function on [0, 1], perhaps discontinuous, typifies the sort of
behavior described above. Such line patterns would arise in parametric representations of
polygons. The electrocardiogram is also a time pattern exhibiting such regularity prop-
erties and it is one particular pattern whose description and analysis is currently of
concern in the area of mathematical pattern analysis [15] with the possible goal of
improving automatic interpretation.

Of central concern in the present study are patterns generated by a model of the form

Lj(t) = e(t), 0 < t < 1, (2.5)

where L is a linear differential operator of order n and «is a (random) forcing function of
impulse character. The forcing function may be a generalized function whose support is a
finite discrete subset of [0, 1] and whose order is less than n, or it may be smooth function
approximating such a generalized function in that its support is principally contained in a
finite union of distinct small subintervals of [0, 1]. Patterns generated by the model (2.5)
would describe, for example, the response of a linear system to shot noise.

A premise under which we proceed is that the irregularities of such patterns are basic
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structural properties of them which should be preserved in their representation according
to a prescribed feature-selection procedure. Such details of structure are important, for
example, in the normal analysis and interpretation of an electrocardiogram trace. The
feature-selection procedure should strive to ferret out such structural characteristics.
Thus we are led to investigate pattern representations that display this same element of
structure of the observable patterns and that retain as significant features the locations
of the isolated regions of irregularity.

Such a feature-selection procedure might be based on the approximation of patterns
by polynomial splines or extended splines with variable knots. Regions of pattern ir-
regularity are associated with locations of knots of an approximating spline. Apart from
its knots, a spline also exhibits the more globally regular behavior that is characteristic
of the line patterns we consider. The paper by de Boor and Rice [2] and Rice's book [21]
contain analysis and examples of variable-knot cubic spline approximations that are
presented very much in this same spirit, with the choice of approximation procedure being
guided by the underlying structure of the data being represented.

For the generative model (2.5) we are led to consider representation procedures which
go beyond approximation by variable-knot polynomial splines. The types of pattern
representations we should consider are dictated by a simple verbal description of the
functions generated by a model like (2.5). If e is a generalized function of order q — 1
whose support is a finite subset {<„},_i" of (0, 1) then a pattern / generated by Eq. (2.5) is
piecewise a solution of L<t> — 0; at the points t, the pattern / has n — q — 1 continuous
derivatives. Following this description of patterns generated by (2.5) we define the fol-
lowing classes $(/>, q) of functions on [0, 1] from which pattern representations will be
sought.

Definition 1. Associated with a fixed constant-coefficient linear differential operator
L of order n and integers p and q, where p > 0 and 1 < q < n, $(p, q) is the class of
functions </> on [0, 1] such that for each <p there are distinct points {<„}„.i" with 0 = <0 <
ti < ■ ■ ■ < lv < t„+i = 1 and <j> satisfies

i) 4> is a C" solution of L<t> = 0 on each open subinterval (<„ , t,+1),
ii) <j> is C" 1 in a neighborhood of each tv , v = 1, • • • , p.

The definition puts in precise terms the general description of patterns generated by
the ideal model (2.5). The integer p is the number of interior knots t, of a function 0 in
$(p, q). The integer q is the number of degrees of freedom of <t> at each of its associated
knots. When q = n the functions </> are pure-segmented; that is, the specifications of <t>
over distinct subintervals (t, , <»_ 0 are mutually independent. When L = D" and q = 1,
the class $(p, q) describes the familiar polynomial splines of degree n — 1 with p knots in
(0, 1). When q > 1, i>(p, q) describes the so-called extended or deficient splines.

In order to use functions in a class $(p, q) for pattern representation a rule is necessary
which associates a member <j> of some <£(/;, q) with each function / in the pattern class 5.
We follow the lead outlined in the description of analysis of linear feature-selection
procedures above and formulate the association rule through an approximation problem.
For fixed values of p and q, consider a pattern class containing $(p, q), which is a
metric space. In particular, let the metric on £F be defined by a norm || • ||. We will consider
the association to each pattern / in of a representation <f>* in a suitable extension of

When q — n it is understood that there are no continuity constraints on at the points tv.
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3>(p, q) which minimizes the norm-distance between $(p, q) and /:

||/-0*||= inf ||/-<£||. (2.6)(p, q)

In the next section we will be directly concerned with characterizing the proper extensions
of the classes $(p, q) so that the association procedure is well-posed.

Through (2.6) the representation problem, the analysis of the proposed feature-
selection procedure, is translated into an approximation-theoretic problem. As phrased,
the values of p and q are indeterminate and must be specified to fix the approximating set
of functions. Their determination may be a nontrivial aspect of implementation. The
value of q might be determined by a priori knowledge of the order of a generalized
function e in (2.5). Alternatively, its specification could depend on considerations such
as the desired simplicity or regularity of derived representations 4>*.

The value of p appropriate to obtain a suitable representation for any pattern / may
not, however, be so readily determined. It should depend on the number of points or
localized intervals of irregularity of the pattern. Choosing a value for p is an inference
problem specific to each particular pattern /; its value depends on /. We might gain
insight into this inference problem, though, by considering the approximation problem
(2.6) for any value of p and appealing to the description of the error ||/ — 4>*\\ in terms of
p to guide the choice. The error and convergence analyses of Sees. 5 and 6 are relevant.
These sections are also concerned with the problem of locating the knots of 4>* once their
number is specified.

In the detailed analysis of the approximation problem we take 5 to be L2[0, 1],
square-integrable functions on the unit interval. This choice of pattern class and approxi-
mation norm is more for convenience than necessity. Where the proofs apply directly, the
analogous results are pointed out for approximation in the other integral norms Lr ,
1 < r < oo, and for the sup norm. As a practical matter the results for least-squares and
uniform approximation are the more important ones.

The choice of norm will be of central importance in preserving fidelity between the
observable patterns / and their approximate representations <t>*. The norm chosen will
affect the correspondence between the knots of <t>* and the location of regions of ir-
regularity of /. If the main structural characteristics of the patterns in J are their very
localized regions of irregularity, then the sup norm is likely to be the preferred one for
producing faithful approximate representations. On the other hand, if the data describing
a pattern / are inexact or noisy then a least-squares criterion will have the advantage of
being less sensitive to perturbations in a single datum. Similar arguments can be put forth
in favor of alternative performance criteria which would weigh, for example, errors in
approximation of derivatives.

Pattern representations in a class <t>(p, q) fit rather neatly into the formalism and
grammatical structures of pattern analysis developed by Grenander in [6, 7]. The formal
approach describes the generation of ideal patterns in terms of combinations according to
prescribed rules (syntax) of simple primitive objects (signs) and in terms of operations on
the primitives and their combined forms (images and patterns). In addition to this
algebraic aspect of the formalism, a probabilistic element describes the deformation of
ideal images into observable ones. The description of the deformation mechanism admits
precise formulation and analysis of pattern recognition and description problems as
statistical inference problems.
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We associate observable images with functions in the class 5 and ideal images with
members of the classes $>(p, q), without concern at present for the deformation mechanism
mapping the ideal into observable images. The ideal images are catenations on the real
line of solutions on bounded intervals of the homogeneous equation L<£ = 0. Thus as the
building blocks for the generation of members of 3>(p, q), as the signs s of the pattern
grammar, we take any suitable representation for a solution of the differential equation
on an interval. We can, for example, define a prototype sign s to be an ordered (n + 1)-
tuple s = (l;x0 ,Xi, ■ • • , x„_i) describing the unique solution of L<t> = 0 on the interval
[0,1) which satisfies = x, for v — 0, • • • , n — 1. Formally, ~ s = (I; x0, • • • , xn_i).

Other signs similar to these prototypes are formed by translations Tr on the real line,
the background space; \f/T ~ Tr s, more precisely, = \pn(t — r). Then configurations c
are built through catenation of signs and identified with members <t> of some $(p, q),
<t> ~ c = (Si , • • • , s^). The catenation of signs corresponds to the catenation on the real
axis of the functions they represent. There are syntactic constraints on the catenation of
signs so that the resulting configuration c is admissible, grammatical. The syntax requires
that the intervals of the background space associated with the distinct signs comprising c
will partition the interval [0, 1] and that the continuity constraints on the members of
$(p, q) are satisfied by the function identified with c.

Admissible configurations which represent the same function 4> are considered
equivalent. They are indistinguishable to an observer. The equivalence classes of con-
figurations define the images of the pattern grammar. A function in 3>(p, q), that is with p
interior knots in [0, 1], admits association with a unique image and with a configuration
comprising no more than p + 1 signs. By these associations each class q) is viewed
as a subset of the image algebra in a formal grammar of patterns.

In passing to the analysis of the nonlinear approximation problem (2.6) we observe
that it is also a standard formulation of a pattern recognition problem according to a
minimum-distance criterion. The functions / in J correspond to observable deformed
images, and the functions <j> in $(p, q) are the ideal images to be inferred. The recognition
problem becomes the approximation problem where the recognition criterion is minimum
distance to 3>(p, q) according to the norm on EF. In this setting, the L2 norm on J leads to a
recognition procedure corresponding to classical (but nonlinear) least-squares regression.
Of course, a better norm for minimum-distance recognition may be dictated by precise
specification of the deformation mechanism that transforms an ideal image <t> into an
observable image /.

3. Approximation problem: existence. Identify the space of line patterns 5 with
L2[0, 1], real-valued square-integrable functions on the unit interval with the standard L2
norm || • ||. Let L denote a fixed nth-order linear differential operator with real constant
coefficients. In factored form,

L = n (£> - a,), (3.1)
v = 1

where D represents differentiation and the a„ are the characteristic roots of L. <t>(p, q)
denotes the class of functions generated by L, elicited in Definition 1. The following non-
linear approximation problem is posed: for / in ff, find <f>* in <£(p, q) satisfying

11/-011= inf ||/-*||. (3.2)(p, q)
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This problem is not well-posed. $(p, q) is not closed in 5 unless q = n. The difficulties
are essentially the same as those met in the analysis of variable-knot spline approxi-
mations. When the knots are free parameters of the approximations they must be allowed
to coalesce into a multiple knot with a corresponding relaxation of continuity constraints
on the spline at the multiple knot. Rice [21] describes the phenomenon for polynomial
splines, as does Schumaker for Chebyshevian splines [26].

In order to assure existence of optimal approximations for arbitrary functions / in J
we must look at least to the closure of $(p, q) in SF. In this direction we define classes of
functions $*(p, </) which are related to the closure of $(p, q) in 5 and in which existence of
best approximations is established.

Definition 2. Associated with a fixed constant-coefficient linear differential operator
L of order n and integers p and q, where p > 0 and 1 < q < n, $*(p, q) is the class of
functions <j> on [0, 1] such that for each 4> there are distinct points {s„}„„1r with 0 =
s0 < Sj < • • ■ < sr < sr+i = 1 and associated integer multiplicities {with m, > 1
and 53'-1' m< ̂  V and <t> satisfies

i. <t> is a C" solution of L<f> = 0 on each open subinterval (s„ , s,+1),
ii. <(> is C"'1'""" in a neighborhood of each s„, v = 1, • • • , r.2

The analysis will show that $*(p, q) is identified with the closure of $(p, q) in EF with
respect to any Lr topology, 1 < r < °°. q) is a necessary and sufficient extension of
$(p, q) in order to admit existence of solutions to the approximation problem (3.2).

In the existence results that follow there are strong parallels to previous results on
existence of optimal variable-knot spline approximations [21, 26]. Hobby and Rice's
elegent development for 7-polynomial approximations [8] is directly applicable to the
present situation. The previous results do not completely cover our questions concerning
the classes 3>(p, q) since (i) these classes go beyond the case of polynomial splines, (ii)
they need not be Chebyshevian splines, and (iii) the arguments already presented for
7-polynomials assume the number p of interior knots is restricted by the degree of the
7-polynomial. The latter results will be adapted for our proofs.

