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NONLINEAR SEMIGROUP FOR CONTROLLED

PARTIALLY OBSERVED DIFFUSIONS

Wendell H. Fleming

1. Introduction. In this paper we are concerned with

stochastic control problems of the following kind. Let Xt

denote the state of a process being controlled, Yt the observation

process, and Ut the control process, t > 0. The state and

observation processes are governed by stochastic differential

equations

(a) dXt = b(Xt,Ut)dt + o(Xt)dWt

(1.1)

(b) dYt = h(Xt)dt + dWt.

X has values in N-dimensional IRN,Y values in RM, and
t t t

values in acRL. X0 has given distribution i, and Y0 = 0.

In (1.1), W and W are independent standard Wiener processes,

D M
with values in JRIR respectively. The problem is to find an

admissible control minimizing some criterion J.

For instance, we may take J = EG(Xt ) for some fixed time
1

t > 0. In case of completely observed, controlled diffusions

(with Yt = Xt rather than Yt as in (1.1b)), the problem can

be treated using dynamic programming. Let V(x,t1) denote the

minimum of J, for initial data X0 . x. Under suitable asssumptions

V(x,t) has continuous partial derivatves
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DV/3t, aV/axi, a2V/x i x, i, j ;,= 1 ,N, x (x1,...,xN) Among

these assumptions is the condition that the symmetric matrix a = ca'

has a bounded inverse a l
. The function V then satisfies the

dynamic programming equation [4, Chap. VI.6]

(1.2) t= LV

N a2V N 3
(1.3) LV = min " ai(x) + INx.,u)

uE' i,j =l i a i=l

The assumption that a(x) has a bounded inverse can sometimes be

weakened, by considering generalized solutions to the dynamic pro-

gramming equation [4, p. 177].

In [6] Nisio introduced another treatment which is valid under

much less restrictive conditions. Let YtG(x) = V(x,t). Then
t

Nisio showed that 5t is a nonlinear semigroup on the space
t

C bN) of continuous bounded functions f on RN. Moreover, the

operator L in (1.3) agrees with the generator of the semigroup

on the space CbR N of those f such that f,f i,f are in
-Vt bx. xix.

N)
Cb R) for i, j = 1,...,N. For another treatment of this nonlinear

semigroup see [1, Chap. IV.5.1].

In this paper, we find a nonlinear semigroup 2 associated
t

with the partially observed control problem. In this case, one

should regard as the true "state" the conditional distribution of

Xt given past data, or some quantity equivalent to the conditional

distribution. For technical reasons, it is more convenient to

consider an unnormalized conditional distribution At for Xt.



We have A t  .E4, where A is the space of finite measures on RN.

The problem we consider is to control the measure-valued process

At  such that a criterion of the form J = E4(Atl) is minimized.

The dynamics of the At-process are governed by the Zakai equation,

written in a weak form as (3.1) below.

If one writes V(p,tl) for the minimum of J, given initial

data A0 = P, then V(p,t) formally satisfies a dynamic programming

equation of the form.

(1.4) t =

where .YV = min YuV and Yu is the generator of the linear
uE'*

semigroup Yu associated for a constant control u with the
t

process At  (for constant u, At  is Markov). Equation (1.4)

is called Mortensen's equation. However, (1.4) has been treated

rigorously only in very special cases.

Following Nisio, we write V(P,t) = t(). The purpose of
t

this paper is to show that 3 is a nonlinear semigroup, on a space
t

C(A), with _t_ continuous in t, and to describe the generator

5 on a dense subspace of C(_d ). We rely heavily on results from

[3]. In particular, it was shown in (3] that At  can be defined

pathwise, in such a way that At depends continuously on observa-

tion and control trajectories (Y,U) and on P = A0. This and

other results from [ 3 1 needed in this paper are summarized as

3.1-3.4 below.

For the case of a controlled Markov chain Xt , subject to

observations Yt of the form (l.lb) a corresponding nonlinear

__ _ _ _ __ _ _ _ __ _ _
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semigroup was constructed by Davis [2].

2. The Spaces C K (.'), C(.4'). Let C bRN) denote the space

of bounded, continuous f on IRN, and C00RN) the space of

continuous f with compact support. Let CORN), CO(RN) be the

spaces of f such that f together with all partial derivatives of

orders < k are in Cb ORN), C0 ORN) respectively. Similarly, for

Rm valued functions on IRN we write CkORN tm ) N C k CINXm
Nb N 0

Let .ORN) denote the Borel o-algebra of IRN, and

(2.1) = {measuresP > 0 on -i(]RN): 1OR N) < 0}.

We write

<f,IA> =f f(x)dll(x)

for the scalar product and

J~I J l l <1,P.> = oRN)

By convergence of sequences in A we mean w*-convergence:

Pn P . if and only if <fnn> - <f,p> as n for every

f E Cb NOR ) such that f(x) - 0 as Ixi

We denote real-valued functions on -' by P,,.... For

K = 0,1,2,... let

(2.2) IIOIIiK s,,u.t 1.- li K "

__ __ __i s"



By 1 continuous on 4., we mean of course continuity of O under

w -sequential convergence. Let

(2.3) CK(4) = {4 continuous on 4:11 1K <

Then, 11 ''K is a norm on CK(A). Let

(2.4) c(4) -U CK (4).

