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Nonlinear-Stability Analysis of Higher Order ∆–Σ

Modulators for DC and Sinusoidal Inputs
Jaswinder Lota, Member, IEEE, Mohammed Al-Janabi, Member, IEEE, and Izzet Kale, Member, IEEE

Abstract—The present work that exists on predicting the sta-
bility of ∆–Σ modulators is confined to DC input signals and
unity quantizer gains. This poses a limitation for numerous ∆–Σ
modulator applications. The proposed research work gives the
stability curves for DC, sine, and dual sinusoidal inputs for any
value of the quantizer gain. The maximum stable input limits
for third-, fourth-, and fifth-order Chebyshev-Type-II-based ∆–Σ
modulators are established using the describing-function method
for DC and sinusoidal inputs. Closed-form mathematical expres-
sions for the gains of the quantizer for higher order ∆–Σ modu-
lators whose inputs are two concurrent sinusoids are derived from
first principles. The derived stability curves are shown to agree
reasonably well with the simulation results for different types of
input signals and amplitudes.

Index Terms—DC and sinusoidal inputs, nonlinear, quantizer
gain, stability, ∆–Σ modulators.

I. INTRODUCTION

T
HE WELL-KNOWN sources of nonlinearity in ∆–Σ
modulators are the 1-bit quantizer, op-amp nonlinear DC

gain, op-amp slew rate, and nonlinear switch response. The

nonlinear op-amp gain and slew rate result in considerable

harmonic distortion at the output spectrum of the ∆–Σ mod-

ulator. The nonlinear quantizer affects the stability of the ∆–Σ
modulator and is therefore the main area of investigation in this

paper. The stable input amplitude limits for ∆–Σ modulators

are complicated to predict due to the severe nonlinearity of

the 1-bit quantizer. To date, various approaches have been

applied to more accurately characterize the quantizer [1]–[6],

[8], [9]. One technique is to model the quantizer as a threshold

function in the state equations. The analysis, however, gets

complicated for higher order ∆–Σ modulators and has therefore

been limited to the first- and second-order ∆–Σ modulators

[1]–[4]. For higher order ∆–Σ modulators, linearized modeling

is a method that has been found to be useful for performance

analysis [5], [6], [8], wherein the 1-bit quantizer is modeled as

a linear gain and an additive noise source. However, apart from

performance predictions, the linearized-modeling approach did

not previously provide useful stability predictions until a new
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Fig. 1. Quasi-linear ∆–Σ modulator quantizer model.

interpretation of the instability mechanism for ∆–Σ modulators

based on the noise-amplification curve was given in [9]. This

is however restricted for DC inputs and unity quantizer gains.

This quasi-linear method can be extended to more than one

input with each input represented by a separate equivalent gain.

This concept forms the basis for the describing-function (DF)

method [10]. In this paper, the stability analysis based on

the noise-amplification curve is accomplished using the DF

method for DC single- and dual-tone sinusoidal inputs for

nonunity quantizer-gain values. The noise transfer functions

(NTFs) of these ∆–Σ modulators utilize Chebyshev-Type-II

filters because they achieve better in-band signal-to-noise ra-

tios (SNRs) as compared with Butterworth filters of the same

order. In Section II, the quasi-linear stability analysis of ∆–Σ
modulators is explained based on the noise-amplification curve.

In Section III, the derivation of the noise-amplification curves

for DC and sinusoidal inputs with the DF method is given. The

simulation results are illustrated and discussed in Section IV

followed by the conclusions in Section V.

II. QUASI-LINEAR-STABILITY ANALYSIS

OF ∆–Σ MODULATORS

A generic ∆–Σ modulator having its quantizer replaced by a

gain factor K, followed by additive quantization noise q(k) [9],

is shown in Fig. 1.

The output of the modulator in the z-domain is given by

Y (z) = STF(z)X(z) + NTF(z)Q(z) (1)

where Y (z), X(z), and Q(z) are the {z}-transforms of the

output, input, and quantizer noise signals, respectively. The

STF(z) and NTF(z) represent the signal transfer functions

(STFs) and NTFs of the ∆–Σ modulator, which are derived

from Fig. 1

STF(z) =
KG(z)

1 + K · H(z)
(2)

NTF(z) =
1

1 + KH(z)
. (3)

0018-9456/$25.00 © 2008 IEEE
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Fig. 2. A(K) curves for some Chebyshev-Type-II NTFs.

