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Nonlinear Spectroscopy of Core and Valence
Excitations Using Short X-Ray Pulses:
Simulation Challenges

Yu Zhang, Weijie Hua, Kochise Bennett, and Shaul Mukamel

Abstract Measuring the nonlinear response of electrons and nuclei to attosecond

broadband X-ray radiation has become possible by newly developed free electron

lasers and high harmonic generation light sources. The design and interpretation of

these novel experiments poses considerable computational challenges. In this

chapter we survey the basic description of nonlinear X-ray spectroscopy signals

and the electronic structure protocols which may be used for their simulation.
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Abbreviations

ADC Algebraic diagrammatic construction

AES Auger electron spectroscopy

AIMD ab initio molecular dynamics

ASRS Attosecond stimulated Raman spectroscopy

BO Bohn–Oppenheimer

CAP Complex absorption potential

CASPT2 Complete active space second-order perturbation theory

CASSCF Complete active space self-consistent field

CASSI Complete active space state interaction

CC Coupled cluster

CCSD Coupled cluster singles and doubles

CEO Collective electronic oscillator

CFM Crystal field multiplet

CI Configuration interaction

CIS Configuration interaction singles

CoIn Conical intersection

CPP Complex polarization propagator

CSF Configuration state function

CV Core-valence

CV-DFT Constricted variational density functional theory

DCH Double core hole

DFT Density functional theory

DMRG Density matrix renormalization group

DQC Double-quantum-coherence

ECH Equivalent core hole

EET Excitation energy transfer

EOM Equation of motion

ET Electron transfer

EXAFS Extended X-ray absorption fine structure

FC Frank–Condon

FCH Full core hole

FORS Full optimization reaction space

GGA Generalized gradient approximation

GSB Ground state bleaching
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HCH Half core hole

HHG High harmonic generation

IR Infrared

LCM Linear coupling model

LFT Ligand field theory

MCSCF Multiconfigurational self-consistent field

MLFT Multiplet ligand field theory

MMUT Modified midpoint unitary transform

MO Molecular orbital

MOM Maximum overlap method

MRCC Multireference coupled cluster

MRCI Multireference configuration interaction

MRPT Multireference perturbation theory

NEO Norm-extended optimization

NMA N-methylacetamide

NR Newton–Raphson

NTO Natural transition orbital

OEP Optimal effective potential

PAD Photoelectron angular distribution

PES Potential energy surface

RAS Restricted active space

RASPT2 Restricted active space second-order perturbation theory

RASSCF Restricted active space self-consistent field

RASSI Restricted active space state interaction

REW Restricted excitation window

RIXS Resonant inelastic X-ray scattering

ROCIS Restricted open-shell configuration interaction singles

ROHF Restricted open-shell Hartree–Fock

RT Real-time

SA State-averaged

SAC-CI Symmetry-adapted cluster configuration interaction

SCF Self-consistent field

SF Spin-flip

SIC Self-interaction correction

SLE Stochastic Liouville equation

SO Spin-orbit

SOS Sum over state

SS-MRCC State-specific multireference coupled cluster

STEX Static exchange

SXRS Stimulated X-ray Raman spectroscopy

TDA Tamm–Dancoff approximation

TDDFT Time-dependent density functional theory

TDHF Time-dependent Hartree–Fock

TDM Transition dipole moments

TP Transition potential

TRPES Time-resolved photoelectron spectroscopy
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TS Transition state

TSH Trajectory surface hopping

TXAS Transient X-ray absorption spectroscopy

XANES X-Ray absorption nearedge structure

XCH Excited core hole

XDQC X-Ray double-quantum-coherence

XES X-Ray emission spectroscopy

XFEL X-Ray free electron laser

XPS X-Ray photoelectron spectroscopy

1 Introduction

In linear spectroscopy experiments, the incident light field interacts with the studied

system only once and is relatively weak compared to the intrinsic interaction

potential of the system. The signal can be considered as the linear response of the

system to the perturbation of the light field. Linear spectroscopy provides useful

information about the atomic and electronic structure of the system. Nonlinear

spectroscopy techniques provide more detailed information. Nonlinear spectro-

scopy [1] employs multiple light fields to probe the correlations between different

spectral features. Many controlling factors, such as the frequencies, wavevectors,

and polarizations of the light fields and the time delays between them, can be varied

so that detection of the correlation between certain spectroscopy features and their

dynamics is possible.

Nonlinear optical spectroscopy became feasible soon after the invention of the

laser in the 1960s. With the development of laser technology, pulse durations were

reduced from picoseconds (1970s) to femtoseconds (1980s) [2], and now to

attoseconds [3]. Nonlinear infrared and optical spectroscopy techniques have

proved to be very successful for studying various excited state couplings and

dynamics in molecules and materials [4, 5]. Nonlinear spectroscopy techniques in

the X-ray regime made possible by new X-ray free electron lasers (XFEL) and high

harmonic generation (HHG) sources provide a unique window into the motions of

electrons, holes, and excitons in molecules and materials. Because of their broad

bandwidth (about 10 eV for a 100-attosecond pulse), X-ray pulses can create

coherent superpositions of many excited states localized at the target atoms. In

analogy to how optical pulses manipulate molecular vibrations, attosecond X-ray

pulses triggering and probing valence excited state dynamics have been considered

recently [6] and explored experimentally [7–10]. Sequences of coherent broadband

X-ray pulses can reveal the dynamics of nuclei and electrons in molecules with

attosecond temporal, and nanometer spatial resolution.

X-Ray pulses can be used in various ways:

• Off-resonant diffraction detects the charge density. This technique can be

extended to multiple dimensions to provide multipoint correlations of the charge

density [11, 12].
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• Core resonant spectroscopy offers a fast and versatile way to trigger valence

excitations at selected positions and times via a stimulated Raman process [6]

and to study their dynamics.

• Multiple cores can be excited at various delays, allowing the study of nonlinear

response of valence electrons.

The complex nature of excited state correlations and dynamics leads to charac-

teristic patterns in nonlinear spectroscopy signals, whose interpretation calls for

state-of-the-art theoretical simulation methods. The simulation of time-domain

nonlinear X-ray spectroscopy signals poses numerous challenges to quantum

chemists. First, resonant X-ray spectroscopy involves core excited state. Most

computational molecular electronic structure activity had focused on the ground

state and valence excitations. Core excitations received much less attention because

they do not participate in typical chemical processes. Core excited states lie well

above many valence excited states, and calculating them directly with bottom-up

algorithms is not practical. Core electrons also have special asymptotic behavior

(cusp condition) close to the nuclei and large relativistic effects. Second, signals

obtained by broadband X-ray pulses require many excited states. A state-by-state

calculation scheme is tedious and it is better to obtain all excited states with an

energy range in one shot. Third, resonant X-ray signals require not only the energies

of excited states but also the transition dipoles between them. It is usually necessary

to calculate high order excited state energy gradients to determine these quantities,

which complicates the simulation. Furthermore, multiple X-ray pulses can easily

create excited states with multiple core holes, which are not well described by

single-reference-based excited state quantum chemistry methods such as adiabatic

time-dependent density functional theory (TDDFT). Most of the discussions in this

chapter are based on adiabatic TDDFT. Non-adiabatic frequency-dependent kernels

are discussed in Sect. 4.3. Finally, many electrons may respond to the core hole

created by the X-ray pulses (e.g., shake-up and shake-off processes) [13], so that

many-body effects are very important in these signals. The single-particle picture

may break down and high level methods such as multireference configuration

interaction (MRCI) or multireference perturbation theory (MRPT) are often neces-

sary to account for electron correlation. These challenges are addressed in the

following sections. We focus on the theoretical methods (mainly DFT/TDDFT)

which have been extensively used in X-ray spectroscopy simulation. There are

excellent reviews on using TDDFT to simulate linear X-ray spectroscopy signals

[13–15]. Here we emphasize the specific issues associated with nonlinear X-ray

spectroscopy simulations and mainly discuss the methods applied to molecules.

This chapter is organized as follows. We first briefly describe the calculation of

various nonlinear X-ray spectroscopy signals, and then review existing quantum

chemistry simulation methods. We then discuss several key issues in nonlinear

X-ray spectroscopy simulation. Finally, conclusions and future directions are

outlined.
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2 Nonlinear X-Ray Spectroscopies

A system of interacting electrons is described by the Hamiltonian

Ĥ ¼
X

i

p̂ 2
i

2mi

þ 1

2

X

i j

V̂ ri � r j

�� ��� �
; ð1Þ

where p̂i is the momentum of the ith electron and V̂ is the Coulomb potential. In the

minimal-coupling Hamiltonian, the effects of an external electromagnetic field are

included by the substitution p̂i ! p̂i � qi
c
Â where qi is the charge and Â is the

electronic magnetic vector potential [1, 16]. The minimal coupling is well-suited to

discuss X-ray diffraction, which arises from the A2 term, but it is often more

convenient to work with the electric and magnetic fields (which are gauge invari-

ant) rather than the vector potential. This is accomplished by the Power–Zienau

canonical transformation [1, 16]. The Hamiltonian of the system then becomes

ĤS tð Þ ¼ Ĥ þ Ĥint tð Þ; ð2Þ

where H is the material Hamiltonian and, in the dipole approximation, the inter-

action Hamiltonian is

Ĥint tð Þ ¼ �
ð
dr ℰ̂ r; tð Þ þ ℰ̂

{
r; tð Þ

� �
� μ̂ ; ð3Þ

with μ̂ the dipole operator and ℰ̂ þ ℰ̂
{

� �
� Ê is the electric field which is separated

into positive and negative Fourier components. Within the rotating wave approxi-

mation, the dipole moment is also separated into positive and negative Fourier

components μ̂ ¼ V̂ þ V̂ { and only the terms ℰ̂ V̂ { þ ℰ̂
{
V̂ are retained [1]. Through-

out, we work in the interaction picture with respect to this Hamiltonian and in the

Hartree units, which simplifies the coefficients in the resulting expressions. The

detected quantity in the signals coincided here is the integrated photon number

S Λð Þ ¼
ð
dt

_̂
N tð Þ
D E

¼
ð
dtdrℑ ℰ̂

{
r; tð Þ � μ̂ tð Þh i

h i
; ð4Þ

where the last equality follows from the Heisenberg equation of motion for the

photon number operator and the signal is a function of the parameters defining the

pulse envelope (collectively denoted Λ). In the following, we take the field to be

polarized along the dipole and avoid the tensor notation (this restriction is easily

relaxed). Note that this form for the signal does not include any frequency- or time-

resolved detection. This could be done by adding gating functions [11, 17, 18] in

nonlinear spectroscopic applications; the electric field is a superposition of more
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than one externally applied pulses or continuous wave (CW) laser field. To simulate

such experiments, we calculate the propagated wavefunction of the driven system

ψ tð Þj i ¼ Û tð Þ ψ0j i; ð5Þ

where the time-evolution operator Û(t) follows from the Schr€odinger equation

i
∂

∂t
ψ tð Þj i ¼ Ĥint ψ tð Þj i ! Û tð Þ ¼ expþ

�
� i

ð t

0

dτĤint τð Þ
�
; ð6Þ

where eþ stands for the positive time-ordered exponential. As a reminder, we work

in the interaction picture where the states carry the interaction propagation and the

operators carry the field-free propagators so that the time-dependent dipole moment

is

μ̂ tð Þ ¼ eiĤtμ̂ e�iĤt; ð7Þ

and its expectation value is then written

μ̂ tð Þh i ¼ ψ tð Þ μ̂ tð Þj jψ tð Þh i ¼ ψ0 Û { tð Þμ̂ tð ÞÛ tð Þ
�� ��ψ0

	 

: ð8Þ

To analyze particular experiments, we expand the interaction propagator (time-

ordered exponential) perturbatively in powers of the electric field. Together with an

explicit form for the material Hamiltonian H, the previous equations form the basis

for the perturbative description of the nonlinear signals considered below.

2.1 Time-Resolved Four-Wave Mixing

Linear signals are determined by the first order Ĥint. In the X-ray regime, such

signals include X-ray absorption near edge structure (XANES) and extended X-ray

absorption fine structure (EXAFS) [19–21]. The third order techniques (four-wave

mixing) provide more detailed information [6, 22]. In this section, we describe a

class of techniques that utilize four pulses well-separated in time. The pulses

interact with the molecule sequentially and the signal is defined as the change in

transmission of the final pulse. In the limit of ultrashort pulses, the signal is

parameterized by the time delays between successive pulses. In the semiclassical

approximation (where the electric field is treated classically and the molecule is

quantum), we have
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E tð Þ ¼
X

p¼1, 2, 3, 4

~ℰ t� �τp
� �

eik p�r�iω p t��τpð Þþiϕ p þ c:c: ð9Þ

where ϕp is the phase of the pth pulse,�τp, ωp the central times and frequencies of the

temporal and spectral pulse envelopes and ~ℰ p tð Þ the temporal pulse envelopes

centered at t¼ 0. The system interacts once with each pulse and the signal can then

be plotted as a function of the pulse parameters. The terms in the perturbative

expansions are conveniently depicted diagrammatically. Besides facilitating

enumeration of all terms, this procedure allows one to write quickly the signal

corresponding to a particular diagram and to discern in which time periods parti-

cular coherences appear. For macroscopic samples longer than the relevant radi-

ation wavelength a delta function δ(�k4� k3� k2� k1) results. This is known as

phase matching for our level and dipole scheme. The ground state, singly excited

state and doubly excited state manifolds involved in these four-wave mixing

experiment are shown in Fig. 1. The three possible signals are denoted

kI��k1+k2+k3, kII� k1� k2+k3, and kIII� k1+k2� k3. Below we focus on

two techniques: the double quantum coherence four wave mixing, and the stimu-

lated Raman simulations, and analysis of these signals are given later. The diagrams

of other two four-wave mixing techniques are also provided in Fig. 2 for reference.

2.2 Double-Quantum-Coherence Signal

We focus on the DQC kIII signal, which is particularly sensitive to electron

correlations. The pulse order and the diagrams corresponding to the DQC signal

are depicted in Figs. 3 and 4, respectively. During the time period t2� τ2� τ1, the

system is in a coherence between the doubly-excited states and the ground state.

Fig. 1 Schematic depiction

of the energy levels under

consideration. The g, e, and

f are ground state, single

core excitation, and double

core excitation manifolds.

The fine structures of the

manifolds are given by

valence excitations on top

of the core excited states

whereas in the optical

regime they represent

vibrational excitations on

top of the valence excited

states
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Fig. 2 Loop diagrams for the kI (top row) and kII (bottom row) signals. The system begins in the

ground state (or more generally, a distribution of states as in (30)) and then interacts once with each

of the four sequentially applied pulses. For diagram rules see [23]

Fig. 3 Schematic depiction of the double quantum coherence technique. Four time-ordered pulses

are shown impinging on the sample from different directions. The transmission of the final pulse is

recorded as a function of the delay times or their conjugate frequencies. Figure taken from [24]
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From the diagrams in Fig. 4, one can immediately obtain the time-domain

signals:

SkIII Λð Þ ¼ ℑ

ð
dt

ð1

0

dt3dt2dt1
~ℰ4 t� �τ4ð Þeiω4 t��τ4ð Þ ~ℰ3 t� t3 � �τ3ð Þeiω3 t�t3��τ3ð Þ

�~ℰ2 t� t3 � t2 � �τ2ð Þeiω2 t�t3�t2��τ2ð Þ ~ℰ1 t� t3 � t2 � t1 � �τ1ð Þ
�e�iω1 t�t3�t2�t1��τ1ð Þ ψ0 Û { t1 þ t2 þ t3ð ÞV̂ Û t3ð ÞV̂ Û t2ð ÞV̂ {Û t1ð ÞV̂ {

�� ��ψ0

	 
�

� ψ0 Û { t1 þ t2ð ÞV̂ Û { t3ð ÞV̂ Û t2 þ t3ð ÞV̂ {Û t1ð ÞV̂ {
�� ��ψ0

	 
�
ei ϕ1þϕ2�ϕ3�ϕ4ð Þ

:

ð10Þ

It is important to note that this signal carries a phase ϕ1 þϕ2 �ϕ3 �ϕ4 which,

when randomly averaged, causes the signal to vanish. Observing this signal there-

fore requires phase control of the pulses. For pulses of finite duration, the distinction

between the actual interaction times and delays between successive interaction

times (the τp and tp, respectively) and the central times of the pulse envelopes and

delays between successive central times (the �τp and�tp, respectively) must be made.

The former are dummy variables of integration whereas the latter are control

parameters which determine the signal. It is common to perform such experiments

with very short, well-separated pulses. The resulting impulsive signal is then well

parameterized by the interpulse delay times (�t1, �t2, and �t3).