Convenient representations for functions in the classes $>(p, q) and $*(p, q) draw on
analogy with algebraic polynomials and splines. We let <f>, denote the unique solution of
L<t> = 0 which satisfies the conditions 0) = (v — 1) ! and WtfrJO) = 0 for n = 0,
1, • • • , n — 1 and n 5* v — 1. The real-analytic function <f>y has a series expansion of
the form

4>,(t) = r1 + 0(f) (3.3)
for v — 1, • • • , n, where 0(f) describes terms of order n and greater in the expansion. In
terms of the fundamental solutions <t>„ , define the functions <p,(t] s) which display varying
degrees of regularity at a knot s by

s) = 0, t < s (3 4)

= — s), t > s
for v = 1, • •• , n.

Now the members of $(p, q) and $>*(p, q) admit representations as linear combinations
of the functions <f>, and <t>,{ ; s). If <f> £ $(p, q), with interior knots tx < t2 < ■ ■ • < tv,
then

2 When qmy > n it is understood that there are no continuity constraints on <j> at s, and, at worst,
jump discontinuities are allowed.
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n v q

0(0 = 22 M.(0 + X) 12 a^<t>n+iO- (3.5)
f=l M=1 f=l

For any <j> £ $*(p, 5), with interior knots Sj < s2 < • • • < sr and respective multiplicities
mi , ■ • • , mr,

n r

4>(t) = 12 M,(0 + 12 12 s„), (3.6)
i; = l M" 1 ^ = 1

where we take aM„ = 0 when i> > n; the values of r and m„ are constrained by Definition 2.
The main existence result for best approximations is the following theorem.
Theorem 1. Let L be an nth-order constant-coefficient differential operator (3.1),

let p be a nonnegative integer and q an integer with 1 < q < n. For any function / in
L2[0, 1], there exists a function 1p in 3>*(p, q) such that ||/ — ^|| = inf^ ,=$<„,<,) ||/ — <£||.

Remark. The reader will observe that the proof applies equally to establish existence
of a best approximation in $*(p, q) of any function / in Lr[0, 1] for 1 < r < 00. The result
is slightly different for approximation in the essential sup norm. For / in L„[0, 1], the proof
establishes existence of i in $*(p, q) for which ||/ — ^|| < inf^e^,,,) ||/ — 0||. For / in
C[0, 1] and approximation in the sup norm the equality is attainable; that is, there
exists in $*(p, q) for which ||/ — ^|| = inf^e4(Pi<l) ||/ — </>||; see Schumaker [26, 27] and
Rice [21],

The proof of Theorem 1 is deferred so that a preliminary result relating $ and 4>* can
be established. The first result says that we must look at least to the set $*(/), q) for
solutions of the optimization problem (3.2).

Theorem 2. Let L be of the form (3.1), p > 0, and 1 < q < n. $*(p, q) is contained
in the closure of $(p, q) with respect to L2[0, 1].

Remark. The result also holds and the proof applies for the closure of <f>(p, q) in
Lr[0, 1], 1 < r < 00. The result is not true for the closure of 3>(p, q) in L„[0, 1] unless
pq < n.

Proof. A constructive argument shows that any function in $*(p, q) can be
approximated arbitrarily closely in the L2 norm by a member of <£(p, q). With the
representation (3.6), we can reduce the proof to showing that a fun tion u of the form

s) is a limit of functions <j> of the form 12—a^<t>n+\-v{t) O-
This result, in turn, is inferred from successive applications of the following construction
which splits a single multiple knot s into two distinct ones of lesser multiplicity.

Consider a function \p of the form

m = 22 ay<t>n+1-,(t; s) (3.7)
v = l

with a single knot s of multiplicity m, where 0 < s < 1 and 2 < m < n. For fixed positive
integers j and k with j + k = m and for a suitably small value of a positive parameter 5
we construct an approximation \p, of \p which has knots of multiplicities j and fc at s — 25
and s — 5, respectively. It is then argued that \\i — ^j|| —* 0 as 5 —* 0 to complete the
proof.

\ps is constructed to interpolate values of right-derivatives of at the knot s. Consider
ipi of the form

Ut) = 12 b,<t>n+1-„(t] s - 25) + 12 c„<t>n+i-v(t\s - 5). (3.8)
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Now in (3.7) the coefficients a, are determined by the right-derivatives of orders
n — 1, • • • , n — m of at s; indeed, Dn~"\p(s-{-) = a^(n — n)!. The connection suggests
choosing the coefficients i>„ and c, of t so that Dn~"\ps(s) = Dn~''<p(s+), for fi = 1, • • ■ , m.
These equations yield a linear system of equations Msy = a for the coefficients by and c„ ;
in this form the m-vector y has components y, = bv for v = 1 to j and yi+, = cv for v = 1
to k and the vector a has components a„ = a„(n — v)!. The entries of the m X m matrix
Ms are evaluations of Dn~"4>„+1_„ at 5 and 26. We must establish that Mhy = a admits
solution for 5 sufficiently small. This argument will yield estimates on the orders of the
solutions 6, and c„ for small 5, which will be used to establish the convergence of the
ips to \p.

With the expansions (3.3) for <£„ it follows that Ms can be expressed as a product

Ms = Di[M + 0(8)}D2 (3.9)
where Di and D2 are diagonal matrices depending on 5, M is a constant matrix and 0(8)
denotes an m X m matrix whose entries are all of order 8. In particular, [DJ,, = 5"~m,
[^2]^ = &m" for v = 1 to j and [D2\(,+,>(,•+,) = 8m~" for v = 1 to k. The matrix M is most
easily described in terms of the m polynomial functions /„(<) = (t + l)m~"-
(n — v) l/(m — v)! for v = 1 to j and — v) \/(m — v)! for v = 1 to k. In
terms of these functions M^ = Dm~"jy(l).

The solvability of the system Msy — a for y follows from the invertibility of the
product (3.9) for sufficiently small 8. The invertibility of the product depends on the
nonsingularity of M. The determinant of M is, up to a sign correction, the Wronskian of
{evaluated at 1. This Wronskian is nonzero since the polynomials f„ are a funda-
mental set of solutions of the mth-order equation D"'4> = 0. Thus M is invertible.

The solution y of Msy = a is given explicitly by

y = D2~1[M~1 + OmDr'a, (3.10)

where as before 0(5) denotes an m X m matrix whose entries are all of infinitesimal
order 8. For sufficiently small 8 the desired interpolating approximations \ps are well-
defined.

To establish the convergence of 1/^ to f as 5 goes to 0, we use the explicit descriptions
of Di and D2 above and observe that (3.10) yields

y, = bv = 0(8"~m), v = 1, • • • , j, ^ ^

yi+, = c, = 0(8"~m), v = 1, • • • , k.

These order bounds on the coefficients b, and c„ together with the representation (3.8)
of \ps imply that for sufficiently small values of 8 (i) \ips(t)\ is bounded by a constant B
independent of 8 on the interval s — 28 < t < s, and (ii) if m < n, then Dn~"\ps(s) —> 0
as 8 —> 0 for fi = m + 1, • • • , n. The latter consequence, together with the continuous
dependence of solutions of L<f> = 0 on initial conditions, imply that 1ps(t) —> ip(t) uniformly
on the interval (s, 1] as 5 —» 0. Finally, recall that \f/s and 1p are identically zero on the
interval [0, s — 26). The separate observations on the behavior of \ps on the intervals
[0, s — 25), [s — 26, s] and (s, 1] are readily combined to establish ||i/< — \l/s\\ —> 0 as
5 —> 0. The functions have the desired convergence property and the theorem is
proved.

We have the necessary preliminaries to prove the main existence theorem.
Proof of Theorem 1. Let / be in L2[0, 1]. We demonstrate a solution of the opti-
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mization problem from the class $*(p, q). Set

ev.M) = inf \\f ~ 4>\\- (3.12)
«/>G4> (p,Q)

The proof is given in three parts: (I) construction of a best approximation \p, (II) proof
that \p is in 3>*(p, q), and (III) proof that ||/ — ̂ || = e„,a(f).

(I) The construction of \p appeals to standard compactness arguments. Let
be a sequence from $(p, q) satisfying lim,^„ ||/ — \p,|| = e„,<,(/). For each i let <„(,) for
i» = 0, 1, • • ■ , p + 1 denote the distinct knots of \p{ . Since 0 < </*' < 1, we can extract a
subsequence of {\p{ | for which the associated knots converge as i —> <». Assume without
loss of generality that this convergence holds for the original sequence {\p(}; that is, for
each v, lim,_„ t,U) = T„ exists. Let S0, <Si , • • • , Sr, Sr+1 denote the distinct values in the
limiting set (T0, 7\ , • • • , Tp+1) and let mv, for v = 1 to r, denote the multiplicity of the
value S, in this set. We have 0 = S0 < Si < ■ ■ ■ < Sr < Sr + 1 = 1 and ^„,ir m„ < p.

The function \p is constructed to have knots at the points Sr . Let N be an arbitrarily
small closed neighborhood of the points {(S„(,»0r+1 and consider the sequence ! ̂ ,}
restricted to the complementary set Nc = [0, 1] — N. For i sufficiently large, ip, has no
knots in Nc and satisfies L\p, = 0 there. The restricted are members of a finite-
dimensional vector space. Further, the sequence of norms {||^,||} is bounded since
||/ — \pi\\ converges. Together, by the compactness argument, these observations imply
that a subsequence of {^. } converges uniformly to a limit function i/' on Nc. We assume
without loss of generality that the original sequence {^\} converges uniformly to the
limit ^ on JVC as i -> <».

On Nc the function \p satisfies L\p = 0 and it admits a unique right-continuous
extension to the interval [0, 1] that satisfies L\p = 0 except at the points S, . Since the
neighborhood N of the set {Sr | is arbitrary, it follows that )^,(<)} converges to ip(t) for
all t in [0, 1] except for t = S, . This convergence is uniform on any subset of [0, 1] that
deletes a neighborhood of the knots.

(II) To show that \f/ is in <1>*(p, q) we must show that is continuous at Sy,
for v = 1 to r. We first treat the case 5=1, analogous to spline approximations.

Let S be any interior knot of \p and let m be its multiplicity. Assume m < n ~ 1;
otherwise there are no continuity conditions on at S. Let 8 be a small positive value so
that [S — S, S + 5] contains only one knot S of \p.

The knot S is the limit as i —> °° of m of the interior knots of the functions \pi ;
denote these by tu , ■ • • , rmi , indexed according to their increasing magnitude. Let i be
sufficiently large so that S — 5 < tu and rmi < S + 5.

On the interval [S — S, S + 5] each \p, has a representation
m

Ut) - 0<l)(O + H r„,), (3.13)
v = 1

from expression (3.5), where 4>h) satisfies L<f> = 0 on (S — 8, S + 8). To apply the analysis
of Hobby and Rice, we note that for j = 0, 1, • • • , n — 1 the partials (d'/ds')<t>n(t] s) =
0„("(i; s) exist and are linearly independent functions of t, (<; s) is absolutely
continuous, and <f>nfn~1)(t; s) is bounded on [0, 1] X [0, 1]. We can in fact express the
partial <t>nh)(t; s) as a linear combination of </>„-,(<; s), </>„_,+ 1(£; s), • • • , <#>„(£; s), from
expression (3.4).

