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Nonlinear spin-wave excitations at low magnetic
bias fields
Hans G. Bauer1, Peter Majchrak1, Torsten Kachel2, Christian H. Back1 & Georg Woltersdorf1,3

Nonlinear magnetization dynamics is essential for the operation of numerous spintronic

devices ranging from magnetic memory to spin torque microwave generators. Examples are

microwave-assisted switching of magnetic structures and the generation of spin currents at

low bias fields by high-amplitude ferromagnetic resonance. Here we use X-ray magnetic

circular dichroism to determine the number density of excited magnons in magnetically soft

Ni80Fe20 thin films. Our data show that the common model of nonlinear ferromagnetic

resonance is not adequate for the description of the nonlinear behaviour in the low magnetic

field limit. Here we derive a model of parametric spin-wave excitation, which correctly

predicts nonlinear threshold amplitudes and decay rates at high and at low magnetic bias

fields. In fact, a series of critical spin-wave modes with fast oscillations of the amplitude and

phase is found, generalizing the theory of parametric spin-wave excitation to large modulation

amplitudes.
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N
onlinear behaviour is observed in a vast range of physical
systems. Although in some cases a transition from a
well-behaved and predictable linear system to a nonlinear

or even chaotic system is detrimental, nonlinear phenomena
are of high interest, owing to their fundamental richness and
complexity. In addition, a number of technologically useful
processes rely on nonlinear phenomena. Examples are solitonic
wave propagation1, high harmonic generation2, rectification and
frequency mixing3. In many fields of physics, reaching from
phonon dynamics to cosmology, anharmonic terms enrich the
physical description but complicate the analysis. Often nonlinear
effects can only be accounted for by performing cumbersome
numerical three-dimensional lattice calculations or the physical
description relies on dramatic simplifications. An analytic theory
describing nonlinear phenomena would thus be highly desired.

The transition between harmonic and anharmonic behaviour
usually occurs when an external driving force exceeds a
well-defined threshold4. In the case of spin-wave excitations at
ferromagnetic resonance (FMR) discussed in this study, the
nonlinear spin-wave interaction depends on the amplitude of an
external radio frequency (r.f.)-driving field and can thus be easily
controlled. At large excitation amplitudes, one observes an
instability of non-uniform spin-wave modes5. Moreover, large
excitation amplitudes and thus nonlinear behaviour is also
essential in the switching process of the magnetization vector
(for example, in memory devices). In spintronics, the reversal of
the magnetization in nanostructures is one of the key
prerequisites for functional magnetic random access memory
cells. Equally important is the understanding of spin transfer
torque-driven nano-oscillators, which may function as radio
frequency emitters or receivers. Both phenomena inherently
involve large excitation amplitudes (and precession angles) of the
magnetization vector deep in the nonlinear regime6–12.

In this study, we combine measurements of longitudinal13

and transverse14 components of the dynamic motion of the
magnetization vector by X-ray magnetic circular dichroism
(XMCD) as a function of r.f. power. At large driving
amplitudes, our measurements clearly show that the low-field
nonlinear resonance behaviour cannot be described adequately
using existing models for nonlinear magnetic resonance15,16.
To understand these data we develop a novel model that
generalizes existing theories of spin-wave turbulence. We show
that the basic assumption of a time-independent spin-wave
amplitude parameter is not justified at low magnetic bias fields.
In fact, pronounced fast oscillations of the amplitude and phase
occur and dominate the nonlinear response.

Results
Experimental configuration. Our experiments are performed
using Permalloy (Ni80Fe20) films deposited on top of the signal
line of coplanar waveguide structures. In all measurements, a
magnetic bias field HB forces the static magnetization to be
oriented in the x direction. A magnetic r.f. field oriented along the
y direction leads to a forced precession of M, as illustrated in
Fig. 1. The precession of the magnetization vector is strongly
elliptical due to the demagnetizing field. As indicated in Fig. 1,
the X-ray beam can be oriented at an angle y¼ 30� with respect
to the film normal. In this geometry, the precession of the
magnetization causes slight changes of the absorption of
circularly polarized X-ray photons detected by a photo diode
in transmission. In a first set of measurements, the X-ray beam
is tilted in the y direction as illustrated in Fig. 1 (j ¼ 90�).
A continuous wave r.f. excitation is synchronized to the X-ray
flashes. Owing to the large ellipticity of the magnetization
precession, the detected signal is mostly given by the in-plane

magnetization My projected onto the X-ray beam direction.
When the phase of the magnetic r.f. driving field is set to 90� or 0�
with respect to the X-ray pulses, the measured signal represents
either the real or the imaginary part (w0 or w00) of the dynamic
magnetic susceptibility 17 (cf. Fig. 2).