K=G0

For r < w, let

(2.5) {r = E 4:' : I Il < r}.

We give C(4) the following metric

(2.6) d(O,p) = -Z(sup IF(ii) - t P)j A 1).
Z=l 4 t

Thus d-convergence of Pn  to P is equivalent to convergence of

0n (IA) to *(ii) uniformly on 4r for every r < . For each K,

11I IK is a lower semicontinuous function under d-convergence.

Moreover, from (2.2), In, E E CK(4) and lion-011K - 0 imply

d( nO) - 0 as n -.

Let

N> 0 on qORN): i (B) < for every compact B),

with the vague topology: P n vaguely means <f,pn> <f,p>
L .. . "1 . .. -" - * *'



N)
as n for every f E C0 0IR ). A is a Polish space. In fact,

one can choose a metric 6(ii,v) for A of the form

(2.7) 6(iA,v) = I 2 -m(1 <f m,> - <f ,v> A 1)
In= 1

for a suitably chosen sequence fm E C0 IRN)"

For each r < -, 4 r is a compact subset of .. For

sequences in 4'r , vague convergence is equivalent to w *-convergence.

Moreover 0n , P E A and Pn - P  w imply l 11n1 l < r for some

some r. Thus, we have:

Lemma 2.1. is continuous on 4, under w*-sequential

convergence, if and only if l Ar is vaguely continuous for every

r < co

This furnishes an alternate characterization of C(.A), in

terms of the vague topology rather than in terms of w*-sequntiel

convergence.

A measure 4 E A can be approximated by measures PP with

compact support, as follows. Let P E C ORN), 0 < P < 1, and

define PP by <f,Pi> = <of,i> for all f E CbORN Define P

by

(2.8) P (Pv ), 11 E A.

Then 0 E CK( ) implies E E CK(A) and 110P[I[K -  111K"

We write UIB for the restriction of P to a compact set

B: (i.'B)(A) = p(A n B) for all A E OR N). Let
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(2.9) CK(A) = {E E CK(.o): there exists B compact such

that P(() = '(iilB) for all P E 4}.

In particular, P E CK (A4f) if E CK(A,) and P is defined by
KK

(2.8).

Lemma 2.2. For every P E CK(A) there exists a sequence

SC( ) such that anndK ''I''K and dLPnP) - 0 as

n - o

Proof. Let Pn C0  N with 0 < xn  for

P

jxl < n and Pn (x) = 0 for lxi > n + 1. Let On = n. Then

lI nIK < [I0I 1K . Since Pn(v) = P(Pnv) it suffices to show that

O(p v) - O() tends to 0 uniformly on k for every r < .

Let

nn = max [P(Pnvi) - P)j 1 [(Pnn) -n (A i)
Xr

for some P Ar (recall that _r is compact). We have

Pnin E - r" For each f E C0 0RN), <fPnpn> = <fln> for all

large enough n. Consider any subsequence such that Pin tends to

a limit P. Then Pnvin also tends to P for n in this sub-

sequence. Since 01IA r  is continuous, both O(Pn n ) and O(p n )

tend to O(P). If lim sup nn > 0, we could find some such
n->.w

subsequence for which (P npn) -(pn)I tends to a positive

limit, a contradiction. This proves Lemma 2.2.



0
Lemma 2.3. Lot P E C( ), and B compact such that

( - (iiIB) for all w E A. Then there exists a sequence

E C0(4) such that IInlK , [['['K' d( n'P) - 0 as n - ®

and n(iP) = 0 whenever P(B) > n.

Proof. Choose P E C 0 OR ) with 0 < P < 1, P(x) = 1 for

all x E B. Let gn C0 OR1 ), with 0 < gn - 1, gn (s) = 1 if

s <- 1, g(s) = 0. if s > n. Let

'n(i) = gn(<p,P>) P().

Since IOn')l < 'P(.)!, II'nIIK < 1'PIIK . For p E 4r,

<P,P> < r. Hence 'V () = '() if n > r + 1, which implies
n I

'P n- IV uniformly on 4r" Thus d( n  0 as n Finally,

P(B) > n implies <P,P> > n, and hence n (P) = 0. This proves- - n

Lemma 2.3.

The set L of "test functions". In §5 we shall define a

"generator" for the nonlinear semigroup on the following set of

functions , depending on finitely many scalar products:

(2.10) f2= { : (P ) = F(<f 1 ,P>,...,<fJP>)p

F E CO R ,,.., C R ), J = 1,2,...}.
b 0

In §4, we shall weaken slightly the conditions on F,fl,....,fj, to

obtain certain sets m containing .



