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Abstract
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1 Introduction

Many applications of time series analysis involve the nonparametric estimation of the
spectral density function; examples include astronomy, economics, electrical engineering,
physics, etc. In fact, the foundation of statistical spectral analysis appears to have been
laid by Albert Einstein (1914); see Brillinger (1993) for a historical perspective.

The prevalent spectral estimation method in the literature goes back to Bartlett (1946,
1948) and Daniell (1946) and can be represented in three equivalent ways: (a) kernel smooth-
ing of the periodogram, (b) weighted/tapered Fourier series of the sample autocovariances,
and (c) average of short (tapered) periodograms. The distinction between (b) and (c) lies,
respectively, in the tapering of the sample autocovariance sequence vs. the actual data found
in a short stretch of the series.

By the late 1950s the subject was already well understood as the early books by Grenan-
der and Rosenblatt (1957), and Blackman and Tukey (1959) demonstrate. Influential papers
at the time include Hannan (1957, 1958), Parzen (1957, 1961), and Priestley (1962). Many
prominent researchers have since contributed to the subject. The book-length treatments in
Hannan (1970), Brillinger (1981), Priestley (1981), Brockwell and Davis (1991), Rosenblatt
(1985), and Percival and Walden (1993) contain a vast number of additional references.

A relatively recent development is the use of flat-top lag-windows defined and analyzed in
Politis (2001, 2003, 2011). Flat-top lag-windows represent a generalization of the trapezoidal
kernel of Politis and Romano (1995); they have been shown to achieve the optimal rate
of convergence in a given smoothness class by automatically adapting to the underlying
smoothness of the true spectral density. This adaptation has raised parallels with the
wavelet literature—see e.g. Donoho and Johnstone (1995). Nevertheless, smoothing with
flat-top lag-windows is a linear operation on the sample autocovariance sequence whereas
typically wavelet methods are nonlinear; cf. Percival and Walden (2000). [Throughout
the paper, the term ‘linearity’ will be understood as ‘linearity with respect to the sample
autocovariance sequence’ not with respect to the data.]

Nonparametric spectral density estimation is an example of function smoothing. Hence,



it is not surprising that wavelet methods have found application here as well. A typi-
cal implementation of wavelet smoothing to the spectral estimation problem goes as fol-
lows: (a) expand the (logarithm of the) periodogram—or of a different preliminary spectral
estimator—in a wavelet series; (b) threshold the wavelet coefficients; and (c) invert the
wavelet transform to obtain a smoothed estimate of the (logarithm of the) spectral density;
see Moulin (1994), Neumann (1996), Gao (1997), and Walden, Percival, and McCoy (1998).

The downside of the above wavelet method is that the wavelet coefficients are not inter-
pretable, i.e., do not have a significance to the practitioner. By contrast, the autocovariance
sequence—which represents the coefficients in a Fourier series expansion of the spectral
density—is very meaningful and important in practice. Furthermore, the trigonometric ba-
sis is central to the analysis of stationary time series in view of the spectral representation of
stationary processes, and the well-known Hilbert space isomorphism; cf. Lamperti (1977).

The purpose of the present paper is to propose and analyze two nonlinear spectral esti-
mation methods that are based on the sample autocovariance. In effect, what we propose
is to threshold the sample autocovariances, i.e., a wavelet-like approach using the origi-
nal Fourier trigonometric orthogonal basis. In Section 2.1, the traditional (linear) spectral
estimators are reviewed with an emphasis on flat-top lag windows. The two new nonlin-
ear methods are presented and studied in subsections 2.2 and 2.3 respectively. Section 3
addresses some practical issues (positivity, choice of threshold, etc.), and additionally con-
tains the results of a finite-sample simulation. Appendix A describes the empirical rule of
choosing the bandwidth of a flat-top lag window; technical proofs are placed in Appendix B.

Finally, we note that there exist various alternative spectral estimation methods that
are also nonlinear as functions of the correlogram. A prime example is estimating the
spectral density by that of a fitted autoregressive (AR) model of appropriate degree. A
review of nonlinear estimators that are popular in the engineering literature—including the
estimators of Capon and Pisarenko—has been given in Haykin (1983). Asymptotic theory
for the AR spectral estimators was given by Berk (1974), and for the Capon/Pisarenko
estimators by loannidis (1994).



2 Spectral density estimation

Suppose Xji,...,X, are observations from the (strictly) stationary real-valued sequence
{Xt,t € Z} having mean p = EX;, and autocovariance sequence y(s) = E(X¢ — p)(Xyq s —
w) where both p and 7(-) are unknown; also define the autocorrelation sequence p(k) =
v(k)/~(0). Our objective is the nonparametric estimation of the spectral density function

flw) = (2m)71 3220 etwsy(s), for w [, 7.