Since the i/-, are norm-bounded on [0, 1], we know that the i/\ restricted to [<S — 8,
S + 5] are also norm-bounded. With the representation (3.13) for ipi , the properties of
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the partials s), and the bound on the norms of the we can invoke the basic
convergence theorem of Hobby and Rice [8] (their Theorem 2). This states that the \pi
restricted to [£ — 5, S + 5] converge in norm to a function of the form 4>{t) +

S), where <f> is the uniform limit of the regular components of the
\p, . This expression must represent \p on [*S — b, S + 5] since <p is the pointwise limit of
{\pi} there. By the observation relating the partials 0„('1 (t; s) to the functions
<t>n-i(t; s), ■ ■ • , 4>n(t; s) we obtain

m

m = ^(0 + 2 ]S), S — d < t < S 5; (3.14)
v = l

comparable to (3.6). In particular, (3.14) implies that is continuous at S. The
argument applies equally at each interior knot of so \p is in 4>*(p, 1).

It remains to show that \p is in $*(p, q) when q ^ 1. Let q be any integer 1 < q < n.
We can regard the limit function \p, constructed as a pointwise limit of the sequence j I
from $>(p, q), as a limit of a sequence from 3>(pg, 1). Suppose that m knots of the ^
converge to an interior knot S of \p and that mq < n — 1. By the closure argument of
Theorem 2, each \pt can be approximated arbitrarily closely by a member of 1)
that has q distinct knots near each knot of i. Thus, near S, \p is a limit of a sequence
from $(pq, 1) with mq knots converging to S. By the regularity argument above we
conclude that when mq < n — 1, then Dn~1~'"V is continuous at S and \f/ is in $*(p, q).

(Ill) The proof of the theorem will be completed by showing that ||/ — \p\\ = ep>a(/).
The pointwise convergence of {^. } to \p implies that ||/ — ^|| < lim ||/ — ^,|| =

by applying Fatou's lemma for the integral norm. By Theorem 2, \p in $*(p, q) is
in the closure of $(p, q), so we can find a sequence {x»}«-1° from <E>(p, q) such that
limi_„ ||^ — x»11 = 0. (This is the one step in the proof that need not apply for the
essential sup norm.) Necessarily, ||/ — xv 11 > ep,a(f), so ||/ — ^|| = lim ||/ — x. 11 >
®j>.a(/)- Together the inequalities yield ||/ — \p\\ = ev,Q(f). The proof is complete.

Remark. An immediate consequence of the proofs of Theorems 1 and 2 is that for
1 < r < a.; $*(p, q) is the closure of 3>(p, q) in Lr[0, 1]. With respect to L«,[0, 1], $*(p, q)
is the closure of $(/>, q) only when pq < n.

For the subsequent error and convergence analyses it is convenient to observe
relationships between the classes <1>*(p, q) for different values of p and q. If m is any
positive integer then <t>*([p/m], min (n, mq)) is contained in <I>*(p, q), where [p/m\ denotes
the integer part of p/m. This inclusion is a direct consequence of Definition 2.

4. Nonuniqueness. A natural question to follow the demonstration of existence of
best approximations in $*(p, q) is that concerning their uniqueness. Uniqueness would
be a desirable property for developing computational algorithms out of necessary
conditions for optimality.

Unfortunately, best approximations in <!>*(/), q) are not necessarily unique. In [2] de
Boor and Rice present a neat theoretical argument based on the strict monotonicity of
approximation error as a function of p, the number of interior knots, that establishes
nonuniqueness for best variable-knot spline approximations. As a specific example,
consider the best L2 approximation of j(t) = t3 on the interval [— 1, 1] by a step function
with one knot. Straightforward calculations show that either ±l/\/3 is an optimal knot
location.

By thus optimizing the knot locations in approximating a function / with a member of
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4>*(p, q) we may enounter a situation where the solution is not unique, or at least we must
anticipate facing problems of local extrema in knot optimization. Powell [18] points to
the negative implications of this problem of local extrema for algorithmic computational
procedures and suggests using judicious starting approximations for the knot positions in
order to increase the chance of obtaining good approximations through iterative knot
adjustment. We obtain positive results in this direction from the convergence analysis
that follows.

The iterative procedures for knot adjustment that are used or suggested in the litera-
ture [2, 5, 18] are based on necessary conditions for local minima. Their success in finding
a global minimum depends on their initialization. The results of Sec. 7 on necessary and
sufficient conditions on the asymptotic distribution of optimal knots will suggest a
particular scheme for reasonable initialization of such iterative procedures. The theorems
make precise and reinforce the successful rules of thumb for initialization described by de
Boor and Rice [2],

The path to these knot-distribution results starts by examining convergence of best
approximations from $(p, n) as p, the number of knots, increases.

5. Local error estimates. To obtain sharp estimates of approximation error and
order of convergence of function approximations from the classes $(p, q) reflecting
dependence on the number and location of interior knots we first investigate the depen-
dence of the error on the length of the interval of approximation for function approxi-
mations by regular solutions of the equation L</> = 0. Since the main results we seek are
asymptotic, for p large, and since knots for optimal approximations from 4>(p, q) will be
expected to cluster as p increases, we first seek estimates for approximation error on
small intervals. We build on these local estimates in the next section to obtain the exact
order of convergence for approximations from 4>(p, n), pure segmented approximations,
and sharp upper and lower bounds on the order of convergence for approximations from
the classes $(p, q) when q < n.

The following result, proven in [10], illustrates the type of local convergence results we
will develop more fully in this section.

Theorem 3. If / is in C"+1[i0, to + h], then the error of the best L2 approximation of /
on [<0, t0 + h] by a solution of L<t> = 0 is

min f°+h (f(t) - <t>(t))2 dt = Kn{Lj{t0))2h2n+l + 0(h2"+2), (5.1)
(<fr:L0 = O) Jt o

K■ " <k WnTi - ''H""\ ' <5'2)
where H is the n X n Hilbert matrix with entries Hu = \/{i + j — 1) and v is the column
n-vector with components w, = 1 / (n + ?').

This theorem is proved by a straightforward asymptotic analysis of the problem of
linear least-squares regression of the function / on the span of the functions (Eq. (3.3))
when the interval length h is small. The proof is omitted here as we will obtain a stronger
result than (5.1) in the form of an error bound using weaker regularity assumptions on the
function /. The present arguments also have the advantage of extending to yield error
bounds for approximation in any Lr norm, 1 < r < <*>. The error bounds so obtained are
more useful for implementation of a variable-knot approximation procedure than is the
convergence estimate (5.1).

*]•
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A basic tool in deriving error bounds is Polya's mean value theorem [17]. To invoke
this result we must impose a constraint on the length h of an interval of approximation so
that the operator L possesses Polya's Property IT.

Definition 3. The operator L (Eq. (3.1)) possesses Property W on the interval (a, b)
if there are n solutions \p> , *p2, • • • , i>n of L<j> = 0 on (a, b) such that the n Wronskians
W(\pi), W(ii , ii), ■ ■ ■ , W(ypi. , , • • • , in) are all strictly positive throughout (a, b).

The interval in the definition can be closed as well as open as long as the derivatives
of the function can be appropriately defined at or extended to include endpoints.

Any linear constant-coefficient differential operator (3.1) will possess Property W
on a sufficiently small interval. To see this observe that the solutions 4>„ defined in Sec. 3
(Eq. (3.3)) satisfy 4>i(0) = 1 and , <t>2, • • • , <£*)(0) = IX-i* 0 — 1) •' f°r 'c between
2 and n. Since these Wronskians are all continuous and positive at 0, they are all strictly
positive on a suitably short interval [0, h]. Because of the translation-invariance of
solutions of the constant-coefficient homogeneous equation, whether L possesses Property
W on any interval depends only on the interval length and not on its absolute location.
Thus for the operator L of (3.1) there is a constant h0, 0 < h0 < co, such that if h < h0,
then L possesses Property W on the interval [t0, t„ + h].

With this notion we can establish the following result.
Theorem 4. If the operator L possesses Property W on [0, h] and if / is in

C"[t0, t0 + h], then the error of the best L2 approximation of / on [t0, ta + h\ by a solution
of L<t> = 0 is

min
10 :L<t>

in r m - m2 dt = Kjh)(Lfm2h2"+i (5.3)
0=0) J to

for some point £ in [t„, t0 + h], K„(h) is independent of / and is given by K„(h) = K„ +
0(h), where Kn is given by (5.2); equivalently,

Kn = [(2n + l)(2nn)W] '• (5-4)

Remark. Expressions analogous to (5.3) and (5.4) for Lr approximation will be
observed at the end of the proof of Theorem 4.

The proof of Theorem 4 follows the development of several preliminary consequences
of Property W, which are of independent interest.

Lemma 1. If L possesses Property W on [0, h] and if j/, , • ■ ■ , <pn are solutions of
L<t> = 0 for which the Wronskians W(\pi, • • • , \pt) are strictly positive on [0, h], for
1 < lc < n, then is a complete Chebyshev system on [0, h]) that is, every non-
trivial linear combination cy<t>v has at most k — 1 zeros in [0, h] for 1 < k < n.

Proof. Meinardus [13], Theorem 70, p. 88.
From this fact, that a differential operator L with Property W on an interval has a

fundamental set of solutions of the homogeneous equation L<t> = 0 which is a complete
Chebyshev system on that interval, we can show that best approximations of a continuous
function / must interpolate / at at least n distinct points. The argument from here
parallels the presentation of Phillips [16] in deriving error bounds for polynomial ap-
proximations.

Lemma 2. If L possesses Property W on [0, h] and if 4>* is a best Lr approximation of a
continuous function / on [<0, t0 + h] by a solution of Lcf> = 0, for 1 < r < <», then there
are n distinct points <, satisfying ta < h < ■ ■ ■ < tn < t0 + h at which <j>*(t,) = /(<,),
for 1 < j < n.
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Proof. Without loss of generality, let t0 = 0. Fix h such that L possesses Property W
on [0, /t] and let , • ■ ■ , be a complete Chebyshev system of fundamental solutions of
L<t> = 0 on [0, h]. Let / be continuous on [0, h] and 4>* a best Lr approximation of / by a
linear combination of the functions .

When T = 00, the lemma is an immediate consequence of the familiar Chebyshev
equioscillation theorem (see Meinardus [13], Theorem 23). We need only treat the cases
1 < r < oo.

Assume the difference / — <f>* is nonzero almost everywhere on [0, h]. Otherwise
extract the distinct points t, , • • • , tn from the set of positive measure where the difference
vanishes. Timan [29] shows that when / — <f>* is almost everywhere nonzero, then a
necessary and sufficient condition for <f>* to be a best Lr approximation of / on [0, h] is

[ $,(t) |/(<) - «*(<)|r_1 sign{/(<) - <*>*(01 dt = 0, (5.5)
Jo

for v = 1 to n and any r, 1 < r < oo.
Let v = 1 in (5.5). Since <pi does not change sign on [0, h], the vanishing integral

implies that / — </>* must change sign in (0, h). Since the difference is continuous, there is
at least one point ti in (0, h) where /(<,) =

Now suppose that sign {/(0 — <t>*(t) } changes at the distinct points h , • • • , tk in
(0, h) and nowhere else, and suppose k < n. We know k > 1. Since , • • • , ^t+1| is a
Chebyshev system, there is a unique function of the form ^(t) = — XI,.b,\p,(t)
which vanishes and changes sign at the points tj, for j = 1 to k. The product
ip sign {/ — <!>*} does not change sign in (0, h). Yet from (5.5),

I 4>(t) sign j/(o - </>*(oi 1/(0 - **(ordt
Jo

This contradiction implies k > n, and the lemma is proved.
Finally, we obtain an expression for the remainder when a smooth function / is

interpolated by a solution of l4> = 0.
Lemma 3. Suppose L possesses Property W on [0, h] and / is in Cn[ta, ta + A] and <f>

satisfies L<f> = 0 on [<0, tQ + h] and <*>(<,) = /(<,) at n distinct points h , t2, • • • , in
(t0, t0 + h). Then f(t) — 0(0 = for all t in [<„, ta + h], where $ is the unique
solution of L4> = 1 on [<0, t0 + h] satisfying 4>(tj) = 0 for j = 1 to n and £ is some inter-
mediate point min (t, <i) < £ < max (t, tn).

