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In this paper we intend to study the theorem of Hille-Yosida in case of
semi-groups of nonlinear contraction operators in Hilbert spaces. Our main
results are the following : a nonlinear dissipative operator A in a Hilbert space
H generates uniquely a nonlinear semi-group if (J—A)™! is defined on H
(Theorem 4)), and conversely, the infinitesimal generator A, of a nonlinear con-
traction semi-group in H has an (dissipative) extension A such that (J—A)™?
is defined on H and A generates the given nonlinear semi-groups (Theorem 5).
Our nonlinear dissipative operator A is in general multi-valued. Hence the
set {(x, —Ax)|x < D(A)} is monotone in the sense of Minty. Some part of our
results (e.g. Theorem 2) is obtained more easily from the theory of monotone
operators and of monotone sets by Minty [7]. But we shall make use of the
method of semi-groups.

In recent years there appeared many works on nonlinear evolution equa-
tions in Hilbert or Banach spaces, for instance see Browder [1], Kato [2],
Segal and Sobolevskii [10]. But most of them are concerned with the

semilinear case: —gt u(t) = A®Ou( -+, u), where A() is a linear unbounded

operator, and f(t, -) is a nonlinear perturbation,

From the view points of pure theory and its application both, it should be
desirable to solve more general nonlinear evolution equations. The author’s
intension here is to treat the case of not necessarily semilinear (or such) evolu-
tion equations.

1 would express my hearty thanks to Professor Jorgens who suggested me
this problem, and also to Professor Tanabe who gave me kind advices.

1. Nonlinear semi-groups and infinitesimal generators.

Let H be a Hilbert space. A continuous one-parameter semi-group {7,|0
<t < oo} of nonlinear contraction operators on H is defined by the following
conditions :

1) For any fixed =0, 7, is a continuous (nonlinear) operator defined on
H into H.

2) For any fixed x< H, T,x is strongly continuous in ¢.
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3) Tus=T.T, for t,s=0, and T,=/ (I means the identity mapping).
4) | Tx—Twy| < lx—y| for every x,ye H.
We call such a family {7,} simply nonlinear contraction semigroup. The
strict infinitesimal generator A, of a nonlinear semigroup {7;} is defined by
Apx=lim j‘ih_i xeH,

hi0

if the right side exists in H. (We use the notation “lim " in the sense of norm
topology, unless otherwise stated.) By virtue of the contraction condition 4),
A, satisfies the following

5) Re {Agx— Ay, x—y> =0, for every x,ye D(A,),

where D(A,) means the definition domain of A, In fact, the inequality 5) fol-
lows from the following

Tox— T, y— 1
Re< ”;1 L. ’% J ,x—y>:T(Re<Thx-—Thy, x—yy>—|lx—y|i2)

< }f 12—y Thx— Tayl— 2 —) < 0.

In general, a mapping A satisfying the condition 5) is called dissipative. For
a multi-valued mapping A (i.e. for an A which maps an element x & D(A) to
a subset Ax of H), we also say that A is dissipative, il the following condi-
tion is satisfied :

Redx'—y, x—¥>=0 for any x’ < Ax, y' € Ay.

For a linear semi-group {7,}, it holds that A, 7, D T;4,. But for a nonlinear
semi-group, it is not the case. 5o we cannot tell whether T,x & D(A,) for every
xe D(A,). Hence we shall introduce the notion of @-infinitesimal generator
Ap of a nonlinear semi-group {7,}. Let &= {¢} be an ultra-filter of sets
¢ (0, o0), which converges to 0. Then Ay is defined by

. Tpx—x
Apx= w-lim —2 , xe H,
hE:.(pG@ h

if the right side exists in H., (We use “ w-lim” for the limit pertaining to the
weak topology.) Evidently the @-infinitesimal generator Ap is an extension of
the strict infinitesimal generator A, and in case of a linear semi-group, we
have Ap= A,

THEOREM 1. The domain D(Ap) of a @-infinitesimal generator Ay of a
nonlinear contraction semi-group {T,} does not depend on @. Moreover it holds
good that for xe D(Agp)

