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NONLINEAR SEMIGROUP FOR CONTROLLED

PARTIALLY OBSERVED DIFFUSIONS

Wendell H. Fleming

1. Introduction. In this paper we are concerned with

stochastic control problems of the following kind. Let Xt
denote the state of a process being controlled, Yt the observation
process, and Ut the control process, t > 0. The state and

observation processes are governed by stochastic differential

equations

(a) dxt = b(Xt,Ut)dt + o(xt)dwt
(1.1)

(b) dYt = h(Xt)dt + dwt.

Xt has values in N-dimensional ]RN,Yt values in IRM, and Ut
values in % < RL. X, has given distribution u, and Y, = 0.
In (1.1), W and W are independent standard Wiener processes,
with values in ]RDJRM respectively. The problem is to find an
admissible control minimizing some criterion J.

For instance, we may take J = EG(Xt ) for some fixed time
1

t. > 0. In case of completely observed, controlled diffusions

1

(with Yt = Xt rather than Yt as in (1.1b)), the problem can

be treated using dynamic programming. Let V(x,tl) denote the

minimum of J, for initial data X0 = x. Under suitable asssumptions

V(x,t) has continuous partial derivatves




BV/3t, 3V/dx;, a%V/ax,ax

i, j =1,...,N, x = (xl,...,xN). Among

j’
these assumptions is the condition that the symmetric matrix a = oo
has a bounded inverse a'l. The function V then satisfies the

dynamic programming equation [4, Chap. VI.6]

3V _
(1.2) o =Ly,
N 2 N
-1 a2y 3V
(1.3) LV = min [5 § a,.(x) + Y b.(x,u)e—
uez 2 i,j=1 1377 XXy o0 9%

The assumption that a(x) has a bounded inverse can sometimes be
weakened, by considering generalized solutions to the dynamic pro-
gramming equation [4, p. 177].

In [6] Nisio introduced another treatment which is valid under
much less restrictive conditions. Let .91G(x) = V(x,t). Then
Nisio showed that &

t
CbORN) of continuous bounded functions f on ZRN. Moreover, the

is a nonlinear semigroup on the space

operator L in (1.3) agrees with the generator of the semigroup

51 on the space CﬁGRN) of those f such that f,f_,f are in

CbGRN) for i, j = 1,...,N. For another treatment of this nonlinear

semigroup see [1, Chap. IV.5.1].

In this paper, we find a nonlinear semigroup ﬁi associated

with the partially observed control problem. In this case, one
should regard as the true '"state" the conditional distribution of
Xt given past data, or some quantity equivalent to the conditional
distribution. For technical reasons, it is more convenient to

consider an unnormalized conditional distribution I\t for Xt.




We have At € 4, where A 1is the space of finite measures on rV.
The problem we consider is to control the measure-valued process
At such that a criterion of the form J = E¢(At1) is minimized.
The dynamics of the At-process are governed by the Zakai equation,
written in a weak form as (3.1) below.

If one writes V(u,tl) for the minimum of J, given initial

data AO = u, then V(u,t) formally satisfies a dynamic programming

equation of the form.
(1.4) = = <V,

where £V = min %V and %Y is the generator of the linear

uEZ
semigroup 57: associated for a constant control u with the
process At (for constant u, At is Markov). Equation (1.4)

is called Mortensen's equation. However, (1.4) has been treated
rigorously only in very special cases.

Following Nisio, we write V(u,t) = j@¢(u). The purpose of
this paper is to show that ﬁz is a nonlinear semigroup, on a space
C(A£), with 9¥¢ continuous in t, and to describe the generator
Y% on a dense subspace of C(4#). We rely heavily on results from
(3]. In particular, it was shown in [3] that At can be defined
pathwise, in such a way that At depends continuously on observa-
tion and control trajectories (Y,U) and on u = AO' This and
other results from [ 3] needed in this paper are summarized as
3.1-3.4 below.

For the case of a controlled Markov chain Xt’ subject to

observations Yt of the form (1.1b) a corresponding nonlinear

F T i
'

—————




-~

semigroup was constructed by Davis ([2].

2. The Spaces CK(/), C(4). Let Cb(]RN) denote the space
of bounded, continuous f on IRN, and COGRN) the space of ]
continuous f with compact support. Let CEGRN), CEGRN) be the
spaces of f such that f together with all partial derivatives of
orders < k are in CbﬂRN), COGRN) respectively. Similarly, for
R™ valued functions on RN we write CtﬂRNﬂRm), CEGRNﬂRm).

Let éaﬂRN) denote the Borel 0-algebra of IRN, and

(2.1) A = {measuresu > 0 on QCJRN): u(]RN) < o},
We write

<f,u> = I f(x)du(x)

RN
for the scalar product and
_ - N
Flwll = <1,u> = u@®").
By convergence of sequences in # we mean w*-convergence:

n
f€c @) such that £(x) » 0 as [x| >,

E' M -+ u if and only if <f,un> + <f,u> as n + « for every

! We denote real-valued functions on _# by ¢,v,... . For

i K=0,1,2,... let

(2.2) 11011, = sup 0L

WEA 1+|]u]]

K .




i
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By ¢ continuous on _#, we mean of course continuity of ¢ under

* N
W -sequential convergence. Let

(2.3) . Cy(A4) = {¢ continuous on A:||¢]]| < =}.
Then, || || is a norm on Cy(#). Let
(2.4) cu) =-Uc ().