Prooj. This is P61ya's mean value theorem [17].
Proof of Theorem 4. The first part of this proof follows the argument of Phillips for

algebraic polynomial approximations.
Fix h so that L possesses Property W on [0, /(], let / be in Cn[t0, t0 + h] and let <t>* be a

best L2 (or Lr) approximation of / on [ttJ, tQ + h] by a solution of L<t> = 0. By Lemma 2,
there are n distinct points t*, ■ • ■ , tn* in (t0 ,t0 + h) at which f(t*) = 4>*(t,*).

Construct the following functions on [/0 ,t0 + h] related to <t>* and /:
(i) $ is the unique solution of L4> - 1 which vanishes at t*, • • • , tn*.
(ii) ^ satisfies L$ = 1 and has minimum L2 (or Lr) norm on [<0, t0 + h] among all

solutions of this equation. # as constructed is the remainder of a best Lr approximation
of 0 by a solution of L<t> = 0; by Lemma 2 there are n distinct points h , • • ■ , l„ in
(t0, t0 + h) where #(?,) = 0.

(iii) <f>** is the unique solution of L<t> — 0 which interpolates / at the points h , • • ■ ,1,
***(?,) = m.

n >
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Existence of the functions 4>, $ and </>** as described is assured by the assumption that L
possesses Property W on [0, h].

By Lemma 3 on the remainder and by the specifications of <t>* and $, /(<) — 4>*(t) =
(Lj(ff)4>(t) for any t in [<0, t0 + h\ and some point £ intermediate to t, t*, ■ • • , I*. Simi-
larly, j(t) — 4>**(t) = (L/(£))#(<)• Now letting || ■ || denote the standard L2 (or Lr) norm
on [t0, t0 + A], these remainder expressions and the properties of <f>*, </>**, 4> and $ imply

and

- <#>*11 < 11/ - <#•**!I < ( max |L/(s)|) ||$||
lto,to+h)

- 0*|| > ( min |L/(s)|) ||0|| > ( min |L/(s)|) ||$||
[ t O • f 0 + A ] [ t 0 , t 0 + h ]

In addition, since Lf is continuous on [t„, tu + h] the two inequalities yield ||/ — 0*|| =
|L/(£)| ||$|| for an intermediate point £ in [<0, to + h], For the particular case of L2 ap-
proximation we can apply Theorem 3 directly to $ and obtain ||$j|2 = Knh2n+1 + 0(h2"+'2).
In turn this yields (5.3),' ||/ - <*>*||2 = (Kn + 0(h))(Lf(Q)2h2n+1.

An alternative derivation of the equivalent form (5.4) for Kn generalizes to approxi-
mations in the other Lr norms. Fix t„ = — A/2 and consider the form of the minimum
norm ||$|| on [ — h/2, h/2], Change the variable t and define $A(r) = (2/h)n0(hr/2) for
— 1 < r < 1. Associated with the operator L = II—i" (D ~ a>) (3-1) define the
operator M (h) = II-." ('Pr — a,h/2), where D, denotes differentiation with respect to r.
Since $ satisfies L$ = 1 on [—h/2, h/2], through the change of variable satisfies
M(h)$k = 1 on [—1, 1].

Also define an algebraic polynomial $o(t) = r"/n! — c,t where the coeffi-
cients c, are chosen so that the Lr-norm of 4>0 on [—1, 1] is a minimum. 3>0 satisfies
M(0)$o = 1 on [ — 1, 1], The continuous dependence and differentiability of solutions of
M(h)<t> = 1 with respect to the parameter A at 0 implies that | |<f\ — 3>0|| = 0(h) for any
Lr norm, 1 < r < , on [— 1, 1], From the relation &h(r) = (2/h)n$(hr/2) we obtain
j|^|| = (A/2)n+1/r ||$*||, where the norms are over the intervals [ — h/2, h/2] and [ — 1, 1]
respectively. Together with ||<i>A|| = ||$0|| + 0(h), this yields ||#|| = (/i/2)A+1/r(||$o|| +
0(h)).

The norm ||<p|| is thus expressed in terms of the norm of the algebraic polynomial $0
satisfying D"<t>0 = 1 and such that <£0 has minimum L, deviation from zero on [—1, 1].
For the particular case of L2 approximation, <f>0 is expressed in terms of the nth Legendre
polynomial Pn on [—1, 1] as

<*>„ = (2"P„)/n\ (2nn) ;

see Davis [4], The L2 norm of <? in this case is

= (h/2)n+1/2^2n+'/2/n\ (^)(2n + 1),/2 + 0(/i)J

= [n! (2^)(2n + 1),/2] \n+l/2 + 0(AnH3/2
)•

Squaring this yields (5.4) and (5.3) from the equation ||/ — <f>*\\ = |L/(Q[ [|$[| above. The
proof is complete.

Remark. Because of the generality of the proof we can immediately state expressions
for other best Lr approximations which are completely analogous to (5.3) for the L2 case.
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Under the assumptions of Theorem 4, the error ||/ — 0*|| of the best L, approximation 0*
of / on [<0, <o + h] by a solution of L<f> = 0 is

11/ - <t>*II = K„.r(h) |L/({)| hn+i/r (5.6)
for some point £ in [<0, t0 + h]. Kn,r(h) is independent of / and, referring to the end of the
proof above, is given by Kn,r(h) = K„,r + 0(h) where

Kn.r = ||f0||/2n+,/r; (5.7)

here, as before, $0 is the algebraic polynomial satisfying Dn<t>{) = 1 and which has mini-
mum Lr deviation |!$0|| from zero on [ — 1, 1]. As shown in the proof, K„,22 = Kn given by
(5.4). In two other cases we can obtain explicit representations for Kn.r from (5.7): (i)
when r = °°, <J>0 = TJn ! 2""1, where T„ is the nth-degree Chebvshev polynomial of the
first kind, yielding Kn,„ = [n! 22"'1]'1 (see Davis [4]); (ii) when r = 1, f>0 = UJn \ 2n,
where Un is the nth-degree Chebyshev polynomial of the second kind, yielding KnA =
[22nn !]~' (see Davis [4], Timan [29] and Phillips [16]). Phillips [16] derives bounds for
constants related to the K„,r for 1 < r < .

From Theorem 4 and the remarks above we can state approximation error bounds
which are potentially useful in implementation of variable-knot approximation pro-
cedures.

Corollary 4.1. Under the assumptions of Theorem 4,
mKn,r(h)hn+1/r < min ||/ - 4>\\ < MKn,r(h)hn+1/r (5.8)

I* :L6-0)

where the norm 11 ■ 11 is the standard Lr norm on [<0, t0 + h] and m and M are lower and
upper bounds respectively for |Lj(t)\ on [i0, t0 + h].

Remark. In the proof of Theorem 4 we used the result of Lemma 2 that a best Lr
approximation <f>* of / interpolates / at n distinct points h*, ■ ■ ■ , tn* in [<0, U + h\. With
appropriate regularity assumptions on the function / it is possible to relate these inter-
polating points to zeros of classical polynomials. For example, in uniform approximation
they are asymptotically for small h the zeros of the nth-degree Chebyshev polynomial of
the first kind. See Meinardus [13], Theorem 68 for a result of this nature. The rigorous
development of this kind of result will be especially important for applications.

6. Global convergence. For sufficiently smooth functions / in a class 5 = Lr[0, 1]
and best approximations <f> of / from the class <J?*(p, q) we determine the asymptotic
behavior of the total approximation error ev,q(1) (Eq. (3.12)) as the number of knots
increases. The estimate take the form of limiting equations for e„,„(/) and limiting bounds
derived from these equations for e„,a(/) when q < n.

Consider / in L2[0, 1] and let <f> denote a best L2 approximation of / from 4>(p, n). The
L2 deviation ev,n(j) is expressed as

e*Af) = E f+' m - m2 at, (6.D
*=0 Jtw

where t0 < < • • • < tv+l are the knots of <j>. An expression analogous to (6.1) describes
the rth power of the total error of a best Lr approximation of / on [0, 1] by a member of
$(p, n) when 1 < r < oo.

To determine the effect of knot optimization on e„,„(/) it is convenient to modify (6.1)
slightly and work with an expression that makes the knot optimization explicit. Write
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ev,n{1) = mill £ f (/(0 - *(0)a dt (6.2)
(ti, ••••tp) f = 0 J t,

where 0 = t0 < ti < ■ ■ ■ < tv < tpi.i = 1, and where over each separate subinterval
(t, , ty+i) <t> is the best L2 approximation of / by a regular solution of L<t> = 0. When / is
sufficiently smooth and when t,+1 — t, is small, the analysis of the preceding section
applies to give an expression for JJ;+1 (/(<) — 0(0)2 dt in terms of Lf and tv+1 — t, . We
build on this analysis to determine the asymptotic behavior of (6.2) as p increases.

Problems of optimal partitioning or interval segmentation like (6.2) have previously
been considered in several specific contexts. The earliest instance of such a problem of
which we are aware is the problem of optimal stratification of a population for estimation
by sampling of its mean, treated by Dalenius and Hodges in 1957. They obtain results on
the convergence of a particular form similar to (6.2) and develop procedures for efficient
stratification which parallel our results in the next section.

More recently Sacks and Ylvisaker [22, 23, 24] and Wahba [30] treated optimization
problems like (6.2) in their analyses of a statistical design problem for linear regression.
Their formulation in terms of reproducing-kernel Hilbert space yields results which
transcend the immediate concerns with the design problem. The results anticipate the
present ones on convergence of L2 approximation error and they also apply to problems of
optimal and efficient quadrature rules for numerical integration like those to which the
present analysis is applied in [11].

Another area among many in which the optimal partitioning problem has occurred is
that of organizing data into homogeneous groups. The analysis in this direction reflects
strong similarities to the early work of Dalenius and Hodges.

The treatments of the partitioning problem in all of these particular instances have
been carried out in manners specific to the contexts in which the problem arose. Indeed,
in [10] we derived the asymptotic character of the approximation error e„,„(/) and the
development was narrower and more cumbersome than necessary because of the details of
the particular problem which were carried along in the analysis.

A more general result for partitioning problems like (6.2) is attainable and easier to
prove when the essential features of the problem are isolated. We first prove such a result,
Lemma 4 below, which applies readily to the present L2 approximation problems, to the
analysis of approximation error in the other Lr norms for 1 < r < , and to specific
problems of optimal partitioning like the others mentioned above. The application to
approximation-error convergence is elicited in Theorem 5 below and the remarks that
follow.

For functions / in a set 9 of real-valued functions on [0, 1] consider the minimization
with respect to p-point partitions T = (t„, tt , ■ ■ ■ , tp, tp+1), where 0 = t„ < t, < ■ ■ ■ <
tv < tv+i = 1, of a functional of the form

E(J,T) = Ee(f;ty , ty+1). (6.3)
F=0

The following assumptions are imposed concerning the definition and properties of
E(f, T).

Al. For each / in g and any points a < b in [0, 1] a nonnegative value e(/; a, b) is
defined. Assume e(f; ) is subadditive on contiguous subintervals of [0, 1]; that is, for any
three points a < b < c in [0, 1], e(/; a, b) + e(/; b, c) < e(/; a, c).

Assumption Al implies in particular that E(j, T) is nonnegative. The subadditivity
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of e(/; ) is equivalent to the assertion that if the partition S is contained in the partition
T, that is if T is finer than S, then E(/, T) < E(j, S).

The class g of functions / for which (6.3) is considered is restricted by the next
assumption.