It can be seen from (2) and (3) that the poles of the denom-

inator [1 + KH(z)] determine the stability of the modulator.

For a given loop-filter H(z), there will be a certain interval

[Kmin,Kmax] for which the modulator is stable [11]. Assuming

q(k) to be Gaussian white noise G(0, σ2
q ) and the transfer

function between q(k) and y(k) to be known, then the output

noise variance is given by [9]

Var {y(k)} = σ2
q

1
∫

0

∣

∣NTF(ejπf )
∣

∣

2
df = σ2

qA(K) (4)

where σ2
q is the variance of q(k) and A(K) is the total out-

put noise-power-amplification factor. Using Parseval’s relation,

A(K) can be found in the time-domain as

A(K) =
∞
∑

k=0

|NTF(k)|2 ∆
= ‖NTF‖2

2 (5)

where NTF(k) is the impulse response corresponding to

NTF(z) and A(K) is the squared second-norm of NTF(z) [9].

The A(K) curves of the loop-filter are crucial for the stability

analysis of ∆–Σ modulators. Typical curves for the Chebyshev-

Type-II NTFs are shown in Fig. 2.

The Amin value is the global minimum of the curve. If K
increases slightly in the region, where A(K) is monotonically

increasing, it results in a higher A(K) value, which leads to

more quantization noise transfer into the ∆–Σ modulator. This

tends to decrease K, leading to a stable equilibrium state [9].

However, where the A(K) curve is monotonically decreasing,

even small perturbations can destabilize the modulator. As

the signal power increases, the values along the A(K) curve

decrease and approach Amin. The two values of K come close

together and, finally, merge at Amin. This characterizes the

onset of instability. The modulator-operating region escapes to

the left portion of the curve, where it is characterized by low

values of K. Therefore, for stable operation A(k) > Amin [9].

The Amin values for the Chebyshev-Type-II-based NTFs are

shown in Fig. 3.

Fig. 3. Amin values versus stop-band attenuation for the third-, fourth-, and
fifth-order Chebyshev-Type-II-based NTFs.

Fig. 4. ∆–Σ modulator linear-signal model.

Fig. 5. ∆–Σ modulator linear-noise model.

III. NOISE-AMPLIFICATION CURVES—DF METHOD

Using the DF model, the quantizer-gain K shown in Fig. 1

can be represented with two separate gains Kx and Kn [6], as

shown in Figs. 4 and 5.

Fig. 4 describes the model for the input signal with linear

gain Kx, whereas Fig. 5 describes the noise-signal model with

linear gain Kn. The combined output signal is given by

y(k) = yx(k) + yn(k). (6)

A. DC Input

The linearized gains for a 1-bit quantizer with an output ±∆
have been calculated in [6] and are given as follows, where

erf(·) is the error function [7]

Kn = 2
∆

σ2
en

e−m2
e/2σ2

en (7)

Kx =
∆

me
erf

(

me

σen

√
2

)

(8)
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where me is the mean value of the quantizer input in the signal

model, and σ2
en

is the noise variance input to the quantizer in

the noise model. The variance of the output signal is given by

Var {y(k)} = E
{

y2(k)
}

− E2 {y(k)} (9)

where E{·} is the expectant operator.

The output signal in the time domain can be expressed as

y(k) = en(k)Kn + q(k) + ex(k)Kx. (10)

The first term on the right-hand side of (9) is the power of the

output signal, which is given by

E
{

y2(k)
}

=E
{

e2
n(k)K2

n

}

+ E
{

q2(k)
}

+ E
{

e2
x(k)K2

x

}

(11)

E
{

y2(k)
}

=σ2
en

K2
n + σ2

q + m2
eK

2
x. (12)

Since the quantization noise is assumed as G(0, σ2
q ) the mean

values of en(k) and q(k) are equal to zero, then the second term

on the right-hand side of (9) becomes

E2 {y(k)} = m2
eK

2
x. (13)

The resultant variance of the output signal using (9), (12), and

(13) becomes

Var {y(k)} = σ2
en

K2
n + σ2

q . (14)