Normalization of the XMCD signal. This measurement of the
susceptibility is normalized to static hysteresis loops also mea-
sured by XMCD, as shown in Supplementary Figs 1 and 2 (setup
and spectra, respectively). Thus, only non-thermal excitation of
the magnetization is detected in units of Ms. For the measure-
ments shown in Fig. 2 the microwave phase and frequency
(op¼ 2p � 2.5 GHz) are kept fixed, whereas for the resulting
resonance curves the magnetic bias field HB is swept for different
amplitudes of the excitation field hrf. When the excitation field is
increased above a critical amplitude of B0.2 mT, the main
absorption shifts to lower fields. This effect is a consequence of
the shift of the phase f of the uniform mode above the threshold
r.f. field. We find phase shifts of up to 35� at the small-angle
resonance field HFMR when the excitation amplitude is increased
(Fig. 2c).

Longitudinal component of the magnetization. Any magnetic
excitation (coherent or incoherent) leads to a decrease of Mx of
the order of gmB, where g is the g-factor and mB the Bohr
magneton. Therefore, to determine and separate coherent and
incoherent components of the excitation we perform an
additional measurement that is sensitive only to the longitudinal
component of the magnetization vector Mx. For this, the sample
is tilted in the x direction (j¼0�), the frequency of the r.f. signal
is detuned by a few kHz from a multiple of the 500 MHz
synchrotron repetition rate. In this way the phase information is
averaged out and the experiment is only sensitive to the average
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Figure 1 | Experimental setup. (a) The X-ray intensity transmitted through

the sample (grey) is modulated by the XMCD effect and detected by a

photodiode. The XMCD signal is proportional to the magnetization

component projected onto the X-ray beam direction. As indicated in a, the

phase of the microwave signal supplied to the coplanar waveguide (CPW)

is modulated by 180 degrees, and the polar as well as azimuthal angles of

the sample (with respect to the X-ray beam direction) can be adjusted. The

in-plane component of the dynamic magnetization (shown as green arrow

in b) is measured in a time-resolved manner. The magnitude of the signal is

given by the projection onto the X-ray beam direction and mostly

proportional to My(t), as shown in c. To determine the change in the

longitudinal magnetization at FMR, the sample is tilted in the x direction

with respect to the X-ray beam and the time-averaged change of the

longitudinal magnetization component due to FMR hDMxi is measured, as

illustrated in the upper inset of b. The colour scale for the time in b and c

covers one precession period (t¼0 is red and t¼ 2p is blue).
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longitudinal magnetization component. Lock-in detection in this
case is achieved by amplitude modulation of the r.f. excitation.
The corresponding signal is normalized again to static XMCD
hysteresis loops.

On the one hand the measured decrease of the longitudinal
magnetization component hDMxi is proportional to the density of
non-thermal magnons nk excited in the sample18. On the other
hand, the population of the uniform mode n0¼ nk¼ 0 can also be
calculated from the time-resolved (coherent) measurement
of My in the linear excitation regime. For this, the energy
stored in the coherent magnon excitation DE can be written as:

N0 ¼
DE
‘op

¼ Vm0HB

2Ms‘op
My

�� ��2; ð1Þ

where V is the volume of the sample. The reduction of the
longitudinal magnetization per magnon is found to be B5.5 gmB.
This large value is due to the highly elliptical precession

E :¼ Myj j
Mzj j � 11

� �
and in agreement with 1

2 ðEþ E� 1ÞgmB

expected from linear spin-wave theory.
In Fig. 3, the driving field dependence of hDMxi from the

time-averaged longitudinal XMCD–FMR experiment is shown
and compared with the calculated hDMxi values obtained from
the time-resolved transverse measurement of My(t). It is
noteworthy that the transverse component is only sensitive to
n0 magnons. In the linear regime, both curves coincide and the
excited magnon population only contains uniform k¼ 0
magnons. Above a critical r.f. field of B0.2 mT, the two curves
separate, owing to saturation of the uniform magnon occupation
density n0 and the parametric excitation of higher k magnons in
the nonlinear regime5,19,20, that is, the difference between the

curves shown in Fig. 3 corresponds to the parametric excitation of
additional ka0 spin waves.