To understand the impulsive signal better, we may replace all τ p by �τp and

t p by �tp in Fig. 4. The signal may be Fourier transformed with respect to any or

all of these delays. From the diagrams, we can see that transforming with respect

to �t2 �t1ð Þ reveals resonances at double (single) excitations from the ground state

Fig. 4 The two loop diagrams contributing to the kIII (DQC) signal. The system begins in

the ground state (or more generally, a distribution of states as in (30)) and then interacts

once with each of the four sequentially applied pulses. Note that the phase choice for this signal

(kIII¼+ k1+ k2� k3) guarantees that the second excitation manifold is reached and provides

resonances between the ground state and this manifold
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whereas the t3 resonances contain single excitations from the ground state or

double excitations from the single-excitation manifold depending on the dia-

gram. We can therefore fix one of �t1 or �t3 and transform with respect to the other

two time arguments to obtain a two-dimensional frequency plot which reveals

correlations between the double excitations and single excitations (either from

the ground state or the single-excitation manifold). We denote this impulsive

signal by a 0 superscript:

S0kIII
�t3; �t2; �t1ð Þ ¼ ℰ4ℰ3ℰ2ℰ1e

�iω1�t1�i ω1þω2ð Þ�t2�i ω1þω2þω3ð Þ�t3δ ω1 þ ω2 � ω3 � ω4ð Þ
� ψ0 Û { �t1 þ �t2 þ �t3ð ÞV̂ Û �t3ð ÞV̂ Û �t2ð ÞV̂ {Û �t1ð ÞV̂ {

�� ��ψ0

	 
�

� ψ0 Û { �t1 þ �t2ð ÞV̂ Û { �t3ð ÞV̂ Û �t2 þ �t3ð ÞV̂ {Û �t1ð ÞV̂ {
�� ��ψ0

	 
�
:

ð11Þ

The signal is then Fourier transformed:

SkIII Ω3;Ω2;Ω1ð Þ ¼
ð
d�t3d�t2d�t1SkIII �t3;�t2;�t1ð Þei Ω3�t3þΩ2�t2þΩ1�t1ð Þ; ð12Þ

in order to reveal resonances better. Finite pulse envelopes may now be incorpo-

rated and, when the correlation functions are expanded in material eigenstates,

we obtain

SkIII,a Ω3;Ω2;Ω1ð Þ ¼
X

f e0e

eℰ∗

4 ω4 �ωe0g

� �
Vge0

eℰ∗

3 ω3 �ω f e0
� �

Ve0 f
eℰ2 ω3 �ω f e

� �
V f e

Ω3 � ωe0g þ iγe0g

� �
Ω2 � ωfg � iγfg

� �

�
eℰ1 ω1 �ωeg

� �
Veg

Ω1 �ωeg � iγeg

� � ;

ð13Þ

SkIII,b Ω3;Ω2;Ω1ð Þ ¼
X

f e0e

eℰ∗

4 ω4 �ω f e0
� �

Ve0 f
eℰ∗

3 ω3 �ωe0g

� �
Vge0

eℰ2 ω3 �ω f e

� �
V∗

f e

Ω3 �ω f e0 þ iγ f e0
� �

Ω2 �ωfg � iγfg

� �

�
eℰ1 ω1 � ωeg

� �
V∗
eg

Ω1 � ωeg � iγeg

� � ;

ð14Þ

where ωi j � εi � ε j and γij are the frequency and the dephasing rate of the i! j

transition, respectively. The contributions from diagrams a and b may be read

directly from Fig. 4. The numerator contains all transition dipoles as well as the

field-envelope factors which determine the material transitions permitted by the

bandwidths. The denominators contain the resonance factors for these material

transitions.
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At the level of Hartree theory, which assumes independent electrons, the DQC

signal vanishes because of interference. TDHF (or TDDFT) goes one step further

and provides a picture of independent transitions (quasiparticles). Here the signal

no longer vanishes, but shows a limited number of peaks. When correlation effects

are fully incorporated, the many-electron wavefunctions become superpositions of

states with different numbers and types of e-h pairs. The Ω2 and Ω3 axes then

contain many more peaks corresponding to all many-body states (in the frequency

range spanned by the pulse bandwidths), which project into the doubly-excited

states. Thus, along Ω2 the peaks are shifted, reflecting the level of theory used to

describe electron correlations. Along Ω3, the effect is even more dramatic and new

peaks show up corresponding to splittings between various levels. We show the

X-ray DQC signals of formamide as an example in Sect. 4.3. This highly-resolved

two-dimensional spectrum provides an invaluable direct dynamical probe of elec-

tron correlations (both energies and wavefunctions) [25, 26].

2.3 Stimulated X-Ray Raman Spectroscopy

Linear techniques contain the single-excitation spectrum whereas we have just seen

that the DQC (kIII) signal gives access to the double-excitation spectrum. Both of

these spectra thus characterize the intermanifold structure of the material (the

transitions between manifolds). We may obtain a window into the intramanifold

structure (transitions within the same manifold) by using the stimulated Raman

signal (SXRS in theX-ray regime) [2, 27, 28]. Aswith theDQC signal, this technique

is third-order (involving four interactions with the electromagnetic field). However,

rather than four sequential pulses, 1D-SXRS employs only two pulses, each of which

interacts twice with the material. This process is shown diagramatically in Fig. 5.

Note that, because the pair of interactions with each pulse are of opposite

Hermiticity, the overall absolute phase isϕ1 � ϕ1 þ ϕ4 � ϕ4 ¼ 0 and this technique

therefore does not require phase control to obtain a finite signal.

The first pulse in the SXRS process creates a superposition of excited states in

the ground state manifold. After a controlled delay period, the sample interacts with

the second pulse which returns the system to the original state.

For calculating this signal, we find it more convenient to work with the actual

interaction times τ rather than the time delays t j j ¼ 1, 2, 3ð Þ. It is straightforward
to write down a time-domain expression for the 1D-SXRS signal directly from the

diagrams in Fig. 5. Its form is similar to (10):
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SSXRS Λð Þ ¼ ℑ

ð
dτ4

ðτ4

�1
dτ3

ðτ3

�1
dτ2

ðτ2

�1
dτ1 ið Þ3ℰ*

2 τ4ð Þℰ τ3ð Þ

� ℰ
*

1 τ2ð Þℰ1 τ1ð Þ ψ0 V̂ τ4ð ÞV̂ { τ3ð ÞV̂ τ2ð ÞV̂ { τ1ð Þ
�� ��ψ0

	 
h

þ ℰ1 τ2ð Þℰ*

1 τ1ð Þ ψ0 V̂ { τ1ð ÞV̂ τ2ð ÞV̂ τ4ð ÞV̂ { τ3ð Þ
�� ��ψ0

	 
i
: ð15Þ

Because the interactions are paired within a given pulse and the pulses are tempo-

rally well-separated, we may extend the upper limit for the τ2 integration to infinity.

This permits us to define formally the polarizability α̂ p induced by the pth pulse:

α̂ p Λ p

� �
� i

ð1

�1
dτ

ð
τ

�1
dτ0V̂ τð ÞV̂ { τ0ð Þℰ*

p τð Þℰ p τ0ð Þ; ð16Þ

which is both a material operator and a function of Λp, the parameters of the pth

pulse. In the limit of ultrashort pulses, the primary Λp parameter is the central pulse

time �τp and the principal control variable for the 1D-SXRS signal is the interpulse

delay T ¼ �τ2 � τ1 and the signal is recast as

S Tð Þ ¼ ℜ α̂2 Tð Þα̂1 0ð Þh i þ α̂ *
1 0ð Þα̂2 Tð Þ

	 
� �
; ð17Þ

where we have set �τ1 ¼ 0 as the origin of time. Taking matrix elements in the

Hamiltonian eigenbasis gives the sum-over-states expression

Fig. 5 Two contributing loop diagrams (labeled as a, b in the figure) for the 1D-SXRS technique.

As before, the system begins in the ground state but this time interacts twice with each of the two

sequentially applied pulses. Note that the phase for this signal (ϕ1�ϕ1+ϕ2�ϕ2) automatically

vanishes, making the signal incoherent. The first pulse prepares a wavepacket of valence excita-

tions that evolves for the interpulse delay period before being probed with the second pulse
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α p,g0g00 � i
X

e

Vg0eVeg
00

ð1

�1
dτ2

ðτ2

�1
dτ1ℰ

*

p τ2ð Þℰ p τ1ð Þei ω p�ωeg0þiγeð Þτ2�i

�
ω p�ω

eg
00 þiγe

�
τ1 :

ð18Þ

Here, ωev is the frequency for the v ! e transition, and γe is the inverse of the

excitation lifetime. In some applications, it may be more convenient to work in the

frequency domain where the spectral (rather than temporal) field envelopes are

used. This can be accomplished by explicitly writing the propagators in (16) and

replacing the temporal field envelopes by their Fourier transforms yielding

α̂ p ¼
ð
dωdω pdω

0
p

2πð Þ3
ℰ
*

p ω0
p

� �
ℰ p ω p

� �

1

ωþ ω p � ω0
p � Ĥ0 þ iη

V̂
1

ωþ ω p � Ĥ0 þ iη
V̂ { 1

ω� Ĥ0 þ iη
:

ð19Þ

Expanding in eigenstates then gives the matrix elements

α p,g0,g00 ¼
X

e

Vg0eVeg
00

2π

ð
dω

ℰ
*

p ωð Þℰ p ωþ ωg0g00

� �

ωþ ω p � ωeg0 þ iγe
: ð20Þ

Starting from (20), we may now write the frequency-domain 1D-SXRS signal as

SSXRS Ωð Þ ¼ �
X

g0

ℜ α2;gg0α1;g0g
� �

γg0 � iΩ
� �

þ ℑ α2;gg0α1;g0g
� �

ωg0g

γ2g0 � 2iγg0Ω� Ω
2 þ ω2

g0g

þ
ℜ α*1;gg0α2;g0g

� �
γg0 � iΩ
� �

þ ℑ α*1;gg0α2;g0g

� �
ωg0g

γ2g0 � 2iγg0Ω� Ω
2 þ ω2

g0g

; ð21Þ

which is the Fourier transform of (15) with respect to the interpulse delay T. The

first term in (17) and (21) can be viewed as a valence wavepacket α1|ψ0i, created by
pulse 1, which propagates forward in time T and overlaps with a wavepacket hψ0|α2
created by pulse 2. The second term can be viewed as a wavepacket α2|ψ0i created
by pulse 2 propagating backward in time�T to overlap with the wavepacket hψ0|α

{
1

created by pulse 1. The SXRS technique creates a wavepacket of valence exci-

tations and, after a specified delay period T, probes this wavepacket so as to track its

evolution. A 2D extension of this 1D-SXRS in which three successive pulses are

employed is shown in Fig. 6. The resulting signal SSXRS(Ω1, Ω2) requires expansion

to fifth order in the field and carries information about correlations between

dynamics during the two delay periods which would not be available in

1D-SXRS [29]. This technique can also be applied following a pump pulse which

prepares the system by exciting a core hole. The subsequent SXRS process then
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creates a valence excitation and tracks its motion along the potential energy surface

produced by the core hole [30].

2.4 Correlation Function Expressions for SXRS Signals

In the previous section, we defined α̂p by combining two time-dependent dipole

interactions (excitation and de-excitation) as well as the pulse envelope (see (16)).

All time-dependence is then encoded into the polarizability α̂ p and the result (see

(17)) is compact but too complicated. Although perfectly suited to an expansion in

eigenstates, as shown in the previous section, this form of α̂ p suffers from some

drawbacks. Recalling the definition of operator time-dependence in the interaction

picture (see (7)), we see that there are three time propagation periods. This

definition for the polarizability therefore contains material propagation both for

interpulse and intrapulse time periods. Because these occur on two different time-

scales, a separation permits different treatments. In particular, it is then possible to

treat the intrapulse propagation perturbatively while preserving the full form of the

longer-time interpulse propagator.

That the two impinging fields are temporally well-separated guarantees that

there exist ~τ1i and ~τ1 f (~τ2i and ~τ2 f ), the initial and final times of the first (second)

pulse. The ~τpi and ~τ p f are used to bound the possible interaction times with the pth

pulse. They are a formal tool used to separate the interpulse propagation from the

intrapulse propagation and can be unambiguously defined as

Fig. 6 Four contributing loop diagrams (labeled as a, b, c, d in the figure) for the 2D-SXRS

technique. The system begins in the ground state then interacts twice with each of three sequen-

tially applied pulses. As with 1D-SXRS, the phase vanishes and the signal is incoherent. The

additional delay period allows information about couplings and correlations of valence excitations

that are not available in 1D-SXRS to be extracted

Nonlinear Spectroscopy of Core and Valence Excitations Using Short X-Ray. . .



~τpi � sup t : E p t0ð Þ ¼ 08 t0 < t
 �

~τ p f � inf t : E p t0ð Þ ¼ 08 t0 > t
 � ; ð22Þ

making the procedure unarbitrary. Explicitly writing the time propagators in an

exponential form, we can recast the material correlation function pertaining to

diagram a in Fig. 5 (diagram b in Fig. 5 follows similarly so we exclude it for the

sake of brevity) as

eiĤ0τ4 V̂e�i ~̂H0 τ4�τ3ð ÞV̂ {e�iĤ0τ3eiĤ0τ2 V̂e�i ~̂H0 τ2�τ1ð ÞV̂ {e�iĤ0τ1i:
D

ð23Þ

Inserting identities to separate the propagation at ~τ then gives

eiĤ0~τ2 f eiĤ0 τ4�~τ2 fð ÞV̂ e�i ~̂H0 τ4 � τ3ð ÞV̂ {e�iĤ0 τ3�~τ2ið ÞeiĤ0 ~τ2i�~τ1 fð Þ
D

�eiĤ0 τ2�~τ1fð ÞV̂ e�i ~̂H0 τ2 � τ1ð ÞV̂ {e�iĤ0 τ1�~τ1ið Þe�iĤ0~τ1i

E
:

ð24Þ

We thus define the polarizability as

α̂p ~τp f ;~τpi
� �

� i

ð1

�1
dτ

ð τ

�1
dτ0eiĤ0 τ�~τp fð ÞV̂ e�i ~̂H0 τ�τ0ð ÞV̂ {e�iĤ0 τ0�~τpið Þℰ*

p τð Þℰ p τ0ð Þ:

ð25Þ

where the properties of the pulse and the choice of the ~τ guarantee the appropriate

sign of the propagators. This is an operator in the valence excitation space. It may

be recast in the frequency domain as before:

α̂p ~τ p f ; ~τpi
� �

¼
ð
dωdω pdω

0
p

2πð Þ3
ℰ
*

p ω0
p

� �
ℰ p ω p

� �
e�iω ~τ p f�~τpið Þe�i ω p�ω0

pð Þ~τ p f

� 1

ωþ ω p � ω0
p � Ĥ0 þ iη

V̂
1

ωþ ω p � Ĥ0 þ iη
V̂ { 1

ω� Ĥ0 þ iη

;

ð26Þ

and may differ from (19) in the appearance of ~τ p -dependent phase-factors. Note

that, because the choice of the ~τ p is set by the pulse shape, their appearance on the

left hand side is not necessary and we merely include them for clarity. With this

definition, the contribution to the signal from diagram a in Fig. 5 is

Sa ¼ ℜ eiĤ0~τ2 f α̂2 ~τ2 f ; ~τ2i
� �

e�iĤ0 ~τ2i�~τ1 fð Þα̂1 ~τ1 f ; ~τ1i
� �

e�iĤ0~τ1i

D Eh i
: ð27Þ

Defining the duration of the pth pulse t p � ~τ p f � ~τpi and the interpulse delayT � ~τ2i
�~τ1 f we have, in the limit of well-separated pulses, T >> t p p 2 1; 2f g. Assuming

that, having accounted for the finite pulse duration in the definition of α, wemay take

t p ! 0 for the purposes of the free evolution in (27), the signal becomes
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Sa Tð Þ ¼ ℜ eiĤ0T α̂2e
�iĤ0T α̂1

D Eh i
¼ ℜ α̂2 Tð Þα̂1 0ð Þh i½ �; ð28Þ

where we have set ~τ1i ¼ τ1 f as the zero point of time and the last equality defines the

interaction picture polarizability αp(t). Note that this expression for Sa(T ) matches

the first term in (17) (with the second term standing for Sb(T )). Besides being

necessary for certain applications, the separation of interpulse and intrapulse

propagations prominently features the dependence on the key time parameter, the

interpulse delay T. All other parameters defining the pulses are encoded in the

definition of the α̂ p . We pause to recall that the only assumption necessary in

reaching (28) (just as for (17)) is that the interpulse delay be much larger than the

temporal pulse widths.

It is important to note that separating interpulse and intrapulse propagation

periods yields a formally identical expression and may seem an unnecessary arti-

fice, as indeed it is within an eigenstate representation. The utility then is manifest

when the eigenstates are prohibitively expensive to calculate. For example, in the

configuration interaction representation, states are expanded in a basis consisting of

the many-body ground state (the orbitals being filled up to some maximum energy

level) and excitations on this ground state obtained by successively higher orders of

electron creation-annihilation operator pairs:

ψj i ¼ gj i þ
X

i j

Ci jĉ
{
i ĉ j gj i þ . . . ð29Þ

Because the material may generally be taken to begin an experiment in the many-

body ground state, perturbative treatment of nonlinear spectroscopies naturally

produces such states. At low order, there are many fewer states in this treatment

than in the full eigenbasis and a significant numerical speedup can be achieved.

In order to exploit this form requires a similar recasting of the α̂ p and this is

explored in Sect. 4.2. Corresponding expressions for the 2D signal SSXRS(T2, T1)

(Fig. 6) are given in [29, 31].

2.5 Discussion of Signals

In the above sections we provided two different types of expressions for the DQC

and SXRS signals. The first ((10) and (15)) are given in terms of time correlation

functions of the dipole operator. This form is convenient for direct ab initio

dynamic simulations of electrons and nuclei [31, 32]. It can take into account,

e.g., in nonadiabatic dynamics, conical intersections, etc. Real-time time-dependent

density functional theory can then be applied to calculate the signal. Alternatively,

the second procedure ((13), and (17)–(20)) expands the correlation functions in

molecular eigenstates. This is convenient for simpler models when only a few

electronic states participate and for relatively small systems where the many-
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body states can be computed. The sum-over-states expansions also facilitate inter-

pretation of the resulting signal as the meaning of the various resonances is

transparent in this form. Both the correlation function and sum-over-states forms

may be displayed either in the time-domain (as a function of�t3,�t2,�t1) or the frequency

domain (as a function of the conjugate variables Ω3, Ω2, Ω1). It is often useful to

employ a mixed representation, e.g., S(Ω1, t2,Ω3), which is 2D in frequency and 1D

in time so that correlations between resonances observed at the two frequencies can

be observed and monitored as the time argument is allowed to vary. These tech-

niques can therefore provide a high degree of selectivity and carry a rich abundance

of information on the electronic and nuclear structure and dynamics.

Our correlation function expressions (10) and (15) are given by the expectation

values with respect to |ψ0i. Alternatively, we may describe the system using the

density matrix

ρ̂ ¼
X

i

Pi ψ ij i ψ ih j; ð30Þ

whose dynamics is determined by the Liouville equation

_̂ρ ¼ �i Ĥ ; ρ̂
� �

� i Ĥint; ρ̂
� �

: ð31Þ

Here Pi is the probability that the system is found in state |ψ ii. When all degrees of

freedom are treated at the Hamiltonian level, it is more convenient to remain in

Hilbert space rather than recasting in Liouville space (as is done in [1]). This

facilitates computations because Hilbert space has far fewer dimensions than the

associated Liouville space. In these cases, the above equations may still be utilized

formally with appropriate choice of the Pi. In terms of the density matrix, the

expectation value of the dipole is given by

μ̂ tð Þh i � Tr μ̂ tð Þρ̂ tð Þ½ �; ð32Þ

and we may expand ρ(t) perturbatively to arbitrary order in the interaction

Hamiltonian

ρ̂ nð Þ tð Þ ¼ ið Þn
ð
drn . . . dr1

ð t

t0

dτn . . .

