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Abstract

The shallow water theory is applied to the study of one dimensional

fluid flows over an isolated ridge. The work was motivated by the

desire to investigate the phenomenon called the chinook which occurs on

the eastern side of the Rockies and is characterized by extremely strong

winds which blow from the mountains.

The motion that arises from an initially uniform flow involves the

formation of hydraulic jumps both on the windward and leeward sides of a

ridge. Special emphasis is put on determining analytically the asymptotic

structure of such flows with jumps by solving the appropriate "steady"

state equations. The presence of the hydraulic jumps and a rarefaction

wave was revealed by preliminary numerical solutions of the time dependent

problems.

These numerical results demonstrate the evolution in time of the

various features of the flow found in the asymptotic solutions.



1. Introduction

Areas along the eastern slope of the Rocky Mountains are struck from

time to time during winter and spring by strong and relatively warm winds

which suddenly flow down from the mountains. This phenomenon is known

as the chinook (the North American counterpart of the European foehn)

and occurs on the eastern side of the Rockies. Very few synoptic investi-

gations have been made concerning the weather conditions at the time of

typical chinook events in the Rocky Mountain area and therefore the cause

of the chinook in this particular area is still not well known (see [9]).

Similar phenomena are frequently observed in the Owens Valley located on

the eastern side of the Sierra Nevadas (see [5]).

Concerning airflow over mountains, much literature is available

ranging from purely theoretical studies on mountain waves to case

studies of the synoptic weather conditions at the time of strong winds

(e.g., see [1]). The theoretical studies mostly use linear perturbation

methods, and very little work has been done on nonlinear aspects. One of

the drawbacks of using linearized theories in this respect is that we

miss the phenomenon of the "hydraulic jump," which can arise only from

nonlinear equations. In fact, Kuettner [6] attempted to apply the con-

cept of "jump" in hydraulics to explain the appearance of rotor clouds in

the lee of mountains.

In this study we investigate the nature of the hydraulic jumps in

flows across a ridge. We use the one-dimensional time-dependent "shallow

water" equations that govern the motion of an incompressible, homogeneous,
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inviscid, and hydrostatic fluid. This model gives a crude representa-

tion of atmospheric flow, but it corresponds very closely to laboratory

experiments carried out by Long [8]. In his experiments an obstacle was

drawn by a motor drive at a uniform speed along the bottom of a channel

filled with water and the occurrence of hydraulic jumps in the fluid was

demonstrated for a certain range of velocities of the obstacle.

In the present study the asymptotic mathematical solutions to the

model equations are determined for the case where the fluid initially at

rest is impulsively accelerated to a velocity which is constant in the

space coordinate. In Section 2 the basic equations are described. In

Section 3 the criteria for the formation of hydraulic jumps are derived

and the structure of the jumps is determined by using steady state equa-

tions together with hydraulic jump conditions. In Section 4 the correspond-

ing time-dependent equations are solved numerically and the results are

favorably compared with the analytical solutions.
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2. Basic equations

We consider one-dimensional "shallow water" flow over an isolated

obstacle as shown in Fig. 1. The governing equations may be written as

(see [10]),

au au cp aH
- + u -- + g -- + g - =0 (2.la)

at 2x 2x ax

acp b
- + - (cu) = 0 , (2.lb)

at 5x

where x and t denote the space and time coordinates which are independent

variables; u and cp denote the horizontal velocity and the depth of the

fluid; H is the height of an obstacle which is a function of x. The

lower boundary is flat and horizontal except where the obstacle exists.

The parameter g denotes the vertical acceleration due to gravity.

We consider the following problem. For t < 0 and -o < x < Co, the

fluid is completely at rest and the height of the free surface is con-

stant, i.e., no pressure gradients exist. We denote this initial height

by h . At t = 0 the fluid is impulsively set in motion so that for

-Co < x < oo it has a constant horizontal velocity u . The problem is then

to determine the subsequent motion of the fluid.
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3. Asymptotic solutions

From such an impulsive start, it is expected that a transient motion

develops at the obstacle and moves out to infinity in both directions.

After sufficient time has elapsed, the solution in the neighborhood of the

obstacle should then be determined by an analysis of the steady state

solutions of equations (2.1). We refer to this solution of an initial

value problem as an asymptotic solution rather than merely a steady state

solution.