Lemma 2.4. For every E (K(A) there cAists a sequence

V E such that tI1U " HwH[ + n -1  and d(Pn, ) + 0 as

n co

Proof. By Lemmas 2.2 and 2.3 it suffices to suppose that,

in addition, there exist compact B and a > 0 such that

(P) = (ijB) for all P and f(.) = 0 if vi(B) > a. Following

a similar construction in [5, §3], given E > 0, we take

gl,...,gj, xl,...,x J with the following properties:

gj E CoOR N), gj > 0, diam(spt gj <E
J J

N
g.(x) < I for x E1R gj(x) = 1, x E B,

j=l j =1

x. E B fl spt gj

Let

R {z EIR z. > 0 for j = i,..,J},

J
F(z) - ( zj~.

j=l j X

where x denotes the Dirac measure at x. Then F E Co OR).

In fact, F(z) = 0 whenever

J J
I z.6 (B) = z. > a.

j=j 3 xj j=l J "



By regularizing, there exists F E C0 OR J) such that

JF(z) - F(z)I < ; for all z EIR+. Then

(v) = F(<gl, v>,...,<gj,p>)

is in _. For all V,

J
lv l < I ( -<gjp>6x.) +  E;

j=l J

K

< 1I1 tK(1 + II E <g.,i> 6  I + C
j =1 J x

< + I 11! K) +

Therefore, i 'IK - I *IIK + 
"

We take E n , and corresponding gjn' jn 1 .

The corresponding n obtained from the construction above has the
n

properties required in Lemma 2.4. To show that d(Yn n 0, it

suffices to show that Yn(u) (p) uniformly on 4r for any

r > 0 as n Now

(iP ) [G (0') < 'n

n nn

Gn(1) = n <gjnu>6x

On Ar, both vague and w -convergence of a sequence are equivalent

to convergence in the metric 6 in (2.7). For each m,

<fmGn )> <fmPn >1 0 as n uniformly for p E Ar ,

m n mn
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where Pn j n Therefore, 6(Gn(),Pnp )  0 uniformly on er

as n c o. Since tr is compact and q continuous on - 'r ,

is uniformly continuous on Ar" Thus, IP[G n(p)] Pn(p n)I -* 0

uniformly on ",r" Since Pn(x) = 1 on B, (PnVI) = '(p) = '(iIB).

This proves that 'n (P) -+ '(P) uniformly on -r' as required.

3. The Control Problem for At. We begin with a summary of

assumptions and notations, together with a review of concepts from

[3]. We make the same assumptions as in [3] about the coefficients

in (1.1):

(A1 ) a is a bounded, Lipschitz N x D matrix-valued

N
function on IR

(A2 ) b(x,u) = b 0 (x) + b1 (x)u, where b0 b1  are bounded,

N
Lipschitz functions on IR

Note that b 0 has values in 1RN, and b
I has N x L matrices as

values. In §5, we shall impose additional smoothness conditions

on o,b
0 ,bI.

(A3) h E2 2RN RM

(A4) 2 is a convex, compact subset of IR

We use Y to denote an IRM-valued function, and U a

2-valued function, of time t > 0. Let Yt,Ut denote their

respective values at time t. Let

1= {(Y,U): Y0 - 0, Y E C([O,'): IRM), U E L2 ([0,T];9) for

for each T < co.
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Let QT dcnotc the set of restrictions to [oT] of functions

(Y,U) E Q. As in [31, we give S1T a metric in which convergence

of a sequence (Y nUn) means uniform convergence on [0,T] of

Y and weak convergence of U in L ([O,T]; 'k). We give Q a
n n

metric in which convergence of (Y n,U ) is equivalent to con-

vergence of (Y n,U) restricted to [0,T] for every T < . Let

YFJ(Y) =.a{Ys, 0 < s < t}

Yt(U) = o{V, 0 < s < t, V t - dO

=Y(Y) X F()t t t

These are a-algebras of subsets of Q. However, if t < T, they

can also be regarded as a-algebras of subsets of QT' In [3], QT

was denoted by Q 2 and t by _V2
Yt ft'

Let 3 be the least a-algebra containing _t for all t > 0.

Definition. An admissible control on [0,T] is a probability

measure N T on (SIT' _VT )' such that Y is a nT' { -Vt}-Wiener

process for 0 < t < T.

An admissible control is a probability measure n on (2, Y.)

such that Y is a n, { t}-Wiener process for t > 0.

The definition of admissible control on [0,T] is exactly as

in [3). If 7r is an admissible control, then its restriction T

to YT is admissible on [0,T].

Let eT denote the set of all admissible controls ITT on [0,T].



Then -,'T  is compact under weak sequential convergence of

probability measures [3, Lemma 2.3]. Let _W denote the set of

all admissible controls with the weak sequential convergence

topology. Then _W is a compact metric space under (for instance)

the Prokhorov metric. Moreover, Rl - w if and only if then

restrictions mn,T tend to RT as n - c for each T finite.

The unnormalized conditional distribution measure A . For

every P E A' (Y,U) E 2, and t > 0, we define At = AYU by

formula [3, (3.9)]. (In [3] we wrote At , but now we wish to

emphasize its dependence on the initial value P = A..) From its

definition, At E -A and At is -measurable as a function of

(Y,U) E Q. In [3,§3] we interpreted At as an unnormalized

conditional distribution of Xt  in (1.1a) with respect to the

0-algebra Yt generated by the observation and control past up

to t. The normalized conditional distribution of Xt is

11 t 1-lA t . The intuitive reason for conditioning on t , rather

than on Y (Y), is that Ut is not necessarily _Ft(Y)-measurable

ff-almost surely, when E J V. For the smaller class of strict-

sense admissible controls [3, §6] one can condition on 9X

ttinstead of It"

We shall need the following properties of At, proved in [3].