A2. There is a mapping J from 9 onto P(7+[0, 1], nonnegative piecewise continuous
functions on [0, 1] that have at worst a finite number of jump discontinuities, and a
constant exponent m > 1 such that limM0 e(j; a, a + h)/hm = J/(a+) for all a in [0, 1).
Further, this limit is uniform in the sense that the difference |«//(a+) — e(/; a, a + h)/hm\
can be made uniformly small whenever (a, a + h) is contained in an interval (a, /3) that
contains no discontinuity points of Jj.

Two additional assumptions are not necessary for the result, but they hold in the
present setting and simplify the proof.

A3. If Jj vanishes identically on (a, b) then e(/; a, b) = 0.
A4. For any / in g, e(/; a, b) is a continuous function of the pair (a, b) on

0 < a < b < 1.
With these assumptions on e(/; a, b) and E(j, T) we can characterize the asymptotic

behavior of the functional

Ep(j) = inf E(J, T), (6.4)
T

where the infimum is taken with respect to all p-point partitions T = (t0, 11 , • • • , tv+i)
of [0, 1],

Lemma 4. If assumptions Al, A2, A3 and A4 hold for e(j; a, b) then

lim p" -'EM = (f\jM)1/m ds)m■ (6.5)

Proof. Let / be in the class g and consider its image Jj in PC+[0, 1]. With approxi-
mations of Jj from above and below by step functions, we reduce the proof of (6.5) to its
proof for step functions Jg.

Let Jg be a step-function approximation of Jj from above, with Jg > Jj throughout
[0, 1], The uniform convergence assumption A2 implies that e(/; a, a + h) < e(g] a, a + h)
if h is sufficiently small and (a, a + h) does not contain a discontinuity point of Jj or Jg.
With this we can fix a finite number of points ri < r2 < • • • < rk in (0, 1), which include
all the jumps of Jj and Jg and which are sufficiently close together, so that E(j, Tr) <
E(g, Tr) for any partition Tr including the points r 1 , • • • , Tk. Thus for p > k, if Tr
denotes a p-partition including t1 , ■ ■ • , rk, we have

Ev(j) < inf E(j, Tr) < inf E(g, Tr). (6.6)
T, T,

To obtain a similar lower bound on Ev(j), let Jg be a nonnegative step-function
approximation of Jj from below so that Jg < Jj on intervals where Jg > 0. If Jg
vanishes identically on (a, a + h) then e(/; a, a + h) > e{g\ a, a + h) by assumption A3.
Thus, by the same argument as that leading to (6.6), we can fix a finite number of points
Ti < r2 < • • • < Tk in (0, 1), which include all the jumps of Jj and Jg and which are
sufficiently close together, so that E(j, Tr) > E(g, Tr) for any partition including
ti , • • • , T/t. Let T be an arbitrary p-partition and let Tt denote the finer (p + k)-
partition that adds the points t 1, ■ • • rk to T. By assumption Al, E(j, T) > E(j, Tr).
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Thus
Ep(f) > inf E(f, Tr) > inf E(g, Tr), (6.7)

Tt Tt

where the last infima are with respect to the constrained (p + /c)-partitions Tr.
The inequalities (0.6) and (6.7) suggest consideration of the functionals E(g, Tr)

alone, where Jg is a nonnegative step function and Tr is a p-partition of [0, 1] that in-
cludes the discontinuity points of Jg. By assumption A4, E(g, Tr) is a continuous function
of the free partition points of T, . Since these free partition points range over a compact
simplex, the value inf Tr E(g, TT) is attained for some p-partition T„ . For p > k consider a
sequence {T„}v,k°' of optimal constrained p-partitions; E(g, Tv) = infr, E(g, Tt) and
each Tv includes the k fixed points ri , • • • , rk. Let t0, ti , ■ ■ ■ , tv+1 denote the points of
Tv. The values t, depend on p, but we do not make this explicit in the notation when
there is no risk of ambiguity. Also denote t0 = 0 and Tk+1 = 1.

Now E(g, Tv) = 2„-0* e(g; t„, tr+1). First consider the contribution to
E(g, Tv) by the terms e(g\ <„, t,+l) for the t, that lie in one of the intervals [t„, r„+1) and
assume p >>> k. Let q„ denote the number of points tv in this interval and let c„ denote the
constant value of Jg on (r„, r„+i). Let cu > 0; otherwise e(g; tv, tv+1) = 0 by assumption
A3. We note that must increase as p does and deduce the asymptotic behavior of

Eq^Q, , Tm+ i) ^ ) t'v j ^e + l)* (0-8)
T/i< t r<Tn+i

By assumption Al, e(g; a, a + h) is nondecreasing in h and by assumption A2 if is
strictly positive when (a, a + h) C (T„, r„+1), since Jg = cM > 0 on this interval. Thus if
maxT(1<,F<T(1+l (t„+i — t„) were bounded away from zero then Etl,(g; r„, rM+1) would be
bounded away from zero. It is not, as is easily seen from the asymptotic form of E(g, T)
for uniform partitions of [0, 1]. Thus maxr><1(<Tj,+1 (t, +1 — <„) must go to zero as p in-
creases and this implies further that —» <» as p —> °°.

Since maxT„<(,<T(1+1 (<„ + i — t„) —> 0 and q„ —>> °° as p —> assumption A2 can be
applied to obtain a lower bound on (6.8):

Q^'E^ig-, r„ , t„+i) = q™~1 £ (c„ + o(\))hJ" > g„m~'(min (c„ + o(l))) £ h,m,
•»>< t * <Tm+i t r t*

where h, = <„+1 — t„ . Since 23,, h„m subject to the constraint ~ T«+i ~~ tm is
minimized by h, = (r„+ i — r„)/gM , we obtain

q^E^ig-, tix , T„+i) > (t„+1 - rj™ min (c„ + o(l)).
tv

By assumption A2 the terms o(l) are uniformly small as max h„ goes to zero, so the
lower bound approaches a limit and yields

lim inf q^'E^ig; t„ , t„+1) > c„(t„+1 - rj". (6.9)

The lower bound of (6.9) is actually attained as a limit when partition points are
uniformly spaced in [r„, r„+1). Since the partitions Tv are optimal, this implies

lim q,r~lEaXg) , rM+0 = c„(rM+1 - rj™. (6.10)

The asymptotic behavior of 7?(<7, Tv) is determined from (6.10) by necessary conditions
on the integers q„ associated with the optimal partitions. In particular, I* ~ V
and 0 < q^/p < 1 for each fx. Suppose the ratios qjp converge as p —> 03 and denote
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m„ = lim^oo qJv- The limits must exist for a subsequence of {Tv\ and in the end we
conclude that the ratios must converge for the original sequence.

Expressing E(g, T„) in terms of the Etr(g; rM , r„+1), we obtain

lim pm~lE(g, Tv) = X) 1™ (p/q>)m~1q>m~1E„(g; tm, t„+i)
p—»00 /I = 0 p—*CD

k

= 23 W!11I"™C„(rJ1+, — rj™, (6.11)
„-o

using (6.10) and the observation that —> °° as p —» . Since the partitions Tv are
optimal, the expression on the right of (6.11) is minimal with respect to its dependence on
the quantities m„. The satisfy m,, > 0 and 2»-o* = 1.

The minimum of m„1~mcll(TIJ+1 — T„)m with respect to the is attained for
= c//m(rM+i — r„)/[X—o* c,l/m(T,+1 — r„)] and the minimum value is c„1/m

(r„+i — rM)]™. Recalling that c„ is the constant value of Jg on t„+i — r„, we obtain from
(6.11) that

lim p™ 1E(g, Tv) = f\jg(»))Wm do]",

which proves (6.5) when Jg is a step function.
To complete the proof for arbitrary / in g, use (6.6) to obtain

lim sup p-'EM < limp-1 mfE(g, Tr) = limp-1^, Tt) = ( f (Jg(s))Wm ds)",
p-»oo p-t 00 rr p-»oo WO '

where J# is the step function approximation of <// from above. Thus

lim sup pm"%(/) < (f (//(«))"-ds)"-
p—t 00 /

Using (6.7) similarly, we obtain

lim inf p-%(/) > (/" (J/(s)),/m ds)"-
p-»oo WO /

Together these inequalities imply (6.5) and the lemma is proved.
An immediate consequence of Lemma 4 with the local error estimates of Sec. 5 is the

following main result on convergence of e„,„(/) (Eq. (6.1)).
Theorem 5. Let / be in C"[0, 1]. The error e„,n(/) of the best L2 approximation of /

on [0, 1] in the class 4>(p, n) satisfies
0*1 \ (2n + l)/2

|L/(s)|2/(2"+1) ds) (6.12)
0 '

where Kn is given by (5.4).
Proof. The squared error e„,n2(/) is expressed in (6.1) as e„,„2(/) = ^„oP e(f; t,, t,+1)

where e(/; t, , tv+1) = min,0;^.O) J!;+I (/(<) - <t>(t))2 dt.
Apply Lemma 4. The local squared errors e(f; t,, tr + 1) are nonnegative and satisfy the

subadditivity and continuity assumptions A1 and A4 for any / in L2[0, 1]. By Theorem 4,
assumptions A2 and A3 are satisfied by e(f; a, b) for any / in the class of functions 9 having
(•n — 1) continuous derivatives, absolutely continuous (n — l)st derivative and nth
derivative in PC[0, 1]. From Theorem 4, Jj = Kn(Lj)2 and the exponent is m = 2n + 1.
The limit (6.12) follows as the square root of (6.5) and the theorem is proved.
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Remarks. (I) The regularity assumption on / in Theorem 5 can clearly be relaxed to
hold piecewise on [0, 1], as long as Dnf admits at worst jump discontinuities.

(II) The same argument using Lemma 4 applies to give the asymptotic form of the
error ePi„(f) for best Lr approximation when 1 < r < <». Express in the form
(6.3) and use the estimate (5.6) for local approximation error. Immediately, if / is in
Cn[(), 1] then the error e„,„(/) of the best Lr approximation, 1 < r < », of / on [0, 1] in the
class $(p, n) satisfies

al \(rn + l)/r
IL/(8)|'/(" + 1) ds) (6.13)

where Kn,r is given by (5.7).
(Ill) For sup norm approximation (r = <»), Lemma 4 is not applied since total

approximation error is not expressed as a sum of local error terms. The argument for this
case is easier.

The total uniform error of a best segmented approximation is given by the minmax
expression e„,„(/) = mino<(l<...<lp<i max,,<(<(,+1 |/(£) — 4>(t)\. If / is continuous then the
errors over separate subintervals are balanced by an optimal <j> in $(p, n); see Meinardus
[13]. That is, ep,n(f) = max,,<(<(,+1 |/(<) — |, independent of v. Since the error goes to
zero as p —> «, the interval lengths ty+l — t, must go to zero where Lf is continuous and
positive. The estimate (5.6) applies to give e„,n(f) = Kn,a(hv) |L/(£)| h", where h„ =
t,+J — t, and t, < £ < t,+i. Taking the nth root and summing over v yields

lim y{ev,n(f))1/n = Kn,J'n f \Lj(s)\l
p—>oo J 0

ds.

Thus if / is in C"[0, 1], then the error e„,„(/) of the best uniform approximation of /
on [0, 1] in the class 3>(p, n) satisfies

lim p\Jj) = Kn,a[fo \Lf(s)\Wn dsj, (6.14)

where = [n\ 22""1]-1 from the remark following (5.7).
(IV) Sacks and Ylvisaker [24] obtain expression (6.12) for best L2 segmented approxi-

mations by polynomials, i.e. the case L = Dn. They impose some unnecessary restrictions
on the zeros of Dnj and mention that these can be relaxed. They obtain (6.12) as the limit
of the error for prescribed partitions defined by "regular sequences". In effect, the
"regular sequence" construction builds on the notion of an asymptotic density for the
sequences of partition points. Such constructions of asymptotically efficient partitions
are further justified by the analysis of the next section.

