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Nonlinear Smoothing Filters Based on Rank 
Estimates of Location 

Abstracf-A class of nonlinear filters is introduced, which is based zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
on the r ank  estimates (R-est imate\)  of location parameters  in statisti- 

cal theory. We show first how moving-window rank  filters (R-filters) 

can be defined start ing from rank  estimates of location. These filters 

utilize the relative r anks  of the  observations in each window to  produce 

a n  output value. A special class of r ank  filters produces outputs  which 

a r e  medians of selected pairwise averages of observations inside each 

~ i n d o w .  The  Wilcoxon filter is one simple example of such a n  R-filter. 

The concept of r ank  \Vinsorization allows a limiting of the influence of 

larger r ank  ohservations. W e  extend the idea of r a n k  Winsorization to 

that of averaging only observations which lie within small temporal 

neighhorhoods. This  leads to a definition of the class of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAgeneralized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWil- 
coxon (GW) filters, w hich a r e  paranietrized b j  th ree  parameters ,  

namelj ,  the  degrees of temporal  a n d  rank Winsorization and  the de- 

gree of averaging. The  GW filters can be defined to have desirable 

characteristics of edge preservat ion,  detail retention. and  impulse re- 

,jection, in addition to the  property of Gaussian noise smoothing. Per-  

formance characteristics of these filters a r e  considered through anal-  

?\is  and  %iniulations with one-dimensional signals. The  filters 

considered here together with recent results on zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL- and  M-filters show 

that all three well-known classes of rohust location estimates, the L-, 
M-, and R-estimates, can be applied to  nonlinear smoothing of signals. 

I .  IN"WDUCIX)N 

INEAR filters have been widely used for successfully L suppressing additive Gaussian noise in noisy se- 
quences composed of desired signals and noise in many 
digital signal processing schemes. One of the advantages 
of linear filters is that efficient FFT algorithms may be 

exploited to reduce the computation time required for the 
processing; a wide variety of other efficient and practical 
hardware implementations are also available for linear fi l-  

ters. It is, however, well known that linear filters, which 
are best for reducing additive Gaussian noise in a noisy 
data sequence, give poor performance characteristics in 
certain situations of practical interest. For example, they 
smear out any edges in an image. and they are also very 
poor in suppressing impulsive noise with heavy-tailed 
probability density function. In  these circumstances, non- 
linear and/or adaptive techniques need to be employed to 

Manuscript received Deccniber 5 .  1987: rcviwd November 30. 1988. 
This work was aupported by the Air Force Otlice of  Scientific Research 
under Grant 87-0052. 

P. P. Gandhi and S .  A .  Kas\aiii ;ire with the Department of Electrical 

Engineering. University o l  Pennsylvania. Philadelphia, PA 19104. 
I .  Song is with the Department 01 Electrical and Electronic5 Engineer- 

ing. Korea Advanced In\titutc o l  Science and Technology (KAIST).  P.O. 
B o x  I SO. Cheongryang. Seoul 130-6.50. Korea. 

IEEE Log Nuinher XY293.56. 

obtain a reasonable recovered version of the desired sig- 

nal. 
In order to overcome these disadvantages of linear fil- 

ters and to get better performance in such cases, nonlinear 
techniques have been proposed and shown to be very ef- 
fective in such situations [ 11-19]. Median filters, whose 
outputs are defined as medians of the input values in 
neighborhoods around each point of the discrete-time 
noisy signal, for example, have strongly nonlinear char- 
acteristics. being able to reject quite effectively impulsive 
noise components while preserving edges in the original 
signal. These two properties of the median filter have been 
widely recognized and exploited, and median filters have 
been rather thoroughly investigated. Examples of appli- 
cations of median filters can be found in nonlinear speech 
processing and image processing [ 101. [ 1 I ] .  Their deter- 
ministic as well as statistical properties have also been 
investigated in [ 121 and [ 131. Efficient realizations for 
real-time median filtering and VLSI implementations of 
median filters have been considered [ 141. 

Since the degree of noise smoothing obtainable by a 
median filter can be influenced only by the processing 
window size, however. a median filter does not in general 
allow the user a sutficient degree of control over its char- 
acteristics 141. Furthermore, median filters do not have 
the averaging operation that is particularly appropriate in 
reducing additive Gaussian noise components in noisy 
data; thus. they may perform poorly in Gaussian noise. 
Therefore, for a better overall performance when the sig- 
nal has both edges and details and the noise has both 
Gaussian and impulsive components, i t  is, in general, 
highly desirable to implement a filtering scheme with an 
algorithm that has both nonlinear and linear (averaging) 
characteristics which can be easily influenced by a set of 
parameters. 

A variety of such techniques, including robust estima- 
tion techniques from statistical theory [ IS]-[ 181, have 
quite recently been exploited in the digital signal process- 
ing area for this purpose. Cascades of median and linear 
filters, the order-statistic or L-filters 131. 141. the M-filters 
141, the k-nearest neighbor (KNN) filters [ I ] ,  the sym- 
metric nearest neighbor (SNN) mean filters, the synimet- 
ric nearest neighbor (SNN) median filters 121, and the lin- 

ear median hybrid (LMH) filters 16) are typical examples 
of such techniques. It has also been shown that nonlinear 
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techniques which inherently employ both linear and non- 

linear operations (e .g . ,  M-filters and L-filters) allow the 
user a useful degree of control over the filter characteris- 
tics through a set of variable parameters that may be set zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a priori or adaptively by an appropriate algorithm, allow- 
ing better overall performance than median filters [4], 

It is noteworthy that, among the filters mentioned above 
for restoring desired signals from noisy observations, the 
L- and M-filters are based on classes of robust estimates, 
the L- and M-estimates, respectively. Since these two 
classes of robust estimates from statistical theory have 
successfully been exploited in the area of digital signal 
processing, it is quite natural to seek similar applications 
of the third major class of robust estimates, the rank es- 
timates (R-estimates), of statistical theory. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs an exam- 
ple of the general class of R-filters, a filter may be based 
on the Wilcoxon statistic which is commonly used in non- 
parametric statistics. The Wilcoxon filter selects the me- 

dian of averages ofpairs of values (Walsh averages) in 
each filter window, and thus can be regarded as a gener- 
alization of the median filter with an average operation 
incorporated. Crinon [I91 applied the Wilcoxon filter to 
recover nonstationary signals corrupted with Gaussian 
noise. It was shown that although the Wilcoxon filter is 
robust, it smears out the sharp signal transitions. Fast al- 
gorithms to compute the Wilcoxon filter output have also 
been developed in both one-dimensional [ 191 and two-di- 
mensional [20] filtering applications. 

In this paper, a new class of nonlinear discrete-time fil- 
ters for edge preservation, detail retention, and Gaussian 
and impulsive noise reduction is considered as an appli- 
cation of a class of rank estimates in signal processing. 
We introduce what will be called the generalized zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWil- 
coxon (GW) filters which are improved versions of the 
Wilcoxon filter. These filters use both the temporal and 
rank information of the input signal within a window to 

produce the output. They will have, in general, better per- 
formance characteristics than the mean, median, and Wil- 
coxon filters. These performance characteristics can be 

influenced by a set of parameters that can be chosen or 
varied adaptively, a feature which is common to L- and 
M-filters also. In addition, the design of the GW filters 
will be independent of the input signal variance. 

This paper is organized as follows. In Section 11, a gen- 
eral class of R-filters based on both one- and two-sample 
rank tests is described along with the basic rationale for 
their expected usefulness. Some properties of the Wil- 
coxon and Normal Scores filters and their Winsorized ver- 
sions are also discussed. The GW filters are then consid- 
ered in Section I11 as extensions and improvements of the 
simple Wilcoxon filter, and their properties are discussed. 
Two dual classes of nonlinear filters are also defined which 
include among them most of the interesting nonlinear fi l-  
ters which have been considered in the past. Section IV 

is devoted to performance analysis and comparisons of the 
GW filters and other filters through computer simulations. 

~ 3 1 .  

11. THE R-FILTERS 

One special form of finite impulse response (FIR) linear 
filtering is obtained when the outputs are running means 
of the input sequence, computed in processing windows 
of size N .  As we have noted in the previous section, the 
median filter may be viewed as its more robust counter- 

part which is quite effective in impulsive environments 
but which is not as good for additive Gaussian noise 
smoothing. The concept of robustness is particularly ap- 
propriate in signal processing when the noise has impul- 
sive components, since robustness implies insensitivity to 
a slight deviation, such as that caused by a small number 
of impulses, from a nominal assumption (usually of 
Gaussian noise). Such a robust scheme is also effective 
for edge preservation since near the start or the end of an 
edge the data in a window of size N appears to contain a 
few impulses. These properties can also be found in the 
L- and M-filters, which are based on the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL- and M-esti- 
mates, respectively, of statistical theory. Let us denote by 
Y the output of a filter based on a set of N observations 
(XI,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx,, . . * , X,).  The output of an L-filter is defined to 
be some linear combination of ordered observations [3] ,  

[4]. That is, we have Y = P I X , , ,  where fl = ( P I .  P2, 

. . . , O N )  is a set of coefficients and X , ,  , is the ith smallest 
observation in the set ( X , ,  X,, * * . , X , v ) .  For example. 
choosing fl = ( I .  1 ,  . I )  gives us the sample mean 
filter and fl = (0 ,  . . . 0. I ,  0, . . . , 0 )  gives us the 
median filter (for odd N ). The output of an M-filter. on 
the other hand, is defined to be the value of Y that satisfies 

E;”= I $ ( X I  - Y )  = 0 where $ ( * ) is an odd function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[4]. 
The M-filter reduces to the sample mean filter if $ ( x )  = 

x and to the median filter as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$(.U) -+ sgn ( x ) .  
The essence of the operation of an R-filter is that more 

importance is placed on ranks of the data in forming the 
output for each window; the output of the R-filter is de- 
termined using the relative ranks of the data in each pro- 

cessing window at any time index. Thus, extreme values 
such as those produced by impulsive components can be 
made to have much less of an effect on the output than 
would be the case in linear filters. For example, the se- 
quence { 2.1, 3.2, 4 .3 ,  5 .9 ,  0 . 9 }  will appear to be the 
same as the sequence { 2.1,  3.2, 4.3,  59.0, 0 .9}  to a 
properly designed R-filter, because both sequences have 
the rank vector { 2,  3, 4, 5 ,  1 } .  Furthermore, when the 
processing window is located near the start or the end of 
an edge, the edge appears to produce a few impulsive 
components, and therefore the R-filter, in general, does 
not smear an edge as much as a linear filter. These obser- 

vations of insensitivity of R-filters to impulses can also be 
made for L- and M-filters. In fact, the L-filter also explic- 
itly uses rank information in weighting data values. 