K=0

For 1 < o, let
(2.5) Moo= e 4 [|u]] <)
We give C(#) the following metric

(2.6) d(e,v) =

o
ne 8
b

2-£(sup [o(u) - vl A 1).

Ay,
Thus d-convergence of ¢n to ¢ 1is equivalent to convergence of
¢n(u) to ¢(u) wuniformly on A, for every r < «, For each K,
I [l¢ is a lower semicontinuous function under d-convergence.
Moreover, from (2.2), ¢ , ¢ € C (4) and ||¢n-¢||K + 0 imply
d(¢,,#) > 0 as n - =,

Let

J£={u >0 on 520RN): p(B) < » for every compact B},

with the vague topology: My * M vaguely means <f,un> + <f,u>




- ———— rre——— - w*-q!|

P

-0~

~

as n =+ for every f € COGRN). 4 1s a Polish space. In fact,

one can choose a metric &6(,v) for _# of the form

(2.7) 6(u,Vv) =
m

ne- 8
[

Z-m(|<fm,u> - <fm,v>| Al

for a suitably chosen sequence fm € COGRN).

For each r < =, ,l} is a compact subset of _#. For
sequences in J[r, vague convergence is equivalent to w*-convergence.
Moreover u_, u € 4 and u U w*  imply Ilunll < r for some

some r. Thus, we have:

Lemma 2.1. ¢ is continuous on ¢, under w¥*-sequential

convergence, if and only if ¢|_l} is vaguely continuous for every

r < o,

This furnishes an alternate characterization of C(.4), in
terms of the vague topology rather than in terms of w*-sequntiei
convergence.

A measure 4 € 4 can be approximated by measures ©ou with

compact support, as follows. Let p € COGRN), 0 <p <1, and

define pu by <f,eu> = <pf,u> for all f € C (R"). Define ¢°
by

(2.8) 0Pm) = ¢(pn), weE 4.
Then ¢ € C (#) implies 0P € Ck(#4) and ||¢p||K < el k-

We write u|B for the restriction of u to a compact set

B: (M|B)(A) = u(A n B) for all A € BRY). Let

— ] b Ak My AR+




Cﬁ(,l) = {y € CK(JI): there exists B compact such

that v(u) = ¢ (u|B) for all u € _#}.

In particular, ¢p € Cg(Jf) if ¢ € CK(J() and ¢° is defined by
(2.8).

Lemma 2.2. For every ¢ € CK(J() there exists a sequence

® € Cp(4) such that 116 11, < [1o]lg and d(e ,9) >0 as

n-> %,

Proof. VLet oy € COGRN) with 0 <p <1, pn(x) 1 for

n

x| ¢<n and e (x) =0 for |x] >n + 1. Let b, = ¢ M. Then

e g < [1¢]lg. Since o, (u) = ¢(p u) it suffices to show that
¢(pnu) - ¢(u) tends to O wuniformly on _4} for every r < =,

Let

n, = max [o(ppu) - o Q)] = [o(ppy) - ¢(u)]
Tr

for some Mo € _l} (recall that My is compact). We have

N =
Po¥n € ,l}. For each f € COGR ), <f,pnun> = <f,un> for all
large enough n. Consider any subsequence such that My tends to
a limit wu. Then PaMn also tends to u for n in this sub-
sequence. Since ¢|Jl} is continuous, both ¢(pnun) and ¢(un)

tend to ¢(u). If 1lim sup n_ > 0, we could find some such
n->e n

subsequence for which |¢(pnun) - ¢(un)| tends to a positive

limit, a contradiction. This proves Lemma 2.2.
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Lemma 2.3. Let Y € CE(A’), and B compact such that

$(u) = y(u|B) for all u € _¢. Then there exists a sequence

0
v, € Cx(#4) such that [|v ||, < [[¥[[g, d(¥ ,¥) >0 as n >«

and wn(u) = 0 whenever uw(B) > n,

n
p—

Proof. Choose p € COGRN) with 0 < p < 1, p(x) for

<1, g (s) =1 if

all x € B, Let g, € CoﬂRl), with 0 < &n

s <n -1, gn(s) =0 if s > n. Let
o) =g (<P,u>)v(u).

since v < W l, 11v Il < [1¥]],. For uwe 4,
<p,u> < r, Hence Wn(u) =yMm) if n > r + 1, which implies

wn + ¢ uniformly on A Thus d(wn,w) + 0 as n » «, Finally,
M(B) > n implies <p,u> > n, and hence Wn(u) = 0. This proves

Lemma 2.3.

The set & of '"test functions'. In §5 we shall define a

""generator'" for the nonlinear semigroup on the following set of

functions ¢, depending on finitely many scalar products:

(2.10) D= {¢: d(n) = F(<fp,u>,..0,<f5,0>),

o nJ © N -
F € CbGR ), fl,...,fJ € COOR ), J =1,2,...}.

In §4, we shall weaken slightly the conditions on F,fl,...,f to

J’

obtain certain sets g containing 2.