ðτ2

t0

dτ1E rn; τnð Þ . . .E r1; τ1ð Þ
� μ̂ τnð Þ, . . . ; μ̂ τ1ð Þ, ρ̂½ �½ � . . .½ �:

ð33Þ

One can then include the effects of coupling to a bath by introducing further terms

to the equation of motion – see (30) – which represent the dissipation of system

excitations into the bath. One numerically inexpensive strategy to implement this

idea is the stochastic Liouville equation (SLE)
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_̂ρ ¼ �i Ĥ ; ρ̂
� �

þ L̂bρ̂ ; ð34Þ

where L̂b represents the stochastic Markovian dynamics of the bath. The SLE is an

equation for the field-free evolution of the joint system-bath density matrix and can

be used to write a reduced equation of motion for the system density matrix which

incorporates (perturbatively) the effects of the bath. This can, for example, be done

at the level of the Lindblad equation [33, 34]. The model for the bath and system-

bath coupling determines the form of L̂b. Examples are the n-state jump and

Brownian oscillator models [1, 35].

Equations (32) and (33) give one procedure for obtaining the nth order signal and

generates 2n terms when the commutators with the initial density matrix are fully

expanded. Equations (8) and (7) offer an alternative procedure which, upon

expanding the time-ordered exponentials in the Û({)(t), generates nþ 1 terms at

nth order. The latter procedure obviously involves less terms and it is often

numerically preferable to propagate the wavefunction rather than the density

matrix. On the other hand, only a density matrix based procedure can properly

account for system-bath interactions and the dephasing-effects these cause. More-

over, the real-time interpulse delays appear more naturally in a density-matrix

formulation. Equations (32) and (33) are therefore more expensive to implement

but provide a more intuitive picture and are necessary when a proper account of

system-bath dynamics is crucial [1].

As previously mentioned, the nth-order expansion of the density matrix as per

(33) generates 2n terms. Interpreting the resulting signal requires expanding

the interaction Hamiltonian into its constituent terms (which are, in the rotating

wave, (ℰ̂
{
V̂ and ℰ̂ V̂ {)). There are thus a total of 4n terms which may be depicted

diagrammatically (in the case of temporally overlapping fields, this is further

complicated and leads to an additional factor of up to (nþ 1)! representing per-

mutations of the temporal order of field interactions). These diagrams represent

different excitation and evolution pathways for the system density matrix and we

refer to them as Liouville space pathways. This proliferation of terms (64 at 3rd

order) with a variety of different resonances during different time periods makes the

general problem of interpreting a signal quite difficult. Fortunately, the diagrams

that contribute to an experimental signal can be reduced by various techniques

(additionally, some diagrams vanish when the material begins the process in the

ground state). Principally, experimentalists can exploit the phase-sensitivity of

nonlinear signals to control the pathways taken by the system. Conceptually, the

simplest method to accomplish this selectivity is to use a non-collinear beam

geometry as depicted for the DQC technique in Fig. 3. In the large sample (relative

to the light wavelength) limit, the spatial integrations give a delta function

δ(�k4� k3� k2� k1). This phase matching sets the directions along which a

nonlinear signal may be detected and naturally separates the diagrams that contri-

bute in particular directions [36]. Each wavevector k4 of the detected beam then

selects a subset of diagrams as shown in Figs. 2 and 4. Alternatively, the same
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degree of control can be achieved in a collinear beam geometry by controlling the

phases of the various beams. A linear combination of measurements with different

phases can then yield the desired signal withϕ4 ¼ �ϕ3 � ϕ2 � ϕ1 corresponding to

the equivalent spatial-phase selection in the non-collinear arrangement [37,

38]. This technique is known as phase cycling [39] and is always employed in

multidimensional NMR because the wavevectors are close to zero in radio frequen-

cies [40]. In the infrared, visible, and X-ray regimes, both phase matching and

phase cycling protocols for pathway selection are possible depending on experi-

mental convenience.

So far, we have been concerned with processes in which the system is initially in

the ground state. In the X-ray regime, techniques employed can then study reso-

nances of core excitations in relation to this ground state as well as the evolution of

valence excitations along the ground state potential surface. This procedure may be

generalized to account for a more general initial density matrix as may be obtained

from previous excitation or pumping of the system. A complete account of these

more general techniques involves explicit incorporation of the pumping process and

results in higher-order correlation functions [18, 30]. Although more complicated,

these techniques open up the possibility of studying excited state resonances

(as well their correlations) and tracking the motion of valence excitations in the

presence of core holes.

The present formalism may be further utilized in electronic spectroscopies such as

time-resolved photoelectron and Auger electron spectroscopy (TRPES and AES,

respectively). These techniques provide an alternative toolbox that complements and

supplements the optical techniques discussed here. In particular, TRPES has simpli-

fied selection rules compared to optical detection schemes (any orbital may be ionized

and the transition dipole to the continuum states does not depend much on the precise

continuum state and may be approximated as flat in certain regions). The probabilities

for excitation to various continuum states still depend sensitively on the final mole-

cular electronic state and one can therefore use knowledge of the continuum as a probe

[41, 42]. On the other hand, AES has entirely different selection rules, being based on a

Coulombmatrix element (rather than a transition dipole) and has been used to track the

radiationless decay of photoexcited molecules [43]. Despite these differences, a very

similar formalism can be applied, the only differences being in the operators in the

correlation functions. This then allows the use of the array of simulation procedures

discussed for electronic spectroscopies and, in particular, gives a straightforward way

to incorporate bath dynamics and dissipation effects without explicitly including

corresponding degrees of freedom at the Hamiltonian level [44].

3 Quantum Chemistry Methods

Signal expressions in Sect. 2 require the calculation of core excited states and

transition dipole moments. Here we review the quantum chemistry methods that

can be used in their simulation and present a few examples.
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3.1 ΔSCF-Based Methods

3.1.1 Different Core Hole Approximations

An X-ray photon usually excites a core electron leaving a core hole in the system.

Describing core holes properly is the primary task of resonant X-ray spectroscopy

simulation. In Fig. 7 we show the most widely used approximation schemes for core

holes [45]. The simplest is to represent a core hole as an additional nuclear charge.

This equivalent core hole (ECH) also known as (Zþ1) approximation [46, 47] is

adequate for deep core holes because for electrons in the exterior shells a deep core

hole behaves as does a positive nuclear charge. It is simple to apply (no additional

coding in standard quantum chemistry packages is necessary) and multiple core

holes can also be easily represented by additional nuclear charges. However, it is a

crude approximation which does not apply to shallow core holes. It further arti-

ficially changes the spin state of the system.

The ECH approximation was used in our early X-ray nonlinear spectroscopy

simulations [48–52]. The photon echo signal kI¼�k1þ k2þ k3 of the para and

ortho isomers of aminophenol was calculated in [48] (see Fig. 8). The second time

delay t2 is set to zero. The signals reveal the correlation between the O1s core

excitations (Ω1) and the N1s core excitations (�Ω3). The equivalent-core molecular

orbitals corresponding to the three strong O1s XANES peaks (marked A, B, and C)

are also shown. In a simple single orbital picture, orbital A is populated by the

excited O1s electron in the lowest O1s excitation. The XANES signals are not

sensitive to the corresponding core excited states, as can be seen from the top of

Fig. 8. Although the orbitals corresponding to peak Bs of the two isomers look very

Fig. 7 Approximation schemes for core hole excitations. ECH equivalent core hole (Zþ1)

approximation, FCH full core hole approximation, XCH excited core hole approximation, TS

transition state method, TP(HCH) transition potential method (half core hole approximation). Full

discs represent electrons and half discs represent half electrons. Numbers in circles at the bottom

represent nuclear charges, where Z is the number of electrons of the system
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different, the two peak Bs are similar in energy and lineshape. This is because

XANES only detects the local electronic structure of atoms. However, the photon

echo signals show many differences. In the para isomer, the orbital corresponding

to peak B is delocalized and extends from the O to N atom. So, the N1s and O1s

core excitations corresponding to this orbital affect each other and generate a

crosspeak (Fig. 8, left). However, in the ortho isomer, because the orbital

corresponding to peak B vanishes in the surroundings of the N atom, the N1s and

O1s core excitations corresponding to this orbital do not affect each other and thus

we cannot see a crosspeak (Fig. 8, right). Although it is much stronger in O1s

XANES of the para isomer, peak A contributes to a much weaker crosspeak than

peak B. This is because the orbital corresponding to peak A in the para isomer is

highly localized to the O atom and far away from the N atom. It is also understand-

able that peaks A and C produce much stronger crosspeaks of the ortho isomer than

those of the para isomer because O and N atoms are closer in the ortho isomer.

In all, photon echo signals carry detailed information about the wavefunctions of

the core excited states involved in the experiment.

More than four decades ago Slater had proposed the transition state (TS) method

for calculating core excitation energies. In this method the two orbitals involved in

the transition are occupied by a half electron and solved self-consistently. The

excitation energy is given by the difference between the two orbital energies

[53, 54]. The excitation energy obtained in this way is accurate up to second

Fig. 8 Simulated O1s XANES and O1s/N1s photon echo crosspeak (at t2¼ 0) of para- (left) and

ortho-aminophenol (right) with the ECH approximation. All single core excitation energies are

shown as ω�ωj, where ωj is the lowest O1s or N1s excitation energy. Molecular orbitals

populated by the promoted O1s electron for each of core-excited states contributing to the signal

are show on the top. The positions of N and O atoms are labeled. Figure adapted from [48]
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order in the occupation number changes of the transition orbitals. The transition

state method is convenient and sufficiently accurate in many cases, but it is not

suitable for calculating many excited states because of the nonorthogonality and

self-consistent field (SCF) collapse of the excited states. An alternative is the

transition potential method (TP) [55, 56], in which the potential corresponding to

the transition hole state (a half electron on the hole orbital; see Fig. 7) is used to

produce a set of orthogonal excited states. The excitation energy is determined by

the differences between transition potential orbital energies. TP is widely used in

X-ray absorption spectroscopy simulation [57].

Similar core hole approximations have been proposed in solid state physics. The

half core hole approximation (HCH; see Fig. 7) is similar to the transition potential

method, and the full core hole approximation (FCH; see Fig. 7) is similar to the

direct exchange method (STEX) [58–60] in quantum chemistry (this is explained in

detail in the next subsection). In FCH, the impact of the excited electron on the core

hole is neglected. If it is included, we obtain the excited core hole approximation

(XCH) [61]. We have used XCH combined with TDDFT to simulate X-ray double-

quantum-coherence spectroscopy [24].

3.1.2 Static Exchange Method (STEX)

In Hartree–Fock theory, occupied orbitals often provide an adequate description for

the ground state but virtual orbitals give a less satisfactory description of the excited

states. Hunt and Goddard proposed to use the Hartree–Fock virtual orbitals of an

(N�1)-electron system to represent the excited state orbitals of the corresponding

N-electron system. This is known as the improved virtual orbital or N�1 approxi-

mation [58]. In STEX, the occupied orbitals of an N-electron core-excited system

are also represented by the occupied orbitals of the (N�1)-electron ionic system

with the corresponding core hole. A core electron is removed and a restricted open-

shell Hartree–Fock (ROHF) calculation is carried out to obtain the occupied

orbitals of the ionic system. A major difficulty is that the electrons often collapse

to fill the core hole during the SCF calculation. This can be remedied by the

maximum overlap method (MOM) [62], which is explained in detail in the follow-

ing sections. However, even with MOM, the SCF iteration may converge to a

wrong electronic state or even may not converge at all. To guide the SCF iteration

towards the designated ionic state, a careful choice of the other SCF convergence

parameters such as the damping and level-shifting factors [63–65] and many trial-

and-error calculations with different initial guesses are usually necessary. New

convergence schemes are required to improve the SCF calculations of such ionic

states.

Once the occupied orbitals of the ionic state are obtained, a single electron is

placed in a virtual orbital and the resulting open-shell singlet reads
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��ΨN
j, li ¼

1ffiffiffi
2

p â
{
lα

��ΨN�1
jα

� E
þ â

{
lβ

��ΨN�1
jβ iÞ; ð35Þ

where
��ΨN�1

jσ i � â jσ

��ΨN
refi and σ ¼ α, β are spin states, j is the core orbital index, l is

the virtual orbital index,
��ΨN

refi is the N-electron neutral reference state, and â and â{
are annihilation and creation operators, respectively. The excited orbitals within the

N�1 approximation satisfy the eigenvalue equations:

F̂
j
STEXψ

j
l ¼ ε

j
l ψ

j
l ; ð36Þ

where ψ
j
l is the exited orbital and ε

j
l is the corresponding orbital energy. The STEX

Fock operator

F̂
j
STEX ¼ ĥ þ

Xocc

i 6¼ j

2Ĵi � K̂i

� �
þ Ĵ j þ K̂ j; ð37Þ

is constructed using the orbitals of the (N�1)-electron ionic system. ĥ is the

single particle Hamiltonian (kinetic plus nuclear attraction part) and Ĵj and K̂ j are

the Coulomb and exchange operators for the core orbital j, respectively:

Ĵ j 1ð Þ ¼
ð
dr2ψ

*
j 2ð Þr�1

12 ψ j 2ð Þ,

K̂j 1ð Þψ l 1ð Þ ¼
ð
dr2ψ

*
j 2ð Þr�1

12 ψ l 2ð Þ
� �

ψ j 1ð Þ:
ð38Þ

The eigenvectors of F̂
j
STEX are not orthogonal to the occupied orbitals of

the (N�1)-electron ionic system, and an orthogonalization procedure is necessary.

We can use the projection operator

P̂ j ¼
Xocc

k 6¼ j

��ψ j
k ihψ

j
k

��; ð39Þ

to project out all occupied orbitals of the (N�1)-electron ionic system and solve the

projected STEX equation

1̂� P̂ j
� �

F̂
j
STEX 1̂� P̂ j

� �
ψ

j
l ¼ ε

j
l ψ

j
l : ð40Þ

The solutions of this equation should serve as a good approximation to the excited

orbitals. The core excitation energy is finally given by
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ω j, l ¼ IP j þ ε j, l; ð41Þ

where IPj is the ionization potential of the core electron j (determined from the

energy differences of the (N�1)-electron ionic system and the N-electron neutral

system).

STEX is a single excitation theory in which particle and hole are independent.

Channel interaction can be included by diagonalizing the configuration interaction

matrix in the space of linear combinations of different single excitation channels.

This extension is known as the STEX-CIS (configuration interaction singles)

method. Double excitations can also be treated with a STEX Hamiltonian based

on the (N�2)-electron ionic system, but the SCF convergence problem is more

serious and the spin coupling schemes are complicated [66].

State-to-state transition dipoles are necessary in order to simulate the nonlinear

X-ray spectroscopy signals. Because the STEX orbitals are not orthogonal to the

MOs of the N-electron system, L€owdin’s rule [67] may be used for calculating the

transition dipoles between two states with nonorthogonal single particle orbitals.

The transition dipoles for single excitations are

ΨA

��d̂
��ΨB

	 

¼
XNconfig:

m, n
ambn

X

i, j
�1ð Þiþ j

dmni j Minor Smnð Þi j; ð42Þ

where ΨA,B are two excited states with nonorthogonal single particle orbitals, d̂ is

the transition dipole operator, and am and bn are configuration interaction (CI)

coefficients for different single excitation configurations (m and n) of state A

and B, respectively.

dmnij ¼
X

p, q
c*ip,m,Ac jq,n,B

ð
ϕ*

pd̂ ϕqdτ; ð43Þ

is the transition dipole matrix between the single excitation configurations m and n,

cip,m,A and cj,q,n,B are MO coefficients for the configurations m and n of state A

and B, respectively, and

Smni j ¼
X

k, l
c*ik,m,Ac jl,n,B

ð
ϕ*
i ϕ jdτ; ð44Þ

is the overlap matrix between the MOs of the configurations m and n of state A

and B, respectively. ϕi,j in (43) and (44) are basis functions and i, j, p, q, k, l are

indices for these basis functions. Minor (Smn)ij denotes the (i, j) minor of the matrix

Smn.
We next present 1D and 2D SXRS signals calculated using STEX [29, 68]. Fig-

ure 9 shows the 2D-SXRS spectrum of N-methylacetamide (NMA) with the OOO

(O1s pump with two O1s probes) pulse sequence, together with 1D projections
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along several horizontal and diagonal traces. We also show the corresponding

traces from the OON 2D-SXRS signal in blue dashed lines for comparison. The

only difference between the two types of 1D signals are the third pulse. Peaks along

the diagonal line (Ω2¼Ω1, i in Fig. 9) resemble those from the 1D-SXRS spectrum

of the same molecule [29]. Peaks along the horizontal lines drawn at the represen-

tative valence excitation energies (Ω2¼ 8.95, 8.14 eV, ii and iii in Fig. 9) reveal the
interference of the two Liouville space quantum pathways represented by diagrams

a and d in Fig. 6, and peaks along the diagonal lines shifted with representative

valence excitation energies (Ω2¼Ω1� 6.91, 8.95, 12.68 eV, vi, v, and vi in Fig. 9)
reveal the interference of the other two quantum pathways represented by diagrams

b and c in Fig. 6. Figure 9 illustrates that multidimensional SXRS signals reveal

couplings of different valence excitations, and interferences of quantum pathways.

Comparison of STEX with another method for calculating core excited states,

the restricted excitation window time-dependent density functional theory

(REW-TDDFT), was given in [69]. Core excitation energies from both methods

must be shifted to match experiment. Because of the inclusion of core orbital

relaxation, the shifts of STEX core excitation energies (<10 eV) are usually smaller

Fig. 9 The 2D-SXRS signal SSXRS(Ω1, Ω2) and its 1D traces of NMA (right) from STEX

calculations. Left: the OOO spectrum. All these pulses are resonant with the O K-edge. Middle:

horizontal and diagonal slices of the 2D spectrum on the left (in red) plotted together with the

corresponding traces from the corresponding OON (dashed, blue) to highlight the effect of

changing the probe pulse in the three-pulse sequence. Figure adapted from [29]
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than those of TDDFT (>10 eV). However, being an independent particle and hole

theory, STEX cannot account for core hole mixing in X-ray spectroscopy, whereas

REW-TDDFT can. The SCF calculation of a core ionized state is often tricky.