Let us consider a vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX of N observations ( X I .  X,,  
. . .  , X,) governed by cumulative distribution function 
(cdf) F ( x  - 8 )  and assume that the probability density is 

symmetric about the location parameter 8. We will denote 

the ordered observations by X ,  I X ( > , ,  * . . , X,,, with 
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of 8 is defined from rank tests for 8 = 0 versus the alter- 
native 8 > 0. In this section, we will present rank esti- 
mators based on both the one- and two-sample rank tests 
for location. We will, however, restrict our attention to 
filters based only on the one-sample rank tests. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A .  One-Sample Rank Filters 

H :  8 = 0 versus E: 8 > 0 is given by' 

A general one-sample rank test of location for testing 

where $ ( X )  is a test function and T is a test statistic. 
Here the test statistic T depends on the ranks of the ob- 
servations. The constant c determines the rejection region 
of H and is found for some prescribed type-I error zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACY, 

which is 

E o , o [ $ ( X ) ]  = P [ T  > c ( H ]  = CY ( 2 . 2 )  

where 0 I CY < 1 .  In particular, the test statistic T is 
given by (171 

where R(  1 X I  1 )  = RI is the rank of the ith absolute value 
I X ,  1 in the set of absolute values { \ X I \ ,  I X ,  1 ,  1 . . , 
I X N  I }, the score functiori U ( . ) is a nondecreasing 
weighting function defined on (0.  1 ), and u ( * ) is the unit 
step function. This statistic is called the one-sample signed 
rank statistic. In  order to compute the value of T for a 
given set of observations, we need only N uniformly 
spaced score values of the score function. These N scores 
will be denoted by a, where a, = ( I  [ i / ( N  + 1 ) ] ,  i = I ,  
2.  . . . , N ,  and u0 = 0. The test statistic Tgiven by (2.3) 
is a reasonable statistic for testing H versus H ,  because 
under H any of the ranks R, can correspond to either pos- 
itive or negative observations with equal probability. It is 
easy to see that the distribution of T under H is symmetric 
about I a , / 2 .  Under the alternative H .  however, the 
cdf of any observed sample is translated to the right by 

amount 8. Hence, larger ranks that correspond to positive 
observations occur with higher probability than those cor- 
responding to negative observations. This leads to a larger 
value for T and the null hypothesis is rejected. 

For estimation purposes, the observations are assumed 
to be governed by a symmetric probability density func- 
tion with location parameter 8.  which is the parameter to 
be estimated. To estimate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0,  we modify (2.3) to define a 

'The alternativehypothesis H may also be taken to he 0 # 0 or 0 < 0. 
For in\tance. for H :  0 # 0. the niodifi!d rank test becomes I$ ( X ) = I i t  
171 > ( , a n d  = O i f I t (  5 ( . w h e r e T = C ~ ~ , t r [ R ( l X , I ) / N +  I j s p n  
( X , ) .  Here the distribution of f i s  symmetric about 0. We are intere\ted in 

the problem of  signal restoration or c . \ ~ i m / r i o ~ i .  and the one-sample rank 
test for any of the three alternatives will lead t o  the same result for signal 

estimation. 

quantity T (  0 )  given by 

1361 

where R(  1 X ,  - 8 I ) = RI ( 8 )  is the rank of the ith absolute 
shifted value I X ,  - 81 in the set { \ X I  - 8 1 ,  I X 2  - 8 1 ,  
. . .  , I X N  - 8 I } .  Note that the distribution of T( 8 )  is 

symmetric about Cf'= I a , / 2 .  We now define the estimate 
8 of the unknown location 8 as that value for which the 
statistic T (  8 )  takes on the center value of the distribution 

of T (8 ) .  In  other words, 8 is the solution of the implicit 
equation 

Y 

( 2 . 5 )  
U 

T ( 8 )  = c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. 
1 = I  2 

The equality may not be always achievable due to the dis- 
crete nature of T ( 8 ) .  Hence, 8 is in practice taken to be 
the value of I9 for which T(  8)  is closest to Cy= I a, / 2 .  The 
location estimate defined by (2.5) is known as the 
Hodges-Lehmann estimate [2  I ]  of the location 8. 

A useful alternative expression of T (  8 )  is available 1221 
in terms of the difference of adjacent scores. This is 

N N  

T(I9) = c ( a j p i + ,  - a j - l ) u ( W  ,!/, - 8 ) .  (2.6) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 = I  / = I  

I S /  

Here the ordered Walsh average W,,  is defined as the 

average ( X , ; ,  + X ,  , , ) / 2  of the ordered observations X , ; ,  
and X, , / , .  We will also use the notation Wl., to mean the 
painvise Walsh average ( X I  + X , ) / 2 .  As a special case, 
consider a set of scores { a l ,  a?, . . . , a,&,} for which the 

constant. Then the estimate 8 based on the signed rank 

quantity T ( 8 )  is given by 

steps a,-, + I - a,- ;  = C or zero, where C is a positive 

8 = median { W ( j i ) : ( i , j )  E S }  ( 2 . 7 )  

where the set S is defined by 

The condition that the diference of the two adjacent scores 
must either be constant or zero implies that the score func- 
tion is either piecewise linearly increasing with slope C 
or piecewise constant. The Hodges-Lehmann estimate, in 

this case, assumes a very simple form given in (2.7). Note 
also that (2.7) represents a generalization of median filters 
with an inherent averaging operation, a property which 
has been one of our objectives to obtain as a desirable 
one. 

Before we proceed further in discussing the R-esti- 
mates, let us briefly consider the relationships between 
the three common classes of robust estimates. In order to 
see the similarities between L- and R-estimates, let us 
substitute for the unit  step function u ( . ) an equivalent 
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signum function in (2.6) to get zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
,v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAh 

The location estimate 8 is the solution of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw 

, = I  c / = I  C ( m / - l + l  - U / - J { S & n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(WC,,, - 8 )  + 1 } / 2  

I S /  

N 

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 4 2 .  ( 2 . 1 0 )  
I -  I 

Simplifying (2. IO) we get 

N N 

C X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( N ~ - , + ~  - sgn (w,, , ,  - 6') = 0. (2 .11)  
; = I  / = I  

i s /  

Now if we replace the signum function with a linear func- 
tion, i t  is easy to see that the location estimate 8 = 8,. is 
given by 

N 

8,. = x PIX , , )  
i =  I 

(2.12) 

where 

(2.13) 
a1 + aN-l+l 

P, = ,v 

1 = 1  

Note that 8, satisfies an unbiasedness condition since 6, 
= P N  ~, + I, and Cy= I 0, = 1. The R-estimate resulting from 
(2.4) or (2.5) may be considered as a restricted L-estimate 
in the sense that only the sign of W,,, ,  - 6' is used in 
determining the R-estimate. A similar relationship also 
exists between the R- and M-estimates. For example, if 
we consider a linear score function in (2.4) and use the 

result ( 2 . 3 ,  we get (191 

Y 

C R ( I X ,  - 81) sgn (Xi - 8)  = 0. (2 .14)  

Now an M-estimate is defined as a solution of E:= I rc/ ( X I  
- ah,) = 0, for an appropriately defined $ function. Thus, 
6' in (2.14) may be interpreted as a modified M-estimate. 
For an arbitrary score function. the R-estimate resulting 
from (2.4) and (2.5) can similarly be considered as a mod- 
ified M-estimate. 

In order to define an R-filter. let us consider a time se- 
ries { Z, } which is to be filtered. The filters we consider 
here will act as finite moving window filters of window 

size 2n + I ,  and will process samples { Z,-,,, Z,-li+ I. 
. . , Zk+l l}  to produce the output Y, at the kth time in- 

stant. For convenience we will denote this finite window 
sequence by ( X I ,  X 2 ,  * . . , X,%! ) where X I  = Z, ~~ ,, + I  ~ I for 

I -  I 

i =  1 , 2 ; . .  , N and N = 2 n  + 1 .  Then the output of 

the R-filter at the k th  time instant is given by the Hodges- 
Lehmann estimate 8 based on ( X I ,  X,,  . . . , X,,,). Note 

that the R-filter is based only on the rank ordered set { X ,  I ). 
X(Z,, . . . X , , , }  and ignores tetnporul ordering, as do 
the L- and M-filters. The output Y, of the R-filter is simply 
the R-estimate of the location of the input sequence in the 
window. 

Even though a general formulation of R-filters can be 
expressed by (2.4) and (2.5), it is difficult to get more 
insights and to deduce detailed characteristics from the 

above formulation because a ( . ) has not yet been given 
explicitly. The score function U ( . ) plays an important role 
in the R-filter, determining its performance characteris- 

tics. By choosing appropriate forms for m (  . ). a number 
of special R-filters can be defined with different specific 
characteristics. Let us now look at some examples of 

R-filters that may be derived from the general framework 
presented above. 

Example I (Medimn Filter): Suppose the score function 
is constant on (0 ,  1 )  as shown in Fig. I(a). The test re- 
sulting from such a score function is known as the sign 
test. 
and 0 for j > i .  Recall that ug = 0. The estimate 6' is 
simply given by the median of N observations, and the 
filter output is 

Y, = median { X ( , ) ,  X(z,, - * * , X , N ) } .  (2.15) 

For odd zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN, median is the center value of the ordered ob- 

servations, and for even N ,  it is the average of the two 
center values of the ordered observations. It is well known 
that the median filter preserves edges and removes 

The following examples of R-filters exhibit tradeoffs 
between Gaussian noise smoothing and edge performance 
in the class of general R-filters. 

Example 2 (Wilmxon Filter): Consider a linearly in- 
creasing score function as shown in Fig. l(b). Here the 
difference in the adjacent scores is the slope of the score 
function. The filter output, in this case, is given by 

Yk = median { W(, , / ) :  1 I i I j I N ]  (2.16a) 

= median { Wu: 1 I i 5 j 5 N}. (2.16b) 

The Wilcoxon filter consists of both linear and nonlinear 
operations; however, its ability to preserve edges is not 
very good [19]. This is because the Walsh averages are 
computed over all pairs of indexes ( i ,  j ) such that i I j .  
It is easy to see that the Wilcoxon filter computes the me- 
dian of N ( N  + 1 ) / 2  Walsh averages, which is a signifi- 
cant increase in number compared to the median filter. 
For large values of N ,  the Wilcoxon filtering output com- 

putation can be quite demanding. Efficient algorithms 
have been explored to reduce this computational burden 
in both one- and two-dimensional Wilcoxon filters [ 191, 

[201' 
Let us now consider the edge response of the Wilcoxon 

filter. Suppose the input to the Wilcoxon filter is an ideal 

For this case we have - a / - /  = 1 f o r j  = i 

impulses. + 
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( r i l l )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t 

( I ( l 1 )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

L t  ... 