6) Txe D(Ag)  for all t=0,
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7 Txe D(A)  for a.e. t=0, and Tx= x+jzA0Tsxds .
0

Proor. First we shall prove that T,x is strongly absolutely continuous in
t for every fixed x € D(Ay), more precisely,

for any interval [#, t*]C [0, c0). We fix an arbitrary division #{=1, <t < -
<tl,=1”. Let ¢ be an arbitrary positive constant. Since T,x is continucus in
{, there exists a constant § >0 such that

8) Sup T Tupyut— Tl |1/ =1y <1, < oo <tp= 1} S @) lim | R

|t—t;]<d implies |Tx—T, x| <e.
We pick up h,= ¢ = @ such that

Tox—x
h

0< h, <0, NT’“’;;“"‘

0

=< lim
)

“e.

From the relation 0 < h, < 6, it follows that |n;h,—%;} <& for a suitable integer
n; Then we have

&
ST a=T, )

k
= E (” thx"" Tnjhox [l +11 Tn]'hox—Tfl«j-lh()x “ +" Tnj-ﬂwx_ th—lx ")

I3
= 2ek+ Z:l i TNjh()x—Tnj-lhOx i
=
[“aa 1]
=< 2ek-- Z} | Tnhgx_T(n—l)hox I
e

ey
e ISR

< 2k % | Thox—x]

[5en1] _
<2kt % ho(limN-rT’*J;L x ]|+e)
n=1 (/1]

—|—e).

Since ¢ and 0 can be chosen arbitrarily small, the inequality 8) is proved.
The independence of D(Ag) on @ follows from 8). In fact, by 8) xeD(Ap)

o] T

implies lim W“< oo, and conversely, lim Tax—x. < oo implies the ex-
hi0 hiOD
istence of w-lim I"—];l;x , since a bounded set in H is relatively compact in
o

the weak topology. That is,



496 Y. KoMura

. e Thx—x
D(Aa;)—{x lhl?; T <oo}.
Thus we obtain 6) also, since Tim Tenx ——T'f——‘ < Tim Thx—x n
hlO h alo h

Now we can show the last assertion 7). By virtue of Lemma in the

Appendix, T,x has the strong derivative —C?TTﬁx for a.e.t. The definition of

A, implies ngtszoTtx. Thus we have

4 d t
Tix—x= _fﬂ WIS Txds = L A, Toxds.

COROLLARY. The closure of D(A,)=the closure of D(Agp).

Proor. For any xe D(Ap), there exists a sequence #, | 0 such than T, x
e D(A,). Since T, x—x, we have x < the closure of I(A,). Hence the closure
of D(Ap)C the closure of D(A,). The converse including relation is obvious.

Q.E.D.

We cannot tell whether the strict infinitesimal generator A, of every non-
linear contraction semi-group is densely defined in H or not. (It seems that
every strict infinitesimal generator is nontrivial, that is, its domain is not
empty.) Further for positive A, (I—2A4p)™* is not necessarily defined on H (cf.
example 2 in §4). However we have the following

THEOREM 2. Let {T,} be a nonlinear contraction semi-group with a non-
trivial strict infinitesimal generator A,. Then A, has a dissipative (multi-valued)

extension A such that (I—A)™* is (one-valued,) continuous and defined on H.

Proor. Let Anzl’ﬂ]}i, for 4> 0. First we shall show that (I—A,)" is

continuous and defined on H. For x, y e H, we have seen already

Re {(Apx—Any, x—y> =0.

Thus A, is dissipative, which implies in general the continuity of (J—AiA4y)™
for fixed 1>0. In fact, (J—24,)"' is a contraction, which we see as follows.
For x,y e R(I—2A4,)) (=the range of (J—2A4;)) we put x'=U—1A4;)'x and
v ={U—2A,)"y. Then we have

9 lx—ylP= 2= 2Anx =y + 24,5
= &/ =y [P+ A4px’ — 2 Ay [P =24 Re { Apx’ — Ap ', /=)

Z %"=y [P+ | 2Apx" =245 y'|2,

which implies [|[(/—AA4) x—I—24)7| = |x—y|.
Now let us prove that (/—A,)"* is defined on H. Let x be an arbitrary
element of H. It holds that y=(—A,)'x for y< H if and only if y—A,y=x, or
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. h 1 . . h 1
equivalently, y = 11 h—x—{- T T,y. The mapping P: 2_’_1?—77 x+L1A+TAThz
satisfies | Pz—Pz/|| < _l_:;ih lz—z’]}, hence the equation y= Py has a solution.