3.1. For each t > 0, r < -, AYU is continuous on r X Q.
tP-

See [3, Lemma 3.2].

3.2. For each finite T,ra there exists P = P(T,r,a) such

that 0 < t < T, Ijil . r, IIYIIT < a imply IIAt.ll < P. Here

Y-T = max IY(t)I. See [3, (3.6)]; since At depends linearly
0<t<TS ..-. I-



on P = A0  it suffices to consiler 1 HIl = 1.

3.3. The Zakai equation holds:

Ut

(3.1) dI<f,A t >  = <1. tf,A >dt + <hf, At .dYt, all f E C ORN

t tt b

See [3, Thin. 5.21. Here, for constant control u E Ok, L,u  is

the generator of the diffusion process in I N  corresponding to

(1.1a):

u 1 N
(3.2) L f 7 a (X)f + (bO(x) + b (x)u).Vf(32 ~ - i,j=laij xx

with a = co'.

3.4. For every T < -, K = 1,2,..., there exists KKT such

that

E IAt[[K < YKT[ IK, 0 < t < T,

for all 'r E SV. See [3, Thm. 5.3] with m = 0.

For t > 0, U 1, E E -, 0 E C(A) let

(3.3) J(t,P,TO) = E t .

Since 0 E CK(4) for some K, the expectation exists by 3.1 and

3.4.

.__ __ I
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Lemma 3.5. Let f'nPnllK < ( and d(P 'P) 0 as n .

Then

J(t'I, , ,P) = Iira J(tBV1 ,n)

n-+o

uniformly on [0,T] K 4 r x _W, for any finite T,r.

Proof. Consider. r c Q, and let r C ST  denote the set of

restrictions to [0,T] of (YU) E r. Then

(*) 1 E'n (At) 1: P(At) <

< f 'P (At) - '(A t)IdI + fr 'P n(At) -(At)dT

with F' =2 - r. If F'T  is a compact subset of 2' then IIY1I1T

is bounded on r. By 3.2, 0 < t < T, (YU) E r, E £ r imply

A E .f for some P. Since d('n,'P) 0, 'n + ' uniformly on
t (On'" 0 n

4 'p* Therefore, the first term on the right side of (*) tends

to 0 as n + *, uniformly with respect to (t,I,n) E [0,T] 11 r ×>.

It remains to show that, given e > 0, F can be chosen such

that the last term in (*) is less than F, uniformly on [0,T] x

r ; V/" Now

I*n(At) -(At)I < ( nI nIIK + 1100IK)(1 + IlAtH)

< 2C(l + I1Atil K

By Cauchy-Schwartz and 3.4



D) I

I IAtl K d < H(r,) 2(JIA IllKd )2

1 1

< -(r,)2 Y2 K~2K,TIIPII

Under (Y,U) - Y, R projects onto Iliener measure w. Let

A cC([OT]1 N be compact with Y = 0 for all Y E A and

1
N2 K -2

w[C([O,T];RN) A] < [2C(I + Y2 K,Tr)]

We choose r such that rT = A x L2 ([0,T ] ; %). Since

L 2([0,T]; a) is compact (weak topology), rT is compact. We

have

1 1

fr, bn(At) - c(A) IdI < 2C(TI (I) + (r,)7 Y Tr K ) <r-n 2 K , '

as required. This proves Lemma 3.5.

Lemma 3.6. For each t > 0, 0 E C(4 ), r <, J(t,,1,P)

is continuous on .4r x si.
r

Proof. Let g(p,Y,U) = O(AYU) By 3.1, 3.2, g is continuous

on _,tr x 0 (recall that (Yn, Un) (Y,U) implies '' In- Y'It 0,

and hence JIY n Ilt < a for some a.) Moreover, g(Vi,",.) is

Nt-measurable.

Suppose first that *(p) is bounded on -'. Let pn Ily

n 1T with p n E r By definition of weak convergence

III IIII____r_______--______......_____"_____-____ I
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lrn g g(11Y, U) dT= g(lI,Y,U)dI.lira f -- S1

Moreover, Ig(PnY,U) - g(p,Y,U)[ + 0 as n - ®, uniformly on

any r c Q2 such that the set rt of restrictions to [0,t] of

(Y,U) E F is compact. As in the proof of Lemma 3.5, we can choose

F such that NI (0-F) is arbitrarily small, uniformly withn

respect to n. This proves Lemma 3.6 in case (Gi) is bounded on *.

Now take any 0 E CK(A). By Lemmas 2.2 and 2.3, there exist

4n E CK(A) such that I(n(p)l is bounded on A' for each n,

il@nIIK is bounded, and d(Pn," - 0 as n . Lemma 3.6 now

follows from Lemma 3.5.

The control problem. Given , we consider the problem

of minimizing J(t,p,n,p) = EWO(At) on the space -V of admissible

controls ff. We can regard the Zakai equation (3.1) as governing

the dynamics of the "state" process At for this control problem.