Discussion
The saturation of the homogeneous mode population as a
function of r.f. field amplitude (Fig. 3) is the consequence of an
increased relaxation rate for this mode: the nonlinear coupling of
the uniform mode to non-uniform spin waves opens additional
relaxation channels. In this regime, the energy pumped into the
homogeneous mode by the r.f. excitation is only partly relaxed by
intrinsic uniform mode damping. In fact, a significant portion of
the energy is distributed to non-uniform modes by additional
magnon–magnon scattering processes and subsequently relaxed
by intrinsic damping as illustrated in Supplementary Fig. 3.
Conservation of energy requires that the energy pumped into the
magnetic system is equal to the energy relaxed to the lattice by
intrinsic Gilbert damping of the dynamic modes21:

op

2
ImðMyÞm0hrf ¼ 2Z0n0‘o0þ

X
k 6¼ 0

2Zknk‘ok ð2Þ

where n0,k are the magnon densities, and :o0,k and Z0,k are the
magnon energies and relaxation rates, respectively. At the FMR
condition (op¼o0), only uniform magnons are directly pumped
and all other magnons (with density nka0) are indirectly excited
via nonlinear magnon–magnon processes. When we assume
the latter to be second-order Suhl instability processes (ok¼o0),
we can calculate the expected magnon relaxation rate. The result
of this is shown in the inset of Fig. 3 (dashed line). In the
experiment, however, we find an increase of B50% for
the average relaxation rate Z compared with the relaxation rate
of the uniform mode Z0E0.8 ns� 1 at op¼ 2p � 2.5 GHz.
This increased relaxation rate is unexpected, as microscopic
theory of magnetic damping22 does not predict a wave vector
dependence of the Gilbert damping constant a for the relatively
small wave vectors that are relevant.

From extensive micromagnetic simulations, we found that the
experimental data can in fact be reproduced quite well using a
wave vector-independent damping parameter (red points in the
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Figure 2 | Time-resolved ferromagnetic resonance measurements at

2.5 GHz. (a) In-phase and (b) out-of-phase components of the normalized

dynamic XMCD signal in units of degrees corresponding to the real and

imaginary parts of the susceptibility. The maximum of the imaginary part of

the susceptibility shifts to lower fields when a critical excitation level is

reached15. Owing to the normalization procedure with static XMCD

hysteresis loops, the absolute error for the excursion angles is below 5%.

(c) From data as shown in a and b, the phase angle of magnetization with

respect to the driving field is determined at the low amplitude FMR field,

HFMR. The main mechanism limiting growth of the precession amplitude

with an increasing driving field is a shift in the phase of the precessing

magnetization. The instrumental limitations during these measurements

lead to a phase error of up to 10�.
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Figure 3 | Number of excited magnons and magnon relaxation rate. The

decrease of the longitudinal magnetization (DMx¼Ms�Mx) with growing

excitation amplitude measured for HbiasEHFMR. The blue line shows the

measured DMx, which is proportional to the total number of magnons

excited. DMx corresponding to uniform precession (red line) is calculated

from the coherent My components. Above the threshold, the total number

of uniform magnons locks close to its threshold value (blue area), whereas

the number of non-uniform magnons nka0 increases with hrf (grey area).