Lemma 2.4. For cvery ¢ € ( (4#) there c.ists a sequence

-1 and d(Wn,¢) ~ 0 as

. | - ; +
v, € 2 such that |{v [l - [lwllK n

n > o,

Proof. By Lemmas 2.2 and 2.3 it suffices to suppose that,
in addition, there exist compact B and a > 0 such that
() = ¢(u|[B) for all w and o(u) = 0 if u(B) > a. Following
a similar construction in [5, §3], given € > 0, we take
with the following properties:

gl,...,gJ, Xl,...,XJ

g, € CORY), g. > 0, diam(spt g;) < €

J J

J N J
! g.(x) <1 for x€R, § g.(x) =1, x € B,
j:l J j:l J

x. € B n spt g.

J P gJ
Let

]Rf = {z eRrI: z. >0 for j =1,...,J},

. J
F(z) = ¢(J_Elzjaxj)

where dx denotes the Dirac measure at x. Then F € COORf).

In fact, F(z) = 0 whenever
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By regularizing, there exists F € COS(IRJ) such that
J

[F(z) - F(z)| < € for all =z € R,. Then

Y(u) = F(<gy,u>,. .. ,<g;,1>)
is in Z. For all u,

.
[0 C L <gg,u>6, )} « ¢

v ()] <
j=1 j
J K
< ||¢HK(1 + Hz <gj’u>‘sx_'l ) + ¢
j=1 3

< 10Tl + [l %) + e

Therefore, ||W||K < el + e
-1

n jn

properties required in Lemma 2.4. To show that d(‘Pn,‘P) -~ 0, it
suffices to show that lPn(u) + ¢(p) wuniformly on A for any

r>0 as n-=>o, Now

[0, () - 916 ()] < €

J

n
Splb) = 1) <Bjp b6

jn

We take € = t_ = n ~, and corresponding gjn,x. , J = 1,...

yJ .
n

The corresponding ‘Pn obtained from the construction above has the

* .
On _#_, both vague and w -convergence of a sequence are equivalent

T
to convergence in the metric 6 in (2.7). For each m,

|<fm,Gn(u)> - <fm,pnu>| +0 as n -+« uniformly for u € &,
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Therefore, G(Gn(u),pnu) + 0 wuniformly on .A}

where o = § 8in®
as n - <, Since ,lf is compact and ¢ continuous on Jz},¢
is uniformly continuous on ¢ . Thus, |¢[Gn(u)] - ¢(pnu)| + 0
uniformly on # . Since pn(x) =1 on B, ¢(pnu) = ¢(u) = ¢(u|B).

This proves that ¢n(u) + ¢(v) uniformly on ., as required.

3. The Control Problem for At' We begin with a summary of

assumptions and notations, together with a review of concepts f{rom

[3]. We make the same assumptions as in [3] about the coefficients

in (1.1):

(Al) 0 1is a bounded, Lipschitz N X D matrix-valued

function on ]RN.

(AZ) b(x,u) = bO(x) + bl(x)u, where bo,b1 are bounded,

Lipschitz functions on .RN.

Note that b0 has values in ]RN, and bl has N X L matrices as
values. In §5, we shall impose additional smoothness conditions

on O,bo,bl.

(A5) h e cir"mY).

(A4) % is a convex, compact subset of ]RL.

We use Y to denote an IRM-valued function, and U a
% -valued function, of time t > 0. Let Y.,U, denote their

respective values at time t. Let

Q= {(Y,U): Yy =0, Ye€c(o,=):R", ueL?0,T];%) for

for each T < =},




M r i Ly, £ i

Let Q.. denotec the set of restrictions to [0,T] of functions

T
(Y,U) € Q. As in [3], we give QT a metric in which convergence
of a sequence (Yn,Un) means uniform convergence on [0,T] of

Yn and weak convergence of Un in LZ([O,T];‘%). We give 0 a

metric in which convergence of (Yn,Un) is equivalent to con-

vergence of (Yn’Un) restricted to [0,T] for every T < =, Let

?;(Y) = O{YS, 0 <s <t}
t
EQ(U) = o{Vs, 0 <s < t}, Vt = Jovede,
% = F () *x F ().

These are o-algebras of subsets of Q. However, if t < T, they
can also be regarded as o-algebras of subsets of Qrp- In [3], QT
2 2

and ¥ by .

Let & be the least J-algebra containing %, for all t > 0.

was denoted by Q

Definition. An admissible control on [0,T] is a probability

measure T, on Q> Y1), such that Y is a 7p, {_9E}-Wiener

process for 0 < t < T.

An admissible control is a probability measure T on e, 9.)

such that Y is a 7T, { 91}-Wiener process for t > 0.

The definition of admissible control on [0,T] is exactly as

in [3). If ™ is an admissible control, then its restriction Tr

to 3% is admissible on [0,T].

Let &4& denote the set of all admissible controls WT on {0,T].
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Then LYT is compact under weak sequential convergence of

probability measures [3, Lemma 2.3]. Let < denote the set of

all admissible controls with the weak sequential convergence
topology. Then o/ is a compact metric space under (for instance)
the Prokhorov metric. Moreover, ﬂn - % if and only if the

restrictions "n T tend to ﬂT as n > o for each T finite.
]

The unnormalized conditional distribution measure At' For

every u € A, (Y,U) € 2, and t > 0, we define At = A:H
YU

formula [3, (3.9)]. (In [3] we wrote At , but now we wish to

emphasize its dependence on the initial value u = AO.) From its

by

definition, At € A and At is g%—measurablc as a function of
(Y,u) € Q. 1In [3,83] we interpreted At as an unnormalized
conditional distribution of Xt in (1.1a) with respect to the
0-algebra g@ generated by the observation and control past up
to t. The normalized conditional distribution of Xt is
llAtll'lnt. The intuitive reason for conditioning on ¥, , rather
than on j%(Y), is that Ut is not necessarily »92(Y)-measurab1e
T-almost surely, when T € . For the smaller class of strict-
sense admissible controls (3, 86] one can condition on Bﬂ(Y)
instead of 9%.
We shall need the following properties of At’ proved in [3].