Convergence is not guaranteed. In addition, because the STEX equation (40) is not

solved self-consistently, the occupied and virtual STEX orbitals are not variational

for the total energy. Evaluating core excited state properties, e.g., electron density,

thus become complicated [70]. State-to-state transition dipole calculations are

expensive.

3.1.3 ΔSCF-DFT Method

A straightforward extension of DFT to excited states (including core excitations) is

achieved by employing non-Aufbau occupations of Kohn–Sham orbitals and run-

ning SCF calculations to obtain the target excited states as is done in ground state

calculations [71–74]. This is known as the ΔSCF-DFT (or simply the ΔSCF)

method. The biggest difficulty is the collapse to the lower energy states below the

excited state during the SCF iterations. Special care must be taken to keep the

electrons in the designated excited configuration. The maximum overlap method

(MOM) [62] is widely used to avoid SCF collapse. Here, the new occupied orbitals

in the current SCF cycle are chosen as the orbitals which have a maximum overlap

with the occupied orbitals in the last cycle. The orbital overlap matrix is given by

O ¼ Cn�1
� �{

SCn; ð45Þ

where Cn�1 and Cn are the molecular orbital coefficient matrices in the last and

current SCF iteration, respectively, S is the overlap matrix of basis functions, and

the matrix element Oij represents the overlap between the ith old orbital and the jth

new orbital. The projection of the jth new orbital onto the old occupied orbital space

may be defined as

P j ¼
Xocc

i

Oij ¼
Xocc

l

Xocc

k

Xocc

i

Cn�1
ik

 !
Skl

" #
Cn
lj : ð46Þ

The orbitals with the largest Pjs are chosen as the new occupied orbitals. In some

cases (46) is not robust when selecting new occupied orbitals. Alternative pro-

jections such as

Pj ¼
Xocc

i

��Oij

��; ð47Þ

and
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P j ¼
Xocc

i

��Oi j

��2; ð48Þ

have been implemented in the quantum chemistry packages Q-CHEM [75] and

GAMESS [76]. The same projection scheme as in (48) was also proposed by other

authors very recently [77]. When all Oijs do not have the same sign, or a number of

orbitals are nearly degenerate during the SCF iteration, (48) is believed to perform

better than (47) [77].

Unlike STEX, a spin-unrestricted scheme is employed in ΔSCF-DFT. Thus for a

system with a closed shell ground state, ΔSCF-DFT usually gives a broken-

symmetry spin state which is a mixture of a singlet and a triplet state. The singlet

excitation energy can be obtained through the spin-purification formula [72]

ES ¼ 2EBS � ET; ð49Þ

where ES is the energy of the open shell singlet, EBS is the spin broken-symmetry

state energy, and ET is the triplet energy from a separated ΔSCF-DFT calculation.

Spin-purification is necessary in valence excitation calculations [78, 79] but is less

important in core excitations, where EBS�ET so that ES�EBS.

ΔSCF-DFT can be easily extended to calculate various excited state properties

other than the excitation energy [79]. It also includes orbital relaxation upon

excitation, which is neglected in TDDFT. Note that the (N�1) approximation in

STEX may not be necessary for ΔSCF-DFT because the DFT virtual orbitals

experience the same potential as do the occupied orbitals. However, it has some

drawbacks. First, ΔSCF-DFT is a state-specific approach; one should calculate the

excited states one by one. This makes it unsuitable for broadband spectroscopy

simulations, where many excited states are needed. Second, it only gives excited

states which can be well described by a single determinant. Excited states with

strong configuration interactions are missed. Third, excited states from separated

ΔSCF-DFT calculations are not orthogonal, and there is no unique way to enforce

the orthogonality requirement. Finally, it is an open question how to run variational

DFT calculations of excited states because there is no Hohenberg–Kohn theorem

for a generic excited state [80]. Despite its drawbacks,ΔSCF-DFT has been revived

recently in charge-transfer excitation [81], Rydberg excitation [82], and excited

state potential energy surface calculations [83], and looks very promising in the

X-ray regime.

3.2 TDDFT Techniques

As explained in the introduction section, the discussions in this section are based on

adiabatic TDDFT. Although similar formulation for time-dependent Hartree-Fock

(TDHF) theory had existed for more than two decades [84], the time-domain
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extension of DFT was not possible until Runge and Gross established the one-to-

one mapping of electron density and time-varying external potential [85]. There are

two categories for applying TDDFT to calculate excited state properties: the

response theory based on perturbation in the frequency domain and the direct

real-time propagation methods in the time domain. The frequency-domain formal-

ism of TDDFT, which is based on linear response theory, became popular after

Casida proposed a density matrix response equation which is very similar to the

renowned random phase approximation (RPA) equation [86]. The Casida equation

can be derived by solving the equation of motion (EOM) of the single electron

reduced density matrix to the first order of external perturbation in the frequency

domain. Similar expressions have been obtained for TDHF in the collective elec-

tronic oscillator (CEO) method [87–89]. Nonlinear response functions of the

system can be calculated in CEO by applying high order perturbation theory [89].

Another way to obtain excited state properties is to solve the EOM of

single-electron reduced density matrix by direct propagation in the time domain.

Time-dependent properties of the system induced by the time-dependent external

perturbation can be calculated directly and Fourier transform can recover the

excited state information in the frequency domain.

In this section, we start with the linear-response formalism of Casida, and then

present a specific variant of linear-response TDDFT applied to core excited state

(restricted excitation window time-dependent density functional theory,

REW-TDDFT). Moreover, high order perturbation theory methods for nonlinear

response properties of the system are introduced and finally the real-time propa-

gation methods are discussed. It should be noted that the response and real-time

propagation methods are very general and not restricted to DFT/TDDFT, but we

focus on the DFT/TDDFT formalisms of these methods in this chapter.

3.2.1 Linear Response Theory

The Casida equation can be derived by calculating the linear response of the

density matrix or through an EOM approach. One may start with the EOM of the

one-particle transition density matrix PI ¼
��Iih0

��:

Ĥ ;PI

� �
¼ i

∂PI

∂t
¼ ωPI; ð50Þ

where
��Ii and

��0i are the Ith excited state and ground state, respectively, Ĥ is the

Hamiltonian of the system, and ω is the excitation energy. Considering the idem-

potency property of density matrix, the transition density matrix can be expanded as
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PI ¼
X

i, a
Xiaâ

{ î þ Yia î
{â

� �
; ð51Þ

where Xia and Yia are one-particle/one-hole (1p1h) excitation and de-excitation

amplitudes, respectively, and i, a represent an occupied and virtual orbital, respec-

tively. Substituting (51) into (50), after some algebraic manipulations, one can

obtain the Casida equation:

A B
B* A*

� �
X
Y

� �
¼ ω

1 0
0 �1

� �
X
Y

� �
; ð52Þ

where

Aiaσ, jbτ ¼ δi jδabδστ εaσ � εiτð Þ þ Kiaσ, jbτ,

Biaσ, jbτ ¼ Kiaσ,b jτ,

Kiaσ, jbτ ¼ iσaσ
�� jτbτ

� �
þ iσaσ

�� f xc
�� jτbτ

� �
;

ð53Þ

and

iσaσ
�� jτbτ

� �
¼
ð ð

ψ iσ rð Þ*ψaσ rð Þ 1

r� r0j jψ jτ r0ð Þ*ψbτ r0ð Þdrdr0,

iσaσ
�� f xc

�� jτbτ
� �

¼
ð ð

ψ iσ rð Þ*ψaσ rð Þ δ2EXC

δρσ rð Þδρτ r0ð Þψ jτ r0ð Þ*ψbτ r0ð Þdrdr0:
ð54Þ

Here i, j and a, b represent occupied and virtual orbitals, respectively, σ, τ are spin

indices, ε is the orbital energy, and fxc is the exchange-correlation kernel which is

expressed as the second-order functional derivative of the exchange-correlation

energy with respect to electron density (54). In (52), X and Y should be considered

as column vectors. Alternatively, it is possible to derive these equations for

the reduced single electron density matrix. This has been done in the CEO method

[87–89] for both TDHF [89] rather than TDDFT [90, 91].

Because of its balance of accuracy and computational cost, and its robustness

and black-box character, linear-response TDDFT has become the method of choice

for computing excited states, including core excited states. We have also based our

nonlinear X-ray spectroscopy simulation work on TDDFT [24, 69, 92, 93]. Unlike

ΔSCF-DFT, linear-response TDDFT does not target a single excited state. Only

ground state orbitals are necessary in the calculation, so that a manifold of excited

states is obtained in one shot. However, linear-response TDDFT also has its

limitations. Usually based on a single-referenced Kohn–Sham state, linear-response

TDDFT cannot handle excited states calculations for a ground state with a heavy

multiconfigurational character. Orbital relaxation for different excited states is

missed. Approximate energy functionals do not have proper long-range asymptotic

behavior, and thus linear-response TDDFT has difficulties in handling charge-

transfer excited states [94] and Rydberg states. The same limitation applies to

Y. Zhang et al.



core excited states [14]. The long-range corrected density functionals are discussed

in Sect. 4.1. In addition, within the adiabatic (frequency-independent) exchange-

correlation kernels, linear-response TDDFT cannot properly describe double exci-

tations [95]. This is a major obstacle for simulating nonlinear spectroscopy experi-

ments, which directly access double or multiple excited states. Double excitations

and frequency-dependent exchange-correlation kernels are discussed in Sect. 4.3.

3.2.2 Restricted Excitation Window TDDFT

Calculating core excited states directly using (52) is prohibitively expensive

because there are numerous low energy excited states below the target high energy

core excited state. Any bottom-up matrix eigenvalue numerical algorithm becomes

very tedious. This difficulty can be circumvented by allowing electrons to move

only between a certain set of relevant occupied and virtual orbitals. This is the basis

for the restricted excitation window (REW) or restricted excitation channel

approach. This method was proposed by Stener and co-workers [96], and followed

by other authors [97–100]. One can select the orbitals in the restricted excitation

window by their orbital indices or energies. In the first scheme all molecular orbitals

(MO) are examined and then the relevant orbitals (e.g., the MOs dominated by the

target oxygen 1s atomic orbitals) are selected out. Alternatively, an orbital energy

or energy difference cutoff is used to filter out all relevant orbitals or transition

orbital pairs. Orbital index selection is intuitive but becomes cumbersome if there

are too many relevant orbitals. The orbital energy (energy difference) selection

scheme is convenient for building a large REW. If there are multiple target atoms of

the same type in the molecule, the target MOs would become degenerate or near-

degenerate. The orbital index selection scheme can explore the contribution of a

single target atom to the core excitation and the spectroscopy signal, whereas the

orbital energy selection scheme can study hole-mixing effects. Another method

with the same effect of building a REW is to shift the core excitation energy

difference. This was proposed by Schmidt et al. [101] very recently and is very

similar to Stener and co-workers’ early implementation in the ADF package. After

the REW is determined, trial excitation vectors are prepared in this REW and a

Davidson-type iterative solver [102] is usually employed to find the relevant matrix

eigenvalues and eigenvectors. REW-TDDFT has been implemented in standard

quantum chemistry packages such as ADF [103], Q-Chem [104], ORCA [105],

NWChem [106], and Gaussian [107].

Minimum inputs (relevant orbitals, number of excited states) are needed for

running a REW-TDDFT calculation. It is almost black-box and robust and can

handle all types of excited states with deep as well as shallow holes. It is a response

method and avoids the state-specific SCF convergence problem. Hole-mixing can

be observed, which is not possible with STEX or ΔSCF-DFT. Electron correlation

can be considered in the exchange-correlation functional. Moreover, REW-TDDFT

can easily calculate many core excited states. If unrelaxed CIS-type wave functions

(Tamm–Dancoff approximation, TDA) are used to represent the excited states, the
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state-to-state transition dipoles in REW-TDDFT reduce to sums of transition

dipoles between certain MOs because all MOs are mutually orthogonal. This

drastically reduces the computational cost compared to (42).

In order to calculate nonlinear X-ray spectroscopy signals, we developed a

computational approach based on REW-TDDFT implemented in the quantum

chemistry package NWChem. In a series of publications [6, 69, 108], we had

extended the conventional optical Raman spectroscopy techniques into the X-ray

regime. One- and two-dimensional stimulated X-ray Raman spectroscopy (1D- and

2D-SXRS) signals of the small amino acid cysteine were simulated and compared

to the conventional resonant inelastic X-ray scattering (RIXS) signals. Compared to

RIXS, which is a frequency domain technique, multi-color time domain SXRS

provide a better window to the electronic coupling dynamics in a molecule. We also

calculate the X-ray four-wave mixing kI¼�k1þ k2þ k3 and kII¼ k1� k2þ k3
signals. To compare these with the SXRS signals, we took the time delay t2 between

k2 and k3 longer than the lifetimes (<10 fs) of the core excited states in this system,

so that only the ground-state-bleach (GSB) terms in the signals survive. kI,II signals
have three frequency variables Ωj ( j¼ 1, 2, 3), where Ω1 and Ω3 correspond to core

excitations and Ω2 corresponds to valence excitations. We can cut some slices of

these 3D signals to interpret them. In Fig. 10 we show slices of the two-color kII
(OOSS) signal with constant Ω2 at different peaks in the two-color integrated

two-pulse SXRS signal. These plots show the correlation between core excitations

at different places in the molecule. We can find both the valence excitations at

Ω2¼ 6.6 and 8.9 eV are coupled to the S1s core excitation at Ω3¼ 2475.5 eV, but

they are coupled to different O1s core excitations at Ω1¼ 532.2 and 536.1 eV,

respectively. The valence excitation at Ω2¼ 11.4 is coupled to S1s core excitation

with higher energies. Moreover, the frequency dispersed two-pulse SXRS signals

can give the same information about electron correlation as do projected photon

echo signals [108], whereas the SXRS experiment is much simpler than the photon

echo. However, photo echo experiments have more control variables and can reveal

the correlation between core excitations directly (see Fig. 10), although SXRS can

only infer them through valence excitations.

The same simulation approach was applied to porphyrin dimers. Multiporphyrin

systems are good candidates for artificial photosynthesis or molecular electronics

applications, so understanding the detailed excitation energy transfer (EET) mecha-

nisms in these systems becomes very important. Simulated SXRS signals of various

porphyrin heterodimer systems were obtained [92, 93] using REW-TDDFT. In

Fig. 11 we show the time-domain 1D SXRS signals and the corresponding evolving

electron and hole densities in the Zn and Ni porphyrin heterodimer (structure shown

on the top of Fig. 11). We found an almost constant π/2 phase difference between

the one-color Zn2p pump and Zn2p probe (Zn2p/Zn2p) signal and the two-color

Zn2p pump and Ni2p probe (Zn2p/Ni2p) signal ((c) at bottom left in Fig. 11).

Because the SXRS signal can be considered as an overlap between the time-

dependent doorway wavepacket created by the pump pulse and the time-

independent window wavepacket created by the probe pulse [92], this phase

difference corresponds to a back-and-forth motion of the doorway wavepacket.
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Correlation between the motion of the doorway wavepacket and the fluctuations of

the SXRS signal profiles can be established. The time-domain signals provide a

real-time image of EET in the system, which is not possible for time-resolved

fluorescence anisotropy decay studies. SXRS could become a powerful tool in

revealing EET mechanisms in molecular systems. Further geometrical and struc-

tural factors that control EET in a series of porphyrin heterodimer systems were

studied in [93].

In another SXRS simulation study we investigated long-range electron transfer

(ET) in the small redox protein azurin [109]. Borrowing the ET kinetic parameters

from time-resolved infrared (IR) and optical measurements, time-resolved SXRS

signals at the electron donor, hopping intermediate and electron acceptor were

simulated with REW-TDDFT. We found that the SXRS signals depend sensitively

on the local electronic structure changes around the excited atoms, and could serve

as an excellent indicator for detecting electron transfer dynamics. The atomic

Fig. 10 Four-wave mixing and I2P-SXRS signals of cysteine (structure shown on the bottom

right) from REW-TDDFT calculations. Top: constatnt-Ω2 slices of the 3D kII signal SkII

(Ω1, Ω2¼ 6.6, 8.9, 11.4 eV, Ω3) using an OOSS pulse sequence with xxxx polarization. Bottom

left: the integrated two-pulse SXRS signal using an OS pulse sequence with xx polarization.

Figure adapted from [108]
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pinpoint spatial accuracy also makes SXRS a convenient tool in studying different

ET pathways. Such measurements are difficult for conventional IR or optical

techniques. SXRS should complement linear transient X-ray absorption [110] in

studying ultrafast ET molecular processes.

Fig. 11 Time-domain 1D SXRS signals that reveal excitation energy transfer in porphyrin

heterodimers fromREW-TDDFT calculations. Top: the molecular structure of the Zn-Ni porphyrin

heterodimer studied. Bottom left: (a, b) Spatially integrated hole and electron densities on the Ni

(red) and Zn monomer (blue). (c) The time-resolved integrated two-pulse SXRS signals of the

porphyrin dimer between 0 and 120 fs. The single color Zn2p/Zn2p signal is in blue and the

two-color Zn2p/Ni2p signal is in red. Bottom right: electron and hole densities of the Zn2p valence

superposition state prepared by SXRS for various times after excitation. The isosurfaces are colored

according to which monomer they reside on, red for Ni and blue for Zn. Figure adapted from [92]
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3.2.3 Perturbation Methods for High Order Responses

Nonlinear optical response properties can be obtained by going beyond the first

order of perturbation in equations similar to (50). Response equation (Sternheimer

equation) of wave functions instead of density matrix can also been considered

[111]. Following the standard time-dependent perturbation theory, Orr and Ward

derived the sum-over-state (SOS) expressions of the nonlinear optical polarizations

four decades ago [112]. The SOS expressions are general and excited states from

any level of theory could be used. Much TDDFT work has been done along these

lines [91, 111, 113–121]. A weak time-dependent external electric field is intro-

duced as a perturbation to the original Kohn–Sham system. Then the coupled-

perturbed TDDFT equations, which are similar to the coupled-perturbed Kohn-

Sham equations in DFT geometry optimization calculations, are solved at different

orders of the perturbation and nonlinear response properties are evaluated by

perturbed wave function or density matrix. Using the 2nþ 1 rule [122], third

order response properties can be obtained through the first perturbed wave function.