The system of equations (2.1) admits the following steady state

solutions for u and cp:

2
u

- + cp + H = K = const., (3.1a)

2g

pu = K2 = const. (3.1b)

If a continuous flow is considered, i.e., without hydraulic jumps,

the two constants K1 and K2 are determined by the velocity uo and the

height h of the approaching flow far from the obstacle. Thus,

2
u

K = - + h
1 o and K2 = u h (3.2)

2g 2 0 0

Eliminating cp from (3.la) by using (3.1b) and introducing the

dimensionless parameters F and M, and the dimensionless variable U by0
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u H u

F -- M , U -, (3.3)
o gh h u

o o o

we obtain

F 2  
F 2

SU3 + + M - 1 + 1 = 0. (3.4)

2 2

Note that the quantity M is a function of x, but it is considered here
real

as a parameter. There exist (see Figures 2a,b) three roots of (3.4) for

M < M, and if the condition

F 3

M=M - - F 2 /3 +1 (3.5)
M* o

2 2

1The condition (3.5) was also discussed by Long [8] and Chao, Chang, and

Yan [3].

is satisfied, then two of these roots are equal to

U. F-/3
0o

For convenience of presentation, we consider a smooth convex

obstacle which is symmetric with respect to its crest, e.g. as is shown

in Fig. 1. To represent the height of the obstacle, we use the para-

meter M indicating the ratio of the height to the crest H over the
c c

depth of the approaching fluid ho,
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H
M c = (3.6)

c h
o

Fig. 3 shows the curve of Eq. (3.5) plotted with M = MN as the abscissa

and F as the ordinate. In domain I below the lower curve and domain
o

III above the upper curve, i.e., the regions characterized by M < M,

there is only one real solution of (3.4) which is physically meaningful,

as explained below. Fig. 2a shows the root U(x) of the cubic equation

(3.4) which varies continuously with M(x) for a particular value of F < 1.
o

Fig. 2b shows the same for a particular value F > 1. If F < 1, as shown
O o

in Fig. 2a, the physically meaningful root begins at U(-c°) = 1 for

M(-Do) = 0 and increases to a value U < U, as M increases to M < MN.
c ^ c *

U(x) then decreases to U(+o) = 1 as M decreases to M(+°o) = 0. If F > 1,

as shown in Fig. 2b, the physically meaningful root begins at U(-o) = 1

for M(-Do) = 0 and decreases to a value U > U, as M increases to M < MN.

U(x) then increases to U(+o) = 1 as M decreases to M(+c) = 0. The case

occs obstc le
F = 1 is a degenerate case for which no steady solutionwith avjamp

preset
ea-&s. In domain II, M > M, and no physically meaningful solution

c

exists, as seen from Fig. 2a,b.

The flows characterized by the parameters F and M in domain I in
o c

Fig. 3 are everywhere subcritical and the free surface of the steady

states dips symmetrically over the symmetrical obstacle. On the other

hand, the flows in domain III are everywhere supercritical and the free

surface of the steady states rises symmetrically over the obstacle.
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It was shown by Long [8] that the flow with parameters F and M
o c

in domain II must become discontinuous. He then discussed qualitatively

the nature of the flow with jumps. In the following, we shall discuss

in detail the structure of the flow with hydraulic jumps.

If the condition M = M, is met at some point over the obstacle, let

us denote the corresponding velocity and depth by u, and cp,. Then, it

can be shown from (3.1) and (3.2) that

u = - . (3.7)

In other words, the flow speed becomes "sonic" or "critical" when the

condition (3.5) is satisfied. (It is well known that the "characteristics"

of equation (2.1) are dx/dt = u ±/gcp.) It can be shown that this critical

condition occurs at the obstacle crest for the flow with parameters F

and M in domain II.
c

In order to study a discontinuity that may develop on the windward

side, let us consider a situation in which the obstacle is high enough,

so that the obstacle acts to partially block the flow and a bore forms

and propagates upstream as shown in Fig. 4. We let hA and uA denote the

steady state height and the velocity of the fluid behind the bore, cI

the propagation velocity of the bore, and cc and u the fluid depth and

velocity at the obstacle crest. Here we have five unknowns: hA, uA, u ,

cP, and c . Therefore, five equations are needed to determine the

structure of the flow for given H , ho, and u . The two jump conditions
c the bore are expressed by