Since At is an unnormalized conditional distribution measure for

X t  in the partially-observed control system (1.1), we call the

problem of minimizing EO(At) a "separated" optimal control

problem.

Following Nisio [61 let

(3.4) _59t P( ) = mi J(t,in,@).

IT E _Q(

The minimum is attained, by Lemma 3.6.

M o
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Since P(At ) is -measurable, the minimum is the same taken

in the class W;Yt of admissible controls on [O,t]:

(3.5) ,/t( = min J(t, , ,O)

t t

tt
For the special case () = <G,P> , J = E 7f<G,A t> which is

of the form considered in the existence theorem [ 3, Theorem 4.11.

However, if V has this special linear form, i t (p) is not

not linear in P. Hence, we define t the bigger space C(L#),
t

and not merely on the space of 9 of the form ( i) = <G,P>.

Theorem 3.1. P E CK( ) implies t E C

Proof. By Lemma 3.6 and the fact that A'r and _W are

compact, lion 11 < r and +n - P imply 9tP('A n) -j t(). Since

any w -convergent sequence Pn has lip n1 bounded, t is

continuous on _,t. From 3.4,

IJ(tIPJr, ) < 11011K E f (l+I[Atil K)d

< [Il[K(+YKtll[l 
K )

< (I+y Kt)IIO IK('I l I ll IK .

Thus, II YtW 11 K < (I+YKt)II[ IK, which proves Theorem 3.1.

In the next section we establish the semigroup property of

t



-D-

4. The Semigroup Property. The purpose of this section is

to prove the following two theorems.

Theorem 4.1. For every E £ C(.-4), s, t > 0,

s~to -- 3/t, "

Theorems 3.1 and 4.1 imply that is a (nonlinear) semi-

group on C(4). Let Cb(A') denote the space of bounded

continuous functions on 4 (it is the same as CK(d#) when K = 0.)

From (3.3), (3.4) 1 1 - Y-J0 <-YIJO Hence, when

restricted to Cb(A), 5 is a contracting semigroup on Cb(#).

Theorem 4.2. For every E C(A), q is a continuous
t

function of t E [G,-) in the d-metric on C(4).

The proof of Theorem 4.1 will be based on a series of three

lemmas. We begin by temporarily imposing rather stringent

conditions on the coefficients in (1.1), and on YU,i. We say

0 1
that the coefficients are regular if o,b ,b ,g are of class

bOR R) for the appropriate Z = ND,N,NL,M, respectively.

Let us denote by C e1
2  the class of functions q on [0,-) x IRN

e 
1

with the following properties:

(i) q and the partial derivatives qt,qxiq are

continuous, i,j - 1,...,N.

(ii) For each T > 0, there exist C,k > 0 (depending

perhaps on T) such that
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Ir(x,t)l < C exp(-klxf), 0 < t < T,

where r denotes any of the functions q,qxPq

For brevity, we write q(t) = q(t,.).

Lemma 4.1. Assume that the coefficients in (1.1) are regular,

and that Y E C ([0,c) R), U E C([0,o,); v). Then:

(a) If p has a density p 0 E C00IRN) then At(= A U) has

1,2

adensity q E Ce , satisfying the partial differential equation

(4.1) dq = (LUt) - 1h 2 q, t > 0

q(O) = pO.

(b) If q E C1 ' 2  is a solution of (4.1) with q(O) the
-- e

density of P, then q(t) is the density of At  for all t > 0.

Here (LU)* denotes the formal adjoint of the operator Lu in

(3.2), and Yt dY/dt. Note that part (a) of the Lemma, but not

part (b), requires that q(0) has compact support.

Proof of Lemma 4.1. To prove (a), we recall from [3, §5] that

(4.2) p(t) = q(t)exp(-Y .h )

is a solution in C1 ' 2  to the partial differential equatione
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t V

(4.3= LtP . e(t)p, where

v U t
Lt = Lt - (aYt.h,V),L L t

e(t) =1 (aYt VhYt.Vh) - Yt Lh 
2

N

where (a4 ,n) a .) and denotes the product in IRM.

i,j=l 'J J

The operators L* t are related by
t' t

(4.4) (LtP)exp(Yt'h) = L1 2hj q

Equation (4.4) follows upon multiplying both sides of (4.4) by

f E C 0R N), integrating by parts, and using the relation

exp(Yt'h)Ltf = Lt[f exp(Yt'h)] + e(t)f exp(Yt'h)

+ Jh I 2 f exp(Yt h).

Then equation (4.1) follows from (4.3), (4.4) and the product rule

d
applied to a- [p exp(Yt'h)].

1,2
To prove (b), if q E Ce' satisfies (4.1), then the above

eecalculation shows that p(t) defined by (4.2) is a solution in

C1'2  to (4.3). It follows from [3, (5.5)] that q(t) is the density

of At. (In the derivation of [ 3, (5.5)] it was stated that

q(0) C0OR N). However, the proof there is based on integrations

1,2

by parts, and is the same if q E Ce .) This proves Lemma 4.1.