The inset shows the magnon relaxation rates that can be computed from

these data. When a second-order Suhl instability process is assumed

(ok¼o0), the average relaxation rate Z increases by B50%. Red points are

obtained from corresponding micromagnetic simulations.
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inset of Fig. 3). This in turn implies that the physical explanation
for the deviation from the Suhl model is to be found within
the framework of the Landau–Lifshitz–Gilbert (LLG) equation.
To unravel the physical origin for this behaviour, we develop a
model based on the LLG equation that allows computing the
properties of the critical spin waves in k-space in an efficient
manner. This partially analytic approach can provide insight into
the physics and reduces the computational effort drastically.
We start from the LLG equation. Below the threshold excitation
amplitude, only the uniform mode has a considerable amplitude.
Therefore, we can restrict our considerations to linear terms in
the ka0 spin-wave amplitude mk. By algebraic transformations,
one can show that the time evolution of mk is then governed by a
harmonic oscillator equation, which is parametrically driven by
the uniform mode. In our case, this driving mostly occurs due to
the dipolar fields hk, which strongly depend on the angle between
the time-dependent uniform magnetization and the k-vector.
A numerical time integration of the differential equation as a
function of k-vector easily allows extracting the nonlinear
dispersion and the decay rates for the spin waves in k-space.
An example of this is shown in Fig. 4a. The calculation is
performed for the parameters that correspond to the XMCD-
FMR experiments and the excitation amplitude was chosen close
to the instability threshold. The fundamentally new finding from
our model is that the critical spin waves (inverse life times
approaching zero) do not precess at the driving frequency as
expected for the four-magnon scattering processes that usually
lead to the second-order Suhl instability23–25. Instead, we find
that the spin waves precess non-monochromatically at
frequencies that are half-integer multiples of the driving
frequency with additional oscillations of their amplitude and
phase at the driving frequency (see Fig. 5a). In addition to the
nonlinear shift of the spin-wave dispersion, we also observe a
pronounced frequency locking effect to half-integer multiples of
the driving frequency in the vicinity of the wave vectors for the
critical spin waves (Fig. 4b).

To demonstrate more clearly that this nonlinear behaviour
is fundamentally different from Suhl instabilities, we further
simplify the numerical model. We assume that the time
dependence of the potential term in the parametric oscillator
equation d2mk

dt2 þO2ðtÞmk ¼ 0 can be written as O2(t)¼ a� 2q

cos(2t), where the transformation of the time t-t must be
chosen to represent the instability process of interest (see further
details in the Methods section). Although this assumption cuts off
higher-frequency components, the simplified model is still able to
reproduce our instability process as well as Suhl instability
processes with the use of only two parameters (a and q).
With these simplifications, the parametric oscillator equation
assumes the form of the Mathieu equation (see Methods).
Here a¼ð2ok=omodÞ2 with ok equal to the mean frequency of
the spin wave, omod is the frequency of the modulation and the
parameter q is the modulation strength. The instability diagram
for this two-parameter equation is well known, owing to its
significance for fundamental quantum mechanical problems26

and shown in Fig. 5b. By mapping the spin-wave instability
processes onto this diagram, we find that although
Suhl instabilities belong to the first instability region,
the instabilities that we observe at low bias fields belong to the
third instability region.

What distinguishes the first instability region from the others is
that the modulation parameter is small (q/aoo1) and a
perturbative approach can be used. In this case, the unperturbed
states are harmonic oscillations with an amplitude that may only
vary slowly in time. It is this assumption of a slowly varying
envelope that breaks down for the higher instability regions and
prevents the description of the instability processes that we observe
by standard spin-wave instability theory. When the modulation
amplitude (q/a) can no longer be considered small, the spin-wave
precession also becomes considerably anharmonic, that is, higher
Fourier components, separated by the frequency of the modula-
tion, become important. This situation is mathematically identical
to the motion of a quantum mechanical particle in a one-
dimensional periodic potential when the kinetic energy becomes
comparable to the potential height. Although for a quantum
particle the amplitude and phase of a wave function oscillate with
the spatial period of the potential, the parametric spin wave
behaves in a similar manner in the time domain. Both situations
can be mathematically described in terms of the Hill equation.

We would like to note that this type of behaviour has not been
considered so far, and that it is worthwhile to examine previous
experiments in the light of these findings. In particular, we
believe that these nonlinear processes can explain the apparent
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field (m0hrf¼0.21 mT) at which the first pair of spin waves (kcrit. E(±14.4,±1.7) mm� 1) becomes unstable, as highlighted by four red arrows. The
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wave-vector-dependent Gilbert damping reported by two groups
under similar experimental conditions27–29. Reviewing the
frequency-dependent measurements of nonlinear ferromagnetic
resonance performed by Gerrits et al.27, we are able to accurately
reproduce their experimentally found threshold fields with
our model. In Fig. 6, corresponding calculations are shown for
our sample thickness. Our simulations indicate that for
frequencies below 5 GHz, spin waves oscillating at 3

2 fp are
parametrically excited before the second-order Suhl instability
can set in (spin waves oscillating at fp). We therefore conclude
that the observed threshold fields correspond to the type of
instability processes described in the present work.