Wahba [30], building on the results of Sacks and Ylvisaker, establishes a result which
includes (6.12) when the null space of L is spanned by an extended complete Chebyshevian
system and when the function Lf is strictly positive. The analysis of Sec. 5 shows that
Wahba's assumption on the null space of L is satisfied in an appropriate local sense by
any differential operator of the form (3.1) considered.

Though the thorough and elegant analyses of Sacks and Ylvisaker and of Wahba
yield essentially the same result as Theorem 5 for L2 approximation, their Hilbert space
formulations preclude immediate extension of their arguments to obtain results like
(6.13) and (6.14) for approximation in other Lr norms.

(V) Phillips [16] has obtained (6.13) as the limiting error for best balanced-error Lr
approximation by segmented polynomials. A balanced-error segmented approximation is
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one for which approximation errors over distinct segments of the interval are equal. The
best Lr segmented approximation and the best balanced-error Lr segmented approxi-
mation need coincide only when r = ®. Phillip's result together with (6.13) imply that
balanced-error approximations are asymptotically efficient. This also follows from the
analysis of the next section.

(VI) Lemma 4 also applies to give the precise order of convergence of the error of
best weighted Lr approximations in 3>(p, n). This entails only a minor adaptation of the
arguments of Sec. 5 to obtain corresponding local error estimates for weighted approxi-
mations of /.

As a corollary of Theorem 5 we obtain sharp bounds on the rate of convergence of
approximations from the classes $(p, q) when q < n.

Corollary 5.1. Let / be in C"[0, 1], let integer q satisfy 1 < q < n, and let m be the
smallest integer satisfying mq > n. The error eViQ(j), defined by (3.12), of the best L2
approximation of / on [0, 1] in the class 4>*(p, q) satisfies

lim inf p\.M) > Kn,/2( f |L/(s)|2/<2"+1> ds)'2"*"72 (6.15)
p—»oo \J 0 '

and
al \ (2n + 1) /2

|L/(s)|2/<2"+1) ds) . (6.16)

Proof. By the remark at the end of Sec. 3, <£*(p, q) C $(p, n) and <£([p/m], n) C
i>*(p, q). Thus ev,„(j) > ep,„(f) and elv/m],n(j) > ev,„(j). Applying (6.12) for the limiting
forms of ep,„(/) and e[p/m] ,„(/) yields (6.15) and (6.16) respectively.

Remarks. (VII) The argument of Corollary 5.1 applies as well to obtain bounds like
(6.15) and (6.16) on Lr convergence of approximations from 3>(p, q). For the case we
recall the observation made in Sec. 3 that when / is continuous then e„,„(/) = inf$(„,„)
11/ — <^11 = inf0.||/ — 4>\\', the minimum error ev,„(j) is actually attained for some
function in <£*(p, q). From (6.13) and (6.14) we infer that if / is in C"[0, 1], 1 < q < n,
and m is the smallest integer satisfying mq > n, then the error ev,a(f) of the best Lr
approximation, 1 < r < ^, of / on [0, 1] in the class $*(p, q) satisfies

Of»l \(rn + l)/r
|L/(s)r,r"+,) ds) (6.17)

0 '

and
Oi»l \(rn+l)/r

|L/(s)|r/<rn+I) ds ; (6.18)
0 /

when r = co; the exponent r/(rn + 1) becomes 1 /n.
(VIII) Sacks and Ylvisaker [24] establish a much sharper result than Corollary 5.1

for the particular casen = 2, q = 1 and L = D2. In this case $(p, 1) describes continuous
piecewise linear functions. Under appropriate regularity conditions on /, they show that
the lower bound of (6.15) is actually the limit of p2ev.i(/) as p —> °° ; see their Theorem 4
and the related discussion in [24], This is apparently the sharpest result of this type for
convergence of spline approximations, with continuity conditions imposed on the
approximating functions at their knots.

(IX) Burchard [3] has obtained an upper bound similar in form to (6.18) for Lr
approximation by polynomial splines, i.e. the case L = Dn. This bound reflects the
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dependence of the error on the integral of (Dnf)'Mrn+1), but it is less sharp in reflecting
dependence on the order n of the operator. Burchard also refers to interesting bounds of
Rice on the convergence of spline approximations to functions / with prescribed singular-
ities.

The limiting equations (6.12), (6.13) and (6.14) have interesting consequences for
the characterization of optimal partitions. We explore these in the next section.

7. Optimal and efficient partitions. From the sharp global error estimates of the
preceding section we can derive precise asymptotic characterizations of optimal partitions.
Such characterizations are important for the development of computational procedures
for good segmented approximation since knot optimization is the most difficult computa-
tional problem. The asymptotic characterizations are useful even when the number of
knots is small. They form a sound theoretical basis for algorithmic initialization of
iterative knot optimization schemes.

To present an argument general enough to encompass segmented approximation in
any L, norm, we phrase the argument in terms of the functionals and assumptions
underlying Lemma 4; see (6.3), (6.4) and assumptions A1 to A4 of Sec. 6.

First, from assumption A4 it follows that optimal p-partitions exist. For any / in 8,
since e(/; a, b) is continuous in (a, b) then also E(j, T) given by (6.3) is a continuous
function of the points h ,ta, • • • ,t„ comprising a p-partition T. From the compactness of
the region over which these points range, it follows that the value Ev(j) given by (6.4) is
attained for some p-partition Tv(j); that is,

E(j, T,(f)) = E,(f). (7.1)
When the functional E(f, T) describes approximation error we can also conclude the
existence of T„(f) from the existence theorem of Sec. 3.

The points in Tv{j) need not be distinct, but we can assume they are, if this is con-
venient, from the subadditivity assumption A1 on e(/; a, b). Again, when E(j, T) describes
approximation error then either Ev(f) = 0 or the points of Tv(j) will be distinct. This
follows from a result on strict monotonicity of error for y-polynomial approximations;
see Rice [21].

Further, an optimal partition T„(/) is not necessarily unique. The example in Sec. 4
illustrates this. But in spite of nonuniqueness we can still find necessary conditions on
the distribution of knots in Tv(j) as p increases. Such a characterization is suggested in
the proof of Lemma 4 where we derive properties of the optimal partitions associated
with step functions Jg.

Let / be a function in g and let {Tv(j) }p_r be a sequence of optimal p-partitions for
minimizing the functional E(j, T). Associated with each partition Tv(j) define the
distribution function G,,v of its knots so that for each t in [0, 1], Gf,v(t) is the proportion
of knots in Tv(j) which are less than or equal to t. Symbolically,

G,M) = # (T,(f) < 0. (7-2)

The divisor p + 2 normalizes Df ,v for inclusion of the points t„ = 0 and tv+1 = 1 in Tv{f).
We show that for each t in [0, 1] the sequence {(?/,„(<) },-i" converges to the value of a
distribution function defined by the function Jj. The limiting distribution Gf reflects the
form of the limit (6.5) and is given by
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fit) = /J (JKs))Um dsI £ ds,G,(t)= ) (JM)Wmds/ I (JKs)Y/m ds, (7.3)

when Jj is not identically zero.
A special case of the following result was proven within Lemma 4.
Lemma 5. Let / be in g and suppose assumptions Al, A2, A3 and A4 of Lemma 4

hold for e(/; a, b). Define Gf,v by (7.1) and (7.2) and G, by (7.3). If J] is not identically
zero on [0, 1], then

lim Gf,v{t) = G,{t) (7.4)
p—»oo

for all t in [0, 1].
Proof. By Helly's selection theorem there is a distribution function F concentrated

on [0, 1] and a subsequence {Gf,Vk\k." of {Gsuch that lim*-™ Gf,Vk(t) = F(t) at
continuity points of F. Without loss of generality assume this convergence holds for the
original sequence; limp_„ Gf,v(t) = F{t). (This is in fact necessary, since we show the limit
F is uniquely determined.)

F is monotone nondecreasing, continuous from the right, and has at most a countable
number of discontinuities in [0, 1], Also, F is a proper distribution function with F{0) = 0
and F{ 1) = 1. The function G, is also monotone nondecreasing and continuous on [0, 1],
with G,(0) = 0 and (?,(1) = 1. From these properties of F and G, it will suffice to show
that F(t) = Gf{t) for all t in (0, 1) where F is continuous and 0 < C,(t) < 1. Fix such a
point t.

Form (p + l)-partitions Tv+ by adding the point I to the p-partition TJJ). From the
subadditivity assumption Al and the optimality of the partitions Tv(j) we obtain
E(f, Tv+1(j)) < E(f, Tv+) < E(j, Tv). These bounds and Lemma 4 imply

lim Tp+) = ( T (J/(s))l/m rfs)"1- (7.5)
p—>oo '

Now decompose E(f, Tv*) into two parts,

E(f, ?V) = Z) e(/; tv > t'+i) + H e(/; t,, t,+1),
t,<t tw>t

where the t„ denote the points of Tv+. From the definition of GffV, there are Pi = (p + 2) •
Gf,v(t) points t„ in (0, t) contributing to the first sum and p2 = (p + 2)(1 — Gf,v{t))
points t, in [t, 1) contributing to the second sum. The values of px and p2 could be altered
insignificantly if t were already a partition point of Tv(j). Since 0 < G,{t) < 1, both jh
and p2 must increase without bound as p increases; otherwise one of the two sums in the
decomposition of E(f, Tv+) would be bounded away from zero, by the same argument used
for this point in the proof of Lemma 4.

Apply Lemma 4 to the restrictions of / to [0, t\ and [t, 1], respectively, to obtain lower
bounds on limits of the two sums in the decomposition of E(f, Tv+). In particular,

lim inf pr1 E e(f; ^ , tw+i) > ( [' (Jf(s))I/m dsY
Pi->oo t,<t \«/0 '

e(/; t„ , tr+l) > ^ (j/(s))1/m •

and

lim inf p2
t,>t
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From these inequalities we infer a lower bound on (7.5) involving F(t):

lim pm~1E(J, I1/) > lim inf (p/pO-V-1 £ «(/; , «,♦,)
p—»oo p—ttx> t w < <

+ lim inf (pM)"*-^'"-1 X) e(fl > ̂ +0
p—»oo t p> t

I r* \m
>

+

( [' dsY lim (p/p,)™"1
' p—*a»

( f GW" ds)" lim (p/p,)"-1
\*/ ( / p—>00

= (£ (JKs))1/m ds)mF{ty- + (£ (//(S))1/m *)-(! - Fit))1-,

where the last equation derives from the convergence of Gf,v(t) to F(t). Dividing both
sides of this inequality by the expression on the right of (7.5) yields

1 > Gf(t).mF(t)1~m + (1 - G,{t))m( 1 - F(t)f-m . (7.6)

Finally, as a function of the value F(t) the expression on the right of (7.6) is strictly
greater than one for F(t) ^ Gf(t). Thus (7.6) implies F(t) = Gf(t) and the lemma is
proved.

As an immediate consequence of Lemma 5 we obtain a characterization of the knot
distribution of optimal segmented approximations from <5?(p, n).

Theorem 6. Let / be in C"[0, 1]. For each integer p > 1 let TJf) be a partition of
[0, 1] defined by the knots of a best L2 approximation of / in $(p, n). The knot dis-
tributions Gf,v defined by (7.2) converge to

?/(0 = I' \Ll(s)r^ds/ fo |L/(s)|Gf{t) = I \Lf(s)\2/(2n+,) ds / I |L/(s)| "+ ds (7.7)

for t in [0, 1] as p —> <».
Prooj. The proof of Theorem 5 relates the L2 approximation error to the forms

(6.3) and (6.4). The limiting distribution (7.7) follows from Lemma 5 and Theorem 5.
Remarks. (I) Another view of Theorem 6 says that optimal knots for best L2

segmented approximations of / in 3>(p, n) must have an asymptotic density given by

g,(t) = |L/(0r(2n+1)/ fo |L/(S)|2/<2"+1) ds. (7.8)

In loose terms, optimal knots cluster in regions where |L/(i)| is relatively large and they
are sparser in regions where \L](t)\ is small. In an asymptotic sense, Theorem 6 is a
verification of fidelity between piecewise regular patterns / and their representations by
segmented approximations in $>(p, n); the knots of best approximations tend to ferret
out localized regions of irregularity of the functions they approximate.