( e )  
Fig. I. One-sample score functions. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) Median. (b) Wilcoxon. (c) Nor- 

mal scores. (d) Winsorized Wilcoxon. (e )  Modified median. 

edge. An ideal edge is noise free and may be defined as a 
step from a constant value to another constant value. We 
will assume that the step is from 0 to 1.  Let us consider 
an input with an ideal edge which can be represented by 
the sequence { . * * 0, 0, 0, 0, 1,  1 ,  1 ,  1 ,  . . }. It is quite 

straightforward to obtain the filter output. For example, 
for N = 5 and 7, the output of the Wilcoxon filter is { - - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0,0,0,1/2,1/2,1,l,1,**~},andforN=9and13 
i t  is { * 0, 0, 1/2,  1/2 ,  1 / 2 ,  1 / 2 ,  1 ,  1 ,  . * a } .  This 
shows that the Wilcoxon filter will generally smear edges 
and distort narrow pulses, but not quite so badly as a run- 
ning mean filter would. 

Although we are not really interested in the asymptotic 
performance (for N -+ CO) of our filters, a consideration 
of asymptotic performance can allow some interesting 
comparisons to be made. The asymptotic performance of 

one filter relative to another filter can be measured in terms 

of the asymptotic relative eficiency (ARE). There are 
many different ways of defining the ARE. Consider two 
estimates 8, and of the location 8 based on N observa- 

tions, with the asymptotic distribution of N ’ 1 2 [ 8 ,  - 81 
approaching the zero-mean normal distribution with vari- 
ance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT’. We define the ARE of 8, with respect to 8, as 

e2,1 = r : / r ; .  (2 .17)  

The median, for example, is approximately 67 percent ef- 
ficient compared to the sample mean if the observations 
come from a Gaussian distribution. The asymptotic per- 
formance of the Wilcoxon filter is very similar to that of 
the mean filter. In fact, the Wilcoxon filter is approxi- 
mately 96 percent efficient compared to the mean filter 

~ 3 1  
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under the assumption of Gaussian noise. Hence, i t  is ad- 
vantageous to use the Wilcoxon filter for filtering slowly 

varying signals corrupted by additive Gaussian and im- 
pulsive noise. The Wilcoxon filter performance in such 
cases is generally superior to that of the mean filter since 
it removes the impulsive noise components effectively 
without compromising the amount of Gaussian noise 

smoothing (as would be the case in the median filter). The 
Wilcoxon filter, whose output is expressed by (2.16b), 
has been investigated in [19]. The study in [I91 appears 
to be the first published study on applications of R-esti- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Example 3 (Normal Scores Filrer): The Normal Scores 
(NS) filter is obtained by letting a; = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa- ' [  I / 2  + i / 2 ( N  
+ I ) ] ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = 1, 2,  . . , N with a-'( - ) being the inverse 
of the standard normal distribution as depicted in Fig. 
l(c). This score function does not satisfy the condition 
that differences of adjacent scores are either constant or 

zero. Therefore, the resulting filter output does not lead 
to a closed-form expression as in (2 .7) .  One may use nu- 
merical techniques to implement the NS filter and any 
other filter with a general score function based on (2.5). 
The NS filter is asymptotically as efficient as the sample 
mean and slightly more efficient than the Wilcoxon filter 
for additive white Gaussian noise. However, the edge 
performance of the NS filter is inferior to that of the Wil- 
coxon filter. For example, the output of the NS filter due 
to an ideal edge is { . . . 0 ,  0 ,  1 / 2 .  1 /2 ,  1 / 2 ,  1 /2 ,  I ,  
1, . } if N = 7 is used. Since the output of the NS filter 
is determined by locating the point of symmetry of (2.4), 
the computation burden becomes rather intensive. This 
burden can be reduced if a smaller window size is used. 
However, our simulation results indicate that the NS filter 
performance for relatively small windows is not much dif- 
ferent from that of the Wilcoxon filter. + 

Example zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 (Winsorized Rank Filter): As discussed 

above, the edge performance of a rank filter will generally 
be poor if the difference of adjacent scores is different from 
zero for larger values of the score index. In this case, the 
set of ordered Walsh averages contains averages of values 
across the edge. It may be possible to improve the edge 
performance of such an R-filter if we limit the distance 
over which the Walsh averages are performed. This is 
equivalent to limiting the score function beyond some in- 
dex zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr to a constant value. That is, data values with ranks 
larger than some maximum value are treated with uniform 
weights. The process of limiting of the score function after 
some distance r is known as Winsorization. The median 
filter is an extreme example of such an R-filter where the 
entire score function is Winsorized to give an excellent 
edge response. 

Winsorization can be applied, for example, to the NS 
filter, to improve the edge performance and to reduce the 
computation burden. A more interesting filter can be de- 
fined if the Wilcoxon filter is Winsorized. The score func- 
tion in this case incorporates a mixture of both the Wil- 
coxon-type (linear) and the median-type (constant) score 
functions. This is achieved by using a score function that 

mates to signal restoration. + 

is similar to the Wilcoxon score function on (0,  r )  and 
constant on [ r ,  1 ) as shown in Fig. I(d). The resulting 
statistic T is called the Winsorized Wilcoxon signed rank 
staristic with a, = min ( i ,  r ) .  The corresponding output 
of the Winsorized Wilcoxon filter is given by 

Y, = median { W,, , , : j  - i < r ,  1 I i I j I N ) .  

(2 .18)  

The edge performance of this filter is enhanced since 
the set of ordered Walsh averages is restricted to contain 
W, i , ,  satisfyingj - i < r for some maximum distance r .  
By letting r range from 1 to N ,  the Winsorized Wilcoxon 
filter ranges from the median filter to the Wilcoxon filter. 
The improvement in edge performance is seen by consid- 
ering an ideal edge at the input. The corresponding output 

of the Winsorized Wilcoxon filter for N = 9 is { * * 0, 
O , O ,  1/4,  3 /4 ,  I ,  I ,  1 ,  * - e }  i f r  = 3 a n d i s  { . - e  0, 
0, 0, 1 /2 ,  1 / 2 ,  1, 1 ,  1, 1 * . }  if r = 4,  5, and 6. The 
smearing of the edge is clearly reduced compared to the 
Wilcoxon filter with the same window size. Hence, the 

Winsorized Wilcoxon filter offers a compromise in per- 
formance between the Wilcoxon and the median filters. 
The value of the parameter r can be chosen between the 

two extremes to obtain better edge performance compared 
to the Wilcoxon filter and better smoothing compared to 
the median filter. 

Clearly, the computation burden is reduced in the Win- 
sorized Wilcoxon filter compared to the Wilcoxon filter if 
r is chosen to be less than N. In general, the total number 
of ordered Walsh averages over which the median oper- 
ation is performed is given by 

h' 

M, = ( N  - r + 1). + c ( N  - i + l ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
r = N - r  i 7  

I I ~ I N  

= ( 2 N  - r + l ) r / 2 .  (2.19) 

Note that M ,  is reduced to N if r = 1 (median filter) and 
+ 

Example 5 (Modified Median Filter): In this example, 
we describe an R-filter based on an L-step score function 
(241. This score function is shown in Fig. l(e) and is de- 
scribed by 

to N ( N  + 1 ) / 2  if r = N (Wilcoxon filter). 

0 < U I d o / ( N  + l ) ,  

do/ (N + 1 )  < U I d l / ( N  + I ) ,  

(2 .20)  

where 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf do 5 dl cr . . I dL - I I N are integers. 

Let us denote by S ( m )  the set of indexes over which the 
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ordered Walsh averages are computed for the mth discon- 
tinuity in the score function. In other words, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~ ( m )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= { ( i , j ) : j  - i = d,,,, I 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ~j I N } .  

( 2 . 2 1 )  

Hence, 

1 - 1  

8 = median W ( , / ) :  ( i , j )  E U S ( m ) ] .  (2 .22)  

Note that the modified median filter reduces to the Win- 
sorized Wilcoxon filter if L = r and d,,, = m for tn = 0, + 

Both the Wilcoxon and the NS filters are robust cotn- 
pared to the sample mean in the sense that their perfor- 
mance is not affected by a few impulses present within a 

particular window. However, both filters smear out edges. 
The Winsorized Wilcoxon and the Winsorized NS filters 
do offer some improvement in the edge performances. In 
Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIV we will discuss some simulation results illus- 
trating this. 

i I l l  = 0 

. . .  , r - 1;  for r = 1 we get the median filter. 

B. Two-Sumple Rank Filters 

In this subsection we discuss the rank estimate resulting 
from a two-sample rank test. Although we will only con- 
sider filters based on the one-sample rank estimates in the 
rest of this paper, we have, nevertheless, provided a rather 
detailed treatment of rank filters based on the two-sample 
location estimate for the sake of completeness. Two-sam- 
ple rank tests have early on been applied to construct one- 
sample estimators in nonparametric statistics. The one- 

sample rank estimates we have described turn out to be 
closely related to those constructed from the two-sample 
rank test starting point. The second sample in this appli- 
cation is artificially generated as explained below by sep- 
arating data values with different signs. Consider first two 
random samples, ( U , ,  U?, . . . , U,)  from cdf F ( x  - e[ , )  
and ( X I ,  X, ,  - . . , X N )  from c d f F ( x  - 0 , ) .  Let us define zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
19 = 0, - e,, to be the location difference of the two sam- 
ples. A general two-sample statistic for testing location 
shift between the two samples may be defined as [ 181 

( 2 . 2 3 )  

where b ( ) is a nondecreasing score function defined on 
( 0 ,  1 )  with b ( u )  = -b( 1 - U ) ,  and R, is the rank of the 
ith observation from the second sample of size N (the rank 

of X , )  in the pooled sample of size 2 N .  Note that b(  U )  is 
odd-symmetric about the point U = 1 / 2 .  

If the locations of the two samples are the same, the 

ranks of the observations from the second sample ( a  sam- 
ple of size N ) are equally likely to be any set of N of the 
first 2 N integers. On the other hand, i f  the location of the 
second sample is beyond that of the first sample, the ranks 
of the observations from the second sample will tend to 
have larger values, resulting in a larger value for W on 
the average. Therefore, by comparing W to a threshold, a 

test for location difference for the two samples is ob- 
tained. 

To estimate the difference in location 8 ,  (2 .23)  is mod- 
ified to become 

( 2 . 2 4 )  

where R, ( e )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIS the rank of X ,  - 0 among the pooled sam- 

ple ( U , ,  * , X N  - e ) .  Following a 
procedure similar to that in the one-sample case, W (  0 )  of 
(2.24) can alternatively be expressed in terms of the dif- 
ferences A,,, , as [ 171 

. , UN, XI - 8 ,  * * 

N 

w(e)  = Q ( e )  + C b, (2 .25)  
, = I  

where 

N N 

Q ( e )  = C (b /+ ,  - bJ+,-I)U(A(1j j  - e ) ,  
I = I  J = I  

( 2 . 2 6 )  

and 

A, , ,  = X ( i ,  - u(.j,. 
( 2 . 2 7 )  

As in the one-sample case, we may similarly describe the 
estimate 8 of the location difference 0 for the special case 
of a score function that is either piecewise constant or 
linearly increasing in the following way: 

8 = median {A i i J , ,  ( i , j )  E S }  ( 2 . 2 8 )  

where 

s = { ( i , j ) : b , + l  - b,+ i - l  = constant, 

1 P i , j  I N } .  

For an arbitrary score function, it is generally not pos- 
sible to compute e based on (2 .28) .  In this case, 8 can be 
computed from the implicit equation [18] 

W ( 8 )  = 0 (2 .29)  

where W (  e )  is given by (2.24).  In essence, (2 .29)  implies 
that the value 8 should be found so that the resulting two 
sets of ranks of the two samples defined above, from the 
pooled sample, are statistically similar. 