Y . .
U 1s continuous on . * Q.

3.1. For each t >0, r < o, Atu -

See [3, Lemma 3.2].

3.2. For each finite T,r,a there exists p = p(T,r,a) such
that 0 <t < T, ||u|] <1, ||Y||; < a imply IIAIHII < p. Here

depends linearly

||Y||T = Om:xTIY(t)l. See {3, (3.6)]; since At
<t<
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on u = Ay it suffices to consider Hull = 1.

3.3. The Zakai equation holds:

U
t 2 pN
(3.1) d<f,At> = <L f,At>dt + <hf,At\-dYt, all f € CbﬂR ).

See [3, Thm. 5.2]. Here, for constant control u € %, LY s

the generator of the diffusion process in RN corresponding to

(1.1a):
u. 1N 0 1
(3.2) L7f = 5 ! a..(x)f + (b (x) + b (x)u)-vf
SRS § X:X.
i,j=1 i%j
with a = o0',
3.4. For every T <o, K=1,2,..., there exists L such
that
. K K
Ex AT < Yl 0T, 0 <t <,

for all m € o, See [3, Thm. 5.3] with m = 0.
For t >0, ue€e 4, 1n€ of, ¢ € C(a) let

(3.3) J(t,u,7,0) = Eg0(A]).

Since ¢ € CK(Jl) for some K, the expectation exists by 3.1 and

3.4,




Lemma 3.5. Let l|¢n||K <t and d(¥ ,9) » 0 as n > .

Then

J(t,u,m,9) = lim J(t,u,",¢n)

n-+oo

uniformly on [0,T} * ,l} X o, for any finite T,r.

Proof. Consider T < @, and let FT c QT denote the set of

restrictions to [0,T] of (Y,U) € T. Then

(*) [E, ¢ (L) - L2 (A <

<[ leat - vaptan + [ e oy - e e

with T' =@ -T. If T, 1is a compact subset of ., then ||Y||T

T?

is bounded on . By 3.2, 0 <t <T, (Y,U) €T, uce M, imply !

At € ,lb for some #. Since d(¢n,¢) - 0, ¢n + ¢ uniformly on

_lp. Therefore, the first term on the right side of (*) tends

to 0 as n > =, uniformly with respect to (t,u,m) € [0,T] * 4 x o,
It remains to show that, given € > 0, ' can be chosen such :

that the last term in (*) is less than €, uniformly on [0,T] X

M . Now |

9 (0) = 9T < oyl * Tl « Hah

<

By Cauchy-Schwartz and 3.4

2c1 + 1A 115,
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1

2

| =

2K
|

~
(=5
=
A

< m(r*) dm)

SIS
1

2 K
YZK’Tllull .

A
O =

m(rt)

Under (Y,U) - Y, T projects onto Wiener measure w. Let

Ac C([O,T]ﬁRN) be compact with Y0 =0 for all Y € A and

1
Z

-2
wic(ro,TIiRY) - Al < efrzeq + viy 1)

We choose T such that T, = AX LZ([O,T];@k). Since
; LZ([0,11 i %) 1is compact (weak topology), T is compact. We

have
11
Jr.|¢n(At) - oA AT < 2C(m(1r) + “(F')ZYgK’TrK) < €,

as required. This proves Lemma 3.5,

Lemma 3.6. For each t > 0, ¢ € C(A), T <=, J(t,n,T,0)

is continuous on .A} x o,

Proof. Let g(u,Y,U) = ¢(AI:S). By 3.1, 3.2, g is continuous
on 4. * @ (recall that (Y, ,U)) » (Y,U) implies LY -Y[], + 0,
and hence ||Yn||t < a for some a.) Moreover, g(u,-,-) is

S?t-measurable.

Suppose first that ¢(u) 1is bounded on _#. Let Mo > Mo

LI with W, € _A&. By definition of weak convergence




lim J g(u,Y,U)dTTn = f giu,Y,Uu)dm,
9]

'Q

n+o«.

Moreover, |g(un,Y,U) - gu,Y,u)| >0 as n -+ =, uniformly on

any T € Q@ such that the set Ft of restrictions to [0,t] of
(Y,u) € T 1is compact. As in the proof of Lemma 3.5, we can choose
r such that "n(Q-F) is arbitrarily small, uniformly with

respect to n., This proves Lemma 3.6 in case ¢(u) 1is bounded on _#.

Now take any ¢ € CK(,I). By Lemmas 2.2 and 2.3, there cxist

¢, € C (4) such that |¢n(u)| is bounded on _# for cach n,

i|¢n|]K is bounded, and d(¢ ,¢) > 0 as n > . Lemma 3.6 now

follows from Lemma 3.5.

The control problem. Given t,u,¢, we consider the problem

of minimizing J(t,u,m,u) = En¢(At) on the space & of admissible
controls 7m. We can regard the Zakai equation (3.1) as governing

the dynamics of the 'state' process At for this control problem.

