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Introduction

This paper has been motivated by a recent paper by Y. Komura [3], in

which a general theory of semigroups of nonlinear contraction operators in a
Hilbert space is developed. Owing to the generality of the problem, Komura
is led to consider multi-valued operators as the infinitesimal generators of

such semigroups, which makes his theory appear somewhat complicated.

The object of the present paper is to restrict ourselves to single-valued

operators in a Banach space $X$ and to construct the semigroups generated by

them in a more elementary fashion. Furthermore, we are able to treat, with-
out essential modifications, time-dependent nonlinear equations of the form

(E) $du/dt+A(t)u=0$ , $0\leqq t\leqq T$ ,

where the unknown $u(t)$ is an X-valued function and where $\{A(t)\}$ is a family
of nonlinear operators with domains and ranges in $X$. In particular we shall
prove existence and uniqueness of the solution of (E) for a given initial con-
dition.

The basic assumptions we make for (E) are that the adjoint space $X^{*}$ is
uniformly convex and that the $A(t)$ are m-monotonic operators (see below),

together with some smoothness condition for $A(t)$ as a function of $t$ . We make

no explicit assumptions on the continuity of the operators $A(t)$ .
Here an operator $A$ with domain $D(A)$ and range $R(A)$ in an arbitrary

Banach space $X$ is said to be monotonic if

(M) $\Vert u-v+\alpha(Au-Av)\Vert\geqq\Vert u-v\Vert$ tor every $u,$ $v\in D(A)$ and $\alpha>0$ .

This implies that $(1+\alpha A)^{-1}$ exists and is Lipschitz continuous provided $\alpha>0$ ,

where $1+\alpha A$ is the operator with domain $D(A)$ which sends $u$ into $u+\alpha Au$ .
It can be shown (see Lemma 2.1) that $(1+\alpha A)^{-1}$ has domain $X$ either for every
$a>0$ or for no $\alpha>0$ ; in the former case we say that $A$ is m-monotonic.

The monotonicity thus defined can also be expressed in $te$rms of the duality
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map $F$ from $X$ to $X^{*}$ . (Here $X^{*}$ is defined to be the set of all bounded semi-

linear forms on $X$, and the pairing between $x\in X$ and $f\in X^{*}$ is denoted by

$(x, f)$ , which is thus linear in $x$ and semilinear in $f$. If $X$ is a Hilbert space,
$X^{*}$ is identified with $X$ and $(, )$ with the inner product in $X.$) $F$ is in general

a multi-valued operator; for each $x\in X,$ $Fx$ is by definition the (nonempty)

set of all $f\in X^{*}$ such that $(x, f)=\Vert x\Vert^{2}=\Vert f\Vert^{2}$ . (Thus we employ a special
“ gauge function “ for $F.$)

(M) is now equivalent to the following condition (see Lemma 1.1):

\langle $M^{\prime}$ ) For each $u,$ $v\in D(A)$ , there is $f\in F(u-v)$ such that

${\rm Re}$ (Au– $Av,$ $f$) $\geqq 0$ .

Note that the inequality is not required to hold for every $f\in F(u-v)$ . If $X$ is

a Hilbert space, $(M^{\prime})$ is equivalent to the monotonicity of $A$ in the sense of

Minty [4] and Browder [1].

The main results of this paper are stated in \S 3 and the proofs are given

in \S 4. \S \S 1 and 2 contain some preliminary results for the duality map $F$ and

for m-monotonic operators.

The crucial step in our existence proof is the proof of convergence for

the approximate solutions $u.(t)$ of (E), which is a straightforward generalization

of an ingenious proof given in [3]. The author is indebted to Professor Y.
Komura for having a chance to see his paper before publication and to Pro-
fessor K. Yosida for many stimulating conversations.

1. The duality map

We first consider an arbitrary Banach space $X$ . The duality map $F$ from
$X$ to $x*$ was defined in Introduction.

LEMMA 1.1. Let $x,$ $y\in X$ . Then $\Vert x\Vert\leqq\Vert x+\alpha y\Vert$ for every $\alpha>0$ if and only

if there is $f\in Fx$ such that $Re(y, f)\geqq 0$ .
PROOF. The assertion is trivial if $x=0$ . So we shall assume $x\neq 0$ in the

rollowing. If ${\rm Re}(y, f)\geqq 0$ for some $f\in Fx$, then $\Vert x\Vert^{2}=(x, f)={\rm Re}(x, f)$

$\leqq{\rm Re}(x+\alpha y, f)\leqq\Vert x+\alpha y\Vert\Vert f\Vert$ for $\alpha>0$ . Since $\Vert f\Vert=\Vert x\Vert$ , we obtain $\Vert x\Vert\leqq\Vert x+\alpha y\Vert$ .
Suppose, conversely, that $\Vert x\Vert\leqq\Vert x+\alpha y\Vert$ for $\alpha>0$ . For each $\alpha>0$ let $f_{a}$

$\in F(x+\alpha y)$ and $ g_{\alpha}=f_{\alpha}/\Vert f_{\alpha}\Vert$ so that $\Vert g_{\alpha}\Vert=1$ . Then $\Vert x\Vert\leqq\Vert x+\alpha y\Vert=(x+\alpha y, g_{\alpha})$

$={\rm Re}(x, g_{\alpha})+\alpha{\rm Re}(y, g_{\alpha})\leqq\Vert x\Vert+\alpha{\rm Re}(y, g_{\alpha})$ . Thus

(1.1) $\lim_{\alpha\downarrow}\inf_{0}{\rm Re}(x, g_{\alpha})\geqq\Vert x\Vert$ and ${\rm Re}(y, g_{\alpha})\geqq 0$ .