For s > 0, let us introduce the notation

I
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s - Y U s  Us [ > 0.

s

In particular, Y = 0; and (Y,U) E Q implies (YS U ) Q

Lemma 4.2. For every (Y,U) C Q2, p C ', s, t > 0,

(4.5)A AYU SS AYU

(4.5)~i~tJ t , where
s+t,w tAs s s W

Proof. Step 1. First assume the conditions of Lemma 4.1

z 0 N
on b , u,h,Y,U, and that i = A0 has a density p0 E C0 R ).

By Lemma 4.1(a), AT has a density q(T) E C e  satisfying (4.1)

for z > 0. Let qS (T) = q(s+I). Then q s  is a solution in C1,2

of (4.1), with (Y,U) replaced by (YS ,US); note that

Ys+T = Y and qS (0) = q(s). By Lemma 4.1(b), qs(t) is the
.ylJ

density of AtA5 . This proves (4.5) under these conditions.

Step 2. Again assume regular coefficients b ,a,h, Z = 0,1.

Let (Y,U) E 0, P E A". Let (YnUn) - (YU), Pn P , where

Y n,U n,'Pn satisfy the conditions in Step 1 for each n. Write

Y U
An = Asnn By property 3.1, as n +

Y U

Ann n n YU
s+t, n s+t'

Y U s s
An + A A n A Y U
s s ' tAn tA s

sA

At the last step we used the fact that (Y Sus) + (YS,US). This
n n

implies (4.5).
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9

Step 3. Fix i E -,4e, (Y,1I) E . let j 1 b h 1,c rey'ular for

each n, uni formly bounded together with their fi rst order partial

derivatives and tending uniformly to a,b ,h as n - , 2. 0,1.

Write A, A1j to indicate that the coefficients depend on n.
U' tP-

The proof of [3, Theorem 5.1] shows the following: Vn V,

V C _', implies AV - A for any I > 0. We then have as
n r TV

n n

An +A An _ A
s+t,Jt' ' SP SI"

Similarly, if we write An  An, then

AnY US 
Y SuS

tAn tAs
ts

This implies (4.5), and hence Lemma 4.2.

As in §3 let 1 denote the restriction to Y of 7' E i.
s s

Let Tr be a regular conditional distribution for (Y ,US)

given Y
S

Lemma 4.3. If TT E jW, then:

(a) i YU E S , T -almost surely;
s S

YU YU(b) J(s+t, ,T, ) f ' SP s Jsd ,s,

for any E C(6 t).
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Proof. To prove (a) it suffices to verify that, for an)

.? -measurable 4 E Cb(0) -Vt-measurable T E Cb( ) FE Cb(ER
S t C ' H

and r > t

SS S S S 5s

E[ 1 (Y,U)D(YS,US)F(Yr-Yt)] = E,[T(Y,U)1(YS,US)]EF(Yr-Yt).

But this follows from independence under T' of the random
s- ss- s

variables Y(Y,U)>(YS,Us) and F(Yr-Y t ).

Part (b) is immediate from (3.3), Lemma 4.2 and properties of

conditional expectations.

Proof of Theorem 4.1. For every f E , Lemma 4.3, the

definition (3.4) of itP, and (3,5) imply

J(s+tiP r, ) = J(sA Y ir sY , )d"r

> f, 4 -t(AYU) dTr E, -VtP(A YU

>

- St S

s

Since this is true for every ff E -Q',

S + t q (5 g g*(1

To prove the opposite inequality, we make the following

construction. Let P > 0, 6 > 0 to be chosen later. Let

A0 - P and A1 ,...,Am disjoint Borel subsets of Ap,
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such that

p :1 U . m,

and for V, v ' E Ai, i l,...,m, 7T Ei,

IJ(t,v,T,P) - J(t,v' ,7T,O) < 6.

This is possible by Lemma 3.6. Choose p i E Ai and 71. E&/ such

that

J(t,pifi,) < - t ON i ) + 6.

For all V E Ai ,

(*) J(t,v,Ti,) < Yt9p(v) + 36.

Let iT0 E -W be arbitrary. Let

7rYU =7. if AYUE As 1 i

Given 'E ', this defines n E -W such that nYU is a regular
S S

conditional distribution for YS ,u S given -W and n[ -W
5 S S

By Lemma 4.3 and (*) with v A = A

(st s+ I IA = J J(sAsnyu )dT 5

< f 5If (As)dTs + fA J(s,A s I,10 ,O)dn s + 36.
<0
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Since -'+tP( Os - J(s+t,,F), we have

s+t

+ E Yj (As) + J(sA s srOS)d~r

s A 0

+ 'A tIS (As)Id Ts + 36.fA
o
0

Now E E CK(.A) for some K. We have, for some C1 ,

(J(s,As, O,0 I < C1 (1 + I IAsI K

I _TtO(As) I < Cl(I + I IAsII K

while by 3.4 and the fact that A0 = {v: HIvII > Pi

( 1 + 1l lA 5)K ) d < P-K 7 [1 1A 5S 1K + I I A 5 H 2K 1

< C2 p-K(I + r)2 K

for p E .fr" Therefore, given e > 0 we can choose p large

enough and 6 small enough that

YS+to (VA) E IT9t'I(As) + F,

for all Pa E Ar and 7t E js. Upon taking the inf over nr S s S

(recall (3.5))

&................... ~
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st < J+(t) +

Since c is arbitrary, we obtain Theorem 4.1.