As an interesting observation, we note that one direct 
application of the two-sample rank test is in edge detec- 
tion. Consider a data set of length 2 N with a possible edge 
in the middle. Let us denote the leftmost N data values by 
( U , ,  U,, * . * , U N )  and the rightmost N values by ( X , ,  
X,, . . * , X,v ) .  We may now compute the value of the test 
statistic W of (2.23) for a given score function and com- 

pare it to some threshold 7. The value of 7 can be set for 
a desired value of the probability of false alarm (type I 
error), and an edge is detected if Wexceeds the threshold. 
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Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY, be the candidate location estimate for the sample 

of size zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN centered on the kth time index. Since only one 
sample { X, } of size N is available in each window in our 
problem of signal restoration, another set { U, } has to be 
defined from each of the original samples of size N before 
further processing in which such a rank statistic is used. 
For this purpose, an image of the sample in each window 
at a candidate location value Y, may be employed. To do 
this, we center the original sample ( X I ,  . . - , X,) to be- 

come ( X I  - Y,, , X, - Y,),  and then invert signs to 
get ( Y ,  - X I ,  . . . , Y, - X,) as the second sample. The 

Xand the desired U samples may now be inserted in (2.24) 
and (2.29) [or (2.28)] to obtain an estimate of their loca- 
tion difference, which would then be forced to be zero or 
close t,o zero. Substituting Y, - Xj for U, in (2.28) with 
Y, = 8, we get 

Y, = median { W ( j , N - , / + l ) : ( i ,  j )  E S } .  (2 .30)  

A two-sample score function b ( U )  can be generated 
from its one-sample counterpart a ( U )  by setting b ( U )  = 

- a ( l  - 2u)  i f 0  < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 1 /2  a n d a ( 2 u  - 1 )  if 1 /2  < zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
u < 1 .  The two-sample score functions generated from 
the one-sample counterparts for the median and Wilcoxon 
filters are shown in Fig. 2(a) and (b), respectively. Let us 
now consider some examples of R-filters resulting from 
the two-sample rank tests. 

Example 6 (Two-Sample Median Filter): The score 

function for a two-sample median filter is shown in Fig. 
2(a). It is evident from the figure that b,,; - bi+ ;- I  = 2 
i f j  + i = N + 1. The output of the filter is given by 

Y, = median { X ( I , ,  X ( ? ) ,  * * * , X(,)}. (2.31) 

This follows directly from (2.28) and is the same as in the 

Example 7 (Two-Sample Wilcoxon Filter): As a second 
example, consider a two-sample Wilcoxon filter for which 
the score function is linear and is given by b ( U )  = 2u - 
1 as shown in Fig. 2(b). In this case, it can be shown that 
(2.28) can be explicitly solved to give 

one-sample case. + 

Y, = median { W l / :  1 I i , j  I N } .  (2.32) 

This should be compared to (2.16b). Here the median op- 
eration is performed over all N 2  Walsh averages com- 
pared to only N ( N  + 1 ) / 2  Walsh averages required in 
(2.16b). Even with this additional computational burden, 
the output of the two-sample Wilcoxon filter in many cases 
is quite similar to that of the one-sample Wilcoxon filter. 
In fact, it can be shown that the two-sample Wilcoxon 
filter is asymptotically equivalent to the one-sample Wil- 

coxon filter [ 181. + 
More generally, filters or estimates based on one-sam- 

ple and corresponding two-sample rank tests will be 
slightly different in their characteristics. However, these 
differences are not very marked, and we will focus only 

on filters based on the one-sample procedures in the rest 
of this paper. 

(b) 

Fig. 2.  Two-sample score functions. (a) Median. (b) Wilcoxon. 

111. GENERALIZED RANK FILTERS 

We have seen in the previous section that Winsorization 
of the score functions plays an important role in terms of 
preserving edges or fine details. In particular, the Win- 
sorized versions of either the Wilcoxon or the NS filters 
may be used to filter nonstationary input sequences con- 
taining edges and outliers with better smoothing of the 
background Gaussian noise as compared to the median 
filter. Such Winsorization is achieved simply by limiting 
the score function to a constant value for larger ranks. 

The R-filters that we have described so far use only the 
rank-ordered observations to produce the output se- 
quence. For example, the R-filter does not discriminate 
between a pulse of width wand two narrow pulses of width 
w/2 if they lie within a single window, since the ordered 
sequence for both cases is the same. For example, con- 
sider the original signal shown in Fig. 3(a) which contains 
two edges enclosing a pulse of width 5 on the left and a 

pulse of width 4 on the right. The corresponding noisy 
signal is shown in Fig. 3(b) with additive zero-mean 
Gaussian noise of unity variance and a deliberately placed 
impulse between the narrow feature of width 4 and the 
right edge. Using different filtering schemes with N = 9, 
we see from Fig. 3(c)-(g) that we are unable to recover 
the signal with these two features. For such situations, it 

would be useful to have a class of filters that incorporate 
not only the ranks but also the temporal positions of the 

input data sequence in producing the outputs. In the ex- 
ample just considered, this would allow use of the data 
values in pairs or groups which are close neighbors based 

on temporal-order and rank-order information. This leads 
to a concept of Winsorization in both temporal and rank 
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Fig. 3 .  Simulation results with N = 9. (a) Original signal. (b) Noisy sig- 

nal. (c) Output of the median filter. (d) Output of the Wilcoxon (or  NS) 
filter. (e) Output of the Winsorized Wilcoxon filter with r = 2 .  ( f )  Out- 

put of the Winsorized Wilcoxon filter with r = 3 .  (g)  Output of the 

Winsorized Wilcoxon filter w ~ t h  r = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  

domains; that is, the output is computed based on adja- 
cency in time and rank positions of the windowed se- 
quence. Such filters may be described as doubly Winsor- 
ized filters. We will use the concepts of R-estimates of 
Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI1 to define filters based on time-rank adjacency. 

A .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFilters Based on Temporal Score Functions 

Before we describe a more general class of filters based 
on time-rank Winsorization, let us first consider a direct 
counterpart of the rank-order filters in  the temporal do- 

main. Specifically, consider the Wilcoxon filter given by 

(2.16a) and (2.16b). Note that the filter output in this case 
is not affected by whether or not the input data values are 
sorted. The Winsorized Wilcoxon filter given by (2.18) is 
based on (2.16a). Here, the median is computed over 
painvise averages of ordered values that are in proximity 
in terms of ranks. Similarly, we may define a different 

filter based on (2.16b) which computes the median over 
painvise averages that are not too far apart remporully. 
We will refer to this class of filters as time-Winsorized 
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filters (as opposed to the rank-Winsorized filters of Sec- 

tion 11). 
In order to formally define a class of time-Winsorized 

filters corresponding to arbitrary score functions, let us 
consider the quantity zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP (  %) defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N N  

P ( % )  = Z: C zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( d j p ; + i  - d,-,)u(WC, - %) (3 .1)  
r = I , / = l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 ./ 

where d ( . ) is the temporal score function defined on (0, 
1 ) with scores d, = d [ i/( N + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 ) ] .  Then it is shown in 
Appendix A that P ( e )  is symmetrically distributed about 

To compute the estimate 8 based on (3. I ) ,  set P ( 8 )  = 

E [  P (  % ) I  as before. In order to get a closed-form expres- 

sion for Yk = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8, we restrict the temporal score function to 
be either piecewise linearly increasing with slope C or 
piecewise constant. Then we get, as a counterpart of the 

result (2.7), 

E;= dJ2. 

Y, = median { W(/ : ( i ,  j ) E s } (3 .2)  

I r i I j r N } .  

(3.3) 

where the set s of indexes ( i ,  j ) is given by 

s = { ( i , j ) : d J p i + i  - eJpi = C, 

The filter defined by (3.2) is simply the time domain ver- 
sion of (2.7). It is easily seen that both (3.2) and (2.7) 

yield the same output value if the input data sequence is 
monotonic. Hence, both filters will have the same ideal 
edge response. Furthermore, (3.2) agrees with (2.7) if the 
temporal score function is either constant [median-type, 
see (2.15)] or linearly increasing [Wilcoxon-type, see 

(2.16b)l. 
A more interesting filter results when the temporal score 

function is constrained to be linearly Winsorized [see Fig. 
l(d)]. The filter output in this case may be written as 

Y, = {W,;:. j  - i < t ,  1 I i S J  I N )  (3.4) 

where t is the degree of temporal Winsorization. We call 
this filter the time- Winsorized Wilcoxon filter for obvious 
reasons. The rank- and time-Winsorized Wilcoxon filters 
generally have similar performances. Both filters reduce 
to either a median or a Wilcoxon filter depending on the 
degree of Winsorization, and they both have identical 
ideal edge response. The time-Winsorized Wilcoxon fil- 
ter, however, does enjoy some advantage over its coun- 
terpart in the presence of two closely separated narrow 
pulses as we pointed out at the beginning of this section. 
We shall elaborate on this particular issue in detail in the 
following subsections and in Section IV. In addition, al- 
though the number of painvise averages over which the 
median is computed is the same for both filters, the rank- 
Winsorized Wilcoxon filter requires additional computa- 
tion of the order of N log, ( N )  since it uses the ordered 
values of the input data. Hence, for larger window sizes, 
the time-Winsorized filters are computationally less inten- 
sive compared to the rank-Winsorized filters. 

B. The Generalized Wilcoxon Filter 

In this subsection we introduce a filtering technique that 
combines Winsorization in the temporal and rank do- 
mains. As we pointed out before, the Walsh averages play 
an important role: in R-filters. Hence, it is natural to define 
a Generalized Wilcoxon (GW) filter that employs Walsh 
averages computed only for data points which are within 
fixed temporal and rank distances of each other. The out- 
put Y of the GW filter is defined as 

Y = median {[Wi:lRj - Ri(  < r and j - i < t ,  

1 I i r j  I N }  (3 .5 1 

where Rj is the rank of X i ,  and 1 I t ,  r I N are integers. 
We will refer to t and r as the degree of time-Winsoriza- 
tion and the deg,ree of rank-Winsorization, respectively. 
It is clear from the definition (3.5) that the set of W,J over 
which the median operation is performed is nonempty for 
any allowable values of t and r (between 1 and N ), since 
this set always contains the self-terms X i  ( = Wi i ) ,  i = 1, 
2,  * * -  , N .  Note that we have dropped the subscript k in 
(3.5). We may also rewrite Y as 

Y = median { W ( i ) : j  - i < r and ID; - D,I < t ,  

1 r i r j  r N )  ( 3 . 6 )  

where the antirank Dj  is the time position of the ith small- 
est data value X ( , ) .  The GW filter defined by (3.5) has a 
very interesting structure with the degrees of Winsoriza- 
tion forming a moving mask over the time-rank matrix for 
any given window of data. In the following we formalize 
this concept. 