Since the closed unit ball of $X^{*}$ is compact in the weak* topology, the net
$\{g_{\alpha}\}$ (with the index set $\{\alpha\}$ directed as $\alpha\downarrow 0$) has a cluster point $g\in X^{*}$ with
$\Vert g\Vert\leqq 1$ . In view of (1.1), however, $g$ satisfies ${\rm Re}(x, g)\geqq\Vert x\Vert$ and ${\rm Re}(y, g)\geqq 0$ .
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Hence we must have $\Vert g\Vert=1$ and $(x, g)=\Vert x\Vert$ . On setting $f---\Vert x\Vert g$, we see that
$f\in Fx$ and ${\rm Re}(y, f)\geqq 0$ .

It is known (and is easy to prove) that $F$ is single-valued if $x*$ is strictly

convex. One would need somewhat stronger condition to ensure that $F$ is con-
tinuous. A convenient sufficient condition is given by

LEMMA 1.2. If $X^{*}is$ uniformly convex, $F$ is single-valued and is uniformly

continuous on any bounded set of X. In other words, for each $\epsilon>0$ and $M>0$ ,

there is $\delta>0$ such that $\Vert x\Vert<M$ and $\Vert x-y\Vert<\delta$ imply $\Vert Fx-Fy\Vert<\epsilon$ .
PROOF. It suffices to show that the assumptions

$\Vert x_{n}\Vert<M,$ $\Vert x_{n}-y_{n}\Vert\rightarrow 0,$ $||Fx_{n}-Fy_{n}\Vert\geqq\epsilon_{0}>0,$ $n=1,2,$ $\cdots$ ,

lead to a contradiction. If $x_{n}\rightarrow 0$ (we denote $by\rightarrow strong$ convergence), then
$y_{n}\rightarrow 0$ and so $\Vert Fx_{n}\Vert=\Vert x_{n}\Vert\rightarrow 0$ and similarly $\Vert Fy_{n}\Vert\rightarrow 0$ , hence $\Vert Fx_{n}-Fy_{n}\Vert\rightarrow 0$ , a
contradiction. Thus we may assume that $\Vert x_{n}\Vert\geqq\alpha>0$, replacing the given

sequences by suitable subsequences if necessary. Then $\Vert y_{n}\Vert\geqq\alpha/2$ for sufficiently

large $n$ . Set $ u_{n}=x_{n}/||x_{n}\Vert$ and $ v_{n}=y_{n}/\Vert y_{n}\Vert$ . Then $\Vert u_{n}\Vert=\Vert v_{n}\Vert=1$ and $u_{n}-v_{n}$

$=(x_{n}-y_{n})/\Vert x_{n}\Vert+(\Vert x_{n}\Vert^{-1}-\Vert y_{n}\Vert^{-1})y_{n}$ so that $\Vert u_{n}-v_{n}\Vert\leqq 2\Vert x_{n}-y_{n}\Vert/\Vert x_{n}\Vert\rightarrow 0$ .
Since $\Vert Fu_{n}\Vert=\Vert u_{n}||=1$ and similarly $\Vert Fv_{n}\Vert=1$ , we thus obtain ${\rm Re}(u_{n},$ $Fu_{n}$

$+Fv_{n})=(u_{n}, Fu_{n})+(v_{n}, Fv_{n})+{\rm Re}(u_{n}-v_{n}, Fv_{n})\geqq 1+1-\Vert u_{n}-v_{n}\Vert\rightarrow 2$ . Hence
iim $inf\Vert Fu_{n}+Fv_{n}\Vert\geqq\lim$ $inf{\rm Re}(u_{n}, Fu_{n}+Fv_{n})\geqq 2$ . Since $\Vert Fu_{n}\Vert=\Vert Fv_{n}\Vert=1$ and
$X^{*}$ is uniformly convex, it follows that $Fu_{n}-Fv_{n}\rightarrow 0$ .

Since $Fx_{n}=F(\Vert x_{n}\Vert u_{n})=\Vert x_{n}\Vert Fu_{n}$ and similarly $Fy_{n}=\Vert y_{n}\Vert Fv_{n}$ , we now obtain
$Fx_{n}-Fy_{n}=\Vert x_{n}\Vert(Fu_{n}-Fv_{n})+(\Vert x_{n}\Vert-\Vert y_{n}\Vert)Fv_{n}\rightarrow 0$ by $\Vert x_{n}\Vert<M$. Thus we have
arrived at a contradiction again.

In this paper the usefulness of the duality map depends mainly on the

following lemma.

LEMMA 1.3. Let $x(t)$ be an X-valued function on an interval of real num-
bers. Suppose $x(t)$ has a weak derivative $x^{\prime}(s)\in X$ at $t=s$ (that is, $d(x(t), g)/dt$

exists at $t=s$ and equals $(x^{\prime}(s), g)$ for every $geX^{*}$). If $\Vert x(t)\Vert$ is also differ-
entiable at $t=s$ , then

(1.2) $\Vert x(s)\Vert(d/ds)\Vert x(s)\Vert={\rm Re}(x^{\prime}(s),f)$

for every $f\in Fx(s)$ .
PROOF. Since ${\rm Re}(x(t), f)\leqq\Vert x(t)\Vert\Vert f\Vert=\Vert x(t)\Vert\Vert x(s)\Vert$ and ${\rm Re}(x(s), f)=\Vert x(s)\Vert^{2}$ ,

we have

${\rm Re}(x(t)-x(s), f)\leqq\Vert x(s)\Vert(\Vert x(t)\Vert-\Vert x(s)\Vert)$ .