Since At is an unnormalized conditional distribution measure for

Xt in the partially-observed control system (1.1), we call the
problem of minimizing En¢(At) a '"'separated' optimal control
problem.

Following Nisio [6] let

(3.4) Fb (W) = min J(t,u,7,¢).
e of

The minimum is attained, by Lemma 3.6.
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Since ¢(At) is z&-measurable, the minimum is the same taken

in the class _QQ of admissible controls on [0,t]:

(3.5) vt¢(u) = min J(t,u,m_,9)
m € f t
t

For the special case ¢ (u) = <G,u> , J EH<G,At> which 1is
of the form considered in the existence theorem [ 3, Theorem 4.1].
However, if ¢ has this special linear form, ,7t¢(u) is not

not linear in u. Hence, we define ﬁ? the bigger space C(.¥#),

and not merely on the space of ¢ of the form ¢(u) = <G,u>.

Theorem 3.1. ¢ € CK(,l) implies j@¢ € CK(JZ).

Proof. By Lemma 3.6 and the fact that A, and 7 are
compact, |lun|l <r and u_ > u imply J P ) > 59 (u). Since
any w'-convergent sequence W, has ||un|| bounded, ¢ is
continuous on _#. From 3.4,

[J(t,u,7,0)]

1A

K
e f9(1+||Atll ydn

A

PPN

(v d el el ful 15,

1A

A

Thus, ||yt¢>||K (1+YKt)||®||K, which proves Theorem 3.1.

In the next section we establish the semigroup property of
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4. The Semigroup P roperty. The purpose of this section is

to prove the following two theorems.

Theorem 4.1, For every ¢ € C(4), s, t > 0,

Theorems 3.1 and 4.1 imply that ¥, 1is a (nonlinear) semi-

t
group on C( #). Let Cb(Jf) denote the space of bounded

continuous functions on _# (it is the same as CK(”() when K = 0.)
From (3.3), (3.4) [| F¢ - j@Wllo < [l¢-v[[,. Hence, when

restricted to Cb(Jl), 9.

A is a contracting semigroup on Cb(,l).

Theorem 4.2. For every ¢ € C(#), j€¢ is a continuous

function of t € [(,») in the d-metric on C(_#).

The proof of Theorem 4.1 will be based on a series of three
lemmas. We begin by temporarily imposing rather stringent

conditions on the coefficients in (1.1), and on Y,U,u. We say

0

that the coefficients are regular if o,b ,bl,g are of class

CEGRNﬂRl) for the appropriate ¢ = ND,N,NL,M, respectively.

Let us denote by Cé’z

N E

the class of functions q on {0,0) * R

with the following properties:

(i) q and the partial derivatives are

Qe59, 59
t xi, xixj
continuous, i,j = 1,...,N.

(ii) For each T > 0, there exist C,k > 0 (depending

perhaps on T) such that




A A ch i A A A R i s

TRy

e e e

|r(x,t)| < C exp(-k|x|{), 0 <t <T,

where r denotes any of the functions a9, sy x -
i i%j

For brevity, we write q(t) = q(t,-).

Lemma 4.1. Assume that the coefficients in (1.1) are regular,

and that Y € cl([0,=);RY), U € C([0,=); %). Then:

U

. o N LY,
(a) If u has a density P € COGR ), then At(— Atu ) has

a density q € Cé’z, satisfying the partial differential equation

U *
(L% q+ha-¥, -2 |hl%, t>0

C.-IQ.
o

(4.1)

q(0)

i
=
o

1,2

(b) If q € Ce is a solution of (4.1) with q(0) the

density of u, then q(t) 1is the density of At for all t > 0.

*
Here (L%) denotes the formal adjoint of the operator LY in
(3.2), and Yt = dY/dt. Note that part (a) of the Lemma, but not

part (b), requires that q(0) has compact support.

Proof of Lemma 4.1. To prove (a), we recall from [3, §5] that

(4.2) p(t) = q(t)exp(-Y -h)

is a solution in Cé’z

to the partial differential equation
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v
(4.3) %% = L:p + c(t)p, where
v Ut
Lt = Lt - (a\t-Vh,V), Lt = L
1 . . Sy - 21 z
e(t) = 7 (aY,*Vh,Y, -Vh) Y, Lh - 3 [h|
N ‘ M
where (a&,n) = } aijginj and -+ denotes the - product in R".
i,j=1
* J*
The operators Lt,rt are related by

Vi , * 1 2
(4.4) (Lyplexp(Ye+h) = Liq - eq - 3 lhi“q.

Equation (4.4) follows upon multiplying both sides of (4.4) by

f € COGRN), integrating by parts, and using the relation

v
exp(Yt'h)Ltf = Lt[f exp(Yt'h)] + e(t)f exp(Yt-h)

1 2
t 5 [h|“f exp(Y -h).

Then equation (4.1) follows from (4.3), (4.4) and the product rule
applied to gf [p exp(Y, h)].

To prove (b)), if q € Cé’z satisfies (4.1), then the above
calculation shows that p(t) defined by (4.2) is a solution in
Ci’z to (4.3). It follows from [3, (5.5)] that q(t) 1is the density
of At. (In the derivation of [3, (5.5)] it was stated that

q(0) € COGRN). However, the proof there is based on integrations

by parts, and is the same if q € Cé’z.) This proves Lemma 4.1.