at the bore are expressed by
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h u - hAUA
o o

c =  
(3.8)

h - hAo

and

C h 2 (3(9)

o

Condition (3.8) is based on the conservation of mass relative to the

bore and (3.9) is based on the conservation of momentum across the bore

as discussed in detail by Stoker [10]. These two shock conditions can

also be derived mathematically from the system of conservation equations

(4.1) by applying the theory of weak solutions (see Courant [4]). The

three other equations are the two steady state conditions given in

(3.1a,b) and the critical condition given by (3.7). That is, from

Figures 2a,b, in order to find an asymmetric continuous "steady" solution

for say U(x) over the obstacle, we must require that M = MA, where MA
c

is given by the right-hand side of (3.5) with F replaced by

A = UA/g~~ A Thus, we have

„2 2AuA
u UA

S+ cp + H -- + hA E K , (3.10)

2g 2g

Uc c = UAhA = K4 , (3.11)
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u = - , (3.12)
c c

where K3 and K are constants different from K1 and K2. For given values

of H , ho, and u , the five unknowns are determined by solving (3.8)

through (3.12).

It can be shown that the upstream jump always propagates away from

the obstacle because WAUA < h u and hA > h . Furthermore, it follows

that the flow in the steady state region upstream of the obstacle crest

is always subcritical.

At the crest the flow is critical as mentioned earlier. If the flow

on the lee side is assumed to be subcritical, then the solution is

symmetrical and it can be shown that such a physically meaningful flow

structure does not exist downstream. Thus we choose the supercritical

branch (U > U,) of Figure 2a to represent the asymmetrical steady state

condition on the lee side of the obstacle crest and try to determine an

asymptotic solution downstream of the obstacle. It is reasonable to

assume that, corresponding to the upstream side, the steady state condi-

tions over the obstacle extend down the lee side to create a new steady

depth hs and velocity us as indicated in Fig. 5. These can be deter-

mined from the two steady state conditions

2

-+ hS = K3 , (3.13)

2g

ushe = K , (3.14)
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subject to the asymmetrical requirement of hB hA and us uA. The

constants K3 and K4 are already given by (3.10) and (3.11).

The remaining problem is to describe the transition between the

newly determined steady state given by us and he and the downstream

initial state further away from the obstacle given by u and h which

is identical to the upstream initial conditions. We consider the

simplest possible ways to describe the transition. If only a hydraulic

jump is assumed, then one new variable cr, the propagation velocity of+he

jump, is introduced. However, two additional jump conditions must be

satisfied and therefore the problem becomes overdetermined mathematically.

Similarly if only a rarefaction wave is assumed, no new variable is

introduced but 'only one condition for the rarefaction wave, say

u - 2 /gh = constant, must be satisfied and the problem again becomes

overdetermined. The problem is well posed if both a hydraulic jump and

a rarefaction wave are assumed as shown in Fig. ~. Since there are three

conditions to be satisfied, we introduce two additional variables hx and

ux besides the propagation velocity of the jump cr

Thus the three remaining unknowns ux, hx, and cr are determined

from the two jump conditions

heug - hxUx
cr = , (3.15)

he _ hx
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ghx hx + he
c = u[ - --- (3.16)

hb 2

and the rarefaction wave condition

ux - 2 gh = u - 2 ggho (3.17)

where us, he, u , and h are given.

The ten equations (3,8) through (3.17) determine uniquely the ten

variables c , hA, uA, u , c', hB, U1, cr, hx, and ux which represent the

asymptotic solution of the flow in domain II of Fig. 3. The values of

these ten variables are determined as functions of the Froude number,

F , of the initial flow and the dimensionless height of the crest of the

obstacle, M . For convenience of presentation, we introduce the follow-
c

ing dimensionless variables:

SA UA 
= > x --

C C C
0 0 0

hA hB hx
DA = D - , Dx - ,

h h h
o 0 0

(3.18)