These approaches can also be used to calculate the nonlinear response to X-ray

pulses.

The complex polarization propagator (CPP) method for XANES simulation was

proposed by Norman and coworkers [123–125]. They first parameterized the orbital

rotation during time evolution, then started from an EOM of the state-transfer

operators with external perturbations and a phenomenological damping term.

With this damping term, decay of excited states can be considered in the

now-complex response functions and resonance divergences are eliminated. With

perturbation techniques, the EOM can be solved at different orders of perturbation

and the corresponding response properties can be calculated. For the linear polar-

izability, one has

αi j ωð Þ ¼ �μ
1½ �{
i E 2½ � � ωþ iγð ÞS 2½ �
h i�1

μ
1½ �
j ; ð55Þ

where i, j¼ x, y, z are coordinate axis indices, μ
½1�
i;j is the electric-dipole property

gradient along the coordinate axis i, j, respectively, E[2] is the electronic Hessian, γ

is the phenomenological damping parameter, and S[2] is the overlap matrix

[125]. The CPP method is general and when DFT orbitals are used, it gives

excellent XANES spectra of large molecules such as copper phthalocyanine

[126]. A constant shift (usually it is a blue shift) is still needed to match the

calculated XANES to experiment. The constant shift depends on the system and

functional used, e.g., for the water molecule the shifts are 15.15 and 4.0 eV for the

CAM-B3LYP and LB94 functional, respectively [125]. Nevertheless, third order

electronic Hessian is needed to calculate second-order response, making the calcu-

lation quite involved.

Coupled-perturbed TDDFT results in SOS expressions of nonlinear response

functions [127], which become increasingly more complex for higher order
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response. High order functional derivatives of the exchange-correlation energy

functional are necessary [111, 121]. Because many excited states and orbitals,

including virtual orbitals, are involved, high order perturbation methods are

unsuitable for simulations of large systems because of their unfavorable compu-

tational scaling.

3.2.4 Real-Time Propagation Methods

In the frequency domain, each relevant excited state must be explicitly calculated

when the SOS expressions of nonlinear X-ray spectroscopy signals are employed.

The calculation becomes very expensive when many excited states contribute to the

signals. In recent attosecond laser spectroscopy experiments [128–140], the orbital

relaxation as well as the nonadiabatic dynamics with significant geometry changes

involve many excited states. Real-time methods are then preferable.

In real-time time-dependent density functional theory (RT-TDDFT), rather than

solving for eigenstates, the wave function or the one-electron reduced density

matrix1 is directly propagated in the time domain. Spectroscopic signals can be

extracted from Fourier transform of time-dependent system properties such as the

polarization of the molecule driven by the external electric field. The entire

spectrum can be obtained at once and direct calculation of specific excited states

is avoided.

The Liouville–von Neumann equation of motion of the reduced single electron

density matrix σ(t) is [141]

i
∂σ tð Þ
∂t

¼ F tð Þ,σ tð Þ½ �; ð56Þ

where F(t) is the Fock matrix in DFT. The time-dependent electric dipole moment

μ(t), can be calculated by

μ tð Þ ¼ �Tr μσ tð Þ½ �: ð57Þ

Other time-dependent single electron molecular properties can be obtained in a

similar way. The unitary time evolution operator U(t2, t1) propagates the many-

electron wave function ψ(t1) at time t1 to the wave function ψ(t2) at time t2:

ψ t2ð Þ ¼ Û t2; t1ð Þψ t1ð Þ: ð58Þ

For the density matrix propagation, we have

1Throughout this chapter we mean one-electron reduced density matrix for density matrix unless

explicitly explained with another meaning.
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σ tþ Δtð Þ ¼ U tþ Δt, tð Þσ tð ÞU{ tþ Δt, tð Þ; ð59Þ

where t is a time point and Δt is a time delay. Formally, the time evolution operator

can be expanded in time-ordered products:

U tþ Δt, tð Þ ¼ T̂ exp �i

ðtþΔt

t

F̂ τð Þdτ
� �

¼
X1

n¼0

�ið Þn
n!

ðtþΔt

t

dτ1

ðtþΔt

t

dτ2� � �
ðtþΔt

t

dτnT̂ F̂ τ1ð ÞF̂ τ2ð Þ� � �F̂ τnð Þ
 �

; ð60Þ

where T̂ is the time-ordering operator [1] and F̂ is the Fock operator.

There are excellent reviews on the numerical integrators in real-time propa-

gation calculations [142, 143]. Here we only give a brief summary of the major

methods.

Direct propagation of wavefunctions or density matrices using (58) and (59)

requires evaluating the time-ordered exponential of the Fock operator. Generally

the Fock operator is time-dependent, which complicates the problem. This time

dependence can be handled by dividing the time interval (t, tþΔt) into small

segments and considering the Fock operator fixed within each such segment

(short-time approximation). Then the task is to evaluate the exponential of the

time-independent Fock operator for short time intervals.

The most straightforward method to calculate the exponential of an operator is to

use the Taylor expansion of the exponential function. Practically, a truncation at

order four of this expansion works well [143, 144]. Alternatively, one can also

choose the Chebychev polynomial to approximate the exponential function [142,

145–147]. The Chebychev polynomial is optimal for approximating functions in the

range [�1, 1], but renormalization of the Fock operator is necessary.

Another popular approach to calculate the exponential of an operator is the

Krylov subspace method, e.g., the Lanczos iteration method [148–151]. In these

methods the operator is projected onto a subspace (Krylov subspace) generated by

consecutively applying the operator on the target vector. Any function of the

operator can be approximate within this subspace, whose dimension is much

smaller than that of the original operator.

The Fock operator consists of the kinetic energy operator, which is diagonal in

reciprocal space, and the potential energy operator, which is diagonal in real space.

This leads to the split-operator approach to calculate the exponential of the Fock

operator. The exponential of the Fock operator can be approximated as the product

of exponentials of the kinetic and potential energy operators [152, 153], which can

be calculated exactly. There are higher order extensions of this simple split-

operator scheme [154].

For time-dependent Fock matrices, integrating (56) numerically is not easy

because nonsymplectic integrators such as the common Runge–Kutta methods,

are numerically unstable for large scale simulations. One way to avoid such
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numerical difficulties is by using the Magnus (cumulant) expansion [1, 141, 155,

156]. The Magnus expansion of U(tþΔt, t) is

U tþ Δt, tð Þ ¼ T̂exp �i

ðtþΔt

t

F τð Þdτ
� �

¼ eΩ1þΩ2þ���; ð61Þ

and

Ω1 tþ Δt, tð Þ ¼ �i

ðtþΔt

t

F τð Þdτ; ð62Þ

Ω2 tþ Δt, tð Þ ¼ �1

2

ðtþΔt

t

ðτ1

t

F τ1ð Þ,F τ2ð Þ½ �dτ2dτ1: ð63Þ

The higher order Ω terms can be expressed with nested commutators of F at

different times [155]. If we truncate the exponential expansion at first order in

(61) and use the midpoint value F(tþΔt/2) to represent all F values in the time

interval t, t +Δt, we have

U tþ Δt, tð Þ ¼ eΩ1 ; ð64Þ
Ω1 tþ Δt, tð Þ ¼ �iF tþ Δt=2ð ÞΔt: ð65Þ

Equation (59) then becomes

σ tþ Δtð Þ ¼ e�iF tþΔt=2ð ÞΔtσ tð ÞeiF tþΔt=2ð ÞΔt: ð66Þ

One problem with using (66) in direct propagation is that F(tþΔt/2) is unknown at

time t. F(tþΔt/2) should be estimated by linearly extrapolating the F values at

previous times, or through some predictor-corrector technique [157]. However, the

latter breaks the time evolution symmetry. Alternatively, we can say backward time

propagation with the predictor-corrector cannot reproduce the original state of the

system at early time. The modified midpoint unitary transform method (MMUT)

[158, 159] maintains this time-reversibility. In this method, U(tþΔt, t�Δt) is

constructed from the eigenvectors C(t) and the eigenvalues ε(t) of F(t) at the time

midpoint:

U tþ Δt, t� Δtð Þ ¼ exp i � 2ΔtF tð Þ½ � ¼ C tð Þexp i � 2Δt ε tð Þ½ �C{ tð Þ: ð67Þ

The corresponding density matrix time propagation equation is

σ tþ Δtð Þ ¼ U tþ Δt, t� Δtð Þσ t� Δtð ÞU{ tþ Δt, t� Δtð Þ: ð68Þ

For other popular integrators such as the one combined split-operator with the

enforced time-reversal symmetry method, see [143]. Implementations of
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RT-TDDFT/TDHF are available in standard quantum chemistry packages such as

Gaussian [158, 160], NWChem [156], and Octopus [161].

RT-TDDFT has been used to calculate X-ray linear absorption spectroscopy

[100, 162]. The time-dependent perturbed Fock matrix is

F tð Þ ¼ F 0ð Þ � D � E tð Þ; ð69Þ

where D is the dipole matrix and E(t) is the time-dependent external electric field.

An impulsive external electric field is used in the calculation:

E tð Þ ¼ r̂ � kδ tð Þ; ð70Þ

where r̂ ¼ x, y, z, k is the perturbation strength, and δ(t) is the δ function. The

density matrix is then propagated under this perturbation and the time-dependent

dipole moment is calculated through (57). The molecular polarizability is propor-

tional to the Fourier transform of μ(t):

αi j ωð Þ ¼ ~μi j ωð Þ
k

; ð71Þ

where i, j¼ x, y, z. The linear absorption spectrum can be obtained from the

imaginary part of the molecular polarizability:

S ωð Þ ¼ 4πω

c
� ImTr α ωð Þ½ �

3
; ð72Þ

where c is the speed of light.

An impulsive perturbation can excite electrons over a broad energy range (e.g.,

1,000 eV). So real-time methods have advantages if a large energy range is

requested and many excited states are involved in the signal. Real-time methods

avoid the diagonalization of a large matrix, but the numerical problem switches to

sampling the time interval properly in the Fourier transform. Signal post-processing

techniques such as window function are often necessary to obtain sharp core

excitation peaks [100].

Suppose the vectorial external electric field has multiple frequency components

along different coordinate axes:

Ei tð Þ ¼
X

ω

Eω
i e

�iωt; ð73Þ

where i¼ x, y, z is the coordinate axis index and the summation runs over negative

and positive frequency domains to keep the external electric field real. Expansion of

the time-dependent dipole under this external field gives
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μi tð Þ ¼ μ0i þ
X

ω

αi j �ω;ωð ÞEω
j e

�iωtþ

1

2

X

ω1,ω2

βi jk �ωs;ω1,ω2ð ÞEω1

j E
ω2

k e�iωstþ

1

6

X

ω1,ω2,ω3

γijkl �ωs;ω1,ω2,ω3ð ÞEω1

j E
ω2

k Eω3

l e�iωst þ � � �;

ð74Þ

where μ0 is the permanent dipole; i, j, k, l¼ x, y, z are coordinate axis indices; and ωs

is the sum of frequencies: for β, ωs¼ω1þω2; and for γ, ωs¼ω1þω2þω3. In (74),

αij(�ω; ω) is the linear polarizability in (71); βijk(�ωs; ω1, ω2) is the first order

nonlinear hyperpolarizability, and γijkl(�ωs; ω1, ω2, ω3) is the second-order

nonlinear hyperpolarizability. β controls the second-order optical processes such

as the electro-optical Pockels effect and second-harmonic generation; whereas γ

determines third order optical processes such as the electro-optical Kerr effect,

intensity-dependent refractive index, and electric-field-induced second-harmonic

and third-harmonic generation. With the full knowledge of these nonlinear dyna-

mical hyperpolarizabilities, in principle one can calculate the nonlinear response of

the system under any sequence of laser pulses with different central frequencies and

time delays, so that the corresponding nonlinear spectroscopy signals can be

simulated. Thus calculating such nonlinear hyperpolarizabilities becomes the

major task for quantum chemists in nonlinear spectroscopy simulation studies.

RT-TDDFT has been used to calculate dynamical hyperpolarizabilities. Wang

et al. [121] adopted the filter diagonalization method [163–165] to extract compo-

nents at specific frequencies (e.g., double or triple the input frequency) of the time-

dependent dipole moment as a result of solving the EOM of (56). A careful choice

of the perturbation field strength was necessary. The strength can neither be too

weak nor too strong because a too weak perturbation field results in negligible

second and third order response, and a too strong perturbation field makes even

higher order response dominant. Moreover, the perturbation should be turned on

slowly to avoid nonadiabatic response. They also derived the EOM for the first and

second-order response of the density matrix, but evaluating dynamical hyperpolar-

izabilities using these equations is more costly than using (56). Takimoto

et al. [166] used a Gaussian enveloped quasimonochromatic perturbation to

approach a δ distribution in the frequency domain in their RT-TDDFT simulation.

With this choice, the response equation connecting hyperpolarizabilities and den-

sity matrix response at different orders can be easily reverted and dynamical

hyperpolarizabilities are determined. Recently, Li and coworkers [167] applied

the finite field (numerical differential) method to obtain the time-dependent dipoles

at different orders through RT-TDDFT calculations. The components with specific

frequencies were extracted by numerical fitting to sinusoidal waves with these

frequencies. This scheme avoids Fourier transform which requires a long time

simulation.

Two types of time bookkeeping protocols may be used in calculating nonlinear

spectroscopy signals. The first is based on the wavefunction. The signals can then
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be represented by loop diagrams where the ket moves first forward and then

backward to account for the bra [168]. The second protocol uses the density matrix

and can be represented by ladder diagrams [1]. The first protocol does not maintain

the bookkeeping of relative time ordering of bra and ket interactions and results in

nþ 1 basic terms for the nth order response. The second protocol fully keeps track

of time ordering. Both ket and bra move forward, yielding more 2n terms [1, 23]. 2

Even though the Casida (or CEO) equations of motion represent the reduced single

electron density matrix, this density matrix is simply used for parameterizing the

many electron wavefunction given by a single Slater determinant. The response

predicted by the equations of motion for the density matrix turns out to correspond

to the many-electron wavefunction rather than the density matrix [86, 89].

RT-TDDFT should have many advantages in nonlinear X-ray spectroscopy

simulation. Because it does not calculate individual states, it saves computing

time when many excited states are involved, which is the case for ultrashort

broadband X-ray pulse excitation. Direct propagation of the density matrix, only

involves occupied orbitals, so the computational scaling of RT-TDDFT is much

better than any SOS method [112], which involves a large number of virtual

orbitals. There are already many linear scaling algorithms both in both time [169]

and frequency domains [170] for RT-TDDFT in excited state calculations. Both

methods rely on the diagonal dominance of single-electron density matrices or

transition density matrices. The key issue is to calculate the highly nonlocal

exchange components in the popular hybrid density functionals efficiently, which

has only recently been addressed [171]. Unlike the perturbation method (to be

discussed in the next section), high order functional derivatives are not necessary in

RT-TDDFT calculations, so the well-behaved but complicated energy functionals,

such as the orbital-dependent functionals or the optimized effective potential (OEP)

functionals, can be readily used. In addition, RT-TDDFT has advantages for

nonlinear response because the calculations are no more difficult than for linear

response, whereas for the frequency domain methods such as SOS, they become

increasingly more complex for higher order response. Nuclear motions can also be

accounted for by Ehrenfest dynamics [159, 172]. RT-TDDFT offers a direct

simulation of nonlinear spectroscopy experiments with short pulses. However, we

still have some tradeoffs in using RT-TDDFT. Because individual excited states are

not available in RT-TDDFT, it is hard to interpret the spectral features. So far,

RT-TDDFT applications have been restricted to calculating standard dynamical

hyperpolarizabilities. Simulations of the signals presented in Sect. 2 constitute

challenges.

2Each electronic oscillator which parameterizes the evolution of a single-electron density matrix

corresponds to a single electronic excited state appearing in the linear response regime. Nonlinear

SOS response calculations are then reformulated as sum-over-oscillator expressions, where mul-

tiply excited oscillators appear in the higher order responses leading to 2n terms. It is interesting

that the expressions for the TDHF CEO [89] (or equivalently the Casida TDDFT [86]) response

obtained from the equations of motion correspond to the wavefunction, not the density matrix.
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3.3 MCSCF Method

The multiconfigurational self-consistent-field (MCSCF) method, particularly of the

complete active space SCF (CASSCF) type, has become a practical tool for

studying systems with near-degenerate states, e.g., molecules with open-shell

character, conical intersections (CoIns), transition metal complexes, and bond

breaking molecules (see [173] for a recent review). It describes static correlation

in medium-sized molecules well with affordable computational cost, and serves as

the basis for more accurate methods which consider the dynamical correlation

better, such as MRPT, MRCI, or multireference coupled cluster (MRCC) methods.

CASSCF [174–176], which allows full CI expansion in the pre-selected active

orbital space, is the most common and successful MCSCF implementation. The

concept was introduced in the 1970–1980s by Ruedenberg et al. [177–179] under

the name full optimization reaction space (FORS) and it is now known as complete

active space, as coined by Roos, Tayler, and Siegbahn [174]. The essential step is

the choice of active orbitals. Starting orbitals include localized orbitals [180–183],

natural orbitals [184, 185], or pair natural orbitals [186–188], and the corresponding

guidance has been reviewed [189, 190]. As a variation to CASSCF, the restricted

active space (RASSCF) method [191, 192] decomposes the active space into three

subspaces (RAS1, RAS2, RAS3), which allows one to consider more orbitals. Full

CI is only allowed in RAS2 while a maximum number of holes and electrons are

enforced in RAS1 and RAS3, respectively. Many excellent reviews of the MCSCF

method exist (see [173] and references therein), but these mainly focus on the

ground and valence excited states. Below we discuss the calculation of core excited

states.