We shall construct a dissipative operator A, an extension of A, such that
(I-— A~ is defined on H. Lety= D(A,). Then x=y— lim A,y exists. We put
1O

W=U—A)x and x,=y—-A,y. Then [x—x,[|—0as 2|0. By 9 we have
[lx—xn) = |y—yal, hence |y—y,| —0 as 4| 0. That is to say,

10) lim (J—A)x=1y for ye D(Ay), x=y—A4,y.
RO

By the assumption of nontriviality of D(A,) we can pick up an element

yvoe D(A,) and put x,=y,—A,¥,, For an arbitrary fixed element x < H the
inequality

W= Ap) 7 x—U— A7 x| = flx—xof

implies the boundedness of {(/—A,)'x|0<h=<h}. Let @={¢} be an ultra-
filter of sets ¢ C (0, o) converging to 0. Then

y=w-lim (J— A,)"'x

hep=®

exists, since a bounded set in H is relatively compact in the weak topology.
Now we define a (multi-valued) mapping A as follows:

Ay={y—x|xe H, y= W-;)im (I—Apx}.

Evidently (I—A)"x= Wjim (I— A *x, so (J—A)™! is defined on H. Moreover,

by 10) we see that Ax> A,x if x = D(A,). This means that A is an extension

of A, Lety,yeD(A) and xey—Ay, x' ey —Ay. We let y,=U—A,)x and

v =U—A,'x’. Then w-lim y, =y and ngm ¥, =2y'. Notice that y—x—(y'—zx"
0

may be an arbitrary element of Ay—Ay’. The dissipativity of A follows from
the following inequality :

Rey~—x—(y'—x"), y—y' > ={ly—y'|*—Re {x—x’, y—3">
< liwm Hyh—y;ilz—liagn Re {x—x/, yp—i>
= 1iwrn Re {yp—x—(¥,—x")) Yn—Vh>

= limm Re CApyn—Au i ¥a—¥1> = 0.

2. Weak solutions of abstract differential equations.

In this section we shall discuss a generalization of solutions of the Cauchy
problem in H
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d
11) “F e AfD),  0sizt,

JO==x.

for a multi-valued mapping A: H—H. Let f{#) be absolutely continuous in

ro,¢,1. If f(¢) is contained in D{A4) for a.e. t and satisfies 11), then f(#) is
called a genuine solution of 11).

We denote by Cgx[0,t] the space of all H-valued strongly continuous func-
tions on the interval [0, ¢], and L}[0,¢] the space of all H-valued strongly
summable functions on [0, #]. These spaces Cxz[0, t] and L§[0, t] are Banach

spaces with respect to the norm | f .= sup || /(s)|| and the norm []f[]lzjluf(s)”ds
O=s=i 0
respectively., The scalar product of fe Cg4[0, t]and ge Lg[0, ] is defined by

(f, D= S, g(s)>ds.

The mapping A is considered in itself as a (multi-valued) mapping from

Cul0,1] to LL[0,t7: f—{ge LL0, t]|g(s) e Af(s) for a.e. s}, which we denote
again by A.

Now we introduce the following (multi-valued) mapping
A: Chl0, ]2 f— {g € L0, 1|3 f, € D(A T Cyl0, 1],
gn < Afn’ iimfnzfr O"Iim gnzg} »

where o =o(LYy[0, 1], Cx0, t]) is the weak topology of Li[0, t1 with respect to

Cxl0,t]. The mapping A is called the associated extension of A.
DEFINITION. A function f< Ch[0, t,] is called a weak solution of the equa-

tion 11), if there exists a sequence of absolutely continuous solutions {f,} of

12) %fﬂ(t} fa ;Zlfn(f) for a.e. ¢t O g t_é_ to r

such that f,—f in Cg[0, 1,].