C C
C= C =-,

Cr
c c

0 0
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where

O O

In Fig. 6, contour plots of the values of DA and jT are shown by the

solid and dashed lines respectively. The solutions are shown for domain

II as defined in Fig. 3. Thus, the heavy solid curve enclosing the group

of lines is the critical curve shown in Fig. 3. The region below the

dashed line for T = 0 is where a total blockage of the flow occurs,

Along the dashed line for A = 0 the maximum height of the obstacle is

larger than the depth of the initial flow h and the flow is blocked

completely, namely uA = 0 and hA = H . If we substitute these two
c

conditions in (3.8) and (3.9), and then equate these two equations, we

obtain

h u gH H +h

h - H o h 2
o c o

or using the definitions of M and F , the above equation may be written

c
as

M - 1
F = /-

0 M
c

(3.19)

The dashed line for J = 0 is drawn based on the relationship (3.19).
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Fig. 7 shows the contour lines of the quantity C%. The negative

values of C I denote that the bore propagates in the upstream direction,

as already discussed. Fig. 8 exhibits the contour lines of c and Ic

by solid and dashed lines, respectively. Fig. 9 gives the contour lines

of C by solid lines. Along the heavy dashed line representing the

curve of Cr = 0, the lee jump remains stationary. In the remaining part

of domain II below the curve for Cr = 0, the solution of C shows

negative values (which, however, are not presented here). This implies

that the lee jump never propagates off the obstacle, and the downstream

configuration shown in Fig. 5 cannot exist. Hereafter the upper part of

domain II where the lee jump moves will be denoted lIb. The remaining

lower part will be denoted IIa. In Fig. 3 the dashed line separates these

two parts of domain II.

In domain IIa we therefore seek another configuration, as shown in

Fig. 10. That is, we now investigate the conditions under which the lee

jump remains stationary on the downstream side of the obstacle crest.

We denote by cp and u. the depth and velocity on the upstream side of

the lee jump and cp and u+ the depth and velocity on the downstream side,

as shown in Fig. 10. Since the jump is stationary, we have the conditions

cp_u - cpu
c = = 0 , (3.20)

S_ - (+
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/•+ CP + p.
c =u - 0 = . (3.21)

r - _ 2

There are seven unknowns: u+, u_, cp , c, h , ux, and H . The last

unknown, H , is the height of the obstacle where the stationary jump

stays. These unknowns are determined by solving seven equations, includ-

ing (3.20) and (3.21). The other five equations are the steady state

conditions from the windward side of the obstacle to the upstream side

of the lee jump,

hAUA = Cu_ , (3.22)

2 2
UA u
S+ hA - + p_ + H , (3.23)

2g 2g

and the steady state conditions from the downstream side of the lee jump

to the region off the downstream side of the obstacle:

hxux = p+u+ (3.24)

2 2
u u

S+ hx = + c + H . (3.25)

2g 2g

The remaining equation is the rarefaction wave condition which is identical

to (3.17),
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u - 2 gh = ux - 2 jghx . (3.26)

Let us introduce the dimensionless variables defined by

•+ •-(P+

h h
o o

u u

- , - , (3.27)

Co C

SH

h
o

The values of H are indicated in Fig. 9 by the dashed contour lines

of M . On the curve of C = 0, it is seen that M = 0, i.e., the lee

jump is stationary at the very edge of the obstacle. Fig. 11 gives the

contour lines of Dx and jx as solid and dashed lines, respectively.

In domain IIa, the contour lines of DX and 3 obtained from Eqs. (3.20) -

(3.26) are shown. In domain lib the contour lines of DX and Y obtained

from Eqs. (3.8) - (3.17) are presented. Fig. 12 shows the contour lines

of DB and 'B in domain IIb and those of '_ and *. in domain IIa. Note

that the contour lines of D8 join continuously to those of _ and that the

contour lines of B join continuously to those of Y_ at the transition

curve between domains IIa and IIb. Finally, Fig. 13 exhibits the contour

lines of $+ and + which exist only in domain IIa.



4. Numerical solutions

In this section we describe the numerical integration scheme for

the time-dependent equations (2.1a,b) and the numerical results obtained

in certain illustrative examples. After a sufficiently long time, the

numerical solutions approach the asymptotic states which were discussed

in the previous section. We used a numerical scheme developed by Lax

and Wendroff [7] which is suited to handle discontinuous solutions.

Since the derivation of the two jump conditions (3.8) and (3.9) assumes

the conservation of momentum and mass, the numerical computation should

be performed on the system of equations which conserves momentum and

mass (see for example Burstein [2]). (In as yet unpublished work, H. O.