The noise-power-amplification factor for a DC input signal

Adc(K) after using (4), (7), and (14) simplifies to

Adc(K) =
Var {y(k)}

σ2
q

=

(

2

π

)

[

e−λ2
]2

+ σ2
q

σ2
q

(15)

where λ is a factor defined as follows: λ = me/σen
√

2, and σ2
q

is the quantization noise power given by [6]

σ2
q = ∆2

[

1 − mx

∆2
− 2

π
e−2[erf−1(mx

∆ )]
2
]

. (16)

B. Sinusoidal Input

The linearized gains for a sinusoidal input and random

Gaussian feedback components have been solved for the case

of an ideal relay in [12], which can be assumed for a 1-bit

quantizer with an output of ±∆ [6] and are shown as follows:

Kn =

(

2

π

)
1
2
(

∆

σen

)

F

(

1

2
, 1,−υ2

)

(17)

Kx =

(

2

π

)
1
2
(

∆

σen

)

F

(

1

2
, 2,−υ2

)

. (18)

Here, υ∆(a/
√

2) = (1/σen
), where a is the amplitude of the

sinusoidal input signal x(k). The expression F (α, γ, x) is the

confluent hypergeometric function defined by [13], and Γ is a

gamma function [7]

F (α, γ, χ)
∆
= 1 +

αχ

γ
+

α(α + 1)χ2

γ(γ + 1)Γ2
+ · · · (19)

The variance of the output signal is given by

Var {y(k)} = E
{

y2(k)
}

− E2 {y(k)} . (20)

The power of the output signal is given by

E
{

y2(k)
}

=E
{

e2
n(k)K2

n

}

+ E
{

q2(k)
}

+ E
{

e2
x(k)K2

x

}

(21)

E
{

y2(k)
}

=σ2
enK2

n + σ2
qs

+ σ2
ex

K2
x (22)

where σ2
qs is the quantization noise power for a sinusoidal input.

The second term on the right-hand side of (20) is

E2 {y(k)} =E2 {en(k)Kn} + E2 {q(k)} + E2 {e
x
(k)Kx}

(23)

E2 {y(k)} =E2 {ex(k)}K2
x (24)

where the mean values of en(k) and q(k) are zero. The input

signal is a sinusoid modeled as a random variable (RV) having

constant amplitude. Since the phase is random with a uniform

probability density function (pdf) E{ex(k)} = 0. Therefore,

from (20) and (24)

Var {y(k)} = E
{

y2(k)
}

. (25)

Given that the frequency of x(k) is small in the baseband

region, this then results in [6]

Ex(z)

X(z)
≈ 1

Kx
. (26)

The variance of ex(k) is

σ2
ex

=
1

K2
x

σ2
x. (27)

From (25) and (27), the output-signal variance is

Var {y(k)} = σ2
qs

+ K2
nσ2

en
+ σ2

x. (28)

The output-noise variance is therefore

Varn {y(k)} = σ2
qs

+ K2
nσ2

en
. (29)

Substituting (17) in (29), the noise-amplification factor for a

sinusoidal input signal becomes

Asin e(K) =

(

2

π

)

F 2

(

1

2
, 1,−υ

2
)

+ σ2
qs

σ2
qs

. (30)
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The values of υ and σ2
qs can be found using the following

expressions derived in [6]:

υ2F 2

(

1

2
, 2,−υ2

)

=
π

4

(

a2

∆2

)

(31)

σ
2

qs
= ∆2

[

1 − a2

2∆2
− 2

π
F 2

(

1

2
, 1,−υ2

)]

. (32)

C. Two Sinusoidal Inputs (Incommensurate)

The linearized gains for two sinusoidal input signals

xa(t) = a cos(w1t + φ1), xb(t) = b cos(w2t + φ2) and a ran-

dom Gaussian signal representing the feedback components

have been solved for the case of the 1-bit quantizer, as shown

in the Appendix, where the final expressions are given by

Ka =

(

2

π

)
5
2
(

∆

σ

)(

b

a

)(

1
1

2
− ρ2

b

){

1F1

(

1,
3

2
,−ρ2

a

)

+ψa

}

(33)