Dividing both sides by $t-s$ and letting $t\rightarrow s$ from above and from below, we
obtain ${\rm Re}(x^{\prime}(s), f)=\leq\Vert x(s)\Vert(d/ds)\Vert x(s)||$ . Thus we must have the equality (1.2).
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2. Monotonic operators in $X$

Monotonic operators $A$ in $X$ have been defined by the equivalent conditions
(M) and $(M^{\prime})$ given in Introduction. Their equivalence follows immediately

from Lemma 1.1.
If $X$ is a Hilbert space, the inverse of an invertible monotonic operator is

also monotonic, but it might not be true in the general case.
If $A$ is monotonic, $1+\alpha A$ is invertible for $\alpha>0$ and the inverse operator

$(1+\alpha A)^{-1}$ is Lipschitz continuous:

(2.1) $\Vert(1+\alpha A)^{-1}x-(1+\alpha A)^{-1}y\Vert\leqq\Vert x-y\Vert$ , $x,$ $y\in D((1+\alpha A)^{-1})$ .

This follows directly from (M).

LEMMA 2.1. Let $A$ be monotonic. If $D((1+\alpha A)^{-1})=R(l+\alpha A)$ is the whole

of $X$ for some $\alpha>0$ , the same is true for all $\alpha>0$ .
PROOF. $R(1+\alpha A)=X$ is equivalent to $R(A+\lambda)=X$ where $\lambda=1/\alpha$ . Thus

lt suffices to show that $R(A+\lambda)=X$ for all $\lambda>0$ if it is true for some $\lambda>0$ .
But this is proved essentially in [3].

As stated in Introduction, we say that $A$ is m-monotonic if the conditions
of Lemma 2.1 are satisfied. Here we do not assume that $D(A)$ is dense in $X$.
If $A$ is a linear operator in a Hilbert space, the m-monotonicity of $A$ implies

that $D(A)$ is dense, but we do not know whether or not the same is true in

the general case.
For an m-monotonic operator $A$ , we introduce the following sequences of

operators $(n=1, 2, )$ :

(2.2) $J_{n}=(1+n^{-1}A)^{-1}$ ,

(2.3) $A_{n}=AJ_{n}=n(1-J_{n})$ ,

where $AJ_{n}$ denotes the composition of the two maps $A$ and $J_{n}$ . The $J_{n}$ and $A_{n}$

are defined everywhere on $X$. The identity given by $(2,3)$ , which is easy to

verify, is rather important in the following arguments.

LEMMA 2.2. Let $A$ be m-monotonic. $J_{n}$ and $A_{n}$ are uniformly Lipschitz

continuous, with

(2.4) $\Vert J_{n}x-J_{n}y\Vert\leqq\Vert x-y\Vert$ , $\Vert A_{n}x-A_{n}y\Vert\leqq 2n\Vert x-y\Vert$ ,

where $2n$ may be replaced by $n$ if $X$ is a Hilbert space.
PROOF. The first inequality of (2.4) is a special case of (2.1). The second

then follows from (2.3). The assertion about the case of $X$ a Hilbert space is
easy to prove and the proof is omitted (it is not used in the following).

LEMMA 2.3. Let $A$ be m-monotonic. The $A_{n}$ are also monotonic. Further-
more, we have
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(2.5) $\Vert A_{n}u\Vert\leqq\Vert Au\Vert$ for $u\in D(A)$ .

PROOF. Let $x,$ $y\in X$ and $f\in F(x-y)$ . Then

${\rm Re}(A_{n}x-A_{n}y, f)=n{\rm Re}(x-y, f)-n{\rm Re}(J_{n}x-J_{n}y, f)$

liii $n\Vert x-y\Vert^{2}-n\Vert]_{n}x-J_{n}y\Vert\Vert f\Vert\geqq n\Vert x-y\Vert^{2}-n\Vert x-y\Vert^{2}=0$ ,

where we have used (2.3) and (2.4). Thus $A_{n}$ is monotonic by (M). If $u\in D(A)$ ,

we have $A_{n}u=n(u-J_{n}u)=n[J_{n}(1+n^{-1}A)u-J_{n}u]$ by (2.3) and so I $A_{n}u||$

$\leqq n\Vert u+n^{-1}Au-u\Vert=\Vert$ Au $\Vert$ by (2.4).

LEMMA 2.4. If $u\in[D(A)]$ (the closure of $D(A)$ in $X$ ), $J_{n}u\rightarrow u$ as $ n\rightarrow\infty$ .
PROOF. If $u\in D(A)$ , then $u-J_{n}u=n^{-1}A_{n}u\rightarrow 0$ since the $\Vert A_{n}u\Vert$ are bounded

by (2.5). The result is extended to all $u\in[D(A)]$ since the $J_{n}$ are Lipschitz

continuous uniformly in $n$ .
LEMMA 2.5. Let $X^{*}$ be uniformly convex and let $A$ be m-monotonic in $X$.
(a) If $u_{n}\in D(A),$ $n=1,2,$ $\cdots$ , $u_{n}\rightarrow u\in X$ and if the $\Vert Au_{n}\Vert$ are bounded,

then $u\in D(A)$ and $Au_{n}$ –Au (we denote by–weak convergence).

(b) If $x_{n}\in X,$ $n=1,2,$ $\cdots$ , $x_{n}\rightarrow u\in X$ and if the $\Vert A_{n}x_{n}\Vert$ are bounded, then
$u\in D(A)$ and $A_{n}x_{n}$ –Au.

(c) $A_{n}u$ –Au if $u\in D(A)$ .
PROOF. In this case the duality map $F$ is single-valued and is continuous

(see Lemma 1.2).