Kreiss gives a more complete development of such methods and shows that

for a large class of schemes the conservation form of the equations is

not a prerequisite for the accurate calculation of discontinuous

solutions.)

Let us, then, rewrite Eqs. (2.1a,b) in the form,

6W ;G

- +-- + K = 0 (4.1)

6t ax

where
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2

G =

m- +g

G( p m
2

2 ,\

(4.2)

/m
W = ,

8H

gp-

0x

K0

O

m = cu .

If we let At be the time increment and expand W(x,t + At) in a

Taylor series in time, we have

aw 1 '3

W(x,t + At) = W(x,t) + At - + - (At)- + 0(At) ,
6t 2 St

where the time derivatives are evaluated at time t. To insure second

order accuracy in At, it is necessary to retain the second order term.

By using (4.1), the time derivatives in the Taylor series can be replaced

by space derivatives to give

W(x,t + At) W(t) ) - At -+ K

(\ G

(At)2 i

2 apx
A

(4.3)

S-+K)I
JK

-, J

St

where
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2m

CP

A

1

2
gy - -

0

6m 8H

ox ax

0/

g

ýK

at

We then approximate the space derivatives by centered differencing

schemes to secure second order accuracy in the space increment, Ax, as

well as in At. Let us denote W(x,t) for x = jAx and t = LAt by Wj

The finite difference equation of (4.3) may then be written as

W = - X[A'G. + Kj]
j j J

x2
+- -A j- {AG +K }J2 + J+t^ J+ (4.4)

- A AG½ + K } + Q ]

where
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At

Ax
Ax

A =(

1
A' =-{(

2

1

) j+1

) j+l 1

= g A'H

0

K.
Kj34½

9(P*AHj

0

gA'Hj * A'
Qj j

It has been shown by Lax and Wendroff [7] that stability of the

scheme is insured if X satisfies the condition

R = X (u + Jgh ) < 1
m m m (4.5)

where u is the largest possible flow speed and h is the maximum height
m m

of the free surface of the flow. It was found, as is well known, that

)j+l+( )j]
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oscillations in the vicinity of jumps and discontinuities at the

obstacle crest were suppressed if the ratio X were made as large as

possible.

We centered the obstacle at the origin of the x coordinate. The

form of the obstacle was given by

H(x) = Hc ( - x2 /a 2 ) for 0 < Ijx < a

=0 for lxi >a

where H is the height of the crest.

We selected the dimensional values for the parameters of the

problem in such a way that the numerical results could be compared

easily and qualitatively with those of laboratory experiments conducted

by Long [8].

h = 20 cm
0

a = 40 Ax

L = 1000 Ax

Ax = 1.0 cm

g = 980 cm/sec 2

The initial conditions were u = u and p = h - H for -L < x < L
o o

at t = 0. The constant u varied from case to case. The boundary condi-

tions in x were chosen to be periodic, that is, u(L) = u(-L) and
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p(L) = p(-L). These boundaries at x = ±L are set sufficiently distant

from the obstacle so that the asymptotic conditions are well established

in the vicinity of the obstacle before wave motions can be fed back

into this region by the periodic boundary conditions.

Numerical solutions were obtained to illustrate the various features

of the flow found in the analytical solutions: the subcritical symmetrical

conditions in domain I, the stationary lee jump in domain IIa, the down-

stream moving lee jump in domain lib, and the supercritical symmetrical

conditions in domain III. These were obtained by selecting M = .5 and

F = .2, .3, .7, and 1.9, respectively. These cases, labeled A,B,C, and
0

D, are shown by the crossed circles in Fig. 3.

Fig. 14a shows the numerical solution of Case A after 1000 time

steps representing 4.6 seconds for the dimensional parameters given,

where R = .77. (R is given by Eq. (4.5) with u and h replaced by

the initial values u and h .) Similarly Figs. 14b,c,d show the numerical

solutions in Cases B, C, and D after 400, 400, and 1000 time steps

representing 1.8, 1.4, 2.3 seconds of real time, respectively. In Cases

the quantity

B, C, D, R equals .83, .82, and .93, respectively. The figures show

the solution as it was plotted directly by the computer on a dd80 digital

display unit. Only 500 of the total 2000 spatial grid points are shown

in each diagram.