Kb =

(

2

π

)
5
2
(

∆

σ

)

(a

b

)

(

1
1

2
− ρ2

a

){

1F1

(

1,
3

2
,−ρ2

b

)

+ ψb

}

(34)

Kn =

√

2

π

(

∆

σ

)

e−ρ2
ae−ρ2

bζ (35)

where

ψa =

{

4

3
ρ2

a − 16

45
ρ4

a +
16

175
ρ6

a − 128

6615
ρ8

a + · · ·
}

(36)

ψb =

{

4

3
ρ2

b −
16

45
ρ4

b +
16

175
ρ6

b −
128

6615
ρ8

b + · · ·
}

(37)

ζ =

{

1 + ρ2
aρ2

b +
ρ4

aρ4
b

4
+

ρ6
aρ6

b

36
+

ρ8
aρ8

b

576
+ · · ·

}

(38)

and ρ2
a = (1/2)(a2/σ2); ρ2

b = (1/2)(b2/σ2).
From (29), the output-noise variance is given by

Var {y(k)} = σ2
en

K2
n + σ2

qab
(39)

where σ2
qab

is the quantization noise power for the two uncor-

related sinusoidal inputs xa(t) and xb(t). Therefore, from (35)

and (39), the noise-amplification factor is given by

A
ab

(K) =

(

2

π

)

{

e−ρ2
ae−ρ2

b

}2

ζ2 + σ2
qab

σ2
qab

. (40)

Since xa(t) and xb(t) are uncorrelated, the power of the output

signal is given by

E
{

y2(k)
}

= σ2
en

K2
n + σ2

qab
+ σ2

eb
K2

b + σ2
ea

K2
a (41)

where σ2
eb

and σ2
ea

are the powers of the sinusoidal inputs at the

quantizer input. From (27), we have

σ2
eb

=
1

K2
b

σ2
b

σ2
ea

=
1

K2
a

σ2
a. (42)

From (35), (41), and (42), we get

∆2 =
2

π
∆2{e−ρ2

ae−ρ2
b}2ζ2 + σ2

qab
+

b2

2
+

a2

2
. (43)

Rearranging (43), the quantization noise power is given by

σ2
qab

= ∆2

[

1 − a2

2∆2
− b2

2∆2
− 2

π

{

e−ρ2
ae−ρ2

b

}2

ζ2

]

. (44)

From (34) and (42), we get

(

2

π

)5(

a2

b2

)

ρ2
b

[

1

2
− ρ2

a

]2

{

1F1

(

1,
3

2
,−ρ2

b

)

+ ψb

}2

=
b2

2
.

(45)

Similarly, from (33) and (42) for the sinusoid xa(t), we have

(

2

π

)5(

b2

a2

)

ρ2
a

[

1

2
− ρ2

b

]2

{

1F1

(

1,
3

2
,−ρ2

a

)

+ ψa

}2

=
a2

2
.

(46)

The two simultaneous (45) and (46) were solved by deploying

the MATLAB Symbolic Toolbox in order to get the values of

ρa and ρb for various values of a and b.

In Sections I–III, we have seen that the noise-amplification

factor can be determined in two ways, viz., statistically and nu-

merically. Statistically, it can be derived from (4), provided that

the noise and signal quantizer gains are known. The quantizer

gain is therefore split up as signal and noise quantizer gains

using the DF method. The derived noise-amplification factor

here is a function of the signal amplitude and the quantization

noise power. In case the of DC and single-sine inputs, the signal

and noise gains have been used from the nonlinear-control

theory. Equations (15) and (30) give the statistically derived

noise-amplification factor for DC and single-sine inputs. For

the dual sinusoidal input, the quantizer gains have been derived

from the Appendix. The noise-amplification factor is arrived

from (40).

The noise-amplification factor can also be derived numer-

ically from (3) and (5). Here, the parameter is a function of

the quantizer gain and the NTF, as shown in Fig. 2. The Amin

value is the global minimum value of the curve. To ensure

stability, the value of the noise-amplification factor must always

exceed Amin. Therefore, from the statistically derived noise-

amplification factor (which is a function of the input signal and

noise power), we can infer the values of the input amplitude,

for which its noise-amplification factor is always greater than

Amin, to ensure the stability of the ∆–Σ modulator for a
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Fig. 6. Quantization noise for DC and sinusoidal inputs.