(a) The monotonicity condition (M) gives

(2.6) ${\rm Re}(Av-Au_{n}, F(v-u_{n}))\geqq 0$

for any $v\in D(A)$ . Since $X$ is reflexive with $x*$ and the $\Vert Au_{n}\Vert$ are bounded,

there is a subsequence $\{u_{n},\}$ of $\{u_{n}\}$ such that $Au_{n},$ $-x\in X$ . Since $v-u_{n},\rightarrow v-u$

and hence $F(v-u_{n^{\prime}})\rightarrow F(v-u)$ by the continuity of $F$ , we obtain from (2.6) the

inequality ${\rm Re}$ (Av–x, $F(v-u)$) $\geqq 0$ .
Using Lemma 1.1 with $\alpha=1$ , we then have $\Vert v-u+Av-x\Vert\geqq\Vert v-u\Vert$ . On

setting $v=J_{1}(u+x)$ so that $v\in D(A)$ and $v+Av=u+x$ , we see that $\Vert v-u\Vert\leqq 0$ ,

hence $u=v$ and $Au=x$ . Thus $Au_{n},$ $-x=Au$ .
Since we could have started with any subsequence of $\{u_{n}\}$ instead of $\{u_{n}\}$

itself, the result obtained shows that $Au_{n}$ converges weakly to $Au$ .
(b) Set $u_{n}=J_{n}x_{n}\in D(A)$ . Then $Au_{n}=A_{n}x_{n}$ and the $\Vert Au_{n}\Vert$ are bounded.

Also $x_{n}-u_{n}=(1-J_{n})x_{n}=n^{-1}A_{n}x_{n}\rightarrow 0$ so that $u_{n}\rightarrow u$ . Thus the result of (a) is
appl.cable, with the result that $u\in D(A)$ and $A_{n}x_{n}=Au_{n}$ –Au.

(c) It suffices to set $x_{n}=u$ in (b); note that $\Vert A_{n}u\Vert\leqq\Vert Au\Vert$ by Lemma 2.3.
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3. The theorems

We now consider the Cauchy problem for the nonlinear evolution equation

(E). We introduce the following conditions for the family $\{A(t)\}$ .
I. The domain $D$ of $A(t)$ is independent of $t$ .

IL There is a constant $L$ such that for all $v\in D$ and $s,$ $t\in[0, T]$ ,

(3.1) $\Vert A(t)v-A(s)v\Vert\leqq L|t-s|(1+\Vert v\Vert+\Vert A(s)v\Vert)$ .

III. For each $t,$ $A(t)$ is m-monotonic.

(3.1) implies that $A(t)v$ is continuous in $t$ and hence is bounded. Then

(3.1) shows that $A(t)v$ is uniformly Lipschitz continuous in $t$ . It further shows

that the Lipschitz continuity is uniform for $v\in D$ in a certain metric.

On the other hand, we do not make any assumptions on the continuity of

the maps $v\rightarrow A(t)v$ , except those implicitly contained in the m-monotonicity.

The main results of this paper are given by the following theorems.

THEOREM 1 (existence theorem). Assume that $X^{*}$ is uniformly convex and

that the conditions I, II, III are satisfied. For each $a\in D$ , there exists an X-
valued function $u(t)$ on $[0, T]$ which satisfies (E) and the initial condition $u(O)$

$=a$ in the following sense. (a) $u(t)$ is uniformly Lipschitz continuous on $[0, T]$ ,

with $u(O)=a$ . (b) $u(t)\in D$ for each $t\in[0, T]$ and $A(t)u(t)$ is weakly continuous
on $[0, T]$ . (c) The weak derivative of $u(t)$ exists for all $t\in[0, T]$ and equals

$-A(t)u(t)$ . (d) $u(t)$ is an indefinite integral of $-A(t)u(t)$ , which is Bochner

integrable, so that the strong derivative of $u(t)$ exists almost everywhere and

equals $-A(t)_{\mathcal{U}(t)}$ .
THEOREM 2 (uniqueness and continuous dependence on the initial value).

Under the assumptions of Theorem 1, let $u(t)$ and $v(t)$ satisfy conditions (a), (b),

(c) with the initial conditions $u(O)=a$ and $v(O)=b$ , where $a,$ $b\in D$ . Then
$\Vert u(t)-v(t)\Vert\leqq\Vert a-b\Vert$ for all $t\in[0, T]$ .

THEOREM 3. In addition to the assumptions of Theorem 1, assume that $X$

is uniformly convex. Then the strong derivative $du/dt=-A(t)u(t)$ exists and is
strongly continuous except at a countable number of values $t$ .

REMARKS. 1. Conditions (a) to (d) in Theorem 1 are not all independent.

(a) follows from (b) and (c) (except, of course, $u(O)=a$).

2. When $A(t)=A$ is independent of $t$ , these results give a partial gener-
alization of the Hille-Yosida theorem to semigroups of nonlinear operators.

Suppose $X^{*}$ is uniformly convex and $A$ is m-monotonic in $X$. Since $T>0$ is
arbitrary in this case, on setting $u(t)=U(t)a$ we obtain a family $\{U(t)\},$ $ 0\leqq t<\infty$ ,

of nonlinear operators $U(t)$ on $D(A)$ to itself. Obviously $\{U(t)\}$ forms a semi.
group generated by $-A$ . It is a contraction semigroup on $D(A)$ , for $\Vert U(t)a$

$-U(t)b\Vert\leqq\Vert a-b\Vert$ , and it can be extended by continuity to a contraction semi-
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group on $[D(A)]$ (the closure of $D(A)$ in $X$ ). It should be noted, however,

that we have not been able to prove the strong differentiability of $U(t)a$ at
$t=0$ for all $a\in D(A)$ .

3. If the $A(t)$ are linear operators, the above theorems contain very little

that is new. But their proofs are independent of the earlier ones, such as are
given by [2], and are even simpler (of course under the restriction on $X$ ).