The numerical results clearly confirm the conclusions of the

analytical study concerning the evolution of the flow in each of the
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domains. The transient gravity waves that are generated by the mountain

and the impulsive initial flow are not evident in Case A as they have

passed from the vicinity of the mountain. In Case D, which is super-

critical, part of one of the gravity waves of the transient solution is

still visible at the right side. In Cases B and C the transient solutions

are buried in the features of the asymptotic solution. For example, the

downstream moving wave moves with the downstream rarefaction wave. In

three of the figures the position of a fluid particle originating over the

obstacle crest at t = 0 and moving with the local fluid velocity u is shown

by a small flying arrow.

These numerical results agree quite accurately with the asymptotic

features described in Section 3 (see Table 1). In Cases A and D the

numerical errors in certain quantities are less than .1%. In Cases B

and C the numerical errors are less than 2% for all the asymptotic values

that can be evaluated accurately. In Case B some values were evaluated

at the lee jump and the oscillations in the finite difference solution

there, due to truncation errors, prevented an accurate determination of

these values.



Table I

Summary of Numerical Results

Case A B C D

Asymptotic Analytical Computed Analytical Computed Analytical Computed Analytical

Quantity Value Value Value Value Value Value Value

0.3852

0.5192

0.3856

0.5187

1.0672

0.2338

-0.7503

0.3964

0.6296

0.2915

0.2339

1.0669

0.6221

0.4012

0.9603

0.2599

1.0671

0.2339

-0.782

0.3964

0.6295

0.3

0.2

1.

0.6

0.4

0.9603

0.2599

1.3677

0.3579

-0.5724

0.6211

0.7881

0.1541

0.3298

1.4846

DA

aA

Ct

tc

Cr

DB

Dx

Yx

1.3676

0.3580

-0.569

0.6211

0.7883

0.15

0.3298

1.4846

1.4722

1.2905

Computed

Value

1.472

1.290

0.928

0.628

0.9281

0.6268
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5. Conclusions

The shallow water theory was applied to an investigation of fluid

flows over an isolated ridge. The results of the analytical study

reveal that there are three classes of motion in the parameter domain

of F and M as shown in Fig. 3. In domain I, the motions are subcritical
o c

and steady states exist over the ridge without jumps. In domain III, the

motions are supercritical and steady states exist over the ridge without

jumps. In domain II, the steady state solutions exist only with accompany-

ing jumps on both sides of the ridge. The jump on the windward side of the

ridge always moves upstream. The jump on the lee side moves downstream

in domain IIb and remains stationary over the lee slope of the ridge in

domain IHa.

The corresponding time-dependent finite difference solutions were

obtained numerically by solving a periodic initial value problem. After

a sufficiently long time from the beginning of calculations, numerical

solutions over the ridge approach steady states with and without jumps,

The numerical results clearly demonstrate the conclusions of the

analytical study of the various features of flow over the ridge.

The fact that a lee side jump occurs for a relatively low Froude

number of the flow upstream of a ridge may help to explain the not

infrequent occurrence of strong wind situations (chinooks) along the

eastern slope of the Rocky Mountains.

Since the present model treats a single layer of fluid, it does

not permit a study of the vertical extent of jumps associated with the
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ridge. For this reason, the present study is being extended to that of

a two-layer model. By assigning different values of the densities and

the flow velocities of the upper and lower fluids, it is possible to

investigate the effects of thermal stratification and wind shear upon

the formation and structure of hydraulic jumps. This will be discussed

in a later article.
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numerical calculations were carried out on the CDC 6600 at the AEC

Computing and Applied Mathematics Center of the Courant Institute of

Mathematical Sciences, New York University.
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Figure Legends

Fig. 1 A cross section view of the one layer model. The physical

variables are defined in the text.

Fig. 2a M as a function of U as given by Eq, (3.4) for F = 0.3.

Fig. 2b M as a function of U as given by Eq. (3.4) for F = 2.0.
o

Fig. 3 Classification of asymptotic flow conditions as a function of

the initial flow speed, F , and maximum height of the ridge,

M . The crossed circles labeled A, B, C, and D show different
c

cases of the numerical experiments described in Section 4.

Fig. 4 Upstream asymptotic conditions for domain II.

Fig. 5 Downstream asymptotic conditions for domain II.