Notice that a genuine solution of 11) is necessarily a weak solution. The
associated extension A of A may be multi-valued, even if A is one-valued.
Nevertheless we have the following

THEOREM 3. Let A be a dissipative (multi-valued) mapping. Then weak
solutions of the Cauchy problem 11) are unique.

Proor. Let f1 f2e D(;l) and gte AfY, gre Af:. We shall show that

13) Re(g'—g* f1—/.=0, Ozi=4,.

By the definition of A, there exist two sequences {fRPre DA}, {gPe AP},
7=1,2, such that limf% =f7 in the norm of C,[0,f] and o-limg{ =g’

T~ 00 =0
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where ¢ = o(L4[0, 1], Cx[0, £]). Notice that Re {g®(s)—g@(s), f O(s)—f@(s)> =<0
for a.e. s. Hence we have Re(g®—g®, fO.—f®) = lim Re (gP—g2, fO—f@),

= limRe (gP—g®, fO—f®), <0, since the restrictions of /¥ to Cy[0, f] and
of g to LL[0,+] are respectively in the norm and in o(Ly[0, t], Cx[0, {]
convergent to the restrictions of f% and g,

Now let f! and f2 be two genuine solutions of 12) with Cauchy data f(0)
=x' and f%(0)=x2. Then we have by 13)

|FO=FHO =1/ OO
=[S Ieds
= [ "2Re - (5~ L 5, A=) Y
=2Re (o= gs s 11=17), 20,
since % fie Afs, 0 fre Aft. Thus we have

1/1O=rO) S 17O—=20 ), 0=t <t,.

By the definition of weak solutions, the above inequality holds good for two
weak solutions f* and f2 Hence the uniqueness of our Cauchy problem is
established.

3. Generation of nonlinear semi-groups.

We shall state our main theorem as follows.

THEOREM 4. Let A be a densely defined dissipative (multi-valued) operator
in H. If (I—AY"* is defined on H, then A generates a nonlinear contraction
semi-group {T,}, that is, there exists a uniquely determined nonlinear contrac-
tton semi-group {T,} such that for each x= H T,x is a weak solution of 11).

Proor. We divide the proof in several steps.

I. First we shall show that

D(I—-24)y")=H, 0<Ag1.

Notice that (/—2A4)"! is a contraction (see 9)) and hence (/—1A4)™* is one-valued.
Let x be an arbitrary fixed element of H, and g be a number such that
,1,
’ 1 1 1 1
_ — i : . -1 _ i
=({—A)" - . The mapping P,:z—{U—A X z
y=U=A( 'uy)‘ pping ( )(# 2

<p=1. The equality y=({U—pA)x means y—pAy==x, or equivalently,
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satisfies || P,z—P,z'| gfl;”—— lz—z’||. Hence the equation P,y=7y has a solu-

tion, since (/—A)™! and hence P, also, are defined on H. Repeating this process,
we see that (J—p*A)™ is defined on H for k=1,2,-.. For a number 1, 0< 2
=1, we may put A= " for a suitable g and k.

II. Let A, be a mapping: x——%y—{y for xe D(A), ye Ax. Then A, is

one-valued. In fact, let x— y:x’m—}i—y’ for ye Ax, v € Ax’. Then x=

1
n
(1—-» ;—VA)—I(x——f}ly) = (1—7711 A)—l(x’-ﬁ%y’) =x’, since (I—»%—A)bl is one-

valued. This implies y=13’. Notice that An:A(I——%A)_I, if A is one-
valued.