(II) Results analogous to Theorem 6 follow as readily from Lemma 5 and (6.13) for
knot distributions of best Lr approximations from $(p, n) when 1 < r < oo. If / is in
C"[0, 1] and GfiV is the distribution function of the knots associated with a best Lr
approximation of / in $(p, n) then Gf,v(t) converges to

Gf(t) = jT* |L/(s)|r/(r"+1) ds I fX |L/(s)r/<rn+1> ds (7.9)
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for t in [0, 1] as p —> ». From (7.9) we can describe the asymptotic density of knots of
best Lr approximations from ${p, n) by

(7/(0 = IW)\"(rn+V/£ \LM\r/(rn+v ds. (7.10)

(III) The asymptotic knot distribution for best L„ segmented approximations of /
in $(/?, n) is also described by (7.9), where 1/n replaces the exponent r/(rn + 1). This
does not follow from Lemma 5, but from (6.14) directly. A limiting knot distribution F
exists by Helly's selection theorem. At points t where F is continuous and 0 < Gf(t) < 1,
using (6.14) and an argument similar to that in the proof of Lemma 5, we obtain 1 >
max {[Gf(t)/F(£)]", [(1 — G,(t))/( 1 — F(t))]n}. In turn, this implies that the limiting
distribution F must be G,.

(IY) The form of the asymptotic knot density (7.10) implies that optimal Lr
segmented approximations are asymptotically balanced-error segmented approximations;
that is, Lr deviations over distinct segments are asymptotically the same. For 1 <
r < oo, the rth power of the Lr deviation over any segment of a best approximation in
$(p, n) is e(/: t,, t,+1) = Kn,rr{h,) \Lj(£)\r h,rn+1 from (5.6), where h„ = tv+l — t, and

t, < £ < ty+l . The knot density near £ is approximately gf{£) from (7.10). If gf(£) > 0,
then the knot spacing near £ is approximately (p(//(Q)_1 = h, . Substitution of this value
in the local error estimate yields

al \ ( rn+ 1)\Lj(s)rrn+t) ds)

which is independent of the interval (<„ , tv+,).
Theorem 6 and the related remarks give necessary conditions on locations of optimal

knots for best segmented approximations. The characterizations can be turned around
and used to construct partitions for which associated best Lr approximations are asymp-
totically efficient. The characterizations are sufficient for guiding selection of "asymp-
totically best" knot sets. Two such constructions are presented which are based
respectively on the density characterization and the balanced-error characterization of
optimal partitions.

Such constructions of asymptotically efficient partitions were first presented by
Dalenius in the context of the stratified sampling problem. Together with Hodges, he
proved the asymptotic efficiency of stratification schemes based on analogues in the
approximation problem of both the density and balanced-error constructions mentioned
here. Later, in the context of the regression-design problem, Sacks and Ylvisaker demon-
strated that designs constructed by the density approach are asymptotically efficient.
This result was part of a constructive proof of a result like Lemma 4 in which the integral
expression of (6.5) was first shown to be a lower bound and then it was shown that this
lower bound is attained by a so-called "regular sequence" design.

As with the other problems already treated regarding the asymptotic behavior of
approximation error, results on construction of efficient partitions follow in the more
general setting described before Lemma 4. We first consider the density approach for
constructing partitions within this setting.

Let g be a strictly positive, bounded, piecewise-continuous function on [0, 1] which
is normalized so that JY g(s) ds = 1. Let G denote its integral; G(t) = JY ff(s) ds. For any
integer p > 1, we can define a p-partition T„,v of [0, 1] by
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Ta,r = R G[0, 1]: G(t.) = v/(p + 1), . = 0, 1, • • • , p + 1J. (7.11)
The points t, of are uniquely defined through inversion of the distribution G.

The asymptotic efficiency of the forms E(f, T0iP) of (6.3) relative to Ev(j) of (6.4) is
deduced. To avoid tedious excursions in the argument to account for possible discon-
tinuities of the function Jf, we strengthen A2 to suppose that Jj is continuous through-
out [0, 1].

Lemma 6. Let / be in g and suppose assumptions Al, A2, A3 and A4 of Lemma 4
hold for e(/; a, b). Further assume that Jf is continuous on [0, 1]. Let g be a positive,
bounded and piecewise-continuous density on [0, 1] with associated distribution G. For
the sequence of partitions {7'SlB}»-i" of (7.11)

lim pm~lE(j, T.,p) = f Jf(s)[g(s)]>- cis. (7.12)
p—»co Jf)

If Jf is strictly positive on [0, 1] then the partitions T„,p associated with

g(o = (jmy/m/[ cJKs)Y/m ds

are asymptotically efficient; that is,

lim pm~lE(f, r.„) = (£ (Jj(s))Wm ds) ■ (7.13)

Proof. The points ty of Tg,v satisfy G{t„) = v/(p + 1). To obtain bounds on their
spacing express g,' = min,,<(<(>+1 g(t) and g," = max,,<,<,r+l g(t). Since G' = g,

(tr+1 - QgJ < G(t,+0 - G(ty) < (t,+1 -
Thus, denoting h, = <„+1 — t, , ((p + 1 )g„")~1 < h„ < {{p + 1 )g,')~1. The spacings
hy are strictly positive and converge to zero as p —* .

Apply assumption A2 to obtain

lim sup pm~1E(f, T.,p) = lim sup pm~l W(0 + o{l))h™
■p—»eo p—»oo y = 0

< lim sup 22 (Jf(Q + o(l))(g/)l~mK
p—>oo v = 0

= f1 JKsMs)]1- ds.

Using the lower bound h„ > [(p + l)^,"]-1 similarly, we obtain

lim inf pm~lE(f, T..v) > f JKs)[g(s)f-m ds,
Jo

which proves (7.12). Eq. (7.13) follows by direct substitution.
The implication for the approximation problem is
Theorem 7. Let / be in Cn[0, 1], Let g be a positive, bounded and piecewise-con-

tinuous density on [0, 1]. Let 4>p be the best L2 approximation of / in 4>(p, n) with knots at
the points of T„,p defined by (7.11). Then

lim pn ||/ - *,|| = Kn1/2[fo (Lf(s))2[g(s)]~2n ds)''2- (7.14)
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If \Lf\ is strictly positive and g = g, of (7.8), then
a l \<2n+l)/2

|L/(S)|2/<2"+1) clx)

Proof. Lemma 6.
Remarks. (V) That partitions described by gf are asymptotically efficient was

proved in [10]. The generalization in Lemma 6 and Theorem 7 to describe the efficiency
of partitions associated with an arbitrary positive density was suggested by the results of
Sacks and Ylvisaker [24],

(VI) A result analogous to Theorem 7 holds for Lr segmented approximation for any r,
1 < r < oo. When 1 < r < co, Lemma 6 applies. If / is in C[0, 1] and {T0:Pjp.T is a
sequence of p-partitions associated with the positive, bounded, piecewise-continuous
density g and 4>P is the best Lr approximation of / in 3>(p, n) with knots at the points of
T„,v , then

limp" ||/ — 0,|| = Kn,r \\g-nLf\\, (7.15)
j>—»co

where || • || denotes the Lr norm on [0, 1], When r — oo; the same limit (7.15) follows from
a simple argument based on (5.6). When \Lf\ is strictly positive then it follows from
(7.15) that taking g = g, of (7.10) yields an asymptotically efficient sequence of approxi-
mations 4>p ; that is, the expression on the right of (7.15) reduces to the smallest possible
limit (6.13).

(VII) Burchard [3] uses knot sets associated with densities g, in his derivation of
error bounds for polynomial spline approximations.

(VIII) The restrictions on the continuity of D"f and the positivity of g in Theorem 7
can be relaxed. This may require a slight modification in the construction of Tg,v to
include a finite number of points in the partitions that are sufficiently close to zeros of g
and at the points of discontinuity of Lf.

An alternative to the density construction of partitions is suggested by the balanced-
error characterization of optimal segmented approximations. We observed that in the
limit the Lr deviations between a function and its best approximation over distinct
segments are equal. Conversely, we will establish that balanced-error approximations
are asymptotically efficient.

Again, the argument is most easily phrased in terms of the functional E{f, T) of
Sec. 6. Let / be in g and suppose assumptions A1 through A4 are satisfied by e(f; a, b)
that describes E(f, T). Since e(/; a, b) depends continuously on (a, b) and monotonically
on (b — a), for each p we can find a partition T„ satisfying

Tv= {t„ E[0,1]:Z„ = 0, tv+1 = 1 ande(/;£„_! , t„) = e(f; t,, t,+1) for v = 1, • • • , p). (7.16)

Tv balances the contributions of each term e(j; t„, <„ + 1) to E(f, Tv) so that E(j, Tv) —
(p + 1 )e(f; t,, ty + i). Such balanced partitions are asymptotically efficient.

Lemma 7. Let / be in g and suppose assumptions Al, A2, A3, and A4 hold for
e(/; a, b). If partitions Tp are defined by (7.16) then

lim PmE(J, Tr) = (£ (J/(s)),/m dsy ■ (7.17)

Proof. Recall E(f, Tv) = e(/; t,, ty+l) = (p + 1 )e(f; t,, + First separate
the sum to isolate the terms e(/; tv, tt+i) for which assumption A2 applies. Fix an arbitrary
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e > 0. For each Tv consider the intervals (f„ , ty + i) that either include a discontinuity
point of Jj or whose length h„ = ty+1 — f„ exceeds e; there is at most a finite number kt,v
of such intervals. Denote their union by N,,v . Of the remaining (p — fce,p) intervals in Tv
at least one has length h, < (p — fce,p)_1. If p is sufficiently large, assumption A2 applies
on this interval to yield e(/; f„ , t,+1) < (Jj{t,) + o(l))(p — k,,v)~m and lim sup^a,
pme(j] t,, f„+1) < max0<,<i Jj(t). Since the terms e(j; f„, fv+1) are balanced, each is o(p~m).

Now write E(j, Tv) = X e(j; t, , ty+1) + Nt,vC e(f; t, , ty+1). The first sum is
negligible since it is a sum of a finite number of terms of order p~m. This implies in
addition that the measure of Nt,p H {t: J/(f) > 0) goes to zero as p —» <». Otherwise
each set N,,v properly contains an interval of positive length where .// is continuous and
positive; the subadditivity assumption A1 would imply 2 n. ,v e(/; t,, f, + i) was bounded
away from zero.

Assumption A2 applies to each term in the second sum when e is sufficiently small.
For such terms we can write E(f, Tv) = (p + l)(J/(f„) + o(l))/i„m, where the terms 0(1)
are uniformly small over N,,pc for e small. Taking mth roots and summing over N,,PC
yields (p - fceJ(p + 1 Tv)1/m = £ #i.,. (J/(<,) + o(l))1/mhy ■ Since Jj is
continuous on NtiVc and the terms o(l) are uniformly small, we obtain

(P - K.)(P + 1 r1/mE(f, Tv)Um = f ds + 0(1).

The integral converges as p —* °° since the measure of N,,v C\ {f:,//(f) > 0| goes to zero.
This implies lim supp^oo p1~1/mE(f, TvY/m < Jo1 (J/(s))1/m cfs + o(l). Since «is arbitrary,

lim sup p'-'EU, Tv) < ( f (Jf(s)y/m ds)"■
p—*co \J 0 •

The same lower bound on lim infp^„ pm~1E(f, Tv), implied by Lemma 4, establishes
(7.17) and the lemma is proved.