S§=—00

2.1 Linear spectral estimation: a brief review

The traditional kernel estimator of f(w) in its lag-window form is defined as:

flw) = 207 Y @A), 0

S§=—00

where 4(k) = n~! E?:_l'k‘(Xi - Xn)(Xz‘+\k| — X,,) is the sample autocovariance at lag k; 4(k)
is defined to be zero for |k| > n. Well-known choices for the lag-window A(s) have been
proposed by Bartlett (1946), Parzen (1961), and Priestley (1962).
The family of ‘flat-top’ lag-windows was defined in Politis (2001) with typical member
1 if |z| <e¢
Age(@) = { (2)
g(x) else;
here ¢ > 0 is a shape parameter, and g : IR — [—1,1] is a symmetric function, continuous
at all but a finite number of points, and satisfying g(c) = 1, and [.° g*(z)dz < oco. For
better performance, the function g(x) is typically taken nonnegative; see Politis (2011) for
an exception based on a modification of the well-known Priestley-Epanechnikov lag-window.
The trapezoidal lag-window of Politis and Romano (1995) A(z) = (min{1,2(1 — |z)})*. is
a prominent example of the ‘flat-top’ family; here, (z)™ = max(z,0).
It has been found—see e.g. Politis (2001, 2003, 2011)—that estimator (1) using a flat-
top lag-window achieves the optimal rate of convergence in a given smoothness class; these
optimal rates are delineated in Samarov (1977). Hence, a flat-top lag-window estimator

exhibits adaptivity to the (unknown) degree of smoothness of the underlying true spectral
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Figure 1: A ‘problematic’ correlogram from an AR(1) model: X; = pX;—1+ Z; with p = 0.3
and n = 500; superimposed are the empirical rule bands +2+/log;,n/n.

density; the degree of smoothness can be quantified by the rate of the decay of the autoco-
variance. Perhaps more importantly, these optimal rates are (almost) achieved even when
an empirical data-dependent choice of the bandwidth M is employed—cf. Politis (2003).

The empirical rule of picking M is described in detail in Appendix A. It is based on the
correlogram, i.e., a plot of the sample autocorrelation p(k) = 4(k)/¥(0) vs. k. The essence
of the empirical rule lies in finding the smallest lag, say ¢, after which the correlogram is
not significantly different than zero. Although Appendix A gives a precise formula for ¢, it
should be stressed that the empirical rule of picking M should always be complemented by
a visual inspection of the correlogram.

To see why an inspection of the correlogram is important, consider a situation where
a practitioner finds that all p(k)’s for |k| > 1 (say) are not significantly different than
zero with the exception of (say) p(12) that is just borderline significant. For example, see
Figure 1 depicting the ‘problematic’ correlogram of Politis and White (2004). While a strict

application of the empirical rule with Cy = 2 yields ¢ = 12, note that a slight tweaking of
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Figure 2: Correlogram from the sparse MA(12) model: X; = Z; + Z;_12 with n = 500;
superimposed are the empirical rule bands 42+/log;qn/n.

the constant Cy would instead give the answer ¢ = 1 that is both more reasonable in terms
of explaining the autocorrelation structure and significantly better in terms of estimating
the spectrum.

Another situation where a correlogram inspection can give crucial information is pro-

vided in the simple framework of an MA(g) model, i.e., when the series {X;} satisfies
q
Xi=> 0pZiy (3)
k=0

with {Z;} being a stationary white noise sequence. Figure 2 shows the correlogram of a
sparse MA (12) model in which all p(k)’s are within the empirical rule band of £2+/log;,n/n
with the exception of p(12) whose deviation from zero is undeniably significant. The empir-
ical bandwidth rule estimates ¢ = 12 which is accurate in view of ¢ = 12 being the cut-off
point after which all autocorrelations are negligible. However, if indeed it were true—as
the correlogram suggests—that many (or all) p(k)’s are negligible for 1 < k < 12, then it

is intuitive that the flat-top estimator f (w) would be suboptimal as compared to an esti-



mator that explicitly uses the information on the sparsity of the autocorrelation. Nonlinear
estimation—based on thresholding—may give the solution here, and is addressed in the

following section.

2.2 Nonlinear spectral estimation: thresholding

A Fourier series where the Fourier coefficient sequence is zero over large sets of consecutive
integers is called lacunary in Harmonic Analysis; cf. Katznelson (2004). For example,
consider the MA(q) model (3) with 6, =0 for 0 < k < ¢, i.e., a sparse MA(q) model. The
implication is that v(k) = 0 for 0 < |k| < ¢, i.e., the only nonzero values of v(k) are v(0) and
v(£q); see Figure 2 for an empirical example. If ¢ > 1, then f (w) is seen to unnessecarily
include several estimated §(k), i.e., the ones with 0 < |k| < ¢, that ideally should have been
set to zero.

So if/when the autocovariance sequence v(s) is lacunary, i.e., it has holes/zeros in-
between its non-zero values, then the linear estimator f(w) might be suboptimal (in terms
of variance) as compared to an ‘oracle’ estimator that exploits the knowledge regarding
which of the y(s) are indeed zero. However, this ‘oracle’ estimator can be approximated in
practice by an estimator that has an implicit test of significance of 4(s) built-in. With this
in mind, we define the thresholded spectral density estimator

0o
flw)=(2m)~" > Als)e™; (4)
s=—00
in the above,

7(s) = Y()H{5(s)] = T} ()

where T, is an appropriate threshold of significance, and 1{-} is the indicator function.

To analyze the properties of any spectral estimator it is important to quantify the
strength of dependence of the underlying time series { X;}. This can be done using cumulant
summability conditions Brillinger (1981), moment and mixing conditions as in Rosenblatt
(1984, 1985), etc. In the earlier literature, the assumption of linearity of the time series was

prevalent; see e.g. Grenander and Rosenblatt (1957) or Hannan (1957, 1958). Recently,



Wu (2005) defined the so-called physical dependence measure conditions that are easy to
work with by providing a (nonlinear) structure for {X,}, and encompass a large variety of
linear and nonlinear time series models; these conditions are summarized in the following

assumption.