Fig. 6 Contour lines of DA and JA in domain II as a function of F

and M .
c

Fig. 7 Contour lines of C.

Fig. 8 Contour lines of c and 7 at the ridge crest.
c Jc

Fig. 9 Contour lines of C for domain IIb and M for IIa.

Fig. 10 Downstream asymptotic conditions for domain IIa.

Fig. 11 Contour lines of Dx and 3~.

Fig. 12 Contour lines of Ds and Ts for domain IIb and those of $

and y. for domain IIa.

Fig. 13 Contour lines of and for domain IIa.Fi. 3 onou lne o ^an '. ordoai Ia



-30-

Fig. 14a Numerical results for Case A after 1000 time steps. Height

and velocity are shown in the dimensionless units used in the

text. The time is in units of seconds.

Fig. 14b Numerical results for Case B after 400 time steps.

Fig. 14c Numerical results for Case C after 400 time steps.

Fig. 14d Numerical results for Case D after 1000 time steps.
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Fig. 2a M as a function of U as given by Eq. (3.4) for Fo = 0.3.0



Fig. 2b M as a function of U as given by Eq. (3.4) for F = 2.0.
o



2.4

2.2

2.0

1.8

0

I
um 1.6

I- 1.4
u
0

9 1.0

0.8

0.6

0.4

0.2

n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.t 1.2 1.3

MOUNTAIN HEIGHT -Mc

Fig. 3 Classification of asymptotic flow conditions as a function of
the initial flow speed, F , and maximum height of the ridge,
M . The crossed circles labeled A, B, C, and D show different
cases of the numerical experiments described in Section 4.

Aft



c'

I I

nnr . a' Iw
I

UA
I -

I
I

r
~~I ____

X

Fig. 4 Upstream asymptotic conditions for domain II.

Uo

S

N

w I

--ýý-T I /

u c

Hc;e



Cr

"x ho

X uoh-
UI u- u

"-U h - t I-,

Hc ^s, tB8 !

---- IF

Fig. 5 Downstream asymptotic conditions for domain II.

Nb

'4

UC

·""Ajrqljb ý

^.14



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 I.I 1.2 1.3

MOUNTAIN HEIGHT -Mc

Fig. 6 Contour lines of DA and A in domain II as a function of F
and M . o

c

A%

0
Lu.

I
>-

>M

I-

0

-.J

Z.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

n
%F



.'1

2.2

2.0

1.8

1.6
I

1.4

0

0 1.0

-J
IL 0.8

0.6

0.4

0.2

0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

MOUNTAIN HEIGHT -Mc

Fig. 7 Contour lines of C.
4-



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

MOUNTAIN HEIGHT -Mc

Fig. 8 Contour lines of < and J at the ridge crest.
c c

0

>-

IL

Id
0

.J

u.

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

n
1.2 1.3

w



2.4

2.2

2.0

1.8

0
L 1.6

I

- 1.4

0
., 1.2

o 1.0

-J 
0
0.8

0.6

0.4

0.2

n
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

MOUNTAIN HEIGHT -Mc

Fig. 9 Contour lines of C for domain IIb and M for IIa.r

Ailk As



N Cr=0
Nb

X

Fig. 10 Downstream asymptotic conditions for domain IIa.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

MOUNTAIN HEIGHT -Mc

1.0 1.1 1.2 1.3

Fig. 11 Contour lines of Dx and 3.X

0

I

>j
w

ý3
a.-J-I

2.4

2.2

2.0

r.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0



Z.4

2.2

2.0

1.8

1.6
I

- 1.4

0
-J 1.2
IJ

o 1.0
-J9,.

S 0.8

0.6

0.4

0.2

n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

MOUNTAIN HEIGHT -Mc

Fig.. 12 Contour lines of D8 and Jg for domain IIb and those of _

and Jfor domain IIa.

AM A



2.4

2.2

2.0

1.8

0

1.6
I

. 1.4

0
-J 1.2

30 1.0

-ja

0.8

Q.6

0.4

0.2

n

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

MOUNTAIN HEIGHT -M

Fig. 13 Contour lines of + and + for domain IIa.

I



T =4.57

-I

I
X

Fig. 14a Numerical results for Case A after 1000 time steps. Height and

velocity are shown in the dimensionless units used in the text.
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