In preparation for the proof of Theorem 4.2, and for §5, let

us introduce the following family of operators Yu, for constant

controls u E '] . Let

o ={€: p(ji) = F(<fl,.>,. . .,<j )

F E C 2 IRJ), fl, ... f CORJ), J =1,2,...

and for each integer m > 0

(4.6) Om = {O E _: IFzi(Z)I < C(l+Iz m+l), IFz zk (Z)J

C(l+IzJ m), j, k = 1,... J}

We have the inclusions a -9m c Cm+2(t)"

For 0 E 9 and u E 'k, letm

J
(4.7) Fu(l) = X Fzj(...)<L fj,l>

j=lj

J
+ F zk ( ..)<hfj>.<hfk,p>j ,k = Iz

where ... denotes that the partial derivatives F zjFzzk are

evaluated at the vector z = (<fl,>,.. .,<fj,1p>). It might seem

that Yu depends not just on *, but also on F, fl, ... ,f.

____________



However, it follows from (4.13) below that this difficulty does

not occur.

Lemma 4.4. Let 4 E -9 Then there exists c such that:

(a) YU<PECm+2(j), iIl'u, m+2< c for all u E '.

(b) The mapping (u,1) Y tul() is continuous from

'2 x 4 into J 1  for every r < .
r

This follows at once from (4.7).

Let us next apply the Ito differential rule to 9(At); for

PE -9Sm'

9(At) = F(<fl, At>,...,<fj,At>).

We get, using the Zakai equation (3.1),

U J
(4.8) dO(A t) Y (h t ) 

= Y (At)dt + F F (...)<hfj,At>dY t ,

j=l zj

where ... denotes (<f,A t >, .. ,<fAt>) . Since

IFz.[ < C(l+z~m+l), the components of Fz (<fl ' <> ,f',ji>)<hf. ,>

3
are in C m+(). From 3.4, the integral on [O,t] of the last

term in (4.8) is a square integrable n, {- ¢t martingale for

any ff E . By taking E J in (4.8) and using Lemma 4.4(a)
0

we get

(4.9) E9 (At) = (IJ) + Er j(A)d,
0
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for any PE 'i E -'l, and any initial data V1= A0.

Lemma 4.5. Let E o.m, 0 < s < t < T. Then there exists

(depending on Y and T) such that

I1 't~ ~~ a -slraz _ (t-s) .

Proof. Consider any iT E -Q/. By (4.9)

t

SETF (A t )  Ef (As ) i < E f U0 Y (A0 ) I dO

<~~ ~ aucIl lm+ s(I+EI IA IM+2)d 0 -.

uE% s

By Lemma 4.4a and 3.4

IEIT(At) EOi(As)I < c(l+Y m+2,T)(t-s)(l+11,11m+2).

Since this holds for all U E .V, we get Lemma 4.5 with

a = c(l+Ym+ 2 ,T
) .

Proof of Theorem 4.2. For some K, k E CK(tA'). By Lemma 2.4

there exists In E 0, n = 1,2,..., such that 11n[IK is bounded

and d(' ,0) * 0. Fix T > 0. For 0 < s < t < T, we write

- -- [ t 9t n ] + I-n - sn' + I -s'n "

Lemma 3.5 implies that the first and third terms on the right side

j
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tend to 0 as n + , uniformly for 0 < s < t < T and E -,fr-

Lemma 4.5 with m = 0 implies, for P E Zr

2|
I Ytqn ( " )  -Vn(1A)l <. n ( l + r 2) ( t - s )

where a is some constant. Let
n

ri(E,r) = sup{j 5rt (it) - 5 P (p)I: p E _kr ,  0 < s < t < T, t - s < )}
V -

For each r, n(e,r) 0 as 6 0. This implies d( _tP, 9>P) 0
-t S

as t - s - 0, as required.

This proves Theorem 4.2.

Constant controls. In particular, let us consider a constant

control u. In our formulation, this corresponds to taking

= u - W X 6 Uwhere w is Wiener measure on C([0,); IRm)

and 6u is the Dirac measure on L 2o([0,-); concentrated on

the constant trajectory Ut = u. We can then write E(= Ew)

instead of E u, and obtain from

(4.10) E(At) + E J YuO(A)dO,  E _9"t fo m

For constant u, we may regard At  as defined on the sample

N
space C([0,m); ]RN ) of Y-trajectories, endowed with the family

_ (Y)} of a-algebras and with Wiener measure w. It follows from

Lemma 4.2 that At AY u is a Markov process (u fixed), with

which is associated the linear semigroup _9u on CC-ti:
t

u4
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(4.11) U -t ( p ) = Er, (At),

where E = E

From (4.10) we have, for P E 9m'

(4.12) t- [ -7P) -(P) - t .u ()I = t1 t L (u (.' Y u(, dQ.