Assumption W. Assume that the process {X;} has the causal representation X; = g(F?")
where g is some measurable function, {e;, s € Z} are i.i.d. random variables, and F? is
the o-algebra generated by {es, s < t}. Let ¢, be an i.i.d. copy of €, and let F! be the
o-algebra generated by {---,e_1,€), €1, ", €}, i.e., like F* but with €, in place of €y. Let
X; = g(F), and for p > 1 define 6,(t) = (E|X; — X;|[?)'/P and ©,(m) = 352, 6,(i).
Furthermore, let p’ = min(2,p), and define ¥,(m) = (Z;’im 5p(i)p/)1/p/, and A,(m) =
S, min{C,¥,(m),d,(i)}; here C, = /p — Lif p>2,and C, = 1/(p — 1) if 1 < p < 2.

Using Assumption W, Shao and Wu (2007) were able to prove many interesting asymptotic
results for traditional (linear) spectral density estimates for linear/nonlinear processes that
are sufficiently weakly dependent as measured by the rate of the decay of ©,(m) and A,(m)

as functions of m. We adopt a similar approach in the following theorem.

Theorem 2.1 For some p > 4, assume E|X|P < oo together with Assumption W with
0,(m) = O(m=) and Ap(m) = O(m~*) where o > o > 0 are parameters such that

a>1/2 and/or o/p > 2. Let { be some number such that ¢ > 1, and define the threshold

T, = Cepy/logn/n (6)

to use in eq. (5) where cj, = 6(p + 4)eP/ (B X [)/404(0). Then,

[e3

log n> 2(1+a)
- .

sup [ Fw) = f(w) = Op

wE[—7,7]
Remark 2.1 The proof of Theorem 2.1 hinges on a bound on the maximal deviation of
the sample autocovariance derived by Xiao and Wu (2011); for more details see eq. (10)

in Section 3.2. However, in the related problem of estimating the autocovariance matrix



via thresholding, Xiao and Wu (2011) use the threshold T}, = 2¢,v/logn/n, i.e., they use
¢ =2 ineq. (6). As the proof of Theorem 2.1 shows, the more general threshold (6) with
¢ > 1 is applicable here, and seems to also be applicable in the matrix setting of Xiao and
Wu (2011). The practical applications of choice of threshold are discussed in more detail in

Section 3.2.

Remark 2.2 To assess the strength of the assumptions of Theorem 2.1, note that the
condition ©,(m) = O(m™®) implies that >3, |v(k)] = O(m™®). For example, if the
series { X} has a stationary ARMA representation, then condition ©,(m) = O(m~) holds
true for any o > 0. Letting o be an arbitrarily large number, we see that the rate of
convergence of the nonlinear estimator f (w) effectively becomes \/n/logn, thus attaining
the minimax rate in this case; see Samarov (1977). In the case of polynomial decay of
autocovariances, i.e., finite «, the result of Theorem 2.1 shows that f (w) comes close to the
minimax rate but falls short in claiming that it actually attains it. We conjecture that this
is an artifact of our proof only, and that f (w) might attain the minimax rate in this case

as well.

2.3 Nonlinear spectral estimation: thresholding combined with a flat-top

lag-window

As mentioned in Remark 2.2, it is unclear whether the nonlinear estimator f (w) generally
attains the minimax rate of convergence. Since we already have an estimator that does,
namely f (w) with a flat-top lag-window from Section 2.1, it is interesting to ask if the
flat-top estimator f (w) can be appropriately modified to efficiently handle lacunary/sparse
autocovariance sequences. The answer is yes, and can be traced to the proof of Theorem
2.1. In particular, eq. (17) shows that we can discard large-lag autocovariances, and just
focus on thresholding the autocovariances at small lags.

So consider a flat-top lag-window (2) that has finite support. Without loss of generality,

we may assume that the support is [-1, 1], i.e., that

Age(x) =0 for |z|>1 (7)



in which case the shape parameter c is restricted to be in the interval (0, 1]. We now define

the hybrid thresholded /flat-top estimator as
~ M . 8
Fw)=@m)7" 32 €™ Nge(57)76(5) (8)
s=—M
where, for some § > 0 we let
Ys(s) = A()1{|5(s)] = 6T/ ¢} 9)

and T, = (c,\/logn/n as in eq. (6).

For § = (, there is full thresholding and 7 (s) = (s) where the latter was defined in (5).
The possibility for having 6 < ¢ and even § < 1 in (9) is that estimator (8) is consistent—
and with optimal rate of convergence—even with no thresholding, i.e., with § = 0. So §
here is a tuning parameter that will hopefully not influence the rate of convergence but may
give a better finite-sample behavior in lacunary /sparse settings.

This discussion is made clear in the following theorem.

Theorem 2.2 Assume the assumptions of Theorem 2.1. Assume eq. (6) and (7), and let

M = max([By/cef],1) where B, = cp(n/logn)/20+%) for some constant cg > 0. Then,

log n\ 20+
- .

sup [ Fw) = f(w) = Op

we[—m,m]
Note that the choice of c¢p is immaterial; only the rate of increase of B, matters in the
above. As with Theorem 2.1, Theorem 2.2 also falls slightly short of showing that f(w)
attains the minimax rate of convergence; this is not surprising since the method of proof is
similar to that of Theorem 2.1—see also Remark 2.2.