We shall show that A, is dissipative and generates a nonlinear contraction
semi-group {7} satisfying

14) AT x| = |l Anx ] -
Let x, x’ be two arbitrary elements of H and let y:([——%fl)_lx, y =
(1——:1<A)_1x’. For suitable y, & Ay and y, = Ay’ we have x::y—-—ifyA and

x’=y—%y2- Hence A,x=y, A.x’'=y, It holds that
/ N = ’ 1 R
Re (A,x—Aux/, x—x' )= Re (y,—da, y= Ya=y' +Vad

r 1 /
=Re (ya=v0 y=y"0—, Da=Ya 34—> =0
Thus A, is dissipative. Moreover in a similar way as in 9) we have
7|2 7|2 1 4 2
lx—x’|*= | y—=y" I*+— 5 | ya—vall
> 1 A A x'|?
Z o | Apx—Apx "

Therefore the dissipative operator A, satisfies two conditions: a) A, is con-
tinuous, and b) A, maps bounded sets into bounded sets. This implies that the
equation

d
‘d't‘f = Anf (t)

fO)=rz, xeH,

has a unique solution (cf. Brodwer or Kato [4]. Since A, is independent
of ¢, we can write f()=T™x, and as is easily seen, {7} is a nonlinear con-
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traction semi-group. Notice that 7x is continuously differentiable in the
strong topology for any xe H., Since T is a contraction mapping, we have
(I TEx—x|| = | T&,x—T™xY, which implies

.1 .1

| Agt || = [lim ~~(TPx— )| Z | lim ~- (T @x—T ) |
hio RiO
= | A Tx| .
III. We fix an arbitrary element x of D(A). We shall prove that T®™x
is convergent uniformly in ¢ in every finite interval. Let y e Ax, x,,:x—%y,
-1

n=1,2,--. We introduce a conventional notation A’: A’ (I—-—;li-A) T™ x,

denotes a suitable element of A(I—-%—A)_IT;“’xn, that is, A, T{M™x,. Strictly

speaking, A’ depends on s and n. But there are no confusion. We consider
A’ as a restriction of A, and so A’ is dissipative. Then we have

15) ATt TRty 2= S | T =T, Jods
0 S
= 2j(1Re _Ciiis Tém)xm_ﬁéisf T %y, T§m)xm~T§"’x,, >d$

=2 o’Re CAZT P 50— AT, Tx —T®x Sds
=2 :Re {a(1=—4A) Ty x,— a1 (12 A) Tiox,,
(1= b A) Tmr,—(1-L ) Twx, s
+2f O'Re { AT x,— AT,
(1—(1- } ) T, —(1-(1- };A)—ITg")x,, Sds
<2f :Re { AnT 2= AT,

(1-(1= ) A )T~ (1-(1- L ) rwx, Sas.

Recalling that y e Ax, x,,:x—f—%l— ¥y, we have by 14)

AT xm | = | Apxa | = | 311,
TAT x| =1 Awxnl =131
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It holds moreover that
(=1 ) Tnam (1= )ik 1) T,
—(I—A) T,

1
= An T

L Y N7, — L 0
(I_ (1“7{14) )T§ ko= — - AT 0%,
From this it follows that
- 1 1
1) (1= (I A) )Tt = e 1 AnT 0] S | Aniial = I

|G- 4y

Hence the last term of 15) is evaluated as follows:

1
§7”J’"

17) 2f " Re < A, Tmx,—AT™x,

(1-(1— L A Tra—(1=(1=-L )T, Sas

<2 yo‘(uyu+nyu>(--~,§;||yu+~;1,;||yn)ds =4(—+ L)yl

For any fixed {,>0 we have by 15) and 17)

sup | Ti™x—T™x|

0=t =ty

= sup (| T x—T M xp | H 1T 2= T8 x|+ T X —T M 2}

0=t=ty

—0, as m, n—oco.

Since H is complete, T{”x converges uniformly in ¢ in every finite interval.
[V. Since |T@x—TPx'|<|x—x'||, and since T{x’ is convergent uni-
formly in ¢ in every finite interval for any x’ in the dense set D(A), we con-
clude that 7'{”x itself is convergent uniformly in ¢ in every finite interval for
any xe H. Le T,xx=lim T{x. We shall show that {7,} is a nonlinear semi-

R=>00

group satisfying 12). It is clear that {7T,} satisfies the conditions 1)—4), since
each {7/} satisfies those. Hence it suffices to verify 12).
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Let xc D(4), and x,=x— 1 y for a fixed yc Ax. Then by 16) we have

=AY T, — T
n

-1
uniformly in # in every finite interval. Moreover, the set  A’([ —JWA T®x,
y n

O=st=gt, n=1,2, } is bounded in H, so we can choose a subsequence

{A’(I— i A)_IT?'Wxnk} convergent in the topology o=o(L4[0, ¢,J, CxT0, £, ).
&

Thus we have
AT, xeo-lim A, Tt%x,, .

