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Nonlinear stability analysis of the thin pseudoplastic liquid film
flowing down along a vertical wall
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This article investigates the weakly nonlinear stability theory of a thin pseudoplastic liquid film
flowing down on a vertical wall. The long-wave perturbation method is employed to solve for
generalized nonlinear kinematic equation with free film interface. The normal mode approach is
used to compute the linear stability solution for the film flow. The method of multiple scales is then
used to obtain the weak nonlinear dynamics of the film flow for stability analysis. It is shown that
the necessary condition for the existence of such a solution is governed by the Ginzburg—Landau
equation. The modeling results indicate that both subcritical instability and supercritical stability
conditions are possible to occur in a pseudoplastic film flow system. The results also reveal that the
pseudoplastic liquid film flows are less stable than Newtonian’s as traveling down along the vertical
wall. The degree of instability in the film flow is further intensified by decreasing the flow index
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I. INTRODUCTION unstable long disturbed wave is approximately twice of the

. . . . wave velocity traveling on the free surface.
The stability of a film flow is a research subject of great Y g

. . . . Benney investigated the nonlinear evolution equation of
importance commonly needed in mechanical, chemical, anFI .

. e ) . o . _free surface by using the method of small parameters. The
nuclear engineering industries for various applications in-

cluding the process of paint finishing, the process of Iase??llkjf:_c:ns :|hus Obta';ed calmt_be used totpk:edlct réo?llnea;_mt-
cutting, and heavy casting production processes. It is knowr aPity. HOWEver, the solutions cannot be used to predic

that macroscopic instabilities can cause disastrous conditior‘fé‘perc”“?al stab|I_|ty since the m]_‘luence of surface tension is
to fluid flow. It is thus highly desirable to understand N0t considered in the analysis of the small-parameter
the underlying flow characteristics and associated timeMethod. The effect of surface tension was realized by many

dependent properties so that suitable conditions for homogé_esearchers as one of the necessary conditions that will lead
neous film growth can be developed for various industrial© the solution of supercritical stability. LihNakaya; and
applications. Krishna and Lif considered the significance of surface ten-
The problem of the stability of the laminar flow of an Sion and treated it in terms of zeroth order terms in later
ordinary viscous liquid film flowing down an inclined plane studies. Pumiet al1° further included the effect of surface
under gravity was first formulated and solved numerically bytension into the film flow model and solved for the solitary
Yih.* The transition mechanism from laminar flow to turbu- wave solutions. Hwang and Wetgshowed that the condi-
lent flow was elegantly explained by the Landau equation.tions of both supercritical stability and subcritical instability
That shed a light for later development on nonlinear filmare possible to occur for a liquid film flow system. An ex-
stability. The Landau equation was later rederived by Stuarttensive review on the stability of falling liquid can be re-
using the disturbed energy balance equation along with Reyferred to Chand? Renardy and Suf and Tsaiet al* have
nolds stresses. Benjarfliand Yit? formulated the disturbed done the work on both linear and nonlinear stability analysis
wave equation of free flow surface. The flow stability of the of a fluid film flowing down along an inclined or vertical
long disturbed wave was carefully studied and some charaglate. Detailed flow analysis is indeed of great importance in
teristics of the flow stability on an inclined plane are ob-the development of stability theory for characterizing various
served. These includél) the flow that is disturbed by a flow film conditions.
longer wave is less stable than that disturbed by a shorter A vast majority of studies on thin-film flow problems
wave; (2) the film flow is less stable as the inclined angle were devoted to the stability analysis of Newtonian fluids.
increases(3) the film flowing down a vertical plate becomes The film flow of non-Newtonian fluids attracted less atten-
unstable as the critical Reynolds number becomes nearljon in the past. The rheological behaviors of fluids during
zero; (4) the film flow becomes relatively stable as the sur-the plastic manufacture, the lubrication of bearings, or the
face tension of the film increaset3) the velocity of the  gjye in biological chemistry do not obey the Newtonian pos-
tulate. In recent years, the microstructure of fluid flows has
dElectronic mail: ckchen@mail.ncku.edu.tw emerged as a research subject of great interest to many re-
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|15

searchers. Hungt al.> employed the method of nonlinear - ¥

analysis to study the stability of thin micropolar liquid films :

flowing down along a vertical plate. The results of their

study indicated that the micropolar parameter plays an im-

portant role in stabilizing a film flow. The viscoelastic fluid, W

a subclass of microstructure flows, exhibits a great deal of

influence on the normal and shear stresses in flow films. The ,mﬁ/ 2

stability problem of a falling film of viscoelastic fluid has

been studied by Guptawho considered the stability of a

small-amplitude falling fluid of second order. The long

wavelength disturbance is used in the article to conduct a

linear stability analysis. After deriving the viscoelastic ana-

log of the Orr—Sommerfeld equation with the requisite . lg

boundary condition, Gupta pointed out the viscoelastic effect *

can destabilize the film flow. Chergf al’ further studied FIG. 1. Schematic diagram of a pseudoplastic thin film flow traveling down

the nonlinear stability analysis of thin viscoelastic liquid film along a vertical wall.

flowing down on a vertical wall. They also demonstrated that

the viscoelastic property has a destabilizing effect on the

nonlinear film flow system. and to demonstrate the effectiveness of the proposed model-
In practical applications, pseudoplastic fluids that showing procedure.