If one were to use the truncated lag-window A, .(z) = 1{z € [—1, 1]} together with the
choice 6 = ¢ in (9), then Theorem 2.2 would simply reduce to eq. (17) found in the proof
of Theorem 2.1. However, the truncated lag-window is arguably the worst representative of
the family of flat-top lag-windows as its performance can be quite erratic outside the realm
of MA(q) models; see Politis (2011) for more details on choosing a flat-top lag-window.
Furthermore, it may be advantageous to choose the tuning parameter § to be less than (;

see Section 3.3 for some finite-sample results to this effect.

10



3 Practical issues and a simulation experiment

3.1 Positivity issues

Neither the flat-top estimator f(w), nor its nonlinear counterparts f(w) and f(w), are
almost surely nonnegative. There is an easy fix, however, namely taking the positive part.
Let f(w) denote an arbitrary estimator of f(w), and define f¥(w) = max(f(w),0).
Noting that
[fH(w) = f(w)] < |f(w) — f(w)]

for all w € [—m, 7], it is apparent that f¥(w) is at least as accurate an estimator as f(w) is.

If one desires a strictly positive estimator, then—as in Politis (2011)—one can employ
the estimator f(w) = max(f(w), e¥(0)/n) where ¢ is some fixed positive number (typically
less than one); the presence of 4(0) in the definition of f(w) is to make the estimator scale-
equivariant.

The following Proposition is now immediate.

Proposition 3.1 Let 7, be a sequence such that sup,e(_z |f(w) — f(w)| = Op(7). Then
SUPye[—r,7] |fT(w) — f(w)| = Op(rn) as well. If nt, — oo, then we additionally have
SUPye[—r,7] |fF(w) — f(w)| = Op(1,) where fH(w) = max(f(w),ey(0)/n) and € is some

fized positive number.

In other words, the nonnegative estimator f*(w) and the positive estimator f(w) inherit

the rate of convergence of the original estimator f(w).

3.2 Choosing the threshold parameters

In the nonlinear estimators of both Sections 2.2 and 2.3 the threshold 7, = Cc;\/log n/n
is used, where ¢ > 1 is some chosen number. Setting aside the choice of (, note that the
constant cj’o is very difficult to estimate from data because it depends on the quantity ©4(0).

Thus, there is a need for a practical, data-dependent choice of the threshold 7,.

11



Note that the reason the constant c;, enters here is the fact that c,\/logn/n is a bound
for the maximum deviation of the sample autocovariances from their mean, i.e.,

Prob{ max |3(k) — EA(k)| < ¢j\/logn/n} — 1 as n — oo; (10)

1<k<n

see Lemma 6 of Xiao and Wu (2011). Nevertheless, the empirical bandwidth choice rule
of Politis (2003) that is reviewed in Appendix A suggests estimating the aforementioned
bound by Cy¥(0)+/log;,n/n with Cy ~ 2. This implies estimating the threshold T, by

T, = 2¢4(0)y/logg n/n. (11)

The sensitivity of the estimator f(w) on the choice of ¢ in connection with estimator (11)
will be investigated in the finite-sample simulations of Section 3.3; a simple rule-of-thumb
is to use ¢ ~ 1.5.

The presence of the tuning parameter § makes the hybrid estimator f(w) of Section 2.3
less sensitive to the the choice of threshold 7;,. The crucial thing in this case is estimation
of the rate of increase of the quantity B,, i.e., (n/logn)/20+%)  that depends on the
unknown value of «. However, the empirical rule of Appendix A can again be called to
the rescue. Recall that the optimal bandwith of the flat-top lag-window is proportional to
(n/logn)Y/(1429) ynder the assumptions of Theorem 2.2. As shown in Politis (2003), the
estimator ¢ of the empirical rule comes close to attaining this optimal rate, and this closeness
is more pronounced when the degree of smoothness « is large, i.e., when the autocovariances
decay reasonably fast. But then, in the case of large «, ¢ can also be considered an estimator
of the rate by which B, is assumed to grow in Theorem 2.2.

Since the rate (and not the constant cp) is important here, the recommendation is to
use ¢ as a proxy for B, in Theorem 2.2; this recommendation is further re-inforced by the
fact that the bandwidth choice there is given by M = max([B,/c.f],1) which reduces to
the empirical rule of Appendix A by simply replacing B,, with . The choice B, = ¢ is
employed throughout the finite-sample simulations of Section 3.3 where the effect of choice

of § is also studied.

12



3.3 A simulation experiment

The finite-sample performance of the aforementioned spectral density estimators was in-
vestigated by means of a simulation experiment. The favorable performance of flat-top
lag-windows wvis-a-vis finite order lag-windows such as the Bartlett, Priestley, Parzen, etc.
has been demonstrated both asymptotically and in finite-sample simulations—see Politis
and Romano (1995), and Politis (2011). Hence, the current simulation focuses on compar-
ing a standard flat-top estimator f to the thresholded estimators f and f proposed in this
paper.

For simplicity, the trapezoidal lag-window of Politis and Romano (1995) was used in
both f and f together with the empirical bandwidth choice rule of Appendix A. Regarding
f and f, the estimated T}, from eq. (11) was used throughout, together with the choice
B, = ¢ where ¢ is defined in the empirical bandwidth choice rule.

Noting that f is a special case of f, the tables below include the flat-top estimator f in
the column of f with 6 = 0. For all estimators, the positive part was used as discussed in
Section 3.1, i.e., f*, f+ and f*. R functions to compute the estimators f*, f* and f* are
provided at: http://www.math.ucsd.edu/~politis/SOFT/SpecEst.R.