3.3.1 Manipulation of the Core Hole

MCSCF core state calculations were first performed in the 1980s by Ågren

et al. [193–196], who studied the state-specific low-lying single and double core

hole (DCH) states of a series of small molecules, systematically investigated the

influence of correlation and relaxation effects on energies, and computed the

effective transition dipole moments (TDMs) between separately optimized

MCSCF states. The method was rediscovered about 20 years later [197]. In recent

years it was employed for work on DCH states and spectra of various small

molecules by Tashiro et al. [198–201]. Odelius et al. [202] first employed the

state-averaged RASSCF (SA-RASSCF) method [192] in conjunction with the

state-interaction treatment of SO effects [203] for L-edge XANES and RIXS

spectra of transition-metal-based complexes, and soon calculations were performed

for various other similar systems [204–207]. Hua et al. applied it to study the O

K-edge ASRS signals of furan conical intersections in the photo-induced ring-

opening reaction [208].
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Core hole calculations require a RAS1 space for the core hole orbital with fixed

occupation number. The RAS2 space (and RAS3 space, if necessary) is used for

valence correlation. Optimization of the MCSCF wavefunction with core holes

must avoid the variational collapse. A rigorous treatment of orbital relaxation can

be realized by a two-step procedure [193, 196]. One first freezes the orbital with

core hole (RAS1) and relaxes the rest; the frozen core orbital is relaxed in the

second step. Different optimization algorithms may be used for the two steps, for

example, combining the second-order norm-extended optimization (NEO) algo-

rithm [209, 210] and a straight Newton–Raphson (NR) algorithm. The effect of the

second step can be illustrated by the resulting energy change (i.e., the core orbital

relaxation energy). Table 1 gives an example for single and double core hole

ionization of formamide [196]. The core orbital relaxation energy is a few electron-

volts. For a single core hole, it is almost 1 eV; for a one-site double core hole, it is

even less; whereas for two-site double core hole, it reaches about 2 eV. This gives

an estimate of the effect of freezing the core orbital.

The optimization in step two in practice is more difficult to implement, espe-

cially when a state-averaged MCSCF is used, because in this case the object

function to optimize is more complicated. It is usually sufficient to skip step two.

The underlying physics is that the core orbital is well separated in energy from the

valence orbitals, so core orbital relaxation hardly influences the nature of the

valence orbitals, but mainly leads to a few electronvolts red shift of transition

energies. The calibration can be obtained by aligning the main peak in the calcu-

lated XANES spectrum to experiment (this also covers relativistic effects and basis

set incompleteness). Because the relaxation energies are similar at the SCF and

MCSCF levels (Table 1), one can also estimate the shift value at the simpler SCF

level.

Table 1 SCF and MCSCF core hole orbital relaxation energies (eV) for single and double core

ionized states of formamide. Singlet energies are used although triplet energies are included in

parenthesis if different. Rebuilt based on [196]

Core hole SCF MCSCF

Single O1s�1 0.90 0.87

N1s�1 0.88 0.86

C1s�1 0.85 0.83

One-site double O1s�2 �0.28 �0.38

N1s�2 �0.23 �0.35

C1s�2 �0.17 �0.34

Two-site double O1s�1N1s�1 1.79 1.72 (1.73)

O1s�1C1s�1 1.78 (1.76) 1.69

N1s�1C1s�1 1.74 1.68 (1.67)
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3.3.2 Verification of the Active Spaces

A practical way to perform the core hole calculations is to run a valence CASSCF

calculation first. One chooses the most important orbitals (e.g., localized or natural

orbitals around a breaking bond, 3d orbitals of an excited transition metal) which

have flexible occupations in the active space. The converged wavefunction serves

as the initial guess for the RASSCF calculation. The original active space is

included in the RAS2 space, and the excited core orbital is placed in the RAS1

space. Overall, one extra orbital (the core orbital) and two additional electrons (two

core electrons) are added to the active space for core hole calculations to achieve

more consistency in valence and core excited states calculations. Including addi-

tional virtual orbitals in the RAS3 space can help get a broader energy range for

easier comparison with experimental XANES spectra, especially when the ionic

potential is relatively high. For example, while studying the metal L2,3-edge spectra

from the np shell, the RAS2 space should be the 3d orbitals of the metal, and some

ligand orbitals can be included in the RAS3 space to represent the ligand-to-metal

or metal-to-ligand charge transfer effects [202].

Even though there are general guidelines for choosing the active space [189,

190], it is still necessary to verify by checking the convergence of energy and/or

spectra with the active space size. Figure 12 gives an example for the “UV

absorption” and “O1s XANES” spectra of a furan CoIn in the photo-induced

ring-opening reaction, obtained from a non-adiabatic molecular dynamics trajec-

tory [208]. Such spectra may not be directly observed (because the system is in a

superposition of valence states instead of the ground electronic state), but serve as

good tests for the active space. They also give an estimate of the accuracy of the

calculated transition dipole moments (see next section) which are essential for

simulation of the time-domain nonlinear X-ray signals. In Fig. 12a, 10-state-

averaged CASSCF was used, and, as expected, a smaller active space expands a

broader energy range. Increase of the active space introduces more states with

smaller oscillator strengths, and 10 electrons in 10 orbitals (10, 10) is sufficient to

obtain essentially converged UV spectra. The optimized valence state wavefunction

serves as the initial guess for core hole calculations. In Fig. 12b, 50 states were

calculated using SA-RASSCF. Because core states have a higher density of states

than valence states, additional states are needed to get an energy range of several to

10 eV for spectral usage. The 10 valence orbitals (RAS2) plus 1 core orbital (RAS1)

[labeled as “(12, 1/10/0)”. Twelve electrons include the 10 valence electrons and

2 electrons originally in the O1s orbital; numbers separated by slashes refer to the

sizes of RAS1, RAS2, and RAS3] can give converged O1s XANES. Such active

space settings are enough to obtain accurate and consistent electronic structure for

both the valence and core-excited state manifolds. Note that here the convergence is

much faster than the valence level. A test that includes 20 more orbitals in the RAS3

space “(6, 1/4/20)” shows that it can generate more states in the higher-energy

region (534–540 eV) and modify the fine structure of spectra.
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3.3.3 Transition Dipole Moments Between Different Orbital Sets

Application of MCSCF to non-linear X-ray spectroscopy requires the computation

of transition dipole moments between the valence, single-core, and double-core

manifolds. This is more difficult than valence spectroscopy computations. In the

latter case, the ground and the low-lying valence states can be generated in a single

state-averaged MCSCF calculation using the same set of optimized orbitals, and the

TDMs can be easily obtained by applying the Slater–Condon rule directly. The

energies of states differ by one core hole are several tens to hundreds of

electronvolts apart, and should be obtained in separate MCSCF calculations. The

resulting orbitals are orthogonal within each set but non-orthogonal between

different sets. MCSCF is an extension of the TDDFT/TDA or CIS method, so a

similar simple solution can be applied. We denote the MCSCF wavefunctions of

valence state m and core states e, respectively, as

ba

Fig. 12 Simulated (a) UV absorption and (b) O1s XANES spectra of a furan conical intersection

(snapshot at T¼ 62.5 fs in trajectory 3 of the nonadiabatic MD simulation) at different active

spaces by using the state-averaged CASSCF or RASSCF method. Active spaces are labeled by

(n, m) in panel a or (n, m1/m2/m3) in panel b, where n, m are the number of electrons and orbitals in

the active space, and m1, m2, and m3 are the numbers of orbitals in the RAS1, RAS2, RAS3 spaces,

respectively. All core hole energies have been uniformly shifted by�3.05 eV. Inset in a: geometry

of the snapshot with C–O distances labeled in Å. Rebuilt based on [208]
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where |ϕm
j i and |θei i are Slater determinants, and λmj and κei are the CI coefficients.

The corresponding transition dipole matrix is given by
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Because the MOs of the two manifolds are non-orthogonal, terms of ϕm
j μ̂j jθ e

i

D E
are

calculated using the L€owdin rules [67, 211]. Because this method is based on the

determinants, it has a lengthy expansion over configurations. The advantage is that

it is easy for programming and parallelization. This algorithm was employed to

compute the TDMs between the O1s core excited states and valence excited states

of furan [208].

A more efficient approach is the CAS or RAS state interaction (CASSI/RASSI)

method based on configuration state functions (CSFs) developed by Malmqvist and

Roos [212, 213]. Because a many-electron wavefunction can be equivalently

described in different sets of molecular orbitals, the orbitals are rotated (and the

coefficients are changed correspondingly) to be biorthonormal. We can then simply

use the Slater–Condon rule. Methods for including the spin-orbit (SO) coupling

have been developed [203]. This algorithm was employed in early effective TDMs

calculations between state-specific valence and core MCSCF states [195] and

widely used in recent L-edge XANES and RIXS calculations [202, 204–207].

3.3.4 Example: ASRS Signals as a Probe of Conical Intersections
in Furan

We use the furan ring-opening reaction as an example to illustrate the simulation of

nonlinear time-domain X-ray signals at the MCSCF level. The ASRS signal pro-

vides a sensitive probe of the photo-induced reaction in the vicinity of a CoIn.

CASSCF is employed to describe the near-degeneracy introduced by C–O bond-

breaking. We first performed a non-adiabatic molecular dynamics simulation by

using the trajectory surface hopping (TSH) method [214]; then representative

snapshots are chosen for valence and O1s core-excited states calculations by

using state-averaged CASSCF and RASSCF, respectively. TDMs were then deter-

mined and ASRS signals were calculated. Figure 13 displays the calculated ASRS

signals of furan during the passage of a V1/V0 CoIn (V0 and V1 stand for the ground

and lowest valence excited states, respectively) [208]. It is found that as time goes

from 27.5 to 33.0 fs, the molecule gradually goes from V1 to V0 (Fig. 13b). The
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Fig. 13 (a) Simulated ASRS signals of for furan during the passage of V1/V0 conical intersection

(T¼ 27.5–33.0 fs in MD trajectory 4) by using the MCSCF method. From left to right, total signals

and contributions from ρ00 and ρ11 populations, and from ρ01+ ρ10 coherence (0 and 1 refer to

states V0 and V1). (b) Absolute amplitudes of the two constituting states. (c) NTOs [215–217] for
the two main peaks in the ASRS signals (denoted by “o” and “+”). Dominant hole and particle

orbitals are plotted with contour isovalue¼ 0.08. Rebuilt based on [208]
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resulting signals are sensitive to the change in chemical and electronic structure

(Fig. 13a, left). Moreover, the contributions from ρ00 and ρ11 populations and ρ01
and ρ10 coherences may be separated. Below 29.0 fs the signals mainly come from

the V1 state and after 29.0 fs from the V0 state. At the transition point T¼ 29.0 fs

both V0 and V1 populations have comparable contributions to the signals, and

coherence terms have larger contributions than at any other time. We had further

analyzed two major peaks in the total signals (denoted as “o” and “+”, the former is

always lower in energy) and found that they can be tracked by varying time-

dependent strength: peak “o” is stronger before T¼ 29.0 fs, when peak “+”

becomes stronger. Both peaks correspond to transitions from the oxygen p orbital

to π* transitions, as indicated by the dominant natural transition orbital (NTO)

[215–217] pairs (Fig. 13c). As time increases, for peak “o” the hole orbital changes

from localized on the C–O bond to delocalized. For peak “+”, the particle orbital

changes from delocalized to localized on the C–O bond.

3.4 Other Core Hole State Simulation Techniques

Unlike most of the practical implementations of DFT, which contain empirical

parameters from numerical fitting to experimental data or results from higher level

theories, the Green’s function method based on many-body perturbation theory

provides a systematic way to achieve higher accuracy. Quasiparticle orbital ener-

gies can be obtained by solving a set of coupled Hedin equations [218]. These

orbital energies offer a much better estimation of the ionization potential and the

electron affinity of the system than do Kohn–Sham orbital energies. In Hedin’s

equations, the one-particle Green’s function is solved through a Dyson-like equa-

tion with a self-energy, which is complex and energy-dependent. Self-energy plays

a similar role as does exchange-correlation energy in DFT. The most popular

approximation of self-energy is the GW approximation, where the vertex operator

is simplified as product of δ-function and self-energy becomes the product of

single-particle Green’s function (G) and the dynamically screened Coulomb inter-

action (W) [218, 219]. Moreover, particle-hole interaction, which is neglected in

TDDFT, can be considered and another Dyson-like equation for the four-point

polarization function (two-particle Green’s function) can be derived [220]. This is

the Bethe–Salpeter equation (BSE). GW/BSE equations have to be solved iter-

atively in a self-consistent way. DFT orbitals and their energies can be used as

initial guesses, but the full self-consistent solutions are independent on the initial

guesses [221]. BSE can be recast into a form similar to the Casida equation in linear

response TDDFT (see (52)), but the kernel in BSE could be frequency-dependent

[222–224], which offers a model for designing non-adiabatic exchange-correlation

kernel in TDDFT. For a thorough comparison of GW/BSE and TDDFT, see
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[219]. The GW/BSE approach has been successfully applied to XANES calcula-

tions of solids [225–231]. Until now, GW/BSE is still a theory of heavy solid state

flavor. Adapting it to a molecular theory is currently in progress [232–234].

The many-body Green’s function techniques with algebraic diagrammatic con-

struction (ADC) [235] was also used to study core excited states [236] and the

dynamics of core holes and particles [237, 238]. So far, most applications of the

above many-body methods have been made to XANES, and their use to calculate

core excited states is limited to small systems because of computational cost.

Nonlinear X-ray spectroscopy simulation of large systems is an important

future goal.

Other theoretical methods were designed primarily for metal L-edge calcu-

lations. These are more challenging than the ligand or metal K-edge calculations

because of multiplet effects, spin-orbital coupling, and metal-to-ligand or ligand-to-

metal charge transfer. Such transition metal-based systems have attracted broad

interest because of the numerous applications in biology (e.g., metallic enzyme

centers) and artificial light harvesting (e.g., dye-sensitized solar cells). Because the

2p! 3d transitions are dipole-allowed, the metal L2,3-edge spectra can better

reflect the valence electron structure of the metal 3d orbitals which are more

essential to the chemistry. For metal K-edge spectra, the 1s! 3d transitions are

dipole forbidden. These methods have mainly been applied to XANES and RIXS

spectra. Nonlinear X-ray spectra require accurate transition dipole moments. To

obtain these, both the valence and core-excited states must be treated with consis-

tent accuracy.

Early theoretical efforts on transition metal L-edge X-ray spectra were based on

semi-empirical methods developed by de Groot and coworkers [239, 240], namely

the crystal field multiplet (CFM) and the charge transfer multiplet (CTM) models.

These methods start with the SO-coupled multiplets of the excited metal atom and

include the effect of ligands using ligand field theory (LFT). Adjustable parameters

include the crystal field splitting and the charge transfer energy. In recent years,

there are developments in ab initio theory including the ab initio CTM based on

DFT-CI [241], ab initiomultiplet ligand-field theory (MLFT) method with Wannier

orbitals [242], and method employing the Russel–Saunders coupling [243]. These

methods are usually computationally expensive and were employed for relatively

small systems with high symmetry. Neese and co-workers [244, 245] proposed an

efficient approach by combining DFT and the restricted-open-shell configuration

interaction singles (DFT/ROCIS). It introduces global empirical parameters for the

periodic table to scale the CI matrix and includes dynamic correlation and the SO

coupling effects. Excellent agreement with experiment was obtained for most

systems. Besides RASSCF, Odelius et al. [202] further tested the influence of

dynamic correlations by using the multiconfigurational second-order perturbation

theory (RASPT2) for a [NiII(H2O)6]
2+ complex. TDDFT has also been tested for

this topic. Although it is widely believed that TDDFT is only valid for transition

metal-based systems with closed-shell (e.g., the low spin form of FeII, S¼O) but

not to those open-shells (e.g., the high spin form of FeII, S¼ 2), it is still necessary

to examine its performance because of its high efficiency. It was found [246] that,
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for a SCO complex [FeII(tren(py)3)]
2+, the TDDFT approach can predict the Fe

L3-edge XANES spectra of both the low-spin and high-spin complexes which agree

well with experiment [247–249]. However, such agreement depends on the system.

When the same procedure was applied to a variety of FeII and FeIII complexes with

different spin states, the accuracy did not always persist (Hua et al., submitted).

Other post-HF methods have been employed for simulating the K-edge XES,

XAS, or RIXS spectra of very small molecules. The intentions are to examine the

effect of electron correlation, to include the effect of shake-up/shake-off processes,

and/or to consider the influence of bond breaking. Ågren and coworkers had

reported early CI studies of XAS [250, 251] and XES [252, 253] spectra of CO

and N2. Recently, Neese et al. [254] studied the vibrationally-resolved RIXS

spectra of CO2 using the MRCI method. Coupled cluster (CC)-based methods

have been developed for core state calculations, including single-reference

equation-of-motion CC (EOM-CC) [255, 256], state-specific multireference CC

(SS-MRCC) [257], and open-shell symmetry-adapted cluster configuration inter-

action (SAC-CI) methods [258, 259].

4 Other Computational Issues

4.1 Density Functionals for Core Excitations

Core excitation energies are often underestimated by TDDFT. It is often necessary

to shift the TDDFT core excitation spectrum by tens of electronvolts for light atom

excitations and hundreds of electronvolts for heavy atom core excitations to match

experiment. The corresponding shifts for ΔSCF type methods are much smaller,

with typical values< 2 eV [57] for light atom core excitations. Both ΔSCF and

TDDFT have relativistic and basis set errors. The large differences between their

shifts come from the self-interaction error of energy density functionals and the

absence of orbital relaxation in TDDFT. A constant (even large) shift to a simulated

linear X-ray absorption spectrum does not change the relative positions of spectro-

scopic features. This may not be the case for nonlinear X-ray spectroscopy spectra

because core excitations may interact with each other, and those shifts cannot be

considered as constants. Thus a proper choice of energy density functional is

essential for a successful TDDFT simulation of nonlinear X-ray spectroscopy

signals.

The failure of common generalized gradient approximation (GGA) or hybrid

functionals to capture long-range charge transfer excited states was analyzed

thoroughly [94], and is attributed to the self-interaction error in the functionals

used. Surprisingly, a simple Perdew–Zunger self-interaction correction (SIC)

scheme [260] applied to ΔSCF or TDDFT does not correct the core excitation

energies in the right direction [261]. This SIC scheme has already been combined

with the CPP method (explained in the previous section) to produce improved core
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excitation energies [262]. Core excitations share many similarities with long-range

charge transfer excitations, because the transition orbitals involved in these exci-

tations have negligible overlaps. This suggests that a similar strategy may be used

for designing energy functionals for core excitation as is done for long-range charge

transfer excitations. The range-separated functionals [263–277] are good choices.