For a given input window of size N ,  let us define an N 
X N time-rank matrix P where the entries piJ are either 1 
or  0. The condition p,, = 1 describes the fact that thejth 
input value is ith smallest in magnitude. Hence, there are 
exactly N 1’s in P, with a single value of 1 in each row 
and column. Such a matrix is called a permutation matrix. 
If ties occur in the observations, they may be broken with 
a random assignment. The behavior of the GW filter can 
be described as follows. 

Let X, = X,i ), so that Di = j .  Define a rectangular mask 
Mj to contain the set of indexes 

Mj = { ( m ,  k ) : l  I m,  k 5 N ,  i - r < m < i + r ,  

j I I2 < j  + l } .  (3 .7 )  

Now define the set S, as 

S, = { ( m ,  k) :p , , ,  = I ,  ( m ,  k )  E M , } .  (3 .8)  

Thus, S, contains all time-rank combinations which fall in 
the mask M, of temporal size t and rank size 2 ( r  - 1 ) + 
1.  In other words, the set S, identifies all data values X ,  
which are adjacent to XJ in both time and rank. We then 
form painvise averages of X, with all X ,  for which ( m ,  k )  
is in SJ. Repeating this for eachj ,  we finally compute the 
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output as the median of all these pairwise averages: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\ 

{ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW , r : ( m ,  k )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE S,} 

We will write GW ( f ,  r )  to denote the GW filter with time- 
Winsorization parameter f and rank-Winsorization param- 
eter r .  

Intuitively, if there is an edge or an impulse present in 
the input sequence, the corresponding data values will oc- 
cupy higher positions in P in terms of ranks. Hence, by 
judiciously selecting the filter parameters t and r ,  the GW 
filter may preserve edges and fine details and remove im- 
pulses. 

As an example, consider an input window { 2,  7, 4,  
-1, 1 5 ) .  Here we have N = 5 ,  and we take t = 3 and r 
= 3. The time-rank matrix P is shown in Fig. 4 with dif- 
ferent masks, and the output Y is given by the median of 

the set { 2,  4.5, 3, 7, 5.5 ,  4 ,  1.5, 9.5, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 1 ,  15)  which is 
equal to 4.25. 

The GW ( I ,  r )  filter has the following properties of in- 

terest. 
Properry 1: The GW filter is a scale and translation 

preserving filter; that is, if we denote the output sequence 
{ y,} of a GW filter for an input sequence { x , }  as { y j }  
= f (  { x, } ), we have 

f(+J + b { l H  

= f ( { a x ,  + b } )  = . f ( { x , } )  + h { l }  (3.10) 

where { 1 } is the sequence of constant value of I ,  and a 
and b are any real constants. This property is a common 
characteristic of several generalized median filters [4]. 

Properfji 2: For a linearly increasing (or decreasing) 

input sequence, that is, forx, = j , J  = 0, 1 ,  2 ,  . . . , we 
have y, = j .  Note that for any monotonic input sequence, 
the P matrix is diagonal (for increasing sequences) or an- 

tidiagonal (for decreasing sequences). In this case, the 
GW filter reduces to the rank(time)-Winsorized Wilcoxon 
filter with min ( t ,  r )  as the degree of rank(time)-Winsor- 
ization. 

Properry 3: The GW filter reduces to the median filter 

if min ( f ,  r )  = 1 and the Wilcoxon filter if ( I ,  r )  = (N,  

N 1. 
Property 4: The GW filter reduces to a time-Winsor- 

ized Wilcoxon filter if r = N and to a rank-Winsorized 
Wilcoxon filter i f f  = N. 

These properties follow directly from the definition of 
the GW filter given in (3.5). 

In view of properties 3 and 4, we may say that, in gen- 
eral, the degrees of temporal and rank Winsorization con- 
trol the extent of low-pass action of the GW filter. That 

is, larger values of t and r lead to more averaging being 
computed before the final median operation is applied. 
The basic property of impulse noise rejection is provided 
by this median operation, whereas the Winsorizations in 
the time and rank domains provide the detail and edge 
retention characteristics with Gaussian noise smoothing. 

x =  I ?.7.4. -1 .15 1 

Fig. 4.  A typical time-rank matrix with masks for N = 5 and ( I .  r )  = 
( 3 .  3 ) .  

C. Generalized Wilcoxon jilter of Order m 

So far we have focused our attention on filters that are 
modifications of Wilcoxon-type filters; that is, the filter 
output is defined as the median of some pairwise averages 
of the input data within a window. An obvious modifi- 
cation of the GW filter is to replace the Walsh averages 
by more general m-wise averages of the data values that 
are time-rank adjacent. Modifying (3.5) we get 

Y = median - X q s :  1 Rq, - Rq, I < r ,  [; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,I, 
q, - ql < 1, 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 i < j 5 m, q E 

(3 .11)  

, q,,,), 1 I m I Nand where q = (SI, q2, * * 

V", = { (41, q2. * * * 7 % I ) :  1 I 91 5 92 

5 a . .  I q,,, I N } .  (3.12) 

The parameter m will be called the order of the filter. We 
will write GW,,,(t, r )  to mean the generalized Wilcoxon 
filter of order m. Obviously, GW,,,(t, r )  reduces to the 
GW(t ,  r )  filter of (3 .5 )  form = 2. 

With a more general averaging of m terms, the GW,,, 
filter can now be designed to include more linear aver- 
aging, which is optimum for Gaussian noise reduction. It 
is, however, impossible to smooth Gaussian noise opti- 
mally and to reject impulses simultaneously. The design 

values of m, t ,  and r may be obtained analytically to op- 
timize performance according to certain criterion such as 
the mean square error (MSE); we shall not do so here. 

Instead of the set of subscripts V,,, = { q :  1 I q l  I q2 
5 I q , , , 1 N } i n ( 3 . 1 2 ) , i f ~ , , , =  { q : 1  r q l  < q .  
< . . .  < q,,, I N }  is used, the computational burden 

will be reduced. Thus, if computation time is a major 
problem, we can use the filter with v,,, for the subscripts 
q in (3.11) at the expense of slight performance degra- 
dation. 
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Properties 1 and 2 of the GW filter still remain valid 
for the GW,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( t ,  r )  filters. Other properties require some 
additional modifications and follow directly from the def- 

inition of the GW,,, filter given by (3.11). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Property 5: If min (m, t ,  r )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 1, the GW,,, filter re- 

duces to the median filter, and if (m,  t ,  r )  = ( 2 ,  N ,  N ), 
it reduces to the Wilcoxon filter. 

Property 6: If ( m ,  t ,  r )  = ( N ,  N ,  N ) ,  the GW,,, filter 
is almost the running mean filter. (If integer m-tuples ( q l ,  
q 2 ,  * . . , q,,,) are allowed in the set ~, , ,  of (3.12), we 
would have exactly the running mean filter under this con- 
dition.) 

Two special cases of interest are obtained when r = N 
or t = N .  These yield the mth-order time-Winsorized and 
mth-order rank-Winsorized Wilcoxon filters, respec- 
tively. In other words, the filter output of the mth-order 
time-Winsorized Wilcoxon filter (or equivalently, GW,,, ( t ,  
N ) filter) is given by 

Y = median - X, , :q /  - q, < t ,  i '  m ! = I  

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA< j  I m, q E  V I , , ] .  (3.13) 

Similarly, for an mth-order rank-Winsorized Wilcoxon 
filter (or GW,,, ( N ,  r )  filter), we have 

Y = median - c X,,,, : qJ - q, < r ,  i' m \ = I  

1 5 i < j I m, q E  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVI , , ] .  (3.14) 

In Section IV we show that the mth-order time-Winsor- 
ized Wilcoxon filter has a better overall performance than 
the rank-Winsorized Wilcoxon filter for filtering certain 
types of signals of interest. Note, however, that both fil- 
ters perform identically for monotonic input sequences. 

The mth-order time-Winsorized Wilcoxon filter given 
by (3.13) can also be defined from an estimate of location. 
For instance, extending P (  0 )  of (3.1) for m = 3, we get 

N N N  

Hence, for a linearly Winsorized temporal score function, 
the resulting estimate of location is given by (3.13) with 
m = 3. The expression for P (  0 )  in (3.15) can easily be 
extended form > 3. The rank-Winsorized Wilcoxon filter 
of order m given by (3.14) can also be defined in a similar 

manner. 
Fig. 5 illustrates a structure for a GW,,, ( t ,  N ) filter of 

order m = 3 and degree t = 2. Similar structures for fil- 
ters with different values of t and m and for filters with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p, in place of V,  in (3.12) can easily be found and are 
quite similar to that of Fig. 5. Schemes for efficient im- 
plementation of the median operation have been devised 
by other investigators [ 141, which may be used for finding 
the median in Fig. 5. 

Comnputational Complexity: The number of terms, M,,, 
over which the median is computed in a GW,,, ( t ,  r )  filter 
is bounded from above by the number N,. required in the 

GW,,,(d, N )  filter with d = min (1, r ) .  Hence, in the 
following analysis, we use the GW,,,(d. N )  filter as our 
yardstick for the computational complexity of the GW,, ( t ,  
r )  filter. It is shown in Appendix B that 

(3.18) 

where k = min ( d ,  N - i + 1 ) and 1; HI is the number of 
combinations, allowing duplication, of j elements out of 
k possible elements and is equal to ( k  + j - 1 ) ! / j  ! ( k  - 
l ) ! .  When v, is used for q in (3.11), this number be- 
comes 

N - in  + I 

"> = c i c,,, - I (3.19) 

where = min ( d  - 1, N - i )  and = k ! / j ! ( k  - 
j ) !. Table I shows values of N ,  and N', for various values 
of N ,  d, and m. As can be seen from Table I ,  N ,  is con- 
siderably larger than N ,  implying that the GW,,(d, N )  
filter requires more computation to get an output point 
than does the median filter for the same window size. This 
computational requirement can, however, be reduced by 
exploiting the fact that only a few averages have to be 
updated for each output point computation, and by using 
~,,, in (3.11) instead of V,,,. 