The simulation was based on 999 replications of time series from the following three

models; in all three models, the sequence Z; is i.i.d. N(0,1).

¢ AR(1) model. X; = ¢X;_1 + Z, with ¢ € {—0.5,0,0.5,0.9}.
e Sparse MA(¢) model. X; = Z; + Z;_, with ¢ € {1, 3,5,10}.

e Linear time series with strong dependence and sparsity. X; = > 72,0k 21—k
in the following four cases; here note that b, = 49/(k + 7)2 for k= 0,1,. . ..
A. Oy =b; forall k=0,1,....
B. Gk = bkl{k‘ is divisible by 2}.
C. 0 = bp1{k is divisible by 3}.

D. 6y = bp1{k is divisible by 5}.

13



The AR(1) model was chosen as an easy setting in which thresholding is superflu-
ous. Table 1a shows the empirical estimates of the mean (standardized) L, error, i.e., of
ESupy,e(_r ] W for the three estimators f*, f* and f* for different combinations
of ¢ and §, and two different sample sizes, n = 100 and 400. Table 1b is similar to Table 1a,
using the mean (standardized) integrated squared error (MISE) E |7 (%)2 dw to
compare the estimators. In both Tables, the division by f(w) is to account for the standard
deviation of a general spectral estimator f (w) that is asymptotically proportional to f(w).
Note also that for the purposes of Tables 1a and 1b—as well as subsequent tables—the L
and MISE errors were approximated by their discrete versions where both estimator and
estimand are computed on the Fourier frequencies only.

The results of Tables 1a and 1b are not surprising. In the case ¢ = 0, where the data
are actually white noise, the thresholded estimator f* is best (with ¢ = 2 + 1/2) but all
other estimators perform quite well here as well. In all other cases, i.e., in all cases where
there is some genuine dependence in the data, the flat-top estimator f T is best; the hybrid
estimator f* with & = 0.33 comes a close second. Among the thresholded estimators in
the non-white cases, the choice ( = 1.5 seems to be generally preferable. For the tables, an
entry of 0.0000 indicates a value that is less than 0.00005.

By contrast to the AR(1) case, the sparse MA(q) model of Tables 2a and 2b presents a
situation where thresholding should give improvements. Of course, the MA(1) case is not
lacunary; so, as in the AR(1) case, the flat-top estimator f T is best with the hybrid estimator
er with § = 0.33 coming a close second. However, when ¢ = 3 or 5, the hybrid estimator
ft with § =1 is the unequivocal winner in the n = 100 case, indicating how thresholding
together with a flat-top window can manifest a wonderful synergy. In the n = 400 case,
the hybrid f* is a close second to the thresholded estimate f1 with ¢ € [1.5,2]. The fact
that the thresholded estimate f+ is best here is not surprising in view of the fact that
the controversial truncated lag-window A, .(x) = 1{z € [-1,1]} is actually optimal in the
MA(q) case; see the discussion after Theorem 2.2.

The thresholded f+ is also best—and this time by far—in the rather extreme case of

14
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Figure 3: Correlogram from sparse linear time series of Model C with n = 500; superimposed

are the empirical rule bands 4+2+/log;qn/n.

g = 10 that was chosen to demonstrate a possible pitfall of the hybrid/flat-top set-up; this
pitfall can be pin-pointed to the automatic application of the empirical rule of Appendix
A whereby after K, consecutive non-significant §(k)’s, the rule stops looking any further.
Since K,, ~ 5 for sample sizes of the order of a few hundred, the empirical rule treats any
sparse MA(q) with ¢ > 5 as being white noise resulting in a bandwidth M that is too small.
However, as discussed in Section 2.1, the empirical rule should always be complemented by
an inspection of the correlogram in which case the significance of 4(¢q) should be obvious as
a value of p(q) ~ 1/2 is too large to miss—see Figure 2 for an example.

The set-up of a linear time series with strong dependence is also devised to show-case
the potential benefits of thresholding when sparsity is present. Figure 3 depicts a typical
correlogram from Model C where the sparsity is apparent. Figure 4 shows, in log-scale,
the true spectral density of a sparse linear time series of Model D that is characterized
by several prominent peaks. As calculated from a typical data series with n = 400, both

the thresholded estimator f* with ¢ = 1.5, and the hybrid estimator f* with 6§ = 0, i.e.,

15
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Figure 4: Log-spectral density of sparse linear time series of Model D from a typical data
series with n = 400. Lines: true spectrum; Points: thresholded estimator f T with ¢ = 1.5;

Jagged lines: hybrid estimator f+ with § = 0, i.e., the flat-top estimator.
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the flat-top estimator, have difficulty approximating these sharp peaks. Interestingly, the
hybrid estimator fT with § = 1 is virtually indistinguishable from the thresholded f* with
¢ = 1.5 in the data example associated with Figure 4, and thus is not shown there.