4. The assumptions I to III could be weakened to some extent. For ex-
ample, it would suffice to assume, instead of III, that for each $t\in[0, T]$ there

is a norm $\Vert\Vert_{t}$ , equivalent to the given norm of $X$ and depending on $t$

” smoothly ”, with respect to which $A(t)$ is m-monotonic. I and II could be

replaced by the condition that there is a function $Q(t)$ , depending on $t$

“ smoothly ”, such that $Q(t)$ and $Q(t)^{-1}$ are bounded linear operators with do-

main and range $X$ and that $\overline{A}(t)=Q(t)^{-1}A(t)Q(t)$ satisfies I and II. We want

to deal with such generalizations in later publications.

5. III could also be weakened to the condition that $ A(t)+\lambda$ be m-monotonic
for some $\lambda>0$ . It should be noted that this is not a trivial generalization. If
$A(t)$ were linear, the transformation $u(t)=e^{\lambda t}v(t)$ would change (E) into $dv/dt$

$+(A(t)+\lambda)v=0$ . But the same transformation does not always work in the

nonlinear case, for the transformed equation involves the operator $e^{-\lambda t}[A(t)+\lambda]e^{\lambda\iota}$ ,

the domain of which may depend on $t$ when $D(A(t))$ does not.

4. Proofs of the theorems

To construct a solution of (E), we introduce the operators

(4.1) $J_{n}(t)=(1+n^{-1}A(t))^{-1}$ , $A_{n}(t)=A(t)J_{n}(t),$ $n=1,2,$ $\cdots$ ,

for which the results of \S 2 are available, and consider the approximate equa-
tions

$(E_{n})$ $du_{n}/dt+A_{n}(t)u_{n}=0$ , $u_{n}(0)=a$ .

To solve $(E_{n})$ and prove the convergence of $\{u_{n}(t)\}$ , we need some estimates
for the $A.(t)$ .

LEMMA 4.1. For all $n$ and $v\in D$ , we have

(4.2) $||A_{n}(t)v-A_{n}(s)v\Vert\leqq L|t-s|(1+\Vert v\Vert+(1+n^{-1})\Vert A_{n}(s)v\Vert)$ .
PROOF. Since $A_{n}(t)=n(1-J_{n}(t))$ by (2.3), we have

$A_{n}(t)v-A_{n}(s)v=nJ_{n}(s)v-nJ_{n}(t)v$

$=nJ_{n}(t)[1+n^{-1}A(t)]J_{n}(s)v-nJ_{n}(t)[1+n^{-1}A(s)]J_{n}(s)v$ .

Using the Lipschitz continuity (2.4) of the operator $J_{n}(t)$ , we obtain
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$\Vert A_{n}(t)v-A_{n}(s)v\Vert\leqq n\Vert[1+n^{-1}A(t)]J_{n}(s)v-[1+n^{-1}A(s)]J_{n}(s)v||$

$=\Vert[A(t)-A(s)]J_{n}(s)v\Vert$ ,

and using (3.1),

(4.3) $\Vert A_{n}(t)v-A_{n}(s)v\Vert\leqq L|t-s|(1+\Vert J_{n}(s)v\Vert+\Vert A(s)J_{n}(s)v\Vert)$ .

Here $\Vert J_{n}(s)v\Vert$ is estimated by (2.3) as $\Vert J_{n}(s)v\Vert\leqq\Vert v\Vert+n^{-1}\Vert A_{r_{\vee}}(s)v\Vert$ . Since $4(s)J_{n}(s)$

$=A_{n}(s),$ $(4.3)$ gives (4.2).

(4.2) shows that $A_{n}(t)v$ is Lipschitz continuous in $t$ for each $v\in X$ . On the

other hand, the map $v\rightarrow A_{n}(t)v$ is Lipschitz continuous for fixed $t$ , uniformly

in $v$ and $t$ (see (2.4)). Thus $(E_{n})$ has a unique solution $u_{n}(t)$ for $t\in[0, T]$ , for

any initial condition $u_{n}(0)=a\in X$ . We shall now deduce some estimates for
$u_{n}(t)$ .

LEMMA 4.2. Let $a\in D$ . Then there $\iota s$ a constant $K$ such that $\Vert u_{n}(t)\Vert\leqq K$,

{ $|u_{n}^{\prime}(t)\Vert=\Vert A_{n}(t)u_{n}(t)\Vert\leqq K$, for all $n=1,2,$ $\cdots$ and $t\in[0, T]$ . (We write $du_{n}/dt$

$=u_{n}^{\prime}.)$

PROOF. We apply Lemma 1.3 to $x_{n}(t)=u_{n}(t+h)-u_{n}(t)$ , where $0<h<T$.
Since $x_{n}(t)$ is differentiable with $x_{n}^{\prime}(t)=-[A_{n}(t+h)u_{n}(t+h)-A_{n}(t)u_{n}(t)],$ $(1.2)$ gives

\langle 4.4) $\Vert x_{n}(t)||(d/dt)\Vert x_{n}(t)\Vert=-{\rm Re}(A_{n}(t+h)u_{n}(t+h)-A_{n}(t)u_{n}(t), Fx_{n}(t))$

for each $t$ where $\Vert x_{n}(t)\Vert$ is differentiable; note that the duality map $F$ is single-

valued because $X^{*}$ is uniformly convex (see Lemma 1.2).