To verify the applicability of our model also for Suhl instability
processes, the r.f. threshold amplitude fields are calculated as a
function of magnetic bias field (so-called butterfly curves) and
compared with published experimental results30 for subsidiary
absorption (first-order Suhl instability) and for resonance
saturation (second-order Suhl instability)24. We find very
good agreement with the measurements in both cases using a
wave-number-independent intrinsic Gilbert damping parameter.
Furthermore, the nonlinear frequency shift is also observable in
the butterfly curves of first-order Suhl instability thresholds30.
According to our calculations, the frequency locking effect can
explain why the experimental threshold fields in30 increased less
abruptly above the resonance field than the authors expected.

We would like to point out that the validity of the above
calculations is verified by extensive micromagnetic simulations31.
As shown in the inset of Fig. 3 and by the points in Fig. 5a, the
results of the micromagnetic simulation are in excellent agreement
with our experimental results and our model description of the
nonlinear dynamics. We also find that the micromagnetic
simulations agree very well in terms of the threshold excitation
field, the wave vector of the critical mode and the nonlinear
frequency shift. An example of the spin-wave spectral density in
k-space obtained from micromagnetic calculations is shown in
Supplementary Fig. 4. In agreement with predictions from our
model (see Fig. 4a)), the critical spin-wave modes actually oscillate
non-harmonically at 3

2 fp for low magnetic bias fields.
In conclusion, we investigate experimentally and theoretically

the nonlinear magnetization dynamics in magnetic films at low
magnetic bias fields. Our analysis leads to a new and more general
description of parametric excitation not limited to small

amplitudes of the modulation parameter. Using this method,
we find a new class of spin-wave instabilities that dominate the
nonlinear response at low magnetic fields. For these modes, we
also find pronounced frequency locking effects that may be used
for synchronization purposes in magnonic devices. By using this
effect, effective spin-wave sources based on parametric spin-wave
excitation may be realized. Our results also show that it is not
required to invoke a wave vector-dependent damping parameter
in the interpretation of nonlinear magnetic resonance experi-
ments performed at low bias fields. The recipe that has been
developed here should prove very valuable for the general
description of nonlinear magnetization dynamics. Specifically, the
model allows a fast prediction of the critical spin-wave modes.
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Methods
Sample preparation. The samples are composed of a metallic film stack grown on
top of a 100-nm-thick Si3N4 membrane supported by a silicon frame, to allow
transmission of X-rays. The film system is patterned into a coplanar waveguide by
lithography and lift-off processes. The nominal 40-nm-thick Ni80Fe20 layer is
isolated from the 160-nm-thick copper layer by a 5-nm-thick film of Al2O3.
The isolation layer and the low conductivity of Ni80Fe20 ensure that 95% of the r.f.
current flow in the Cu layer, leading to a well-defined in-plane r.f. excitation of
the sample. The driving field is oriented along the y direction perpendicular to the
external d.c. field (transverse pumping).

X-ray magnetic circular dichroism–FMR. XMCD is measured at the Fe L3

absorption edge. For circularly polarized X-rays, the dichroic component of the
signal is proportional to the magnetization component along the X-ray beam
direction. The size of the probed spot on the sample is defined by the width of the
signal line of the coplanar waveguide structure (80 mm) and by the lateral
dimension of the X-ray beam (900 mm). The transmitted X-ray intensity is detected
by a photodiode32. All measurements are performed at the PM3 beamline of the
synchrotron at the Helmholtz Zentrum Berlin in a dedicated XMCD chamber.
The magnet configuration is shown in Supplementary Fig. 1. The microwave
excitation in the XMCD–FMR experiment is phase synchronized with the bunch
timing structure of the storage ring, so that stroboscopic measurements are
sensitive to the phase of the magnetization precession. Synchronization is ensured
by a synthesized microwave generator, which uses the ring frequency of 500 MHz
as a reference, to generate the required r.f. frequency in the GHz range. The phase
of the microwave excitation with respect to the X-ray pulses is adjusted by the
signal generator. To allow for lock-in detection of the XMCD signal, the phase of
the microwaves is modulated by 180� at a frequency of a few kHz. Owing to the
synchronization of the microwave signal and the X-ray bunches, the magnetization
is sampled at a given constant phase. The amplitude of the modulated intensity is
proportional to the dynamic magnetization component projected onto the X-ray
beam, as illustrated in Fig. 1. This signal is normalized by static XMCD hysteresis
loops. The normalized signal is an absolute measure of the amplitude of the
magnetization dynamics, evaluated in units of the saturation magnetization or as
cone angle of the precession of the magnetization vector. Supplementary Fig. 2
shows typical XMCD measurements.