In these functionals, the long-range part of the exchange energy is evaluated using

Hartree–Fock theory, and in the short-range DFT exchange is used. The 1/r12
operator is partitioned to two parts:

1

r12
¼ erf μr12ð Þ

r12
þ 1� erf μr12ð Þ

r12
; ð78Þ

where erf(r) is the error function and μ is a parameter to control the separation of the

long- and short-ranges. We had employed this type of long-range corrected func-

tionals in SXRS simulations [92, 109].

To improve the performance of these long-range corrected functionals, Hartree–

Fock exchange should be introduced because core orbitals are very localized. This

can be done by adding a Gaussian correction term in the 1/r12 operator partition

scheme:

1

r12
¼ erf μr12ð Þ

r12
� k

2μffiffiffi
π

p e�
μ2

a r212 þ
1� erf μr12ð Þ

r12
þ k

2μffiffiffi
π

p e�
μ2

a r212; ð79Þ

where k, a are additional parameters for introducing Hartree-Fock exchange in the

short-range. The above scheme can be used to obtain the LCgau-core-BOP func-

tional [278]. For light atoms, it can predict their core excitation energies with less

than 1 eV errors.

Similarly, Besley and coworkers had proposed the following partition scheme

[279]:

1

r12
¼ CSHF

1� erf μSRr12ð Þ
r12

þ CLHF

1� erf μLRr12ð Þ
r12

�

CSHF

1� erf μSRr12ð Þ
r12

þ CLHF

1� erf μLRr12ð Þ
r12

þ 1

r12
;

ð80Þ

where the CSHF and CLHF parameters control the Hartree–Fock exchange contri-

bution in the long- and short-range. In the above equation the terms in the first box

are evaluated with Hartree–Fock exchange and the second with DFT exchange. The

resulting SRC1 functional is
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ESRC1
xc ¼ CSHFE

SR-HF
x μSRð Þ þ CLHFE

LR-HF
x μLRð Þ �

CSHFE
SR-DFT
x μSRð Þ þ CLHFE

LR-DFT
x μLRð Þ þ EDFT

xc :
ð81Þ

An alternative form of the short-range corrected functional (SRC2) is

ESRC1
xc ¼ CSHFE

SR-HF
x μSRð Þ þ CLHFE

LR-HF
x μLRð Þ �

1� CSHFð ÞESR-DFT
x μSRð Þ þ 1� CLHFð ÞELR-DFT

x μLRð Þ þ EDFT
c :

ð82Þ

The two functionals coincide when μSR¼ μLR. Both functionals can predict light

atom core excitation energies with sub-1 eV accuracy [279].

Instead of partitioning the Coulombic operator in real space, Nakai and

coworkers had divided the electron density (orbitals) into the core and valence

groups. They proposed to use hybrid functionals with large Hartree–Fock exchange

components for core electrons and common hybrid functionals for valence elec-

trons. In the total energy expression, the hybrid scheme varies in the core–core,

core–valence, and valence–valence interaction terms. After numerical fitting of the

hybrid parameters, the resulting core–valence-(CV) B3LYP functional [280] gives

very good core excitation energies for light atoms (error less than 1 eV). In addition,

this scheme can be extended to Rydberg states [281]. Despite their success in core

excitation calculations, such orbital-specific functionals not only lead to a compli-

cated TDDFT implementation, but also bring some conceptual difficulties such as

the lack of a unique Fock operator.

In summary, exchange-correlation functionals specific for core excitations can

be designed along the same lines for long-range charge transfer excitations. The key

issue is that core excitation functionals cannot be too specific, because, in many

nonlinear X-ray spectroscopy experiments, both core and valence excited states are

involved and should be treated on the same footing. The core excitation functionals

discussed above should be tested in future nonlinear X-ray spectroscopy

simulations.

4.2 Expansion of the Polarizability in Electron–Hole

Operators

In vibrational Raman spectroscopy the polarizability can be expanded

perturbatively in the normal mode operators Q̂i of the system,
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α̂v ¼ α̂v0 þ
X

i

∂α̂v

∂Q̂i

Q̂i þ
X

i j

∂
2
α̂v

∂Q̂i∂Q̂ j

Q̂iQ̂ j þ � � �; ð83Þ

where

Q̂i ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
h

2miωi

r
â
{
i þ âi

� �
: ð84Þ

Here αv0 is the polarizability at the equilibrium geometry, and â
{
i (âi) is the ith

phonon creation (annihilation) operator.

In analogy to this, the effective polarizability in electronic X-ray Raman scat-

tering ((18) or (20)) can also be expanded as

α̂ p ¼ α
pð Þ
0 þ

X

i, j
K

pð Þ
i j ĉ

{
i ĉ j þ

X

i, j, k, l
L

pð Þ
ijkl ĉ

{
i ĉ jĉ

{
k ĉl þ � � �; ð85Þ

where ĉ
{
i (ĉi) is the creation (annihilation) operator for an electron in the ith valence

orbital and i, j, k, l are valence orbital indices. The super- and subscript ps indicate

the pulse inducing the polarizability and appear on the right hand side as a super-

script for typographical convenience. α̂
pð Þ
0 is the effective polarizability responsible

for Rayleigh scattering. The electron–hole pairs created by ĉ
{
i ĉj play the same role in

X-ray Raman scattering as do the vibrational normal modes Q̂i in optical Raman

scattering.

The direct use of the sum-over-state expression of the effective polarizability

((18) or (20)) would require calculation of large number of many-body states and

the corresponding state-to-state transition dipoles, which is tedious for large sys-

tems. X-Ray Raman signals may be calculated alternatively by solving equations of

motion for the reduced, single-electron density matrix in the valence space [87–89,

158]. The polarizability should then be expanded in valence electron creation and

annihilation operators (see (85)) avoiding the eigenstate expansion. Core excita-

tions can be included approximately in the calculation of the expansion coefficients,

but then the X-ray response is calculated in the valence space. We can view the

valence (occupied and unoccupied) orbitals as an open system that exchanges

electrons with the core space. This is formally analogous to molecular junctions

and the same methods can be applied to the X-ray signals [282–288].

In the following we show how to calculate the expansion coefficients of α̂ p, K
ðpÞ
ij

and L
ðpÞ
ijkls, starting with a model Hamiltonian. In solid state applications it is

common to construct an electron-boson model Hamiltonian to represent all core

and valence excitations [289–293]. Model Hamiltonians can be obtained semi-

empirically by numerical fitting to experimental results, or from high level quantum

chemistry calculations of model systems. The model Hamiltonian is written in

terms of the creation and annihilation operators ĉ
ð{Þ
iðκÞ for single-particle valence
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(core) orbitals ϕi(κ) (where the anticommutation relations ĉ
{
i ; ĉj

n o
¼ δi j are satis-

fied). The following model Hamiltonian describes the valence and core orbitals and

their interaction:

H ¼
X

i

εiĉ
{
i ĉ þ

X

ijkl

Uijklĉ
{
i ĉ

{
jĉkĉl þ

X

κ

εκ ĉ
{
κ ĉκ þ

X

i jκ

Ui jκ ĉ
{
i ĉ jĉκ ĉ

{
κ ; ð86Þ

where εi is the energy of the orbital ϕi and Uijkl is a nonlinear-interaction matrix

element. This could, for example, be the coulomb interaction

Uijkl ¼
ð
drdr0ϕi rð Þϕ j r

0ð Þ 1

r� r0
ϕk r0ð Þϕl rð Þ: ð87Þ

We thus write the Hamiltonian of the valence electrons in the absence of core holes

Ĥ0 ¼
X

i

εiĉ
{
i ĉi þ

X

ijkl

Uijklĉ
{
i ĉ

{
jĉkĉl: ð88Þ

The transition dipole operator in the core-excitation regime is written

V̂

V̂ {

� �
¼
X

iκ

μ*iκ ĉ
{
κ ĉi

μiκ ĉ
{
i ĉκ

� �
; ð89Þ

where κ labels core orbitals. We may now treat the core-valence interaction term in

(86) perturbatively to obtain an effective Hamiltonian for the valence electrons in

the presence of a single core hole or by recalculating the orbitals of the model in the

presence of the core hole potential. In the latter case we must start on the basis of

1-hole orbitals (denoted by ϕa, etc.), in which the valence Hamiltonian is

~̂H 0 ¼
X

a

εaĉ
{
aĉa þ

X

abcd

Uabcd ĉ
{
aĉ

{
bĉcĉd; ð90Þ

and then transform to the original orbitals with the overlap matrix T:

ĉ {ð Þ
a ¼

X

i

t
*ð Þ
ai ĉ

{ð Þ
i : ð91Þ

This immediately permits us to rewrite ~H0 on the basis of 0-hole orbitals ϕi:
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~̂H 0 ¼
X

i j

~εi jĉ
{
i ĉ j þ

X

ijkl

~Uijklĉ
{
i ĉ

{
jĉk ĉl; ð92Þ

where we have defined the auxiliary parameters

~εi j �
X

a

εat
*
aita j

~Uijkl �
X

abcd

Uabcdt
*
ait

*
b jtcktdl : ð93Þ

These are the basic relations required to obtain an explicit second-quantized

representation for the polarizability α̂ p. α has been expanded in creation/annihila-

tion operators in (85). Although one may question the convergence of such a series

in general, we can see that higher order terms are proportional to successively

higher powers of the pulse duration and it is therefore useful in the limit of

ultrashort pulses. To obtain explicit expressions for the coefficients (Kij, etc.) in

(85), we expand the exponentials in (25) order by order and adopt a consistent

operator ordering. Although the ordering ĉ{ĉĉ{ĉ . . . is used here, normal ordering

with all c to the right is also possible. Because the indices are unrestricted over

valence orbitals (both occupied and virtual), there is not much reason to prefer one

or the other for low-order expansion and many-electron systems (in particular, this

holds because we are interested in a form for α̂ which is equally valid for arbitrary

valence excited states and not simply polarizability of the ground state). This is

important for nonlinear spectroscopies and monitoring of nonequilibrium pro-

cesses. In expanding the exponentials in (85), various time factors are brought

down as multiplicative constants. Integration over these factors with the field

envelopes defines a set of auxiliary functions:

f lmnð Þ
p Λð Þ �

ð1

�1
dτ

ð τ

�1
dτ0

ℰ
*

p τð Þℰ p τ0ð Þ
l!m!n!

τ0 � ~τpi

i

� �l
τ � τ0

i

� �m
~τ p f � τ

i

� �n

; ð94Þ

which encode all time dependence and depend on the pulse parameters (collectively

denoted as Λ). This auxiliary function enters proportional to terms in (85) which

result from lth order expansion in the first propagator, mth order in the second, and

nth order in the third. Note that, because of the properties of the pulse and the

definition of the ~τ , the lower limits of integration may be truncated at ~τpi and the

upper limit of the dτ integration may be truncated at ~τ p f . These auxiliary functions

vanish in the limit of t p ! 0 and, moreover, higher order auxiliary functions

(resulting from higher-order terms in the exponential expansion) vanish progres-

sively faster so that the ratio of successive functions also vanishes and the series

converges for sufficiently short pulses (pulses shorter than the inverse of any

relevant material energy scales). Further insight is gained by considering flat pulses,

in which case f
ðlmnÞ
p is roughly proportional to a power of the pulse duration (Tp)

N

where N¼ lþmþ n (neglecting factors of i and factorials). Because this procedure

naturally separates the parametric field dependence from the material operators, we

can write the expansion coefficients (Kij, etc.) generically without specifying a
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pulse envelope. To simplify these expressions, we define μi j �
X

κ
μ*iκμ jκ . A

straightforward but lengthy calculation then yields the first few terms in (85):

α
pð Þ
0 ¼

X

i

μii þ f 010ð Þ
p Λð Þ

X

i

μii~εii; ð95Þ

K
pð Þ
i j ¼ �μi j þ f 100ð Þ

p þ f 001ð Þ
p

� � X

l

μll

 !
εiδi j þ

X

l

Uillj

 !

� f 010ð Þ
p

X

k

μ jk~εik þ μki~εk j
� �

þ
X

kl

μkl
~Ukijl

 ! ; ð96Þ

L
pð Þ
ijkl ¼ �

X

m

f 001ð Þ
p μi jUkmml þ f 010ð Þ

p μ jm
~Uiklm þ μmk

~Umijl

� �
þ f 100ð Þ

p μlkUimmj

n o
;

ð97Þ

where, in the first line, we have explicitly notated the dependence on the pulse

parameters via the auxiliary function f (omitting this dependence in further expres-

sions for brevity). Note that the above is an expansion up to first order roughly in the

product Tpε where ε is the material energy scale and higher order expansions

generate higher order terms in this quantity which contribute to every coefficient

in (85). Because the order of the expansion is determined by the sum lþmþ n,

expanding to second-order adds terms proportional to f
ð101Þ
p , f

ð110Þ
p , f

ð011Þ
p , f

ð200Þ
p etc.

4.3 Double Excitations and the X-Ray Double-Quantum-

Coherence Signal

Double core excitations or double excitations with a core hole and a valence hole

are directly probed by nonlinear X-ray four-wave mixing spectroscopy (e.g., photo

echo [48] and double-quantum-coherence [24]) and multidimensional SXRS [108]

experiments. Calculating double excitations is of essential importance in nonlinear

X-ray spectroscopy simulation. Double core states studied in X-ray two-photon

photoelectron spectroscopy can be considered as doubly core excited states of the

system with two electrons removed. These double core states are more sensitive to

the chemical environment and carry more pronounced electronic many-body

effects compared to singly core excited states [201, 294–297]. Strong double

excitations (shake-up) features can be found even in linear XANES signals [298].

A doubly excited state can be phenomenologically defined as an excited state

with energy close to the sum of two single excitation energies. This definitionmay be

misleading. First, near-degeneracy in energy does not mean the excited states share

the same character, and, second, there exists double excitations lower in energy than

any single excitation [299]. A proper definition for doubly excited states in quantum

chemistry relies on a single Slater determinant reference state. If an excited state can
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be well described by a multiple Slater determinant expansion based on this refer-

ence, and the CI coefficients of the double excitation configurations are dominant,

we call it a doubly excited state. According to this definition, different reference

states may lead to different double-excitation character [300, 301].

Double excitation remains one of the challenges in DFT and TDDFT

[301]. Maitra et al. showed that a frequency-dependent exchange-correlation ker-

nel, which is not available in the common implementation of adiabatic TDDFT, is

essential for accessing double excitations [95]. In contrast to early expectations

[302], quadratic response theory in adiabatic TDDFT only gives double excitation

frequencies as sums of two single excitation frequencies [91, 301, 303]. Adiabatic

TDDFT implicitly assumes that the double excited state wave functions are prod-

ucts of single excited state wave functions. This has been shown in [303]. These

trivial double excitations behave as harmonic oscillators and result in vanishing

double-quantum-coherence signals [24]. Originally dressed TDDFT was proposed

to remedy this double excitation issue, but information about the relevant double

excitation a priori hinders its practical application. Frequency-dependent exchange-

correlation kernels based on the Bethe–Salpeter equation were proposed [224, 304–

306], but they have only been tested in simple models or small molecular systems

because of complexity. The matrix elements of unknown exchange-correlation

kernel can also be extracted from the branching ratio of the experimental

L2,3-edge X-Ray absorption spectra of 3d transition metals [307]. Spin-flip

TDDFT (SF-TDDFT) may access some doubly excited states through a triplet

reference state [307–312]. Very recently, the constricted variational DFT

(CV-DFT) [313–315] was developed to address double excitations [316]. Imple-

mentation and testing of this method is under way. We have also combined the

ΔSCF method with REW-TDDFT to calculate doubly core excited state and apply

it in X-ray double-quantum-coherence (XDQC) signal simulation [24]. The main

difficulty with this approach is the unbalanced treatment of the two core holes: one

core hole was obtained with ΔSCF and the other with REW-TDDFT. Althgough the

two core holes are not symmetric, different calculation order (either ΔSCF first or

REW-TDDFT first) would lead to different simulation results [24]. Other high level

ab initio methods, such as CASSCF/CASPT2 [317], coupled cluster (CC) [318],

MRCI [319, 320], symmetry-adapted cluster configuration interaction (SAC-CI)

[321], algebraic diagrammatic construction (ADC) [299, 322, 323], and

multireference Møller–Plesset perturbation theory (MRMP) [324, 325], can accu-

rately capture double excitations, but their use is limited to small systems because

of high computational cost.

The DQC signal probes doubly excited states and strongly depends on the

coupling between single excitations. In the infrared regime, DQC signals detect

the couplings between vibrational modes, which determine their anharmonicities

[326]. In the optical regime, DQC signals were used to reveal quantitative infor-

mation about electron–electron interactions, many-body wave functions, and elec-

tron correlation in excitons [327]. The X-ray variant of this technique (XDQC) is

sensitive to correlation and exciton scattering in doubly core excited states, making

it an attractive experimental test for electronic structure theories of strongly
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correlated systems [328]. XDQC signals exist only when single core excitations

interact with each other and doubly core-excited states are not simply an outer

product of two singly core-excited states. XDQC signals vanish for noninteracting

single core excitations.