The first factor in the scalar product on the right of (4.4) can be written

$[A_{n}(t+h)u_{n}(t+h)-A_{n}(t+h)u_{n}(t)]+[A_{n}(t+h)u_{n}(t)-A_{n}(t)u_{n}(t)]$ ,

of which the first term contributes to (4.4) a nonpositive value by the mono-
tonicity of $A_{n}(t+h)$ (see Lemma 2.3). The second term can be estimated by
\langle 4.2); it is thus majorized in norm by $Lh(1+\Vert u_{n}(t)\Vert+(1+n^{-1})\Vert u_{n}^{\prime}(t)\Vert)$ , where we
have used $A_{n}(t)u_{n}(t)=-u_{n}^{\prime}(t)$ . In this way we obtain from (4.4), using the

Schwarz inequality and the norm-preserving property of $F$,

\langle 4.5) $||x_{n}(t)\Vert(d/dt)\Vert x_{n}(t)\Vert\leqq Lh(1+\Vert u_{n}(t)\Vert+(1+n^{-1})\Vert u_{n}^{\prime}(t)\Vert)\Vert x_{n}(t)||$ .

Since $\Vert x_{n}(t)\Vert$ is Lipschitz continuous with $x_{n}(t)$ , it is differentiable almost
everywhere, where (4.5) is true as shown above. Let $N$ be the set of $t$ for

which $x_{n}(t)=0$ . If $t$ is not in $N$, we can cancel $\Vert x_{n}(t)\Vert$ in (4.5) to obtain

\langle 4.6) $(d/dt)\Vert x_{n}(t)\Vert\leqq Lh(1+\Vert u_{n}(t)\Vert+(1+n^{-1})\Vert u_{n}^{\prime}(t)\Vert)$ .

If $t$ is a cluster point of $N$, then $(d/dt)\Vert x_{n}(t)\Vert=0$ as long as it exists, so that
(4.6) is still true. Since there are only a countable number of isolated points

of $N$, it follows that (4.6) is true almost everywhere. Since $\Vert x_{n}(t)\Vert$ is absolutely
continuous, we obtain finally
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(4.7) $\Vert x_{n}(t)\Vert\leqq\Vert x_{n}(0)\Vert+Lh\int_{0^{t}}(1+\Vert u_{n}(s)\Vert+(1+n^{-1})\Vert u_{n}^{\prime}(s)\Vert)ds$ .

Since $x_{n}(t)=u_{n}(t+h)-u_{n}(t)$ , by dividing (4.7) by $h$ and letting $h\downarrow 0$ we
obtain

(4.8) $\Vert u_{n}^{\prime}(t)\Vert\leqq\Vert u_{n}^{\prime}(0)\Vert+Lt+L\int_{0^{t}}(\Vert u_{n}(s)\Vert+(1+n^{-1})||u_{n}^{\prime}(s)\Vert)ds$ .

Since $\Vert u_{n}^{\prime}(0)\Vert=\Vert A_{n}(0)a||\leqq\Vert A(0)a\Vert$ by (2.5), we have

$\Vert u_{n}^{\prime}(t)\Vert\leqq K+2L\int_{0^{t}}(\Vert u_{n}(s)\Vert+\Vert u_{n}^{\prime}(s)\Vert)ds$ ,

where $K$ is a constant independent of $n$ . On the other hand, $u_{n}(t)=a+\int_{1}^{t}u_{n}^{J}(s)d$

so that

$\Vert u_{n}(t)\Vert\leqq\Vert a\Vert+\int_{0^{t}}\Vert u_{n}^{\prime}(s)\Vert ds$ .

Adding the two inequalities, we obtain

$\Vert u_{n}(t)\Vert+\Vert u_{n}^{\prime}(t)\Vert\leqq K+(2L+1)\int_{0^{t}}(\Vert u_{n}(s)\Vert+\Vert u_{n}^{\prime}(s)\Vert)ds$

with a different constant $K$. Solving this integral inequality, we see that
$\Vert u_{n}(t)\Vert+\Vert u_{n}^{\prime}(t)\Vert$ is bounded for all $n$ and $t$ .

LEMMA 4.3. The strong limit $u(t)=\lim_{\iota\rightarrow\infty}u_{n}(t)$ exists uniformly for $t\in[0, T]$ .
$u(t)$ is Lipschitz continuous with $u(O)=a$ .

PROOF. We apply Lemma 1.3 to $x_{mn}(t)=u_{m}(t)-u_{n}(t)$ . As above we obtain

for almost all $t$

(4.9) $\frac{1}{2}(d/dt)\Vert x_{mn}(t)\Vert^{2}=-Re(A_{m}(t)u_{m}(t)-A_{n}(t)u_{n}(t), Fx_{mn}(t))$ .

Since $A_{m}(t)u_{m}(t)=A(t)J_{m}(t)u_{m}(t)$ etc. and since $A(t)$ is monotonic, we have

(4.10) $0\leqq{\rm Re}(A_{m}(t)u_{m}(t)-A_{n}(t)u_{n}(t), Fy_{mn}(t))$ ,

where $y_{mn}(t)=J_{m}(t)u_{m}(t)-J_{n}(t)u_{n}(t)$ . Addition of (4.9) and (4.10) gives

$\frac{1}{2}(d/dt)\Vert x_{mn}(t)\Vert^{2}\leqq{\rm Re}(A_{m}(t)u_{m}(t)-A_{n}(t)u_{n}(t), Fy_{mn}(t)-Fx_{mn}(t))$

$\leqq 2K\Vert Fy_{mn}(t)-Fx_{mn}(t)\Vert$ for almost all $t$,

where we have used Lemma 4.2.
Since $\Vert x_{mn}(t)\Vert^{2}$ is absolutely continuous and $x_{mn}(0)=a-a=0$ , we obtain

(4.11) $\Vert x_{mn}(t)\Vert^{2}\leqq 4K\int_{0^{\iota}}\Vert Fy_{mn}(s)-Fx_{mn}(s)\Vert ds$ .