Fig. 7. Variation of υ (sine) and λ (DC) versus the input-signal amplitude.

particular NTF. The derived stability curves for a given NTF

can therefore be plotted and will be covered in the next section.

IV. RESULTS AND SIMULATIONS

A. DC and Single Sinusoidal Inputs

The variation of the DC and sinusoidal-input quantization

noise power σ2
q and σ2

qs, with respect to the input-signal am-

plitude using (16) and (32), are shown in Fig. 6.

As shown, σ2
q decreases and becomes zero as the input-signal

amplitude increases to unity. The quantization noise power

σ2
qs does not decrease to zero and remains at 0.3 for an input

amplitude of 1.0. Equation (31) has been solved for υ up to the

tenth power of υ using the MATLAB Symbolic Toolbox.

Fig. 7 shows the variation of λ and υ, with respect to the

input-signal amplitude.

Fig. 8. Noise-amplification factor for sinusoidal and DC inputs.

Fig. 9. Stable-input amplitude for Chebyshev-Type-II NTF(z).

It has been observed that, for amplitudes less than 0.4, the

quantization noise λ and υ are almost the same for DC and

sinusoidal inputs. This coincides with the fact that, in nonlinear

feedback systems, the effective gain of the nonlinearity on a

small signal is independent of the signal type [10]. The noise-

amplification factors Adc(K) and Asin(K) using (15) and (30)

are shown in Fig. 8. It is shown that the values of Adc(K) using

the DF method are the same as in [9].

Using Adc(K) and Asin(K), the maximum stable input

amplitudes for the third-, fourth-, and fifth-order Chebyshev-

Type-II-based ∆–Σ modulator are shown in Fig. 9.

However, these are true for unity values of quantizer gain K.

The variations of the stable sinusoidal input amplitude for the

third-, fourth-, and fifth-order Chebyshev-Type-II-based ∆–Σ
modulator in relation to the quantizer gain K and the stop-band
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Fig. 10. (a) Stable amplitude limit for third order for DC input. (b) Stable
amplitude limit for fourth order for DC input.

attenuation are shown in Fig. 10(a) and (b) for a DC input and

in Fig. 11(a) and (b) for a sinusoidal input, respectively.

For comparison, the stable input-amplitude variation for dc

and sinusoidal inputs for a fifth-order Chebyshev-Type-II-based

∆–Σ modulator with a stop-band attenuation of 67 dB is shown

in Fig. 12.

B. Two Sinusoidal Inputs

From (45) and (46), the values of ρb have been shown in

Fig. 13(a). It is shown that ρb gets bigger as the amplitude b
increases. However, the increase in ρb gets attenuated as the

signal amplitude a increases from 0.2 to 0.8. As shown, the

effect of this attenuation decreases when b > a. This becomes

more noticeable for a = 0.8.

The amplitude of ρa, as shown in Fig. 13(b), is seen to

gradually decrease as b increases. It is also seen to drop sharply

when the amplitude of b becomes greater than a.

The values of ρa and ρb for the following amplitudes are as

follows: a = 0.2, 0.4, 0.6, and 0.8 are shown in Fig. 14(a)–(d).

Fig. 11. (a) Amplitude limit for third order for sinusoidal input. (b) Amplitude
limit for fourth order for sinusoidal input.

The magnitudes of ρa and ρb become equal when both sinu-

soids have the same amplitudes, i.e., a = b.

Using (44), the quantization noise power σ2
qab

is plotted in

Fig. 15. The σ2
qab

in the regions b < 0.2, b < 0.4, and b < 0.6
for the curves A (a = 0.2), B (a = 0.4), and C (a = 0.6) (left

side of the nulls for the three curves), respectively, increases

mainly due to ρa. As ρa becomes bigger when the amplitude

a increases from 0.2 to 0.6 in Fig. 13(b), so does σ2
qab

in this

region. The increase in σ2
qab

in the regions b > 0.2, b > 0.4, and

b > 0.6 (right-hand side of the three nulls) for the curves A, B,

and C, respectively, is mainly attributed to ρb. As ρb increases

with a reduction in the amplitude a from 0.6 to 0.2 in Fig. 13(a),

so does σ2
qab

.