Since SS E C(.A) the same proof as for Theorem 4.2 shows that

$7-I(YuO) -YU as 6 - 0+ , uniformly on Ar for each

r < o (alternatively we could apply Theorem 4.2 with the control

space - replaced by a new one-element control space {u}.) Hence

+
the left side of (4.12) tends to 0 as t - 0 uniformly on _'r

which implies

(4.13) U d-lim tl[_7u- ], 4O E

This shows that for each m = 0,1,2,.. * Jm is contained in the

domain of the generator of the linear semigroup -!t and that Yu
t

agrees on m with the generator.

5. The Generator of the Semigroup t. We define the operator

.V on the dense subset L of C (-A') by

(5.1) mi'(i) = rin .Vu (V), E Eo.

Lemma 4.4 implies that Y' E C2(-, )  for every E SO.

-. ~..-" *
, r-
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We need slightly stronger hypotheses on o,b 0 ,b 1  than (A1 ),

(A,) in §3:

(A') Condition (A1) holds and, in addition, a E C2 N N

where a Ga'.

(At) b(x,u) = b(x) + b (x)u, where b0 E C2 IR N ) and

1 2 N NL
b E CbOR ;R )

When (A')) (AP), (A3 ) hold, f E C0O N implies Of E C2 RN

and hf E C2RN • From (4.7), 0 E / implies L/,u E f2

Theorem 5.1. For every 0 E 

(5.2) Y, = d-lim t-l(yt,-).

t-0+

This theorem justifies our calling Y the generator of the

nonlinear semigroup $'t. Our proof of Theorem 5.1 follows the

same general line of reasoning as Nisio [6].

The proof of Theorem 5.1 depends on the following estimates

for the semigroups Yu, for any constant control u E !. By the

same calculation used in the proof of Theorem 3.1

(5.3) uIItl K  < ('+YKt)1lq11K, 0 E CK{(- .

For E E 2-m 3.4 and (4.10) imply
m*

{s.4 II t -€ m z _< I.U m+2(l+ym+2,t)t
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Lemma 4.4(a) gives a bound for U1y'lpm+2 "

Now consider E £ ,

= F(<fljp>,. .. <fj>)

with FECbORJ), f C ORN). Then

J J

j=l j,k=I jk'

j(P) -- F z (<f ,> . .1,<fjP>)<Lufj , >

jk (P) = Fzzk (<flI>,...,<fJI>)<hfj,1>'<hfkP>

ftt -* - t-u = [ rc-U(y~u¢)_y d

Yt j'U [,-Vu,) Yu )

tt fo

= U [dO + I u
j f0 J/6 J j ,k 0 J .

Since *j jk E -2, we can apply (5.4) to *j'Ajk to get, for

0 < t < 1,

(5.5) -11 - ty<U, 1 t

where the constant 0 depends on * but not on u E

Lemma 5.1. For * -9?

> ft J (Od6 .

Y-t* - * -__-o__ I d-
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Proof. By (4.9), for any E Q

E,71 (At) - (P) =Elf ftyUo6(A0 d0

ft
> E1 ft (A ) dO = f0E 1 P(A8)du

> f 0 (Y ) ()dO.
fo

The minimum over j¢( of the left side is T t(ii) - 0(i). This

proves Lemma 5.1.

Proof of Theorem 5.1. Observe that -7€ < Y't for all

11 C (constant controls are suboptimal) Then, for 0 E fil,

0 < t <1,

t - j-t - I < t' t t- U ]

In particular, given P we take u such that Y() = Y

[recall (5.1)]. By (5.S), when 0 < t < 1,

t- _-1 (p) 0(p) t-VOW] < atl+ I W [ 4

Therefore, uniformly for p E 4
tr ,

lim sup t [ 9u-t4(1) -(U)] / ( GI 'N).

t-be0

On the other hand, by Lemma 5.1
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lir inf t'[ 1 ( -( )] > lira inf t 1  t

t+O +  t t0f 0

Since Y E C(4), Theorem 4.2 implies that - Y(-V (v)

as 0 0 ,uniformly on 4r" [fence,

trn

uniformly on 4 r foy each r. This proves Theorem 5.1.

Remark. The nonlinear semigroup 9 t  can be obtained from

the family of linear semigroups Yu, u E %, by the following

procedure used in [6]. For A > 0, let /A (I)= min -S().
uE'Z

-n4

For n = 1,2,... and dyadic rational t = m2 (m = 1,2,...) let

_,,-n. fm A : 2- n E C(-,t).
t a- ' n

n

It is easy to show that, for dyadic rational t = m2 "n

-n 11+ 1

t - t --

By considering controls piecewise constant in time, one can show

that _t_ -5 YP as n , if t is dyadic rational. Choose
t t

n large enough such that t = m2 -n. Let Tk = k2" n and

T {  t: E T[Ut = lk for T E [ k, k+l), k = 0,1,... ,m-1] = i.

By induction on m (for fixed n) and a construction like that in

i VIMMI



- -3o-

the proof of Theorem 4 .1, it can be shown that

n~ min J(t, P,7,P).

By (3, Corollary 6.1], every 7T E c)/ is the limit of unt as

n~ ~ ~ n nt. wt ~ Lemma 3.6 then implies that

- T P .Vt- (P as n

tI
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