As Tables 3a and 3b show, in case A where there is no sparsity, the flat-top estimator
er is clearly the best. However, in the sparse cases B, C, D, the hybrid estimator er with
0 = 1 gains prominence. What is also different here is the slower rate of convergence of all
estimators involved; this is manifested by comparing the n = 100 to the n = 400 lines of

Tables 3a and 3b that are within a standard error from each other.
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AR(1) || Estimator fr with ¢ = Estimator fr with  §=

n =100 1.001 1.5 2.0 25 | 0(e, ff) 033 067 1.0

¢=—05| 04010 03644 04885 0.5051 | 0.3027  0.3015 0.3102 0.3253
0 0.0304  0.0100 0.0100 0.0100 | 0.0179  0.0173 0.0158 0.0150
0.5 0.3901  0.3738  0.4918 05050 | 0.2971  0.3027 0.3060 0.3234
0.9 1.4254  1.2676  1.3147  1.4030 || 0.7350  0.7455 0.8164 0.9289

n = 400

¢=-05 03197 0238 02872 02961 | 0.1607  0.1619 0.1714 0.1929
0 0.0130  0.0025 0.0025 0.0025 | 0.0040  0.0032 0.0031 0.0038
0.5 0.3124 02420  0.2866  0.2949 0.1589  0.1544 0.1671 0.1924
0.9 17118  1.2773  0.9636  0.9834 || 0.4785  0.4886 0.5260 0.6105

Table 1a. AR(1) model. Entries represent empirical estimates of the mean (standard-

ized) Loo error, i.e., of Esup,|

_ﬂ—:ﬂ-]

L) f(w)| for different estimators.

fw)

AR(1) | Estimator fr with (= Estimator ft with 6=
n =100 1.001 1.5 2.0 2.5 0 (ie, ft) 033 0.67 1.0
¢=—05| 0.0519 0.0601  0.1161  0.1287 0.0310  0.0308 0.0337  0.0373

0 0.0032  0.0001 0.0001 0.0001 0.0012 0.0011  0.0009  0.0008
0.5 0.0501 0.0668  0.1187  0.1287 0.0318  0.0321  0.0335  0.0368
0.9 0.2857  0.2962  0.4040  0.5621 0.0645 0.0668  0.0890  0.1423

n = 400
¢=-05| 0.0257 0.0233  0.0347  0.0381 0.0075 0.0080  0.0093  0.0123
0 0.0009  0.0000 0.0000 0.0000 || 0.0001  0.0000 0.0000 0.0001
0.5 0.0252 0.0239  0.0345  0.0379 0.0076  0.0075 0.0091  0.0124
0.9 0.2259 0.1927  0.1558  0.1893 0.0165 0.0180  0.0259  0.0450

Table 1b. AR(1) model. Entries represent empirical estimates of the mean (standard-

ized) Ly error, i.e., of E [ <

fw)—f(w)
fw)

2
> dw for different estimators.




MA(q) || Estimator fr with (= Estimator ft with §=

n=100| 1.001 1.5 2.0 25 | 0(Ge, ff) 033 067 1.0
g=1 0.2392  0.2846  0.9025 0.9799 || 0.1439  0.1390 0.1421 0.1445
0.2494  0.3156  0.9234 0.9799 | 0.2847  0.2898 0.2091 0.1611
5 0.2333  0.3482 0.9364 0.9800 || 0.4089  0.4073 0.3148 0.1772
10 0.2663  0.4339  0.9627 0.9800 | 1.0054  1.0079 0.9872 0.9793

n = 400

g=1 0.1960  0.0573 0.0564 0.0635 || 0.0639  0.0634 0.0609 0.0668
0.1856  0.0578 0.0559 0.0589 || 0.1345  0.1352 0.0932 0.0673
5 0.1808  0.0596 0.0581 0.0691 || 0.1945  0.1991 0.1291  0.0748
10 0.1940  0.0606 0.0626 0.0708 || 09868  0.9763 0.9792 0.9750

Table 2a. Sparse MA(q) model. Entries represent empirical estimates of the mean

(standardized) Lo, error, i.e., of Esupy,e[—n,n]

[f(w)—f(w)
Fw)

| for different estimators.

MA(q) || Estimator ft with ¢ = Estimator ft with §=

n = 100 1.001 1.5 2.0 2.5 0 (i.e., f+) 0.33 0.67 1.0
qg=1 0.0240 0.0514 0.2013 0.2226 0.0090 0.0088 0.0094 0.0104
0.0254 0.0595 0.2072 0.2226 0.0238 0.0239 0.0170 0.0125
5) 0.0232 0.0680  0.2108 0.2226 0.0372 0.0376 0.0293 0.0144
10 0.0283 0.0896  0.2179 0.2227 0.2204 0.2210 0.2195 0.2192

n = 400

qg=1 0.0121 0.0012 0.0011 0.0031 0.0017 0.0016  0.0015 0.0021
0.0115 0.0013 0.0011 0.0018 0.0052 0.0052 0.0035 0.0021
) 0.0111 0.0013 0.0012 0.0041 0.0090 0.0090 0.0058 0.0026
10 0.0127 0.0014 0.0014 0.0041 0.2222 0.2195 0.2217 0.2217

Table 2b. Sparse MA(q) model. Entries represent empirical estimates of the mean

(standardized) Ly error, i.e., of E [™_ (

fw)—f(w)
fw)
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LINEAR || Estimator  f* with ¢ = | Estimator fr with § =
n =100 1.001 1.5 2.0 25 || 0 (e, ff) 033 067 1.0
A. 1.0105  0.8609 0.9102 0.9467 | 0.6163  0.6203 0.6478 0.7116
B 0.7769  0.4819 0.4891 0.5383 || 0.5177  0.4937 0.4939 0.4707
C. 0.4921  0.3780 0.4271 0.4776 || 0.4665  0.4519 0.3838 0.3522
D. 0.2985  0.2956 0.3393 0.4461 || 0.4183  0.3854 0.3017 0.2576

n = 400
A. 1.3305  0.8085 0.6843 0.7605 | 0.4693  0.4690 0.4862 0.5552
B. 0.7978  0.4779 0.4860 0.5384 || 0.5346  0.5199 0.4881 0.4815
C. 0.4944  0.3714 04279 04763 || 0.4652  0.4485 0.3894 0.3506
D. 0.3001  0.2948 0.3440 0.4468 | 0.4279  0.3931 0.3040 0.2611

Table 3a. Sparse linear process. Entries represent empirical estimates of the mean

(standardized) Lo, error, i.e., of E SUPye[—r,7] W for different estimators.