For s > 0, let us introduce the notation

e P ' e R T, 70




In particular, YS = 0; and (Y,U) € @ 1implies (YS,US) € Q.

Lemma 4.2. For every (Y,U) € @, w € #, s, t > 0,

YU _ySys YU
(4.5) As+t,u = AtAS , Wwhere AS = Asp' ]

Proof. Step 1. First assume the conditions of Lemma 4.1
L

on b7,o0,h,Y,U, and that w = A0 has a density Py € C;GRN).
1,2

By Lemma 4.1(a), A has a density q(T) € Ce satisfying (4.1)

1,2
e

T

for t > 0. Let qs(T) = q(s+T). Then qs is a solution in C
of (4.1}, with (Y,U) replaced by (YS,US); note that i

Yoot = Y? andS 25(0) = q(s). By Lemma 4.1(b), qs(t) is the
density of Agp . This proves (4.5) under these conditions.
s

Step 2. Again assume regular coefficients bl,c,h, 2 = 0,1.
Let (Y,U) € Q, u € 4. Let (Yn,Un) + (Y,U), Hy W, where
Yn,Un,un satisfy the conditions in Step 1 for each n. Write
n Y U

Ag = Aghsl. By property 3.1, as n > ®

YnUn . YU
5+t;un s+t,u’

S,.S
Y U $,,S
Ag > As’ A nnn M AYAU
t/\s t S

At the last step we used the fact that (Yi,Ui) + (YS,US). This

implies (4.5).




-
t

|38}

i
)

Step 3. Fix uw € 4, (Y,U) € @. let o hﬁ’hx he regular for
cach n, uniformly bounded together with their first order partial

derivatives and tending uniformly to o,bl,h as n -~ w, 4 = 0,1,

Write A?u = A%EU to indicate that the cocfficients depend on n.
The proof of [3, Theorem 5.1] shows the following: Vn + vV,
Vn € .A}, implies A?vn - Arv for any T > 0. We then have as
n > e
Al > A Y L
s+t,H s+t ,u SH SH

Similarly, if we write Agu = Ag, then

AnYSUS*AYZUS
tAg the

This implies (4.5), and hence Lemma 4.2.

As 1in §3 let T denote the restriction to 32 of me .

YU
Let ﬂs

-

be a regular conditional distribution for (YS,US)

given 32.

Lemma 4.3. If 7 € <&, then:

(a) HEU € o m_-almost surely;

(b)  J(s+t,u,m,0) = j 35, AT, 70 gyan
Q SU s S

for any ¢ € C(.4).

(
: |
' .




AR da g e e

-21..

Proof. To prove (a) it suffices to verify that, for any
3i-measurable ¢ € Cb(Q), 32-measurab1e ¥ € Cb(Q), IF € cb(mﬁ),

and T > t

S S s - S USYIE_F(YS-YS
Eq [¥(Y,U)8 (Y7, UT)F(Y YY) ] = Ep[¥(Y,U)0 (Y7, UP) JE,F(YS-YY).

But this follows from independence under 7 of the random
variables ¥(Y,U)e(Y>,U%) and F(Y3-Y}).
Part (b) is immediate from (3.3), Lemma 4.2 and properties of

conditional expectations.

Proof of Theorem 4.1. For every T € o, Lemma 4.3, the

definition (3.4) of %, and (3.5) imply

"

Yu Yu

R R RICENRCOTT

v

o s aYU Cn oYU
JQ b (Mg )am = En§/f¢(Asu)

@ y’;c‘b n).

Since this is true for every T € 7,

Je+t? (M) 2 g0 G0 (W),

To prove the opposite inequality, we make the following

construction. Let p > 0, 6 > 0 to be chosen later. Let

Ay, = £ - A and Al”"’Am disjoint Borel subsets of M,

0 p P

N




such that

and for Vv, v' ¢ A
I,V T,e) - J(t, v, T,e) ] < 6.

This is possible by Lemma 3.6. Choose M € Ai and " € o/ such

that
J(,t,ui,ﬂi,cb) < 9t¢(u1) + 8.

For all v € Ai,

(*) J(t,v,1;,0) < Fo(v) + 3.

"Let Ty € & be arbitrary. Let

Given T, € _gé, this defines T € o such that an is a regular

conditional distribution for Y3 yS$ iven Y and | ¥ = n_,
’ g [ S S

By Lemma 4.3 and (*), with v = A;H = As

I(s+tu,m,0) = [ 3, ,mY gyan
Q

A

| | soagen + [ 360, + s,
0
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Since j£+t¢(u) < J(s+t,u,n,0), we have

Gued W) £ By 0 )+ [ SGsag g 0iang

Ay

‘ f | 9,0 (A )| dn, + 36.
A

0

Now ¢ € CK(J(l for some
[ I, ,m,9) | <
| 70 ()] < c (1

while by 3.4 and the fact that

A

jAOcl + 1 1ag1) S :

1A

for u € ’lr' Therefore, given

enough and 6§ small enough that

CzpﬁK(l +r

K. We have, for some C
cy+ fag 1%
+ a1,
Ao = (i 1V > o)
Py TGl e a1

ZK)

€ > 0 we can choose p

Ts+td () < B FL0(Ag) + e,

S

(recall (3.5))

for all wu € ,l} and T, € Jyg. Upon taking the inf over

1’

large

-




,9§+t¢(u) A 3@¢(u) + €.