We wart to prove that $\Vert x_{mn}(t)\Vert\rightarrow 0$ uniformly in $t$ , by showing that the irte-
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grand in (4.11) tends to zero uniformly in $s$ . Now $\Vert x_{mn}(s)\Vert=\Vert u_{m}(s)-u_{n}(s)\Vert\leqq 2K$

by Lemma 4.2. Also

$\Vert y_{mn}(s)-x_{mn}(s)\Vert\leqq J_{m}(s)u_{m}(s)-u_{m}(s)\Vert+\Vert J_{n}(s)u_{n}(s)-u_{n}(s)\Vert$

$\leqq m^{-1}\Vert A_{m}(s)u_{m}(s)\Vert+n^{-1}\Vert A_{n}(s)u_{n}(s)\Vert\leqq(m^{-1}+n^{-1})K\rightarrow 0$

as $m,$ $ n\rightarrow\infty$ , where we have used (2.3) and Lemma 4.2. It follows from Lemma

1.2 that for any $\epsilon>0$ , we have $\Vert Fy_{mn}(s)-Fx_{mn}(s)\Vert<\epsilon,$ $0\leqq s\leqq T$, for sufficiently

large $m,$ $n$ , as we wished to show. Thus $u(t)=\lim u.(t)$ exists uniformly in $t$ .
Since $u_{n}(t)$ is Lipschitz continuous uniformly in $i$ and $n$ by $\Vert u_{n}^{\prime}(t)\Vert\leqq K$, the

limit $u(t)$ is also Lipschitz continuous uniformly in $t$ , with $u(O)=a$ .
LEMMA 4.4. $u(t)\in D$ for all $t\in[0, T]$ , and $A(t)u(t)$ is bounded and is

weakly continuous.

PROOF. For each $t$ we have $u_{n}(t)\rightarrow u(t)$ and $\Vert A_{n}(t)u_{n}(t)\Vert\leqq K$. It follows
from Lemma 2.5, (b), that $u(t)\in D(A(t))=D$ and $A_{n}(t)u_{n}(t)-A(t)u(t)$ . Thus
$||A(t)u(t)\Vert\leqq K$, too.

To prove the weak continuity of $A(t)u(t)$ , let $t_{k}-t$ : we have to show that

$A(t_{k})u(t_{;})-A(t)u(t)$ . Now

(4.12) $||[A(t)-A(t_{k})]u(t_{k})\Vert\leqq L|t-t_{k}|(1+\Vert u(t_{k})\Vert+\Vert A(t_{k})u(t_{k})\Vert)$

$\leqq L|t-t_{k}|(1+2K)\rightarrow 0$ .

This implies, in particular, that $\lim\sup\Vert A(t)u(t_{k})\Vert=\lim\sup\Vert A(t_{k})u(t_{k})\Vert\leqq K$.
Since $u(t_{k})\rightarrow u(t)$ , it follows from Lemma 2.5, (a), that $A(t)u(t_{k})-A(t)u(t)$ . Us-
ing (4.12) once more, we see that $A(t_{k})u(t_{k})-A(t)u(t)$ .

LEMMA 4.5. For each $f\in x*,$ $(u(t), f)$ is continuously differentiable on
$[0, T]$ , with $d(u(t), f)/dt=-(A(t)u(t),f)$ .

PROOF. Since $u_{n}(t)$ satisfies $(E_{n})$ , we have

$(u_{n}(t), f)=(a, f)-\int_{0}^{\iota}(A_{n}(s)u_{n}(s), f)ds$ .

Since $u_{n}(t)\rightarrow u(t),$ $A_{n}(s)u_{n}(s)-A(s)u(s)$ , and $|(A_{n}(s)u_{n}(s), f)|\leqq K||f||$ by Lemma
4.2, we obtain

(4.13) $(u(t), f)=(a, f)-\int_{0^{1}}(A(s)u(s), f)ds$

by bounded convergence. Since the integrand is continuous in $s$ by Lemma
4.4, the assertion follows.

LEMMA 4.6. $A(t)u(t)$ is Bochner integrable, $anau(t)$ is an indefinite integral

of $-A(t)u(t)$ . The strong derivative $du(t)/dt$ exists almost everywhere and equals
$-A(t)u(t)$ .

PROOF. Let $X_{0}$ be the smallest closed linear subspace of $X$ containing all

the values of the $A_{n}(t)u_{n}(t)$ for $t\in[0, T]$ and $n=1,2,$ $\cdots$ Since the $A_{n}(t)u,(t)$
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are continuous, $X_{0}$ is separabie. Since $A_{n}(t)u_{n}(t)-A(t)u(t)$ as shown above in
the proof of Lemma 4.4 and since $X_{0}$ is weakly closed, $A(t)u(t)\in X_{0}$ too. Thus
$A(t)u(t)$ is separably-valued. Since it is weakly continuous, it is strongly mea-
surable (see $e$ . $g$ . Yosida [5], p. 131) and, being bounded, it is Bochner inte-
grable (see [5], p. 133). Then (4.13) shows that $u(t)$ is an indefinite integral

of $-A(t)u(t)$ . The last statement of the lemma is a well-known result for
Bochner integrals (see [5], p. 134).

LEMMA 4.7. Let $u(t)$ and $v(t)$ be any functions satisfying the conditz $ons$ of
Lemma 4.5 and the initial conditions $u(O)=a\in D,$ $v(O)=b\in D$ . Then $\Vert u(t)-v(l)\Vert$

$\leqq\Vert a-b\Vert$ .
PROOF. $x(t)=u(t)-v(t)$ has weak derivative $-A(t)u(t)+A(t)v(t)$ , which is

weakly continuous and hence bounded. Thus $x(t)$ is Lipschitz continuous and
so $\Vert x(t)\Vert$ is differentiable almost everywhere. It follows from Lemma 1.3 that

$-\frac{1}{2}(d/dt)\Vert x(t)\Vert^{2}=-Re(A(t)u(t)-A(t)v(t), Fx(t))\leqq 0$

almost everywhere. Since $\Vert x(i)\Vert^{2}$ is absolutely continuous, it follows that $\Vert x(t)\Vert$

$\leqq\Vert x(0)\Vert=||a-b\Vert$ .
The lemmas proved above give complete proof to Theorems 1 and 2. In

particular we note that the solution $u(t)$ of the Cauchy problem is unique.