Since the quantization noise power σ2
qab

, ρa and ρb are

known; the same are substituted in (40) to obtain the noise-

amplification curves Aab(K) for a = 0.2, 0.4, and 0.6. These

noise-amplification curves Aab(K) are plotted in Fig. 16.
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Fig. 12. Stable amplitude variation for DC and sinusoid inputs.

Using the values obtained for Aab(K), the stable amplitude

limits for b have been plotted for the third-, fourth-, and

fifth-order Chebyshev-Type-II-based NTF for a = 0.2 and 0.4
in Figs. 17(a)–(c) and 18(a)–(c), respectively.

Simulations for the fifth-order Chebyshev-Type-II-based

∆–Σ modulator, as shown in Fig. 19, were performed for 1400

samples, where the input amplitude was increased in steps of

0.1. The maximum stable amplitude limits were obtained and

compared with simulations as shown in Fig. 20.

The difference between the theoretical and simulated input

stability limits is attributed to the presence of more spectral

tones when the input to the ∆–Σ modulator is a DC signal.

This discrepancy in the values is seen to decrease noticeably for

single-tone sinusoidal inputs, because the quantization noise in

this case tends to become more Gaussian. For ∆–Σ modulators

whose inputs comprise of two sinusoids, the theoretical and

simulated input stability limits are seen to be quite similar for

relatively small input-amplitude signals. However, the differ-

ence increases as the amplitudes of the two sinusoids become

larger. This is due to the occurrence of tones as the ∆–Σ
modulator approaches its stability limit. A further reason for

this discrepancy could be that the derivation of the three gains

(i.e., two sinusoids and one Gaussian) is based on the modified

nonlinearity concept. In order to compute the gain for any of

the three inputs, it is assumed that the nonlinear function has

been modified in turn by each of the two remaining inputs.

However, in real-life, this may not be the case as all the three

inputs coexist simultaneously.

V. CONCLUSION

The maximum stability input limits for different types of in-

put signals and amplitudes were derived from the first principles

and shown to be dependent on the quantizer gain as well as

the stop-band attenuation of the NTFs. The derived stability

curves were shown to depend on the noise-amplification factor,

Fig. 13. (a) Variation of ρb versus b for different a amplitudes. (b) Variation
of ρa versus b for different a amplitudes.

and therefore, the composition of the quantization noise of

the ∆–Σ modulators. The theoretically derived stability curves

were shown to agree reasonably well with the simulation results

for various types of input signals and amplitudes. The stability

limits for the sinusoidal-input signals were theoretically proved

to be greater than the DC case for ∆–Σ modulators of the

same order. This finding is particularly useful for the design

of higher order ∆–Σ with improved SNRs and dynamic ranges.

The derived stability curves will enable the designer of ∆–Σ
modulators to predict with greater accuracy the stability of ∆–Σ
modulators for any NTF and quantizer gain values.

APPENDIX

In this Appendix, the derivation of the gains for the two

sinusoidal and Gaussian inputs to a 1-bit quantizer is made.



LOTA et al.: NONLINEAR-STABILITY ANALYSIS OF HIGHER ORDER ∆–Σ MODULATORS 537

Fig. 14. (a) Variation of ρa and ρb with amplitude b at a = 0.2. (b) Variation of ρa and ρb with amplitude b at a = 0.4. (c) Variation of ρa and ρb with
amplitude b at a = 0.6. (d) Variation of ρa and ρb with amplitude b at a = 0.8.

If the inputs to the nonlinearity are of different pdfs or of dif-

ferent magnitudes of similar waveforms, the output component

from one of these inputs depends not only on the magnitude of

this particular input but also on the magnitudes of all the other

inputs. The concept used here is the modified-linearity concept

[14], whereby to determine the response to a particular input,

the nonlinear characteristic is modified in turn by each of the

input signals present to obtain a modified nonlinearity to which

the input is applied.

The two sinusoidal inputs considered here are xa(t) =
a cos(w1t + φ1) and xb(t) = b cos(w2t + φ2), where a and

b are constants, ω1 and ω2 are the sinusoidal frequencies,

assumed to be incommensurate, and φ1 and φ2 are RVs each

having a uniform pdf in the interval [0, 2π]. The third input

is the quantization noise assumed to be Gaussian G(0, σ), i.e.,

with zero mean and variance σ2.