On the other hand, A, T{®x,= c?tT mx, converges to \ng,x in the topology

of H-valued distrbutions, i.e., in the topology o, = a(L4[0, t,], Dx[0, t,]), where
Dul0, t,]=the space of C~-functions with carrier in (0, ¢{,). Since o,<e, we
have thus

S Ta=oplim 4, Tiwx,, € AT,

Q.E.D.

The semi-group {7T,} generated by A in the above theorem has a denscly
defined strict infinitesimal generator A, However we don’t know whether
A, A. As a partial converse we have

THEOREM 5. Let {T,} be a nonlinear contraction semi-group with a densely
defined strict infinitesimal generator A,. Then A, has an extension A which
generates a nonlinear conlraction semi-group. The semi-group generaled by A
s equal to {T,}.

Proor. By Theorem 2, A, has an extension A such that: a) A is dis-
sipative, and b) D((/—A)""y= H. Then by Theorem 4, A generates a semi-
group {7}}. Thus we have only to show that T,=7, Let xe D(4,). Then
by Theorem 1, T,x is absolutely continuous and

a
dt

Hence T,x satisfies the equation

Tx=A,Tx for a.e. f,

7?{ Tixe fthx .

Recalling that 7ix satisfies this equation also, we see that 7,x= T,x, since the
solutions are unique by Theorem 3. For an arbitrary element x of the dense
set D(A,) T,x is equal to T,x, so it holds good that

Tox=Tx  for all xe H,
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since 7, and T, are contractions.

4. Nonlinear semi-groups in R”.

We shall explain our theory in the simplest case, in the n-dimensional real
space R*. The norm in R" is defined by |(x) ] =2 x?.

THEOREM 6. For a mnonlinear contraction semi-group {T,} in R™ we have
D(Ap)=R".

Proor. Assume that for some x,= R*

llm “AthH = 00, Ah _ h# .
hi
We pick up a sequence h; | 0 such that y,;_-:“_ﬁ’”ij%“T converges to some ele-
hpto

ment Y. and {A, x| —co. By a suitable transformation of coordinates, we

may put ye=( 0, -, 0) and x=(0, -, 0. Let S={z|jz+yul =5} Re-

calling y,— ., We see that for a suitable £ >0 and £k,
”yicn > 2’51 “yk_yOOH < K, for k > ko ?
and for any A>0,
18) x, z€ S, |z—dnll = llx] = x] -zl > £d.

Let e=inf {{|T{—y)& S}. It is easily seen that 0<e<oo. On the other
hand, for suitable &, >k, we have

_ Iy & €
A= hm” Ahklxo“ > 7& and [—h:;] > _Eh? .
We put z;,,= Thhzj; 7j=0,1, - and z,=—y.. For j< —hs— , we have z;& S.
kE
Thus we have 1

12 jar—= A1 Yig | = 12700 — Ty Foll S 25— %ol = |24 -

Hence by 18)
"zj”'“"nz_Hl” > ,Czlr 7.: 0: 1: Tty

. ' . - '"—hk . . £ - &
which implies [z £ —jkA,+1< —?—-L]—l—l, i=0,1, - [—hk—l—]. For j= [Th ],

we have [z, < % Hence z;& S, which is a contradiction.

COROLLARY. The strict infinitesimal generator of a nonlinear contraction
semi-group in R™ is densely defined.

This does not hold in general for a nonlinear noncotraction semigroup, as
may be seen by the following

ExaMpLE 1. Let f(¥) be a continuous function not differentiable at every
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t=0, and f(#)=0 for t =0. We define a nonlinear {T,} in R? so that

T(x, )= x4+t y+(x4+D—=f(0), (x,»eR, t=20.