Theorem 8. Let / be in C"[0, 1], Let <pv be a best L2 approximation of / in $(p, n)
that satisfies

ft m - ^(s))2 ds = I (/(s) - ^(s))2 ds
for v = 1, • • • , p. Then

\(2n+l)/2

|L/(s)|2/<2"+1) ds)
0 •

Proof. Lemma 7.
Remark. The analogous result on efficiency of balanced-error Lr segmented approxi-

mations also follows from Lemma 7. As noted previously, when r = °° best segmented
approximations of continuous functions / are balanced-error approximations.

Both Theorem 7 and Theorem 8 give methods of constructing asymptotically-best
segmented approximations. If the number of knots p of an approximation is small, there
is no assurance that an approximation constructed by either of the asymptotically
efficient methods will compare favorably to a best segmented approximation with the
same number of knots. Knot adjustment by iterative methods, such as described by de
Boor and Rice [2] or Esch and Eastman [5], is still necessary to obtain locally optimal
knot positions. However, both results on asymptotic efficiency suggest methods for
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initializing such iterative procedures to help assure that the locally optimal solutions
obtained through iteration do compare favorably with global optima. If knot sets are
initialized by the density method or the balanced-error method and then adjusted by
iteration, we can guarantee at least that the approximations attained are asymptotically
efficient.

The density approach to selecting knots has the advantage that it is explicit and
relatively easy to implement if the function Lj is known or can be approximated. It has
the disadvantage, observed through experiment, that for very small values of p it may
not yield really good initial approximations. These factors are reversed for the balanced-
error approach. The balanced-error approach is more difficult to implement, requiring
itself an iterative step for knot adjustment; but, as the experience of Pavlidis indicates,
the approximations it yields are generally quite good ones.

Precise results of the type developed in this section are not known for approximation
by the classes $(p, q) when q < n. There derivation will rely on obtaining more precise
convergence results than Corollary 5.1. This problem is important in contexts other than
the present one. In particular, it bears on the regression design problem of Sacks and
Ylvisaker. However, the results for <f>(p, n), pure segmented approximations, can guide
computational procedures when continuity constraints are imposed in the classes 4>(p, q).

8. Simulation experiments. The method of L2 segmented approximation for line
pattern representation has been tested in an environment where ideal line patterns
exhibit the distinct characteristic of piecewise regularity which motivated consideration
of segmented approximations and where we can compare the nonlinear method with an
optimal method of linear representation. Experiments in two such environments are
described in [10]; one of these experiments is related here.

Ideal line patterns comprising the class 5 are generated by a stochastic equation of
the form (2.5). We have experimented with a second-order model

/"(<) + aj'(0 + a2/(<) = «(<)> (8.1)

where the stochastic process e(t) represents a shot-noise input to the linear system
described by the operator L = D2 + alD + a2.

Modelling purely random impulses imparted to the system, we define

«(<) = £ A,g(t - <„). (8.2)

The points t,, which describe times when an impulse is imparted to the system, are
generated by a Poisson renewal process. The interarrival times ty+1 — i, are mutually
independent and have a common exponential distribution with density

00 = M exp (-us), s > 0. (8.3)

The function g, which describes the form of the impulse imparted at each point t,, is
chosen to approximate a delta function; we set

g(t) = 1/5, |f| < 5/2 (8 4)

= 0, |f| > 5/2.
The random variable A„ describes the magnitude of the impulse imparted at time t„ .
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We assume the A/s are mutually independent and independent of the Poisson point
process and that each A, is normally distributed with mean value zero and variance <y~.

The differential operator L of (8.1) is chosen to model a harmonic oscillator. Thus we
prescribe complex conjugate characteristic roots a, a and fix

L = (D — a) (D — a). (8.5)

The real part of a is negative so that the system is stable and (8.1) admits a strictly
stationary solution /.

With such a specification of the model generating ideal patterns, we can appeal to the
theory underlying orthogonal expansions of weakly stationary processes to derive and
implement best linear representations of the patterns, according to the procedure out-
lined in Sec. 2. This linear procedure depends only on the second-order properties of
the /-process. Alternatively, we can exploit the deeper structure of individual sample
functions, which derives from (8.1) and the special form of the e-process, to seek approxi-
mate pattern representations by segmented solutions of L<f> — 0. These options are
compared.

The /-process depends on the specification of four parameters of the e-process and the
operator L. We fix ju = 5 in the density (8.3); this means the mean interarrival time
between impulses is 1/5 and the expected number of impulses imparted in a unit interval
is 5. The duration of each impulse is fixed at 5 = 2~7, small enough so that g is a reason-
able approximation of the delta function but not so small that sample functions of the
/-process are described exactly by segmented solutions of L<j> = 0. The standard deviation
of the magnitudes A „ is taken to be a = 27. The relative results in the end do not depend
on this value; this choice is a convenient one for computational considerations. Finally,
the root a of L was fixed arbitrarily at a = — .5 + 2iri.

To evaluate the performance of the best linear representation method, the Karhunen-
Lo&ve expansion of the /-process, the eigenvalue sums (2.4) are computed. The details of
these computations are described in [10] and are omitted here because they are lengthy
and reasonably straightforward. To describe the computations briefly, we start by
deriving the covariance function and spectral density of the e-process. Use of the spectral
representations of the /- and e-processes and the known spectral density of the e-process
yields the spectral density of the /-process. Then Fourier inversion through contour
integration and summing residues gives a closed-form expression for the covariance
function R(s, t) of the /-process. The eiganvalues of this kernel in (2.3) are the values of
interest.

Two paths were followed for solution of the eigenproblem (2.3). First we discretize
the problem by Simpson's rule and solve the symmetric matrix eigenproblem with a
Jacobi algorithm. Values computed by this method for a 101-point discretization are
reported in [10], Unfortunately, the discretization error bound is intolerably high because
derivatives of the kernel R are large. To overcome this difficulty, the kernel R is
approximated by one of a simpler form, R*(s, t) = exp (—.5 — s|)(ex cos (2ir 11 — s|) +
c2 sin (27r 11 — «|)), where Ci and c2 are computed from the known expression for R. The
L2 norm of R — R* is 1.2 X 10~5 and the eigenproblem for R* lends itself to analytical
treatment. In particular, eigenfunctions of R* satisfy a simpler fourth-order linear
differential equation that depends on the parameter X. The condition that R*, through
(2.3), will map a nontrivial solution of this equation into a constant multiple of itself
gives a tractable determinant equation for the eigenvalues of R*. The roots of this
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equation are found by interval bisection. Error analysis problems like those encountered
with discretization methods are avoided. Comparison of the eigenvalues found by the
alternative methods reaffirms one's faith in Simpson's rule. The eigenvalues computed by
the discrete method are orders of magnitude better than the large error bound might
suggest.

Results of the eigenvalue calculations are given in Table 1. The first column gives the
index N of the respective eigenvalues of the kernel It, starting with the largest. The
second column contains the corresponding eigenvalues \N , in order of decreasing magni-
tude. The third column gives the expected squared error °f the compressed
representation (2.2) by N eigenfunctions. The maximum possible numerical error in
column 2 is 1 X 10~5 and the maximum possible error in column 3 is 2.5 X 10~5. For
reference with Table 1, the sum of all the eigenvalues of R is X, = 1030.79205.

Monte-Carlo simulations of the model (8.1) over the interval [0, 1] provide data for
assessing performance of segmented pattern representations. The operator L of (8.5)
generates the approximating classes of functions i'ip, 2). Each simulated sample function
is approximated by a member of the class $(p, 2) that assigns one knot for the approxi-
mation at the midpoint of each impulse imparted to the system. We make no subsequent

TABLE 1
Eigenvalues of R and expected squared-errors of compressed linear representations.

N jy-N+l

1 468.07585 562.71620
2 437.60507 125.11112
3 72.50417 52.60696
4 38.56538 14.04158
5 8.73215 5.30943
6 2.76057 2.54886
7 1.13015 1.41871
8 0.54769 0.87103
9 0.29779 0.57323

10 0.17595 0.39728
11 0.11069 0.28659
12 0.07315 0.21344
13 0.05028 0.16316
14 0.03570 0.12746
15 0.02605 0.10140
16 0.01945 0.08195
17 0.01482 0.06713
18 0.01148 0.05565
19 0.00903 0.04662
20 0.00720 0.03941
21 0.00581 0.03360
22 0.00474 0.02886
23 0.00391 0.02495
24 0.00324 0.02171
25 0.00272 0.01899
26 0.00229 0.01670
27 0.00195 0.01475
28 0.00166 0.01309
29 0.00143 0.01166
30 0.00123 0.01043
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attempt to optimize knot locations; the approximations computed are simply best L2
approximations in <i>(p, 2) with the prescribed knots. Since for each simulation the
equation (8.1) is easy to solve analytically, as is the equation L<j> = 0, we compute
approximation errors from simple analytical expressions for the error. There is no
discretization involved in the computational procedures.

Table 2 summarizes the results of seventeen independent simulations of this repre-
sentation procedure. Each row expresses results for a single experiment. The simulations
have been reordered according to the associated values of the parameter p, the common
value of the number of impulses imparted to the system in the unit interval and of the
number of knots of its computed representation. The first column of Table 2 gives the
value of this parameter p for each simulation. The second column gives the value of the
squared error ||/ — </>„||2 of the approximation of / by the function </>„ in $(p, 2) described
above. The third column contains the number N of parameters that completely describe
<j}„; N = 3p + 2 since L is second-order. For comparison with the values in column 2,
the last column gives the expected squared error of the best linear repre-
sentation of / by the N principal eigen-functions of (2.3). These last values come from
Table 1.

The relative performance of the segmented approximations compared to the best-
linear approximations is outstanding. Table 1 shows that linear representations are good,
as measured by expected squared error. With as few as eight approximating eigen-
functions the expected error is already less than one while the variance of the /-process
exceeds 1000. But Table 2 indicates that segmented representations are significantly
better, where the criterion for comparison is the approximation norm. In addition, since
the segmented representations are based on the regularity properties of individual sample
functions, they directly reflect such local structure of the patterns as locations of deri-
vative discontinuities. The linear representations cannot reflect such structure directly
since the eigenfunctions of (2.3) are smooth.

TABLE 2

Simulation experiments.

II/-<MI2 N jv-N+l

2 1.0690^-04 8 0.87103
2 1.1608£-05 8 0.87103
3 7.2649^-05 11 0.28659
4 1.3411^-04 14 0.12746
4 1.1552J5-04 14 0.12746
4 1.9827£-05 14 0.12746
5 7.60632J-05 17 0.06713
5 6.0369^-05 17 0.06713
5 4.4758^-05 17 0.06713
5 7.8686B-05 17 0.06713
5 1.6974^-05 17 0.06713
6 3.2263E-04 20 0.03941
7 1.1365£-04 23 0.02495
7 1.3593£"04 23 0.02495
9 1.0167£-04 29 0.01166
9 2.8234B-04 29 0.01166
9 1.1616B-04 29 0.01166
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In addition to the experiments related in Table 2, tests of the density approach of
Theorem 7 for constructing approximations were carried out on the simulations of (8.1).
The performance of this spproach for the model (8.1) is predictable. The knot-density
function g, concentrates its mass around the impulses imparted to the system. So eventu-
ally the partitions constructed from this density have to detect all of the impulses. But
because the absolute mass of gf near a particular impulse depends on the magnitude of
that impulse, it is likely that the density construction will miss one impulse and place
multiple knots near another when the total number of impulses is large. Such behavior is
observed in the experiments. We would also note that the number of impulses is easily
inferred in these experiments through varying the number of knots of successive approxi-
mations and observing the behavior of the approximation error for the different numbers
of knots. When all impulses are detected the approximation error decreases drastically to
the level indicated in Table 2.
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