, = I  

(3 .15)  
D. A Dual Class of Filters 

where It is noteworthy that the filters we have considered in 
the previous section are versions of a more general class 
of filters whose filter transformation T l ( X )  can be ex- 

Tl(X) = med { f ( X ) }  (3.20) 

where f is a vector linear operation mapping zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa N  to ap 

with P I N ,  the median operator is a nonlinear function 
mapping 63' to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, and X is the vector of N observations 
in a window of size N .  Withfthe averaging operation and 
P = 1, we get the running mean filter; with f t h e  identity 
function, TI represents the median filter; other interesting 

x; + xj + x, 
3 (3'16) pressed as 

w. = 
IJf 

It can be shown by slightly modifying the proof in Ap- 
pendix A that P ( 0 )  is symmetrically distributed, and that 

E [ P ( 0 ) ]  = c c c (aj-,+I - aj - ; ) (ak- ;+ l  - ak-,) 
N N N  

, = I  J = I  k = l  
i 5 J S k  

* ( c l & , / + ]  - Cik-,)/2. (3.17 ) 
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u t  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(5.2.2) 

(5.2.3) 

(5 .3.2)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

U 

9 4 (15.2.2) 2 9  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 4  (25.2.2) 4 9  2 4  

1 2  7 (15.2.3! 4 2  2 7  (25.2.3)  7 2  4 7  

1 3  * ( l 5 , 2 , 4 )  S4 3 9  (25.2.4) 9 4  6 9  

Fig. 5 .  A structure for the GW,(2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN )  tilter 

TABLE I 
VALUES OF N,, A N D  N ,  FOR DIFFERENT VALUES O F  N ,  d,  A N D  1)1 

I I 

* not defined 

filters such as the linear-median hybrid (LMH) filters [ 6 ] ,  
[9 ]  may be generated from this class of nonlinear filters. 
In particular, the LMH filter whose output is the median 
of means of disjoint subsets of the observations in a win- 
dow can naturally be considered as a special case of this 
class, when the P components o f f  ( X  ) are averages of 
contiguous observations in disjoint subsets of X .  A pri- 
mary difference between the LMH filter and the GW,,, fil- 
ter lies in the way in which subsets of observations are 
used in the linear operation in (3.20).  (In the G W ,  filter, 
all the subsets are of the same size and they are not dis- 
joint, whereas they are generally of different size and 
composed of disjoint subsets of contiguous observations 
in the LMH filter.) It is clear that the choice off  in (3.20) 
which yields the Wilcoxon filter i s f ( X )  = { ( X ,  + X , ) / 2 ,  
1 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi ~j 5 N } .  

Let us now consider a dual class of nonlinear filters 
which can be constructed by an interchange of the linear 
and nonlinear operations in (3.20);  the resulting class of 
nonlinear filters is defined by the transformations 

where g is generally a nonlinear vector function mapping 
6i' to 6i'. The P components of g (  X )  may, in many cases 
of interest, be interpreted as each arising from some non- 

1371 

linear transformation of a subset of the N observations. If 
g is the full median operation and P = 1 ,  then T2 repre- 
sents the median filter; if g is the identity function, then 
T2 represents the running mean filter. By choosing other 
functions or operations for g ,  more interesting filters such 
as the L-filters and the KNN filters can be derived from 
this general class of filters. It should also be noted that 
the nonlinear mean filters, which have recently been con- 
sidered and analyzed in ["], are of this type. A particu- 
larly interesting nonlinear filter class giving filters dual to 
the GW,,,(N, N )  filters is obtained with each of the P 
components of g (  X ) being median { Xq, , Xq2, * - - , Xq,. } 
for P = or P = NC,,  possible combinations of sub- 
scripts ( q , ,  q2, . * , q m )  in V,, or V,,,, respectively. In 
this case, T2( X ) represents a class of L-filters with non- 
equal symmetric coefficients [25 ] .  More explicitly, the fil- 
ter transformation becomes, for m odd and p,n in the def- 
inition of the filter, 

~ 

- and (b). More generally, it can be proved (see Appendix 

( 3 . 2 2 )  

This filter transformation becomes, for example, 

when N = 7 and m = 5 .  It can also be shown that the 
filters with m = 2 1  and m = 2 1  - 1 are exactly the same 
for given window size N and any positive integer I [25 ] .  
For a general discussion on L-filters, see [ 3 ]  and [4]. 

Note that the above two dual classes of filters are not 
disjoint. Any given filter may be considered to belong 
more naturally to one of these two classes. 

IV. ANALYSIS A N D  SIMULATION OF THE GW,,, FILTER 
PERFORMANCE 

In this section, the performance of the GW,,, ( t ,  N ) filter 
will be considered for an ideal edge input and inputs with 
narrow pulses of various widths. Performances of several 
filters will then be compared through computer simula- 
tions. Results are given of computer simulations for two 
one-dimensional signals containing edges, narrow pulses, 
and slowly varying portions and additive noise. 

A .  Performance for an Ideal Edge and Narrow Pulses 

A general analysis of the performance of the GW,,,(t, 
r )  filter has to be based on probabilistic considerations. 
However, for r = N ,  a simpler deterministic analysis can 
be given. I t  also turns out that the GW,, ( t ,  N ) filters ap- 
pear to offer the best compromise in performance against 
impulsive noise for edge and detail preservation. Let us 
consider an input with an ideal edge which can be repre- 
sented by the sequence { .  . * } .  It is 
quite straightforward to obtain the outputs of different 
GW,, ( t ,  N ) filters for this input. Some results for window 
sizes N = 5 ,  N = 7 ,  and N = 9 are given in Table II(a) 

. 0 0 0 0 1 1 1 1 
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TABLE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11 
OUTPI zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI S  OF GW,,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 1 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAN ) Fii:ri.Rs or .  DII.I.I..RL-NT WIhimw S I L E S  FOR zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA N  

Itit.&!. EDGE IN PI'^ 

( . I )  I l l = ?  

N=S 

GW2(2..5) Filter ... 0 0 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 I 1 I 1 ... 
(;W2(3.5j Filter ... 0 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 l/4 314 I I 1 ... 
GW2(4..5) Filter ... 0 0 0 1/2 112 I 1 1 ... 
GWz(5.S) I;ilter ... 0 0 0 I / ?  112 I 1 1 .._ 

N= 7 

GW2(2.7) Filter ... 0 0 0 0 1 1 1 1 ... 
GW2(3.7) Filter .._ 0 0 0 I14 314 1 1 1 ... 
GW2(3.7) Filter .._ 0 0 0 I / ?  1/2 1 1 1 ... 
GWz(7.7) Filter ... 0 0 0 I / ?  112 I 1 1 ... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

“9 

GWl(2.9) Filter ... 0 0 0 1 2 1 1 1 ... 
GW2(3,9j Filter ... 0 0 0 1/4 3/3 1 1 1 ... 
GW2(4.9) I’ilter ... 0 0 0 1/2 1/2 1 1 I ... 
GW2(7,9j Fllter _.. 0 0 1/4 112 112 314 1 1 _.. 
GWz(9.9) Filter ... 0 0 1/2 l / 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA112 112 1 1 ... 

(b )  ni=3 

N=S 

GW3(3,5j Filter ... 0 0 0 1/3 2/3 1 1 1 .._ 
GWj(4.5) Filter ... 0 0 0 1/3 213 1 1 1 ... 
GWj(S.51 Filter ... 0 0 0 l/3 213 I I 1 ... 

N-7 

GWj(3.7) Filter ... 0 0 0 1/3 2/3 1 1 I ... 
G w ~ ( 4 . 7 )  Filter ... 0 0 0 113 2/3 1 1 I ._ .  
GW3(5.7) Filtcr ... 0 0 0 1/3 213 I I 1 ... 
GWi(6.7) Filtcr ... 0 0 l/3 1/3 213 2/3 1 I ... 
GWj(7.7) Filter _.. 0 0 113 l/3 2/3 213 I I _.. 

C) that the GW,( 2,  N ) filters of any window size N = 2n 
+ 1 > 3 preserve an ideal edge as does the median filter, 
while the Wilcoxon filter, which is the GW2( N ,  N ) filter, 
does not preserve ideal edges. In fact, it is possible to 
obtain a general result on the ideal edge performance of 
the GW,(t, N )  filters for any window of size N > 3 .  
From the discussion in Appendix C,  we see that as t in- 
creases for fixed N ,  the extent of smearing of the ideal 
edge remains constant with two values only around the 

edge being smeared, up to a certain value of t ;  beyond 
this the edge begins to get smeared more, with more out- 
put values of 1 / 2  around the ideal edge position. Al- 
though we do not provide analytic performance charac- 
terization of GW,,,(t, N )  filters with m > 2, it can be 
expected that more smearing of edges will occur with in- 
creasing m,  as seen in Table II(b). 

For narrow pulses of heights 1 and various widths w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 

2,  the outputs of several filters of window size N = 7 are 
given in Table 111. Table I11 shows that the GW2(2, N )  
and GW3( 3 ,  N ) filters generally retain narrow pulses bet- 
ter than the median and Wilcoxon filters of the same win- 
dow size 7. Table 111 also shows the tradeoff between nar- 
row pulse retention and output pulse integrity; in order to 

TABLE 111 
OUTPUTS OF GW,,,( 1 .  N ) FILTERS FOR N A R R O N  PuLs~. .  I N P U T  

(a) u=2.  N=7 

Input ,,. 0 0 0 0 1 1 0 0 0 o . . .  

Median Filter .._ 0 0 0 0 0 0 0 0 0 0 ._ .  

GW2(2,7) Filter _.. 0 0 0 0 0 0 0 0 0 0 _.. 

GW2(7,7) Filter .._ 0 0 0 0 0 0 0 0 0 0 ... 
GW3(3,7) Filter .._ 0 0 0 0 113 1/3 0 0 0 0 ... 

Input ... 0 0 0  0 1 1 1 0 0 0  o . . .  

MedianFilter ... 0 0 0 0 0 0 0 0 0 0 O . . .  

GW2(2,7) Filter ... 0 0 0 0 1/2 1/2 1/2 0 0 0 0 ... 

GWl(7.7) Filter ._ .  0 0 0 1/2 1/2 1/2 1/2 1/2 0 0 0 ... 

GW3(3,7) Filter ._ ,  0 0 0 0 1/2 2/3 1/2 0 0 0 0 ... 

( c j  w=4, N = l  

Input ... 0 0 0  o I i 1 I 0 0 0 0  ... 

MedimFilter ... 0 0 0 0 1 1 1 1 0 0 0 O . . .  

GW2(2,7) Filter ._ .  0 0 0 0 1 1 1 1 0 0 0 0 _.. 

GW2(7,7) Filter ... 0 0 0 112 1/2 1/2 1/2 1/2 1/2 0 0 0 ... 