Sinusoidal Gains

The modified nonlinearity of a 1-bit quantizer with a random

input is given by [12]

n1(γ) = 2∆

γ
∫

0

q(y)dy (A1)

where ±∆ is the output of the 1-bit quantizer, and q(y) is the

pdf of the random input.

Therefore, for a Gaussian input

n1(γ) = 2∆

γ
∫

0

(

1

σ
√

2π

)

e
−y2

2σ2 dy (A2)
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Fig. 15. Variation of quantization noise versus the two sine amplitudes.

Fig. 16. Aab(k) variation versus the two sine amplitudes a and b.

which, when integrated, simplifies to

n1(γ) = ∆erf

(

γ

σ
√

2

)

. (A3)

Next, we consider the nonlinearity n1(γ) that is further mod-

ified to n2(γ) by one of the sinusoidal signals, for example,

xa(t). This further modified nonlinearity is given by [14]

n2(γ) =

a
∫

−a

p(x)n1(x + γ)dx (A4)

where p(x) is the pdf of xa(t), i.e.,

n2(γ) =

a
∫

−a

1

π

1√
a2 − x2

∆erf

(

x + γ

σ
√

2

)

dx (A5)

can be rewritten as

n2(γ) =
2∆

π

a
∫

0

1√
a2 − x2

erf

(

x + γ

σ
√

2

)

dx. (A6)

When integrating (A6), we get (A7), which is

n2(γ) =

∣

∣

∣

∣

∣

∣

∣











[

e−
(γ+x)2

2σ2 σ

√

2

π
+ (γ + x)erf

(

x + γ

σ
√

2

)

]

−





σ2xerf
(

x+γ

σ
√

2

)

(a2 − x2)















×











(a2 − x2)
3
2

(a2x2)(a2 + xγ) − σ2a2 − 2x2σ2











∣

∣

∣

∣

∣

∣

∣

a

0

.

(A7)

After applying the limits, (A7) simplifies to

n2(γ)=

(

2∆

π

)(

a

σ2−a2

)

{

σ

√

2

π
e
−γ2

2σ2 +γerf

(

γ

σ
√

2

)

}

(A8)

where n2(γ) is now the nonlinearity of the 1-bit quantizer,

which has been modified by the sinusoidal input xa(t) and

the quantization noise G(0, σ). The next step is to evaluate the

gain for xb(t) to this modified nonlinearity. This gain for xb(t)
would be a function of the input amplitudes a and b and would

also depend on the quantization noise power σ2.

The gain Kb of the sinusoidal input xb(t) to this nonlinearity

n2(γ) is given by [12]

Kb =
1

σ2
b

b
∫

−b

xn2(x)r(x)dx (A9)

where σ2
b = b2/2 is the variance, and r(x) is the pdf of xb(t).

From (A8) and (A9), we get the gain for xb(t) as in (A10),

which is

Kb =

(

2

b2

)(

2∆

π2

)(

2a

σ2 − a2

)

×



σ

√

2

π

b
∫

0

e
−x2

2σ2
x√

b2 − x2
dx

+

b
∫

0

x2

√
b2 − x2

erf

(

x

σ
√

2

)

dx



 . (A10)
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Fig. 17. (a) Stable input limits of amplitude b of third order for a = 0.2. (b) Stable input limits of amplitude b of fourth order for a = 0.2. (c) Stable input limits
of amplitude b of fifth order for a = 0.2.

By putting x = bu1/2, the first integral in (A10) can be

simplified to

I1 =

b
∫

0

e
−x2

2σ2
x√

b2 − x2
dx =

(

b

2

)

1
∫

0

e−ρ2
b
uu0(1 − u)

1
2 du

(A11)

where ρ2
b = b2/2σ2. This reduces (A11) to the integral form

of the confluent hypergeometric function 1F1(α, β, λ), which

is [13]

Γ(β)

Γ(α)Γ(β − α)

1
∫

0

eλuuα−1(1 − u)β−α−1du =1 F1(α, β, λ).