LINEAR || Estimator  fT with ¢ = || Estimator fr with 6=

n =100 1.001 1.5 2.0 25 || 0 (e, ff) 033 067 1.0
A. 0.1907  0.1922 0.2667 0.3493 0.0537 0.0551 0.0676 0.1088
B 0.0898  0.0520 0.0657 0.0924 0.0221 0.0227 0.0298 0.0382
C. 0.0456  0.0345 0.0505 0.0654 0.0223 0.0242 0.0241 0.0246
D. 0.0208  0.0214 0.0337 0.0594 0.0237 0.0226  0.0185 0.0157

n = 400
A. 0.1736 0.1112 0.1040 0.1417 0.0166 0.0171  0.0235 0.0421
B. 0.0930  0.0513 0.0640 0.0919 0.0226 0.0238  0.0289  0.0398
C. 0.0462 0.0339 0.0506 0.0648 0.0224 0.0234 0.0232 0.0247
D. 0.0209  0.0214 0.0346 0.0596 0.0241 0.0233 0.0187 0.0162

Table 3b. Sparse linear process. Entries represent empirical estimates of the mean

) 2
(standardized) Ly error, i.e., of E ["_ (%) dw for different estimators.
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To elaborate, in the previously discussed AR(1) and MA(q) case, the rate of decay of the
quantity ©,(m) of Assumption W is exponential. In other words, we can take o — oo in the
assumptions of Theorems 2.1 and 2.2, implying that—up to a logarithmic factor—the rate
of convergence of all three estimators f*, fT and f* is the parametric rate /n. However, in
the case of a linear time series with a = 2, the rate of convergence of the flat-top estimator
fT is n?/5. Now our Theorems 2.1 and 2.2 imply that f and f have a rate of convergence
that is at worst n'/3, and at best n?/®> which is the minimax rate here. In either case, it is
apparent that n = 400 is still a rather small sample size with a slow polynomial decay of
the v(k)’s.

All in all, the conclusion of the finite-sample simulation experiment is that the proposed
estimators, the thresholded er and the hybrid f*, are both reasonably accurate with the
hybrid seeming more versatile and generally preferrable. If one were to use the thresholded
estimator f+, then the choice ( ~ 1.5 seems to give good results overall. For the hybrid
estimator f*, the choice § ~ 0.5 seems to be the best compromise, i.e., providing some
degree of thresholding that is useful in sparse set-ups while at the same time maintaining

performance very close to that of the flat-top estimator f T in non-sparse models.

4 Appendix A: Empirical rule of bandwidth choice for flat-

top lag-windows

The empirical rule of picking the bandwidth parameter M for estimator (1) using a flat-top
lag-window (2) was first proposed in Politis (2003) and further refined in Politis (2011). To
describe it, we need to define the ‘effective’ flat-top region of Ay . as the interval [—c.¢, c¢]

where
Ces s the largest number such that |A\j.(x) — 1| < e forall x € [—cep,cefl; (12)

here € is some small chosen number, say € = 0.01. Notably, when the flat-top lag-window
Ag,c(x) is very smooth near the origin, the effective flat-top region [—c.y, c.¢] can be quite

bigger than the exact flat-top region [—c, ¢|; a prime example is the infinitely differentiable
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flat-top lag-window of McMurry and Politis (2004).

EMPIRICAL RULE OF CHOOSING M FOR FLAT-TOP LAG-WINDOW ), .
[Politis (2003, 2011)]

Let § be the smallest nonnegative integer such that |p(G +m)| < Co\/logign/n for m =
0,1,...,K,, where Cy > 0 is a fixed constant, and K, is a positive, nondecreasing integer-

valued function of n such that K, = o(logn). Then, let M = max([q/ces],1).

The constant Cy and the form of K, are the practitioner’s choice; indeed, any values for
Cp > 0and 1 < K,, = o(log n) works equally well in terms of the first-order asymptotic Mean
Squared Error of f (w). With the usual sample sizes of 100 to 1000, the recommendation
Cy ~ 2 and K, ~ 5 seems to work well in practice, and is also backed by the interpretation
of yielding (approximate) 95% simultaneous confidence intervals for p(¢ + m) for m =
1,..., K, via Bonferroni’s inequality. To handle bigger sample sizes, the choice K, =
max(5, 3,/loggn — 1) gives a reasonable rate of increase for K,, while maintaining K,, ~ 5
when n < 1000.