GW3(3,7) Filter ... 0 0 0 1/3 2/3 2/3 2/3 2/3 1/3 0 0 0 ... 

get reasonable narrow pulse retention characteristics, a 
small amount of smearing and loss of amplitude is un- 
avoidable. If we consider a pulse of width w = 1 (which 
is an impulsive noise component in practice) for which 

the input sequence is { . * },  the outputs 
of the above three filters will be exactly the same, the all- 
zero sequence { * * - 0 0 0 0 0 * * * } ,  which implies good 
impulsive noise rejection properties of the filters. Al- 
though the above observations have been made from re- 
sults for a fixed window size, an analysis of the narrow- 
pulse retention characteristics of the GW2( 2,  N ) filter for 
any window of size N = 2n + 1 > 3 (see Appendix D) 
shows that the GW2( 2,  N )  filter retains pulses of width w 

2 IZ + 1 and it also retains pulses of width w = n with 
half the amplitude, as shown in Table 111. It should be 
noted that the median filter with the same window size 
will also retain pulses of width w 2 n + 1, but will re- 
move pulses of width w < n .  It is also possible to explain 
the pulse response of the Wilcoxon filters. For the Wil- 
coxon filter, the response depends not on the pattern of 
the ones and zeros for a binary input, but only on the 
numbers of ones and zeros inside a window. Thus, the 
ideal edge performance of the Wilcoxon filter can be used 
to obtain its ideal pulse performance. For example, when 
N = 7 and w = 2,  the Wilcoxon filter will not be able to 
retain this pulse because at any time there are at most two 
ones, thus producing a zero as the output. From its edge 
performance we conclude that when N = 7 and w = 3,  
the output of the Wilcoxon filter will be a smeared and 
reduced pulse { 1/2 ,  1 /2 ,  1 /2 ,  1 / 2 ,  1 / 2 3 ,  and for a 
pulse of width w = 4, the output of the Wilcoxon filter 

. 0 0 1 0 0 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 .  Simulation results with N = 9. (a) Output of the GW,( 2. 9 )  filter. 
(b) Error in the output of the GW,( 2,  9 )  filter. (c) Output of the GW,( 3. 

9 )  filter. (d) Error in the output of the GWZ( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  9 )  filter. (e)  Output of 
the GWZ( 5 .  4 )  filter. ( f )  Error in  the output of the GW,( 5.  4 )  filter. (E) 

Output of the GW,(S, 4 )  filter. (h) Error in the output of the GW,( S. 4 )  
filter. 

with window size 7 will again be a smeared and reduced 
pulse { 1 /2 ,  1 /2,  1 / 2 ,  1 /2 ,  1 /2 ,  1 / 2  } ;  this is in agree- 
ment with the results in Table 111. 

B. Simulation Results for Noisy Signals 

Example I (Effect of Winsorization): In the first ex- 
ample, we consider the signal of Fig. 3(b) as an input to 
the GW,,, filters with N = 9, with outputs and errors shown 

in the various parts of Fig. 6 .  Fig. 6(a) and (c) shows 
outputs produced by the GW2( 2, 9 )  and GW2( 3 ,  9 )  fi l-  

ters, which are the counterparts of the rank-Winsorized 
Wilcoxon filters producing the results of Fig. 3(e) and ( f ) ,  
respectively. Fig. 6(b) and (d) shows the deviations of 
these outputs from the original signal. Note that the time- 
Winsorized filters with t = 2 and 3 ,  respectively, are bet- 
ter compared to the rank-Winsorized Wilcoxon filters with 
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the small degree of Winsorization used here. Two other 
GW,,, filter outputs with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( m ,  t ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr )  = ( 2 ,  5 ,  4 )  and ( m ,  t ,  
r )  = (3 ,  5 ,  4 )  are shown in Fig. 6(e) and (g), respec- 
tively. These last two filters are better able to retain the 
general shape of the signal and to recover both pulses and 
reject the impulse effectively; the deviations of these out- 

puts from the original are shown in Fig. 6(f)  and (h). 
Example 2 (Noise Suppression and Edge and Pulse 

Preservution): One set of simulations was run to illus- 
trate the performance at edges for narrow pulses, for four 
filters of window size N = 7.  These were the median, the 
GW,( 7,  7 )  (Wilcoxon), the GW2( 2,  7 ) ,  and the GW3(4,  
6) .  An edge of height 10 followed by a negative pulse of 
amplitude 10 and width 3 was the signal component, to 
which i.i.d. Gaussian noise of mean zero and variance a’ 

= 1 was added. The outputs, averaged over independent 
100 runs, are shown in Fig. 7. It is clear that the GW,( 2 ,  
7 )  filter has good edge retention characteristics as ex- 
plained from the analysis given above. The GW3(4, 6 )  
filter smears the edge more but its pulse retention cap- 
ability is better than that of the Wilcoxon or median fil- 

ters. 
In  Table IV we show the output mean square errors for 

filters with a constant level signal with additive i.i .d. 
Gaussian zero-mean, unit variance noise, obtained as 
time-averages for a 2000-point input sequence. In the case 
of the median filters, the MSE’s agree with those reported 
in earlier work [26], [27]. It can be observed from Table 
IV that the Gaussian noise suppression capability of the 
GW,( 2, 5 )  filter is better than that of the median filter of 
window size 3 and 5,  and is somewhat less than that of 
the window-size 7 median filter. 

Example 3 (Detail Retention): To illustrate the ability 

of the GW,,, filters to retain details, let us consider the 
signal of Fig. 8(a) which has 5 narrow pulses on a slowly 
varying background; Fig. 8(b) shows the noisy signal to 
be filtered, with additive zero-mean white Gaussian noise 
of standard deviation 2.5 and 5 impulses. This noisy sig- 
nal was processed using different filtering schemes with 

different window sizes. The window-size 3 median filter 
[ m e d ( 3 ) ]  output of Fig. 8(c) shows all 5 narrow signal 
pulses, but the output is quite noisy. Fig. 8(d) shows the 
deviation of the med ( 3 )  filter output from the original 
signal. If a window-size 5 median filter [ med( S ) ]  is used, 
the narrower signal pulse is obliterated. On the other hand, 
the GW2(2, 5 )  filter of window size 5 retains all five 
pulses [Fig. 8(e)] and gives better noise suppression. The 
deviation from the original of the GW2(2, 5 )  filter output 
is given in Fig. 8(f). In order to better appreciate the 
Gaussian noise smoothing properties of the GW2(2, 5 )  
filter compared to those of the median filters (of  window 

sizes 3 and 5 ) ,  we have computed the output mean square 
errors (MSE) of these filters. I n  determining the MSE, we 
only consider those intervals where the original signal has 

no pulses present. The MSE for the med( 3 )  filter is 2.82, 
whereas it is 1.66 for the med ( 5 )  filter and is 1.3 1 for the 

25 
time zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-5 

Fig. 7.  Simulation results of edge performance and pulse retention of some 

GW,,, filters with N = 7. 

TABLE IV 
M F A N  S Q l J A R t  ERROR SIMULArlOlr. O F  T H E  GW,,, F I L T ~ R S  FOR A CONSTANT 

S I G N A L  I N  NOISF FOR DIFFFRFNT WINDOM s l / F S  

N 1 3  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 5  1 7  

Filter I 1 I 

I I I I 

GW2(2, 5 )  filter. For comparison, the output of the Wil- 
coxon filter of the same window size ( i .e . ,  the GW2(5, 
5 )  filter of window size 5 )  and the deviation in its output 
from the original are shown in Fig. 8(g) and (h), respec- 

tively. The widening and smoothing of the pulses is evi- 
dent there. 

For more smoothing, larger window sizes are needed. 
The window-size 7 median filter output is shown in Fig. 
8(i), and the deviation of the output from the original is 
shown in Fig. S(j) .  It shows clearly only two of the five 
signal pulses. The GW,(2, 7 )  filter output shown in Fig. 
8(k) is clearly better in that more signal pulses are re- 
tained. The output of the GW2( 3, 5 )  filter of window size 
7 is shown in Fig. 8(1). This performance is almost the 
same as that of the GW2(2, 7 )  filter, which uses more 
severe temporal Winsorization but no rank Winsorization. 
The GW,(4, 6)  filter output shown in Fig. 8(m) is inter- 

esting because all five pulses are present there. This filter 
represents somewhat less severe Winsorization than the 
GW,(3, 5 )  filter. Finally, the GW3(4, 6 )  filter (of win- 
dow size 7 also) shows more smoothing and rounding-off 
of the pulses, which are nonetheless all preserved in the 

output shown in Fig. 8(n). In general, the distortion of 
pulse shape is more severe if more Gaussian noise 
smoothing is desired. 

We should note, however, that the median filter will be 
able to recover more pulses if smaller window sizes ( N  
= 3, for example) are used; the Gaussian noise smooth- 
ing will generally become worse. Also, the DW-MTM 

filter [4] has better edge preserving and Gaussian noise 
smoothing characteristics compared to the GW,,, filter. The 
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output of the DW-MTM filter is the average of observa- 
tions inside its window which fall within an interval zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ m k  
- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq, ml + q ]  where mk is the sample median of the ob- 
servation in a smaller window centered at k ,  with q being 
a parameter. The DW-MTM filter, however, requires ex- 
plicit information about the original signal and noise sta- 
tistics to set the value of q appropriately (for example, the 
minimum edge height and the variance of the Gaussian 

noise process) in order to have better performance than 
the GW,,, filter. 

V.  SUMMARY 

In this paper we have examined a class of filters, the 
R-filters, that have a basis in the class of rank estimates 

(R-estimates) of statistical theory. This class of filters in- 
cludes the common filters such as the median and the Wil- 
coxon filters. The investigation of these R-filters comple- 
ments recent work on nonlinear filters based on the classes 
of L- and M-estimates of robustness theory. We intro- 
duced here specifically the generalized Wilcoxon filters of 
order m which incorporate both the temporal and rank in- 
formation of the input sequence within a finite moving 

window to compute the output. It was shown that with 
proper choice of order of averaging m and degrees of 
Winsorization, the GW, filter can be designed to perform 
quite satisfactorily for filtering of signals containing edges 
and details as well as additive white Gaussian and impul- 
sive noise components. 

APPENDIX A 
PROOF OF SYMMETRY OF T ( 0 )  A N D  P ( 0 )  

of N i.i.d. continuous random variables and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-X  = ( - X I ,  

, X ,  are symmetrically 
distributed about 0. For a function g : (RN + (R, if g ( X  ) 
+ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg (  - X )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp ,  then g ( X )  is symmetrically distributed 
about p / 2 .  

Proof: Since X and -X  have the same distribution, 
it is clear that g ( X  ) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg ( -X ) are also identically dis- 
tributed. That is, we have P [  g ( X )  I y ]  = P [  g (  - X )  
I y] .  Then the lemma follows trivially since P [  g ( X )  

, X N  are symmetrically dis- 
tributed about 0, then T(  0 )  of (2.6) and P (  0 )  of (3.1) are 
symmetrically distributed about the points of symmetry 
E:= I u 1 / 2  and E;= I d 1 / 2 ,  respectively. 