Since € is arbitrary, we obtain Theorem 4.1.
In preparation for the proof of Theorem 4.2, and for §5, let
us introduce the following family of operators 5fu, for constant

controls u € % . Let

~

D = {¢: 9 () = Fl<fu>,.vn,<fpun),

Fecl®), £,....6; ¢ Z®”), - 1,2,...3,

and for each integer m > 0

~

(4.6) @ = {6 € 2 [F_ ()] ¢ CU+|z|™N, Iy 2 ()]
] ]

< ca+fz)™, i, k=1,...,3}.

We have the inclusions 2 < g < C_,,(4).

For ¢ € 2 and u€ %, let

m
u J u

(4.7) L o) = § Fz (... )<L7f.,u>

"y . J

i=1 73

J
+ y F (...)<hf.,u>*<hf, ,u>

j k=1 %57k Tk

where ... denotes that the partial derivatives Fz ,Fz z are
j T3’k

evaluated at the vector 1z = (<f1,u>,...,<fJ,u>). It might seem

that <% depends not jusf on ¢, but also on F, f100000f5.




However, it follows from (4.13) below that this difficulty does

not occur.

such that:

Lemma 4.4. Let ¢ € 9%. Then there exists ¢

(a) <% ec,,(4), [l %] ,, <c for all ue %.

(u,u) ~» ﬁ/u¢(u) is continuous from

(b) The mapping
% x 'lr into R! for every r < ®,

This follows at once from (4.7).
Let us next apply the Ito differential rule to ¢(At); for

$p € 9%“
9(A) = F(<E,A >, . ,<fq,0>).

We get, using the Zakai equation (3.1),

U
(4.8) do(h,) = & t¢(At)dt +

0 e

Fz (...)<hfj,At>-dYt,

j=1 %j

where ... denotes (<f1’At>""’<fJ’At>)' Since

| < C(1+|z|m+1), the components of FZ'(<fl,u>,...,<f1,u>)<hfi,u>

IFZj j
are in Ch+2(#). From 3.4, the integral on [0,t] of the last

term in (4.8) is a square integrable
t
any T € f. By taking E; J in (4.8) and using Lemma 4.4(a)
0

T, {¥,} martingale for

we get

. t Uy
(4.9) E(A) = ¢(u) + Ey Io 2 Yo (ng) a0,
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for any ¢ € 9%“ I € o and any initial data u = AO.

Lemma 4.5. Let v € @, 0<s <t <T. Then there exists

m’

o (depending on ¥ and T) such that

Proof. Consider any W € /. By (4.9)

|Eg® (A,) - E¢(A)]| < E fslff ¢ (Ay)|dd

A

max || %] |
%

t
f (1+E| Ay | 1™ %) a0
u€ S

m+2
By Lemma 4.4a and 3.4

B (A) = Ef (4] € cUeyy,, ) (=) (el [ul ™D,

Since this holds for all 7T € 4/, we get Lemma 4.5 with

Proof of Theorem 4.2. For some K, ¢ € CK(J(). By Lemma 2.4
there exists ¥ € 9, n =1,2,..., such that [{¥,l1x 1is bounded

and d(wn,¢) - 0. Fix T > 0. For 0 <s <t <T, we write

Lemma 3.5 implies that the first and third terms on the right side




il
H
Fi
i
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tend to 0 as n > », uniformly for 0 < s <t <T and ¥ € My -

Lemma 4.5 with m = 0 implies, for u € ,4},

| S0, ) - g )] < u (1er)(t-s)
where Gn is some constant. Let

n(e,r) = supl{| Z0() - I PM)|: u€E £, 0<s<t<T, t-s < e},

For each r, n(e,r) » 0 as € + 0. This implies d(.9;¢, 3;¢) + 0
as t - s + 0, as required. '

This proves Theorem 4.2.

Constant controls. In particular, let us consider a constant

control u. In our formulation, this corresponds to taking

T =T" =y X Gu, where w is Wiener measure on C([O,w);.mm)

2

and § is the Dirac mea e o L
n u S a sur n loc

([0,=); %) concentrated on
the constant trajectory Ut £ u. We can then write E(= Ew)
instead of E u? and obtain from

T

(4.10) Eb(A,) = ®(u) * E J;y%me)de, b€ .
For constant u, we may regard At as defined on the sample

space C([O,w);]RN) of Y-trajectories, endowed with the family

{ EQ(Y)} of o-algebras and with Wiener measure w. It follows from
Lemma 4.2 that At = A:r is a Markov process (u fixed), with

which is associated the linear semigroup 57: on C(4):

o eam e e L
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(4.11) T M) = Ei(A),
where E = Ew.

From (4.10) we have, for ¢ € 2,

m

t
(112 el -0 - el = | Ehet e - s,

Since “Y% € C(#) the same proof as for Theorem 4.2 shows that

7;(3%) > % as 6 -» 0+, uniformly on A for each

r < o (alternatively we could apply Theorem 4.2 with the control
space % replaced by a new one-element control space {u}.) Hence
the left side of (4.12) tends to 0 as t =+ o* uniformly on M

which implies

(4.13) #Y% = d-1im ¢ [T %0, b€ 2.
t+0"
This shows that for each m = 0,1,2,..., 2, 1is contained in the

domain of the generator of the linear semigroup 9‘: and that <Y

agrees on Qm with the generator.