To appreciate how the above empirical rule of picking M works, consider the simplest
case where {X;} follows an MA(q) model as in eq. (3). It then follows that (k) = 0 for
|k| > g. Then, as shown in Politis (2003), we have § — ¢ in probability as n — co. So
letting M ~ 4/ces ensures that the (effective) flat-top region extends exactly over the non-
zero portion of the autocovariance. In other words, the autocovariances (k) for |k| < ¢
are not distorted at all by the lag-window thus ensuring that f (w) has negligible bias. The
distortion/tapering starts right after; its purpose is variance reduction since one does not
want to include estimates of autocovariances in eq. (1) when it is known that their true
value is zero.

As mentioned in the Introduction, the above should be contrasted with the spectral
estimation method that is based on averaging short, tapered periodograms. The latter

involves tapering of the actual X; data found in a short stretch of the series—not the
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autocovariances; it was proposed by Welch (1967) in order to reduce the bias of the Bartlett
(1946) estimator. For more details, see Brillinger (1981), Dahlhaus (1985), Percival and
Walden (1993), and Politis (2005).

5 Appendix B: Technical proofs

Proof of Theorem 2.1. The correspondence between the eigenvalues of an autocovariance

matrix and the associated spectral density is well known; cf. Brockwell and Davis (1991).

(i — j). Then, as shown by Toeplitz (1911), the spectrum of eigenvalues of matrix I',, in
the limit (as n — o00) tends to the set {f(w), w € [-m,7]}.

Similarly, define the following n x n Toeplitz matrices: Ty, = (3(i — 7)), Ty s =
(3x(i — ), and T 5, = (5(i — 5)1{|i — j] < B,}) where B,, = (n/logn)"/2(4%) and 7, (i —
J)=30—-)1{|3(—j)| > T, & |i—j| < B,}. With this choice of the bandwidth parameter
B,,, the above three matrices are all very close to one another; here ‘closeness’ is measured
in terms of the spectral radius norm A defined as A\(A) = max{|\| where X is an eigenvalue
of A}. In particular, in the proof of Theorem 5 of Xiao and Wu (2011) it is established
that:

Myt s —Unp,) = Op(B;®), and MLy, — T, ) = Op(By9). (13)

Using a similar estimate as in the proof of Theorem 3 of Meckes (2007), we have:

- T - . k ~ ikw
(2m) ' A(Cn g6 — Tn) > Sup ](277) DI —%)(V*(/‘f) —(k))e™|
wWE[—T, T k=—n
> sup ]\f*(w) = fa(w)] = An] (14)
we|—m,T
by the (inverse) triangle inequality, and letting f.(w) = (2m) "' 2", Au(s)e™®, fn(w) =
(2m) 7 I, y(s)e™s, and A, = (2m) 71 S Bl (Fa(s) — y(s))e,

Now we have

n B
21l < = 3 Isllu(s) =9 = = 3 Jslluls) =)+ - D Isllals) — 1)
s=—n s=—DBn Bn<|s|<n
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= 0p(22) 4 0p(B7) = Op(B;) (15

where the estimate 37,5, [7(s)] = O(m™) from Remark 2.2 was used. Thus, putting the

above together, we have:

sup | fu(w) = fu(w)| = Op(B,*) + Op(A(Ln, 4 — Tn))-

wE[—7,7]

Notably, the matrix f‘n B, is the banded autocovariance matrix of Wu and Pourahmadi

(2009) for which it holds that
A5, —Tn) = Op(B;®). (16)
But from eq. (13) and (16) it follows that A(Ty, 7, « — ['n) = Op(B;;®) and thus

sup |f*(w) — fa(w)| = Op(B, ).

wE[—7,7]

From Remark 2.2 we also have [f(w) — fno(w)| < 3550 [7(s)] = O(n™%) = o(B,“), and

therefore
S[UP ] |fo(w) = f(w)| = Op(B, ). (17)
we|—T,T
Finally, look at:

2 (fw) ~ fow) = 3 AR 2 Tuke™ = an(w) + ba(w).

In the above,

and

an(w) =Y (3(s) = B4(s)) L{|3(s)| = Tr}e™>.
Note that |a,(w)| < al, + all where:

a, =Y A(s) = EA(s)| 1{|A(s)| = T & |7(5)| < ccTn}

Bn<|s|<n
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and

all= > |3(s) = BA(s)| {|A()| = Ty & [9(s)| = ecTn};

Bn<|s|<n

in the above, ¢ is some constant in the interval (0,1 —1/¢). Note that

Prob{al, > 0} < Prob{ max |¥(s) — E5(s)| > (1 — () Cepy/logn/n }

1<]s|<n

< Prob{ max [§(s) — E4(s)| > ¢,\/logn/n } — 0 as n — oo

1<]s|<n

since (1 —¢¢) ¢ > 1 and invoking eq. (10). In other words, Prob{al, =0} — 1 as n — oc.
Now by an argument analogous to eq. (33) of Xiao and Wu (2011) it follows that a!/ =
Op(B,%). Therefore, it follows that

sup | f(w) — fu(w)| = Op(B;*) (18)

we[—7,7]

Eq. (18) together with (17) prove the theorem.O

Proof of Theorem 2.2. The proof is analogous to the proof of Theorem 2.1 by:
(a) replacing the banded autocovariance matrix fn B, Wwith the tapered autocovariance
matrix proposed by McMurry and Politis (2010) using the lag-window A, .(z) as taper;
(b) replacing the matrix T, 7, « = (3.(i — j)) by the matrix Ty, 1, 5 = (Js5.00(i — 5)) Where
Fsa(i —3) = A(i — HU{A — )| = 6T /¢ & |i — j| < M}; and finally (c) replacing f.(w)
by f(w).
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