(A12)

From (A11) and (A12), I1 can be integrated as

I1 =

(

b

2

)

1
∫

0

e−ρ2
b
uu0 (1 − u)

1
2 du = b1F1

(

1,
3

2
,−ρ2

b

)

.

(A13)

The second integral in (A10) can be solved by expanding

the error function and integrating within the limits, as shown

in (A14)

I2 =

b
∫

0

erf

(

x

σ
√

2

)

x2

√
b2 − x2

dx = 2
b2

√
π

η (A14)
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Fig. 18. (a) Stable input limits of amplitude b of third order for a = 0.4. (b) Stable input limits of amplitude b of fourth order for a = 0.4. (c) Stable input limits
of amplitude b of fifth order for a = 0.4.

where η is an infinite series given by

η =

{

2

3
ρb −

8

45
ρ3

b +
8

175
ρ5

b −
64

6615
ρ7

b + . . .

}

. (A15)

From (A10), (A13), and (A14), we get

Kb =

(

2

b2

)(

2∆

π2

)(

2a

σ2 − a2

)

×
{

σ

√

2

π
b1F1

(

1,
3

2
,−ρ2

b

)

+ 2
b2

√
π

}

. (A16)

Simplifying (A16) further and rearranging the terms, the gain

Kb for xb(t) is given by

Kb =

(

2

π

)
5
2
(

∆

σ

)

(a

b

)

(

1
1

2
−ρ2

a

){

1F1

(

1,
3

2
,−ρ2

b

)

+ψb

}

(A17)

where

ψb =

{

4

3
ρ2

b −
16

45
ρ4

b +
16

175
ρ6

b −
128

6615
ρ8

b + . . .

}

. (A18)



LOTA et al.: NONLINEAR-STABILITY ANALYSIS OF HIGHER ORDER ∆–Σ MODULATORS 541

Fig. 19. Chebyshev-Type-II fifth-order modulator.

Fig. 20. Simulation results for dc, sine, and two sinusoidal inputs.

In order to obtain the gain for xa(t), we proceed as in above

to get

Ka =

(

2

π

)
5
2
(

∆

σ

)(

b

a

)(

1
1

2
− ρ2

b

)

×
{

1F1

(

1,
3

2
,−ρ2

a

)

+ ψa

}

. (A19)

Noise Gains

The modified nonlinearity of the first order for a Gaussian

input to a 1-b quantizer is given by [12]

n(σ, γ)1 =

∞
∫

−∞

n(y + γ)H1

( y

σ

)

q(y)dy (A20)

where H1 is the Hermite polynomial of the first order. Substi-

tuting for q(y) and n(y + γ) in (A20)

n(σ, γ)1 =
∆

σ2
√

2π

∞
∫

−∞

ye−
y2

2σ2 dy =

√

2

π
∆e−

γ2

2σ2 . (A21)

The noise gain Kn in the presence of another random input with

pdf p(r) is given by [12]

Kn =
1

σ

∞
∫

−∞

n(σ, r)1p(r)dr. (A22)

Here, we consider the additional random input as a combination

of two uncorrelated sinusoidal inputs. The joint pdf p(r) of

the two sinusoidal signals having amplitudes a and b, with

incommensurate frequencies, is given by [15]

p(r) =
r

πab

1

sin θ
(A23)

where

θ = cos−1

(

a2 + b2 − r2

2ab

)

. (A24)

From (A21), (A22), and (A23), we get

Kn =

√

2

π

(

∆

σ

)

a+b
∫

a−b

e−
r2

2σ2

( r

πab

)

(

1

sin θ

)

dr. (A25)
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Changing the variable from r → θ

Kn =

√

2

π

(

∆

σπ

)

e−
a2

2σ2 e−
b2

2σ2

π
∫

0

ek cos θdθ (A26)

where k = ab/σ2. Solving the integral earlier, we get the noise

gain as

Kn =

√

2

π

(

∆

σ

)

e−ρ2
ae−ρ2

bζ (A27)

where

ζ =

{

1 + ρ2
aρ2

b +
ρ4

aρ4
b

4
+

ρ6
aρ6

b

36
+

ρ8
aρ8

b

576
+ . . .

}

. (A28)
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