5. The Generator of the Semigroup y"t. We define the operator

Y on the dense subset 2 of C(«#) by

(5.1) L) = min L% W), ¢ €9,
ueEZ

Lemma 4.4 implies that %¢ € C,(A£) for every ¢ € 2.




|
:

We need slight

(A,) in §3:

1

where a = go',

(A3) b(x,u) =
bl € CéGRNﬂRNL).

When (A1), (A3), (A;) hold, f € C;®") implies L% € cimM)

and hf € CgORNﬂRM)

Theorem 5.1.

(A!) Condition (Al) holds and, in addition, a € CéORNﬂRN ),

ly stronger hypothescs on O,bo,b1 than (Al),

2

bO(x) + bl(x)u, where bO € CéﬂRNJRN) and

. From (4.7), ¢ € & implies “Y ¢ 2.

For every ¢ € %

(5.2)

Z¢ = d-1im t 1 9.6-9).
t+0* t

This theorem justifies our calling % the generator of the

nonlinear semigroup

same general line o

9;. Our proof of Theorem 5.1 follows the

f reasoning as Nisio [6].

The proof of Theorem 5.1 depends on the following estimates

for the semigroups

u

same calculation used in the proof of Theorem 3.1

U
(5.3) ool

e € @rdllell, ¢ €.

For ¢ € <, 3.4 and (4.10) imply

m

(5.4) Ngge-ell ., < 11<L%]]_,, (%

)t

m+2,t

for any constant control u € %. By the
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Lemma 4.4(a) gives a bound for |]|¥"| ez

Now consider ¢ € 2,

¢(“) = F(_<f1)u>""’<fJ’u>)

with F € Cp @), £ € C3@®N). Then

J
LA )

$. +
j J

1

¢J(U) = F (<f1,u>,.,,’<fJ’u>)<Lufj’p>

©
.
e
~
=
~—
"
iz v
~~
A
(s

WH>, .. ,<fJ,u>)<th. ,u>-<hfk,u>

t
g -9 - teY = f [Tg(LY%) - Y10
0

'I t g Y 9 t -u
=2f [ ¢J. -4>J.]d + Zk IO[/@ ¢jk-¢jk]d9.

j‘o s
| Since ¢j’¢jk € 92, we can apply (5.4) to ¢j’¢jk to get, for
0 <t<1,
\ U ~U 2
! (5.5) [[Z% - ¢ - tZ70f], < Bt

where the constant B depends on ¢ but not on u € %.

Lemma 5.1, For ¢ € 2

t
AT Jofe(.‘z%)de.

t
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Proof. By (4.9), for any W € ¥

| | t Ug
Eg0(A) - 9(u) = Ey fosf ¢ (Ag)do

LAY

t t
E, Iosf¢(Ae)de = fOEn L (hg)dY

v

t
[ g tmroee.
0

The minimum over < of the left side is Tt¢(u) - ¢ (u).

proves Lemma 5.1.

Proof of Theorem 5.1. Observe that 7 ¢ < 5’¥¢ for all

t

u €  (constant controls are suboptimal) Then, for ¢ € 2,

0 <t<1,

lig¥ - ¢ - t£Y].

A I B4 S IR &7

| In particular, given u we take u such that j/u¢(u) =

[recall (5.1)]. By (5.5), when 0 <t <1,
t e - et - tL ] < s+ lul Y.
Therefore, uniformly for u € ,l},

| Lin sup t g m) - 4] < Lo,
t>

On the other hand, by Lemma 5.1

This

Zé (n)




N - t _

lim inf t 1[_7t¢(u) ~9)] > lim inf ¢t 1 [ 33(£(¢)(u]d0.
0" t+0 0

Since Zb € C(#), Theorem 4.2 implies that ﬁg(§f¢)(u) + Zow)

as 9 » 0+,uniform1y on 4 . Hence,

lim S;l[ytm) - o(m)) = Low)
t->

uniformly on “lr’ for each r. This proves Theorem 5.1.

Remark. The nonlinear semigroup j@ can be obtained from j

the family of linear semigroups 57:, u € %, by the following

procedure used in [6]. For 4 > 0, let /%¢(u) = min 5VZ¢(U).
u€%

For n = 1,2,... and dyadic rational t = m2 " (m =1,2,...) let
7‘t‘¢ = Jh A = 2 ¢ € C(AH).
n
It is easy to show that, for dyadic rational ¢t = m2 ",

+1¢

G N PRl 5 s o
_/t¢ 2 ”/t 2 00 2 b

By considering controls piecewise constant in time, one can show
that 572¢ + 9¢ as n -+, if t 1is dyadic rational. Choose )

t
n large enough such that t = m2 ™. Let T T k2" and

e = {re ;%%: Ty, = Utk for TE€ [Tk’rk+1)’ k =0,1,...,m-1] = 1}.

By induction on m (for fixed n) and a construction like that in
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the proof of Theorem 4.1, it can be shown that

y:¢(u) = min J(t,u,7,9).

ufa Ja{lt

By [3, Corollary 6.1], every T € g/;: is the limit of mt as

n + o, with "t € '(ynt‘ Lemma 3.6 then implies that

g1 > 7 +
J t¢ (W) .91‘1’ (w) as n .
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