Then we have D(A,) = {(x, y)|x < 0}. Thus (x, v) € D{Ap) does not imply T,(x, )
e D(Ag), that is, Theorem 1 also does not hold in this case,
ExaMPLE 2. Let

max (0, x—1) for x>0,
fo:

X for x<90.

Then {T,} is a nonlinear contraction. semi-group in R*. In this case the strict
infinitesimal generator A, is defined on R!, and hence A4,= Ap. In fact we
have

-1 for x>0,
Agx=

0 for x<0.
The extension of A, in Theorem 2 is given by

-1 for x>0

Ax=7 [-1,0] for x=0

0 for x <0,
since we have
max (x—1, 0) for x=0
(I=A)y'x=lim (I—Ay) " x =
L0 x for x <0

by the equality

Yo=U—A)x for 0<x<1, h>0 and yhz——lfﬁh x.

Appendix

Since the following lemma is not found in elementary textbooks, we shall
prove it for the completeness of our work.
LEMMA. Let E be a reflexive Banach space. Then every E-valued strongly

absolutely continuous function f(),0<t<1t, has the strong derivative r;t—f(t)
Jor a.e. t and is expressed as the indefinite integral of the derivative, t.e.,
t d
)= § g5 Fsds+ Q).
Proor. The set {f(H|t=[0,t,]} is compact in E, hence it is separable,
Therefore we may assume without loss of generality that E itself is separable.

The strong absolute continuity of f(¥) means that for any &>0 there exists
some § > such that
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n

35—t <8, su fi [0, t,]= 2 A=Wl <.

@,

Thus f(t) is of strongly bounded variation.
We put ful)=-j- (FE+R—F®) for h#0, and Fu®y=Tm 1AWl FO

=ﬁn Fx(®]l. Since f(t) is strongly continuous, so is f,(f). Hence F.(t) and

F_(t) are measurable. We can show moreover that F.({) and F_(f) (=0) are
finite for a.e. £. In fact, suppose that 1= the measure of {¢|F ()= o0} be >0.

Let E,= {t]sup {"—;f( Fit+h)— f(t)“ ‘ hz= % 0<t<it+h= to} > %—var. f}. Then
each E, is a closed set and \VE, D {{|F,(t)=o0}. Since {E,} is an increasing

sequence, there exists such an E, that m(En)>#g». We define {#,} and {k;} as

follows : t,=inf{{|{ € E,}, t,=inf{i € E, | = t,+h,} and h,— sup{hm By
—f&:)

|; ~n~/2]—~var. f}. Then we have evidently \J[¢, {;+h,]DE, Hence

SRtk h)—) = S-var.f S hyZ—-var. f m(E,) > var.f .

Thus we obtain a contradiction. In the same way we see that {¢|F_(t)= oo}
is of measure zero. That is to say, there exists a null set N, [0, t,] such
that {f,({)|h +# 0} is bounded for any fixed t e [0, {,]—N,.

Since E is separable by assumption, the dual space E’ has a countable
weakly densc subset {x;}. Each function g (&) =<f({), x> is absolutely con-
tinuous, hence its derivative g}(¢) exists except at a point of a null set N,.
Recalling that for any fixed t [0, {,]—N, {fz()|h=+0} is bounded and hence
weakly relatively compact, we see that

Fi)= w;—lliomfh(t)

exists for any ¢ < [0, {,]— G N,, since {x,} is total. The weak derivative f/({)
k=0

is weakly measurable, hence strongly measurable by the separability of E.
Now we define

fo=2[f( )~ (5] st

for k=t, 2t, -, 2", Then j:ilf "(Ddt < var.f. Since f,(f) converges weakly

to /() for t [0, {,]—\Y N,, we have | /()| <lim | F,(D] for t [0, - N,.
Hence by Fatou’s lemma,

§“1r@nar<tim [ 170l < var. £
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Thus f/(¢) is strongly integrable. We put f()= ft F(s)ds+£(0). Since <F(D), x>

={f{), x,> for a.e. t for k=12, .-, we have f(t):f(t) for a,e, t. By
Bochner’s theorem (see for instance {12, p. 133]) f(©) is strongly differentiable

for a.e, t and the strong derivative %f(t} is equal to f/(t) for a.e. i

Waseda University
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