We have simulated the XDQC signals of formamide at the N and O K-edges

[24]. In Fig. 14 we show the 2-D projections (we set the last time delay to 5 fs) of

the XDQC signals for different pulse orders (ONNO and NONO). The Ω1 axis

represents the N1s or O1s single excitation energies and the Ω2 axis represents the

N and O1s double excitation energies. The intensity of the 2-D XDQC signal at the

position (Ω1, Ω2) represents the correlation between the single excitation at Ω1 and

the double excitation at Ω2. The (shifted) XANES spectra are also placed in the

marginals to help the signal analysis. In the plot of the ONNO (O excitation first,

and then N excitation; see the left column of Fig. 14) signal we can find features

scattered along several diagonal straight lines, which indicates almost uniform

interaction between the O1s and N1s single excitations, so that the double excita-

tions are almost sums of the single excitations with constant shifts. This can also be

confirmed by comparing the energy differences of spectroscopic features in the

XANES and XDQC spectra. Take peak A and A0 in the N1s XANES spectrum

(right marginal of the ONNO signal) for an example. The energy difference

between these two peaks is 1.29 eV in XANES and 1.34 eV in the ONNO spectrum,

which are very close to each other. This means the first O1s excitation shifts all N1s

excitations in almost the same way, so the energy differences between peaks would

not change too much. The same linear pattern is not observed in the NONO signal

(the right column of Fig. 14). This tells us the second O1s excitations are affected

very differently from each other by the first N1s excitations. From the ONNO signal

we can also find that peak B in the N1s XANES only correlates weakly with peak C

in the O1s XANES when the O1s electron is excited first, whereas if the N1s

Fig. 14 Comparison of the absolute values of the ONNO (left) and NONO (right) SXDQC (t3¼ 5 fs,

Ω2,Ω1) signals of formamide (structure shown on the top) from calculations combined ΔSCF with

REW-TDDFT. XANES spectra are shown in the marginals. Figure adapted from [24]
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electron is excited first, the N1s excitation which corresponds to peak B heavily

affects the following O1s excitation which corresponds to peak C (a strong feature

connecting peak B and C in the NONO spectrum). By comparing XDQC signals of

different pulse orders, we can understand the subtle many-body correlations

between core excitations. Generally, X-ray four-wave mixing signals including

the XDQC signals can measure double core excited states directly, thus providing

new experimental tests for the accuracy of the electronic structure methods and

offering a way to visualize projections of the complicated many-electron wave

functions [25, 26].

4.4 Ionization, Photoelectron Signals and Resonances

X-Ray photons with energies higher than the ionization threshold can excite the

system to a metastable resonance state, and then this resonance decays to a cationic

species and a leaving electron. In spectroscopy, either the cationic species or the

leaving electron can be detected, both providing us with windows into the elec-

tronic structure of the parent neutral system.

In addition to excitation, molecular ionization is another way to trigger impul-

sively rich electronic and nuclear dynamics such as geometry relaxation, molecular

dissociation [329], charge migration [330–334], and radiation emission [335]. Ion-

ization has advantages over excitation in pumping the system because there is no

selection rule to restrict which ionization is allowed, and there is usually a lower

number of energetically accessible cationic states compared to the large number of

high energy exited neutral states in excitation experiments. Moreover, after ioni-

zation, we have the freedom to detect the cationic states or the ejected electron,

which can provide more information about the parent neutral species. X-Ray

ionization and fragmentation have been used to probe transient molecular structures

during a photoinduced chemical reaction process [336]. Recently we studied the

cationic states of the amino acid glycine prepared by a sudden N1s core ionization

produced by an attosecond X-ray pulse [337]. The created superposition of cationic

states is probed by 2D transient X-ray absorption (TXAS) and 3D ASRS. Our

simulated ASRS results reveal the complex coupling of the valence and core

excited states of the cation.

X-Ray photoelectron spectroscopy (XPS) [338] is a powerful technique for

probing the chemical compositions and electronic states of molecular systems

and materials. By measuring the kinetic energy of the ejected photoelectrons, the

electronic energy levels of the ionized species can be determined. The photo-

electrons also carry momenta. Additional information about the initial and final

electronic wavefunctions can be obtained by measuring photoelectron angular

distributions (PAD) [339–341]. TRPES [342, 343] is also used to monitor the

electronic structure changes during a chemical reaction.

Nonlinear Spectroscopy of Core and Valence Excitations Using Short X-Ray. . .



The total TRPES signal STRPES (Ek, t) can be expressed as a sum of the proba-

bilities of transitions from the neutral electronic state I to the cationic electronic

state F and free electron state η PI!Fη Ek; tð Þ
� �

:

STRPES Ek; tð Þ ¼
X

I,F, η Ekð Þ
PI!Fη tð Þ; ð98Þ

where Ek is the kinetic energy of the ejected electron, and t is the observation time.

For the probability of a single transition, we have

PI!Fη tð Þ / Eprobe � ψFψη

��μ̂
��ψ I

	 
�� ��2δ hω� Ek ηð Þ � ΔEIFð Þ; ð99Þ

where Eprobe and ω are the polarization vector and frequency of the probe light field,

respectively, ψI, ψF, and ψη are the wavefunction of the neutral state I, the cationic

state F, and the free electron state η, respectively, and ΔEIF ¼ EF � EI is the

ionization energy corresponding to the neutral state I and cationic state F. Here

we employ the sudden ionization approximation [344, 345], in which the ionization

process is very fast and the leaving electron does not interact with the cation, so the

final state function can be written as a product of ψF and ψη. We can also assume

that ψη is orthogonal with ψ I, so (99) can be recast as

PI!Fη tð Þ / ψη

��Eprobe � μ̂
��ψ D

IF

	 
�� ��2δ hω� Ek ηð Þ � ΔEIFð Þ: ð100Þ

Here we introduce a one-electron quantity called the Dyson orbital ψD
IF, defined as

the generalized overlap amplitudes between the neutral state I and the cationic state

F [345]:

ψ D
IF rNð Þ ¼

ffiffiffiffi
N

p ð
ψ*
F r1; r2; . . . ; rN�1ð Þψ I r1; r2; . . . ; rNð Þdr1dr2 . . . drN�1; ð101Þ

where N is the number of electrons in the system. If the polarization of the probe

field and the angular distribution of the photoelectron is ignored, (100) can be

simplified as [346, 347]

PI!Fη tð Þ / ψ D
IF

�� ��2�μ2ηδ hω� Ek ηð Þ � ΔEIFð Þ; ð102Þ

where �μη is an appropriate average value for the transition dipole matrix element

between the Dyson orbital ψD
IF and free electron state ψη. If all free electron states η

with a kinetic energy Ek are summed over in (100), we have

PI!F Ek; tð Þ / ψ D
IF

�� ��2 �μη Ekð Þ
� �2

ρ Ekð Þδ hω� Ek � ΔEIFð Þ; ð103Þ

where �μη Ekð Þ represents an average transition dipole matrix element corresponding
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to a kinetic energy Ek, and ρ(Ek) is the density of the free electron state at the kinetic

energy Ek. Photoelectron experiments tell us that usually in the low kinetic energy

region, �μη Ekð Þ
� �2

ρ Ekð Þ � const: [348], so (103) can be further simplified as

PI!F Ek; tð Þ / ψ D
IF

�� ��2δ hω� Ek � ΔEIFð Þ; ð104Þ

and the total photoelectron signal is

STRPES Ek; tð Þ ¼
X

I,F
wIFPI!F Ek; tð Þ; ð105Þ

where wIF is some weighting factor because different PI!F Ek; tð Þ has different

prefactors in (104). In a simplified treatment we can set all wIFs to be equal [349], or

treat them as adjustable parameters [347]. Accurate determination of those

weighting factors requires complicated electron-molecule scattering calculations

[350], which is beyond the scope of this chapter. Recently, we extended 2D TRPES

technique (see (105)) to multidimension by adding more pump pulses before the

probe ionization pulse [351]. The TRPES of thioflavin T in its photoisomerization

has also been studied with ab initio molecular dynamics (AIMD) and TDDFT

simulations [349].

The Dyson orbital defined in (101) can be considered as the diagonal element of

the one-electron reduced transition density matrix between the neutral and the

cationic states. Dyson orbitals are generally not normalized. Their norms reflect

the one-electron character of the ionization process. In the simplest case when the

neutral and cationic states are well described by Hartree–Fock orbitals and the

Koopmans theorem applies, the Dyson orbitals reduce to the canonical Hartree–

Fock orbitals and their norms are one. Dyson orbitals are solutions of an effective

single-particle equation with ionization energies as their eigenvalues [352–

354]. Dyson orbitals are widely used in calculating Compton profiles [355, 356]

and electron momentum spectra [357], and interpreting orbital imaging experi-

ments [358–360]. Krylov and coworkers [346] describe an implementation of

Dyson orbital calculation at the coupled cluster singles and doubles (CCSD) or

EOM-CCSD level of theory.

X-Ray photons often bring the molecule into a superexcited state (excitation

above the ionization threshold, or resonance). These resonances are usually short-

lived with strong coupling with the continuum leading to the final ionization or

dissociation of the system. Generally, resonances can be divided into shape reso-

nance and Feshbach type [361, 362]. Resonances are ubiquitous in radiation

damage studies of biomolecules [363], molecular electronic device design [364],

attosecond pulse generation [365], and X-ray ionization [13].

Resonances may not be captured by conventional quantum chemistry methods

because of their unbound nature and lack of variational principle. To compute these

unbound states with finite lifetimes, one must use a non-Hermitian Hamiltonian

[366]. One approach for calculating resonance is the complex absorbing potential
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(CAP) method [367, 368]. In the method, a complex potential is added to the

exterior region of the metastable system to absorb the scattering electron and

makes the wave function square-integrable, i.e.,

Ĥη ¼ Ĥ � iηW; ð106Þ

where Ĥ is the original molecular Hermitian Hamiltonian, W is a box potential

which only exists in the exterior region of the system, and η is the parameter to

control the strength of this absorbing potential. Ideally, the complex energy of the

resonance can be calculated by letting η ! 0þ, whereas in practical calculations

with finite basis sets, one has to find the optimal η to stabilize the complex energy,

i.e., the trajectory calculation [367]. The CAP method was extensively used to

calculate resonances [369, 370] and was recently combined with DFT [371]. The

major problem of this method is that there are at least two parameters (strength and

box size) of the CAP to be determined. In some systems the trajectory calculations

cannot give certain results [371].

An alternative for resonance is the complex scaling method [372–375]. Other

than adding an arbitrary potential to the original Hamiltonian, one transforms the

Hamiltonian with a complex coordinate rotation:

r0 ! reiθ: ð107Þ

Here θ is the rotation angle. As in the CAP method, trajectory calculations are

necessary to find an optimal θ value. However, because this is the only parameter to

be determined, the degree of uncertainty is greatly reduced compared to the CAP

calculations. A DFT combined with the complexed scaling method has been

developed for resonances [376–379] and has been used to study Stark ionization

of atoms and molecules [380]. The trajectory calculation becomes tedious when the

system is large. Moreover, there are still some fundamental questions needs to be

answered in extending DFT to resonance. For example, the complex version of the

v-representability problem.

Quantum chemistry method development for resonance is still in its infancy.

Most applications so far are for resonance energy and lifetime calculations of model

or very small atomic and molecular systems. Recently, a non-Hermitian

RT-TDDFT study of near and above ionization excitations of small molecules

was reported [381]. In this study an absorption boundary condition was used to

emulate the continuum. This scheme has a potential to be used in the future for

X-ray ionization and photoelectron spectroscopy simulations.
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4.5 Vibronic Coupling

In the Frank–Condon (FC) region, nuclear motion acts as a bath for electronic

transitions. Including this effect introduces high-resolution fine structure to the

recorded spectra. Theoretical simulations are usually under the Born–Oppenheimer

(BO) and the harmonic oscillator approximations, which are usually good in the FC

region. The potential energy surfaces (PESs) of the ground and excited states are

well separated. The simplest approach to account for vibronic coupling is the linear

coupling model (LCM). It assumes the mode-k PES of excited state has the same

curvature as that of the ground state but only shifted by a displacement. This

approach is efficient and can be applied to medium and large molecules. It has

been well illustrated in various linear and nonlinear X-ray spectroscopy calcu-

lations including the XPS, XANES, RIXS, and SXRS spectra (see, e.g., [246,

382–388]). A more rigorous method is to include the Duschinsky rotation and/or

the non-Condon effects. For time-domain nonlinear spectroscopy, the nuclear and

electronic coordinates are mixed together. The response function can be evaluated

via the cumulant expansion [1] till truncated order. The vibrationally resolved

SXRS spectra were studied by Hua et al. [387] combining the LCM and cumulant

expansion till the second-order. With the inclusion of vibronic coupling, a faster

decay in the time domain signals, and new splitting and shoulder structures in the

frequency-domain were observed.

5 Conclusions and Perspectives

In this chapter we have surveyed some typical nonlinear X-ray spectroscopy signals

and the quantum chemistry methods used for their simulation. Because of their

balance in accuracy and computational cost, DFT/TDDFT methods are commonly

used in excited state calculations. With the fast development of new exchange-

correlation functionals and linear scaling algorithms, these methods provide a most

valuable quantum chemistry tool for nonlinear X-ray spectroscopy simulation.

DFT/TDDFT often provides an adequate zero order electronic structure at reason-

able cost, which paves the way for the application of high level methods. DFT/

TDDFT-based semiempirical methods such as density functional tight binding

(DFTB) [389–392] or time-dependent density functional tight binding (TDDFTB)

[393, 394], and their linear scaling forms [395] have been shown useful in spectro-

scopy simulations of large systems.

DFT/TDDFT works well in many cases but fails for double excitations, long-

range charge transfer excitations, and conical intersections. Much effort has been

made to address these difficulties by designing more elaborate functionals and

schemes. We believe that rather than putting the burden on the functionals, it

makes more sense to use DFT/TDDFT results as fast zero-order inputs to high

level wave-function approaches and many-body techniques. The recent
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developments of ab initio [396, 397] and many-body perturbation theory [398–401]

follow this route. The density matrix renormalization group (DMRG) method

should allow one to calculate core or doubly excited state properties with large

active spaces [402]. In addition, high-level methods for handling correlation-driven

hole delocalization dynamics are still restricted to small systems [403]. Ehrenfest

dynamics simulations for most of the systems, which can include nuclear motion,

are still formidably expensive [404]. Highly efficient real-time propagation algo-

rithms for large systems are needed to meet the demands of upcoming nonlinear

X-ray spectroscopy measurements.
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Spector LS, Swiggers M, Tenney I, Wang S, White JL, White W, Gühr M (2014) Nat
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Yamamoto K, Engel N, Atak K, Kühn O, Bauer M, Rubensson JE, Aziz EF (2013)

Angew Chem Int Ed 52:9841
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337. Petrović VS, Siano M, White JL, Berrah N, Bostedt C, Bozek JD, Broege D, Chalfin M,

Coffee RN, Cryan J, Fang L, Farrell JP, Frasinski LJ, Glownia JM, Guhr M, Hoener M,

Holland DMP, Kim J, Marangos JP, Martinez T, McFarland BK, Minns RS, Miyabe S,

Schorb S, Sension RJ, Spector LS, Squibb R, Tao H, Underwood JG, Bucks-baum PH (2012)

Phys Rev Lett 108(25):253006

338. Zhang Y, Biggs JD, Hua W, Mukamel S, Dorfman KE (2014) Phys Chem Chem Phys 16:

24323

339. van der Heide P (2012) X-Ray photoelectron spectroscopy. Wiley, Hoboken, NJ

340. Wang K, McKoy V (1995) Annu Rev Phys Chem 46(1):275

341. Reid KL (2003) Annu Rev Phys Chem 54(1):397

342. Sanov A (2014) Annu Rev Phys Chem 65(1):341

343. Wu G, Hockett P, Stolow A (2011) Phys Chem Chem Phys 13(41):18447

344. Suzuki T (2012) Int Rev Phys Chem 31(2):265

345. Pickup B, Goscinski O (1973) Mol Phys 26(4):1013

346. Pickup BT (1977) Chem Phys 19(2):193

347. Melania Oana C, Krylov AI (2007) J Chem Phys 127(23):234106

348. Thompson AL, Martı́nez TJ (2011) Faraday Discuss 150:293

349. Rabalais JW (1977) Principles of ultraviolet photoelectron spectroscopy. Wiley, New York

350. Ren H, Fingerhut BP, Mukamel S (2013) J Phys Chem A 117(29):6096

351. Lucchese R, Raseev G, McKoy V (1982) Phys Rev A 25(5):2572

352. Rahav S, Mukamel S (2010) Phys Rev A 81(6):063810

353. Cederbaum LS, Domcke W (1977) Adv Chem Phys 36:205

354. Ortiz J (1999) Adv Quantum Chem 35:33
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360. Saliéres P, Maquet A, Haessler S, Caillat J, Taı̈eb R (2012) Rep Prog Phys 75(6):062401

361. Mignolet B, Kus T, Remacle F (2013) In: Grill L, Joachim C (eds) Imaging and manipulating

molecular orbitals. Springer, Berlin, pp 41–54

362. Schulz G (1973) Rev Mod Phys 45(3):378

363. Simons J (1984) In: Truhlar DG (ed) Resonances in electron-molecule scattering van der

Waals complexes, and reactive chemical dynamics. American Chemical Society,

Washington, DC, pp 3–16

364. Sanche L (2009) Nature 461(7262):358

365. Goyer F, Ernzerhof M, Zhuang M (2007) J Chem Phys 126(14):144104

Y. Zhang et al.



366. Strelkov V (2010) Phys Rev Lett 104(12):123901

367. Moiseyev N (2011) Non-Hermitian quantum mechanics. Cambridge University Press,

Cambridge

368. Riss U, Meyer HD (1993) J Phys B At Mol Opt Phys 26(23):4503

369. Muga JG, Palao J, Navarro B, Egusquiza I (2004) Phys Rep 395(6):357

370. Santra R, Cederbaum LS (2002) Phys Rep 368(1):1

371. Santra R, Cederbaum LS (2002) J Chem Phys 117(12):5511

372. Zhou Y, Ernzerhof M (2012) J Phys Chem Lett 3(14):1916

373. Aguilar J, Combes JM (1971) Commun Math Phys 22(4):269

374. Balslev E, Combes JM (1971) Commun Math Phys 22(4):280

375. Simon B (1979) Phys Lett A 71(2):211

376. Moiseyev N (1998) Phys Rep 302(5):212

377. Wasserman A, Moiseyev N (2007) Phys Rev Lett 98(9):093003

378. Whitenack DL, Wasserman A (2009) J Phys Chem Lett 1(1):407

379. Whitenack DL, Wasserman A (2011) Phys Rev Lett 107(16):163002

380. Whitenack DL, Wasserman A (2012) J Chem Phys 136(16):164106

381. Larsen AH, De Giovannini U, Whitenack DL, Wasserman A, Rubio A (2013) J Phys Chem

Lett 4(16):2734

382. Lopata K, Govind N (2013) J Chem Theory Comput 9(11):4939

383. Hergenhahn U (2004) J Phys B At Mol Opt Phys 37:R89

384. Minkov I, Gel’Mukhanov F, Friedlein R, Osikowicz W, Suess C, Öhrwall G, Sorensen SL,
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