LEMMA 4.8. For sufficiently large $M>0,$ $\Vert A(t)u(t)\Vert-Mt\iota s$ monotonically
decreasing in $t$ . (Hence $\Vert A(t)u(t)\Vert$ is continuous except $poss\iota bly$ at a countable
number of points $t.$)

PROOF. $Returni\ddagger lg$ to (4.8) and noting that the integrand is uniformly

bounded by Lemma 4.2, we obtain

(4.14) $\Vert u_{n}^{\prime}(t)\Vert\leqq||A(0)a\Vert+Mt$ ,

where $M$ is a constant independent of $t$ and $n$ (note that $\Vert u_{n}^{\prime}(0)\Vert=\Vert A_{n}(0)a\Vert$

$\leqq\Vert A(0)a\Vert$ as shown before). Since $u_{n}^{\prime}(t)=-A_{n}(t)u_{n}(t)--A(i)u(t)$ , going to the

limit $ n\rightarrow\infty$ in (4.14) gives

(4.15) $\Vert A(t)u(t)\Vert\leqq\Vert A(0)u(0)\Vert+Mt$ .

If we consider (E) on the interval $[s, T]$ with the initial value $u(s)$ , the solu-

tion must coincide with our $u(t)$ on $[s, T]$ owing to the uniqueness of the

solution. If we apply (4.15) to the new initial value problem, we see that
$\Vert A(t)u(t)\Vert\leqq\Vert A(s)u(s)\Vert+M(t-s)$ for $t>s$ . Thus $\Vert A(t)u(t)\Vert-Mt$ is monotonically

nonincreasing.

LEMMA 4.9. If $X$ is uniformly convex, then $A(t)u(t)$ is strongly continuous
except possibly at a countable number of points $t$ .

PROOF. Since $A(t)u(t)$ is weakly continuous, it is strongly continuous at

each point $l$ where I $ A(t)u(t)\Vert$ is continuous. Thus the assertlon follows from



Nonlinear semigroups and evolution equations 519

Lemma 4.8.
Lemma 4.9 immediately leads to Theorem 3.
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(Notes added in proof) 1. In a recent paper by F. E. Browder, Nonlinear accretive
operators in Banach spaces, Bull. Amer. Math. Soc., 73 (1967), 470-476, the notion of ac-
cretive operators A in a Banach space X is introduced, which is almost identical with
that of monotonic operators defined in the present paper. There is a slight difference

that he requires ${\rm Re}$ (Au-Av, f) $\geqq 0$ for every $f\in F(u-v)$ whereas we require it only

for some f $\in F(u-v)$ . Of course the two definitions coincide if F is single-valued.

2. Browder has called the attention of the writer to a paper by S. \^Oharu, Note on
the representation of semi-groups of non-linear operators, Proc. Japan Acad., 42 (1967),

1149-1154, which contains, among others, a proof of Lemma 2.1.
3. Browder remarked also that the condition (3.1) can be weakened to

(3.1) $||A(t)v-A(s)v||\leqq|t-s|L(\Vert v\Vert)(1+||A(s)v\Vert)$ .
where $L(r)$ is a positive, nondecreasing function of $r>0$ . In this case the proof of th $e$

theorems needs a slight modification. First, it is easily seen that we have, instead of

(4.2),

(4.2) $\Vert A_{n}(t)v-A_{n}(s)v\Vert\leqq|t-s|L_{1}(\Vert v\Vert)(1+\Vert A_{n}(s)v\Vert)$ ,

where $L_{1}(r)=L(r+K_{1})$ for some constant $K_{1}>0$ (we may choose $ K_{1}=2\Vert a||+\sup_{0\leqq c\leqq T}\Vert A(t)a\Vert$ )

Lemma 4.2 is seen to remain true, but to prove it we first prove the uniform bounded-
ness for $\Vert u_{n}(t)\Vert$ , independently of $\Vert u_{n^{\prime}}(t)\Vert$ . This can be done easily by estimating
$(d/dt)\Vert u_{n}(t)-a\Vert^{2}$ in the manner similar to the estimate for 1 $ x_{n}(t)\Vert$ , with the result

$||u_{n}(t)-a\Vert\leqq\int_{0^{\iota}}\Vert A_{n}(s)a\Vert ds\leqq\int_{0^{1}}\Vert A(s)a\Vert ds\leqq K_{2}$ .

Then the estimate for $||u_{n}^{J}(t)\Vert$ can be obtained from (the analogue of) (4.8) by solving
an integral inequality for 1 $ u_{n^{\prime}}(t)\Vert$ The proof of the remaining lemmas are unchanged.

4. The proof of Lemma 4.6 was unnecessarily long. It is sufficient to notice that
a weakly continuous function of $t$ is separably-valued.

5. Our theorems are rather weak when applied to regular equations (E), in which



520 T. KATO

the $A(t)$ are continuous operators defined everywhere on $X$, for it is known that we
then need much less continuity of $A(t)$ as a function of $t$ . The theorems could be

strengthened by writing $A(t)=A_{0}(t)+B(t)$ in which $A_{0}(t)$ is assumed to satisfy Con.
ditions I to III and $B(t)$ to be ‘ regular ’ with a milder continuity condition as a

function of $t$ .
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