Proof: Without loss of generality, let 8 = 0 [ w e  can 

always do this by defining a new vector of random vari- 
ables (XI - 0, X ,  - 8 ,  - . , X N  - e) ] .  From (2.6) with 
g ( X )  = T ( O ) ,  we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-x*, * * * , -xN). 
Lemma: Suppose X I ,  X,, . . 

I p / 2  - y ]  = P [ g ( X )  I p / 2  + V I .  
Proposition: If X I ,  X 2 ,  * - 

g ( X >  + g ( - X )  
N N  

= c c ( U j - ; + l  - U / - , )  
1 = I  / = I  

. .  
I S /  

N N  

1 4 1  

h! N 

I -c , . -  

In this appendix we show that T ( 0 )  of (2.6) and P ( 0 )  
of (3.1) are symmetrically distributed random variables. 
We will assume that X = ( X I ,  X 2 ,  * * , X N )  is a vector 

N 

= c U;.  
i =  I 

( A l . l )  
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Hence, from the lemma, we have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE [  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT ( 0 ) ]  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Er= I u,/2.  

The proof for P (  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 )  is similar to the one given above. 

APPENDIX B 
CALCULATION OF N, A N D  N,  

When the set V,,, is used, the number of m-tuples in V,, 
given that 41 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi, is d H , , I - I  for d 5 N - i + 1 and 
- , + ,HI,, - ,  for d > N - i + 1 where I H, is the number 

of combinations, with duplication allowed, o f j  items out 

of k types and is equal to ( k  + j - 1 ) ! / j !  ( k  - 1 ) !. Now 
summing these values for i = 1 ,  2, . . , N, we obtain zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N 

N, = k HI, - I (A2.1) 

where k = min ( d ,  N + 1 - i ). For example, if N = 5 ,  
m = 3, and d = 4,  the possible set of three indexes are 

{(ill), (1121, (113) ,  (1141, (122) ,  (1231, (1241, 
(133) ,  (134) ,  ( 1 4 4 ) )  when i = 1 ,  {(222) ,  (223),  

(2241, (225) ,  (233) ,  (2341, (2351, (2441, (245) ,  
( 2 5 5 ) )  when i = 2, { ( 3 3 3 ) ,  (334) ,  (335) ,  (344) ,  
(345) ,  ( 3 5 5 ) )  wheni  = 3 ,  { (444) ,  (445) ,  ( 4 5 5 ) )  when 
i = 4,  and { ( 5 5 5 ) )  when i = 5 .  

, 
q,,),  the number of m-tuples in c, given that q1 = i is 

~ ~ ~ , C , l l ~ l  f o r d  5 N - i and N - , C f n - I  f o r d  > N - i .  
Summing these values for i = 1 ,  2,  * . , N - m + l ,  
we obtain 

I =  I 

If the set q,,, is used for the subscripts (41, q2, . 

N - ) , I  + I 
"> = c zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 C],, - I (A2.2) 

where i  = m i n ( d  - 1 ,  N - i ) a n d L C ,  = k ! / ( k  - j ) ! j ! .  
Here the upper limit of the summation is N - m + 1 ,  
since each index is allowed to be chosen only once. For 
the same values of m, d ,  and N as in the example above, 
the possible set of three indexes are now { ( 123), ( 124), 
(134)}  when i = 1 ,  { ( 2 3 4 ) ,  (235) ,  ( 2 4 5 ) )  when i = 
2, and { ( 3 4 5 ) )  when i = 3. 

I =  I 

APPENDIX C 
AN ANALYSIS OF IDEAL EDGE PERFORMANCE OF THE 

GW,( t, N ) FILTERS 

In Appendixes C and D, we will use the notation x L  to 

denote the set {xL- ,? ,  , X L ,  . * * , x' +,, 1 ,  the data in 
a window centered at time k .  We will also denote by z h  
the set { ( x ,  + x , ) /2 ,  k - n I i I j I k + n , j  - i < 
t }. Now consider Fig. 9. A dot in the p th  column and qth 

row represents an element in z' with value (xk - +,, - , + 
~ ' - , + ~ - ~ ) / 2 ,  and the total number of dots is N,  = ( 2 N  
+ 1 - t ) t / 2 .  If there are J contiguous zeros and N - J 

contiguous ones in x', we can easily see that each element 
of z' represented by a dot located to the left of and above 

the solid lines is a zero; any value represented by a dot 
located to the right of and below the solid lines is a 1; and 
all other elements of z' have value 1 /2 .  After a simple 
enumeration, we obtain the number of zeros N ( 0 )  and the 

* 

. . . .  . . . .  

N . . . .  
Fig. 9. A representation of the pairs of indexes in  computation of the 

GW,( t ,  N ) filter outputs. 

number of ones N (  1 ) as follows: 

1) i f J  I t ,  N ( 0 )  = J ( J  + 1 ) / 2  and N ( l )  = t ( t  

2) if t + 1 I J I N - t, N ( 0 )  = t ( f  + 1 ) / 2  + 
( J  - t ) t  and N (  1 )  = t ( t  + 1 ) / 2  + ( N  - J - 
t ) t ;  and 

3) i f J  2 N - t + 1. N ( 0 )  = f ( f  + 1 ) / 2  + ( J  - 
t ) t a n d N ( l )  = ( N - J ) ( N - J +  l ) / 2 .  

+ 1 ) / 2  + ( N  - J - t ) t ;  

From these numbers, we have the following values of out- 

puts for the GW2(t, N )  filter, assuming N,  = ( 2 N  + 1 
- t ) t / 2  is an odd number: 

i f J E B o  

if J E Bl (A3.1) 

1/2 otherwise 

where J is the number of zeros in the window centered at 
time k ,  

Bo = { J : J  I f , J ( J  + I )  2 N,, + I }  

(A3.2) 

and 

BI = { J : ( N  - J )  I t - I ,  ( N  - J )  

U J : ( N  - J )  2 I, ( N  - J )  1 
+ f]. 

>---  " , + I  t + l  

2t 2 
(A3.3 ) 

Note that Bl  is almost the same as Bo with ( N  - J )  re- 
placing J ;  this implies a symmetric behavior around the 
edge of the GW,( t, N )  filter. Even though we have con- 
sidered only the case when N ,  is an odd number, an al- 
most identical development can be used for the case when 
N, is an even number. 

As a specific example of the above result, let us con- 
sider the case t = 2. Let N = 2n + 1 be the window size, 

and let the sequence of the ideal edge input be { 3 - 0 0 
0 0 1 1 1 1 . * . } with the last zero and the first one oc- 



1378 I E E E  TRANSACTIONS ON ACOUSTICS. SPEECH. A N D  SIGNAL PROCESSING. VOL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA17. NO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9. SFPTEMHER zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi w y  

curring at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk = I and at k = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ + 1, respectively. Since N, 
= 2 N  - 1 is an odd number, we can directly use the 

above result to conclude that 

because we can simplify (A3.2) and (A3.3) to get zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Bo = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ J : J  2 n + I }  (A3.5)  

and 

B~ = { J : J  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI n ) ,  (A3.6) 

and because there are at least n + 1 zeros when k 5 I ,  
and at most n zeros when k > I + 1 in a window centered 
at time k .  

As a second example, let us consider the Wilcoxon or 
the GW2( N, N ) filter. For the Wilcoxon filter N ,  = N (  N 
+ 1 ) /2 ,  and we find that 

B,, = { J : J ( J  + 1) L N(N + 1 ) / 2  + 1 

and 

B ,  = { J : ( N  - J ) ( N  - J + I )  2 N(N + 1) /2  + I ) ,  

(A3.8)  

again assuming that N ,  is an odd number. Now let Q be 
the smallest positive integer satisfying 

e(Q + 1)  L 2n' + 3n + 2. (A3.9) 

When k 5 Z - ( Q  - n )  + 1, there are at least n + Z 
- { I  - ( Q  - n )  + 1 } + 1 = Q zeros in x', or equiv- 
alently J L Q. We therefore have y L  = 0. When k 2 I 
+ ( Q  - n ) ,  thereare least I I  + { I  + ( Q  - n ) }  - ( I  + 
1 ) + 1 = Q ones in x', or N - J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 Q and consequently 
yL = 1 .  Finally when I - ( Q  - n )  + 2 I k 5 I + ( Q  
- n )  - 1, we conclude that = 1 / 2  from (A3.1). Typ- 

ical sets of values ( n ,  N ,  N(,, Q )  for the Wilcoxon filter 
are as follows: (2 ,  5 ,  15, 4), (4 ,  9, 45, 7 ) ,  and ( 6 ,  13, 
91, 10) .  Thus, we may conclude, for example, that for N 
= 9, the Wilcoxon filter will transform an ideal edge into 
a three level rise from 0 to 1 with four middle values of 

(A3.7) 

1 /2. 

present. Therefore, the number of ones. halves, and zeros 
in z' are n + 1 + IZ = 2n + 1 ,  2 ,  and 2n - 2 (since the 
total number of pairs is 4n + 1 ), respectively. From this 
observation, we have yk = 1 .  

B. For Pulses of Width w = n 

Next let the width of a pulse be w = 1 2 .  Let the sequence 
. 1 1 0  

0 . * . with the first one and the last one occurring at k 
= I + 1 and at k = I + n ,  respectively. When k 5 I or 
when k L Z + n + 1, we have yk = 0, using the result 
of Appendix C. We then note that the possible index pairs 
( i , j )  are ( i ,  i )  and ( i ,  i + 1 )  f o r i  = 1 .  2, . . , N - 1 

and (N,  N ) .  Now when I + 1 5 k 5 I + n ,  x k  has n 
contiguous ones and ( I I  + I ) zeros with two edges pres- 
ent. Therefore, the number of ones, halves. and zeros in 

z' are n + n - 1 = 2n - 1, 2 ,  and 2n (since the total 
number of pairs is 4n + l ) ,  respectively. From this ob- 
servation, we have yk = 1/2 ,  which implies that the 

GW,( 2 ,  N ) filter will reduce the height of a pulse of width 

w = n by a factor of 2. 

of a pulse of width w = n be { . * 0 0 0 1 1 . 

APPENDIX D 
AN ANALYSIS OF NARROW PULSE PERFORMANCE OF 

THE GW2(2, N )  FILTER 

A .  For Pulses o j  Width w L n + I 
To show that the GW2(2,  N )  filter retains pulses of 

width w 2 n + 1 ,  all we have to do is to show that the 
GW2(2, N )  filter retains a pulse of width w = n + 1. 
When the window is centered at time k 5 I + 1 or k L 

I + n + 1 ,  we can conclude that y L  = 0 using the result 
of Appendix C,  the pulse looking like an ideal edge to the 
GW2(2, N )  filter. We then note that the possible index 

pairs ( i , j )  are ( i ,  i )  and ( i ,  i + 1)  f o r i  = 1 ,  2,  , 
N - 1 and (N,  N ) .  Now when I + 2 I k I I + n ,  x '  

. 

has II + 1 contiguous ones and n zeros with two edges I967 
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