Theoretical model. We start with the LLG equation in the following form:

_M ¼ � gM�Heff þ
a

Ms
M� _M ð3Þ

with M ¼ Mxêx þm0 þmk , where we assume Mx4m044mk, that is, the uniform
precession m0 is smaller than the static uniform magnetization and the non-
uniform dynamic magnetization mk is much smaller than m0. Heff is the effective
field consisting of the external field, the exchange field (hexch¼ 2Ak2/(m0Ms)) and
the dipolar field (hk

dip:;i ¼ Nk
i;jm

k
j ). Here we use a thin film approach33 for the

dipolar tensor Nk
i;j instead of the more complicated expressions that we use for the

analysis of parametric instability in thicker films34. To first order in the non-
uniform spin-wave amplitudes, we find an equation of the form:

_mk
y

_mk
z

� �
¼ D11 D12

D21 D22

� �
mk

y

mk
z

� �
ð4Þ

with time-dependent components Dij. The coupled coordinates can be separated by
applying a time derivative. The result for mk

y looks as follows (where we drop the
superscript):

€my þbðtÞ _my þo2ðtÞmy ¼ 0 ð5Þ
with bðtÞ ¼ � trD� _D12=D12 and o2ðtÞ ¼ detðDÞ� _D11 þD11 _D12=D12. This form
corresponds to the differential equation of a parametric oscillator. By substituting

q ¼ edðtÞmyðtÞ ð6Þ
with d ¼ 1

2

R
bðtÞdt, we can eliminate the damping term:

€f þ ~O2ðtÞf ¼ 0 ð7Þ
with ~O2ðtÞ ¼ o2 � 1

2
_b� 1

4 b
2. Now we introduce the dimensionless parameter

x¼omodt/2 and assume that ~O2ðtÞ varies periodically with the frequency omod.
One thus obtains:

f 00ðxÞþO2f ðxÞ ¼ 0 ð8Þ
where we use O2 ¼ ð4o2 � 2 _b� b2Þ=o2

mod � a� 2q cosð2xÞ, to find approximate
solutions. This assumption only implies that the time-dependent modulation of the
parametric oscillator is sinusoidal with a single frequency (for example, the driving
frequency op). Equation (8) can then be written in the form of the Mathieu
equation:

f 00 þ a� 2q cosð2xÞð Þf ¼ 0 ð9Þ
According to Floquet’s theorem35, the solutions of this equation are of the form:

Fða; q; xÞ ¼ einxPða; q; xÞ ð10Þ

where the complex number n¼ n(a, q) is called the Mathieu exponent and P is a
periodic function in x (with period p). The parameters a and q depend on the
properties of the spin wave. From the knowledge of n for a given k-vector, one can
predict the behaviour of the corresponding spin wave as a function of time:
For example, as soon as the imaginary part of n omod

2 exceeds the exponent in
equation (6) the spin wave becomes critical. Furthermore, the real part of n omod

2
corresponds to the frequency of the spin wave. This method can be used to quickly
find the dispersion and the lifetimes of all possible spin-wave modes when the
parameter n is evaluated as a function of kx and ky.

Micromagnetic calculations. Micromagnetic simulations that confirm our
conclusions are performed using an open source graphic processor unit-based
code Mumax31. The simulated sample volume is 80 mm� 20mm� 30 nm.
Time traces of 500 ns are computed to extract the numerical values. Standard
parameters for Ni80Fe20 are used in the simulations: saturation magnetization
Ms¼ 8� 105 A m� 1, damping constant a¼ 0.009 and exchange constant
A¼ 13� 10� 12 J m� 1. We find the best agreement between the simulations and
the experiments for a Ni80Fe20 thickness of 30 nm, whereas in the experiments the
nominal thickness of the Ni80Fe20 layer is 40 nm. We attribute this discrepancy
mostly to the surface roughness of the Ni80Fe20 layer in the experiments.
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