shear thinning are widely used in the analysis to characterize

the molten polyethylene and polypropylene, and solutions of

carboxymethylcellulosé CMC) in water, polyacrylamide in Il. GENERALIZED KINEMATIC EQUATIONS

water and glycerin, and aluminum laurate in decalin and  Figyre 1 shows the configuration of a thin pseudoplastic
m-cresol in various industrial sectors. Almost all polymer iquid film flowing down on a vertical wall. The pseudoplas-
solutions and melts that exhibit a shear-rate dependent Vigic fluid that gives shear thinning to the Ostwald—de Waele
cosity are pseudoplastic. The polymeric fluid drains muchmodel obeys the constitutive equation of state
more quickly than the Newtonian fluid when the fluids are o

Tij=—P* 6ij+2un 08, ey

allowed to flow out by gravity in the vertical tubé$The

—

0

viscosity of the macromolecular fluid appears to be lower inwhere7; is the stress tensoe;; is the rate-of-strain tensor,

the higher shear rate part of the experiment. For many engj,, is the dynamic viscosity of pseudoplastic flopt; is the

neering applications, this is the most important characteristi¢sotropic pressure, and

of polymeric fluids. Ng and Mé? studied the roll waves on ®=[2(e2* L+l *)+4e2* RERIL:

a shallow layer of mud modeled as a power-law fluid. The XX yry Xy

results indicated that longer roll waves, with dissipation at aur\2 [op*\? Ju*  gur\2) (-2

the discontinuous fronts, cannot be maintained if the uniform =(2 ((9)(* +((7y*) +<(9x* + ﬂy*) ] ,

flow is linearly stable, when the fluid is slightly non-

Newtonian. However, when the fluid is highly non- )

Newtonian, very long roll waves may still exist even if the whereu* andv* are the velocity components kf andy*

corresponding uniform flow is stable to infinitesimal distur- directions, respectively, and n is the flow index<{(1). The

bances. Hwangt al?° studied the linear stability of power- principles of mass and momentum conservation for an iso-

law liquid film flows down an inclined plane by using the thermal incompressible pseudoplastic flow configuration

integral method. The results reveal that the system will bdeads one to a set of system governing equatfoiihe gov-

more unstable when power-law exponendecreases. erning equations can be expressed in terms of Cartesian co-
The stability analysis of the pseudoplastic film flow is anordinates x*,y*) as

interesting research area in both theoretical development and Ut ov*

practical applications. So far the weakly nonlinear stability + =0, (3

analysis of a thin pseudoplastic liquid film flowing down a ~ 9X* Yy~

vertical wall has not been seriously investigated. However, * * *
X . ) Ju Ju Ju aTX*X* (97'y*x*

since the types of stability problems are of great importance +u* +p* =pg+ +

. . . . . at* (9 * {9 * (9 * {9 * !

in many practical applications, the behavior of a pseudoplas- X y X y

tic liquid film traveling down along a vertical wall is care- (4)

fully studied in this article by employing both linear and Jv* Jv* Ju* ITxrys  ITyiyi

nonlinear stability analysis theories. The influence of p +u* +ov* = + , B
at* ax* ay* ax* ay*

pseudoplastic property on finite-amplitude equilibrium is
studied and characterized mathematically. The sensitivityherep is a constant density of the film flow” is the time,
analysis of the flow index n is also carefully conducted. Sevqg is the gravitational acceleration, and the individual stress
eral numerical examples are presented to verify the solutionsomponents are given as
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TX*X*:_p*+2/.Ln®ex*x* (9(,0* (9(,0*
ur=——, v*=-— . (14
ur\? [ov*\? ay* ax*
==p*+H2un 2| o5 —— . : iy . _
28 ay The dimensionless quantities can also be defined and given
gu*  gu*\2) (—DI2 gy as
L ay e © ot yrauitt b
X= ! y= T t= 1 h= )
Tyxyx = — p* + 2,L,Ln®ey*y* hé hg hg hé
ou* 2 Jv* 2 ‘P* p* _ p; USZ—nhg n
% o - = , p= Re,=———, 15
P*+2un) 2 ((;X*) +((9y*> ® Ughg p puE\)—Z & un (15
u*  gu* |2 (D2 gy * S* 2mh{
ot oo — @) = 2 , a= :
X ay oy (2730 +3n+2pn+2v4gsn—2)1/(n+2) A
Tk yt = Ty yot where Reg is the Reynolds number of pseudoplastic flow,
—2, 06 is the perturbed wave length, andis the dimensionless
— SHnS ey wave numberh} is the film thickness of local base flow and
au*\2 [ap*\2 ug is the reference velocity which can be expressed as
=k 2| o] Ty n (g)in
*x __ | = *(n+1)/n
ot gut\2 (DR gux g Uo="77 Un) ho ' (16)
ot o Fraarvalt ®) _ : o .
X y X y where v, is the kinematic viscosity of pseudoplastic flow.
The no-slip boundary conditions on the wall surfaceyat ~ Thus, the nondimensional governing equations and associ-
=0 are given as ated boundary conditions can now be given as
u*=0, 9 B (n+1)" Re,
© (@yy)n lQDyyy:_W+aT(px+QDty+(Py§ny
v*=0. (10 ,
. - + 1
The boundary conditions for free surfaceydt=h* are de- Pxpyy) +O(a), (7
rived based on the results given by Edwalsztsa}l.22 The py=aRe [(N—2)(¢y)" tox,y—2(N—1)
vanishing of shear stress on free surface gives another o )
boundary condition as X(pyy)™ “exyeyyyl +O(a), (18)
ah* oh*\2]~1 y=0
+ Ty* — Tyk x*
IX* ( IX* ) ( y*y* x* X ) = oy=¢,= 0, (19)
L (ﬁh*>2 (ﬁh* 21-1 0 (ll) y:h
+ — * + Iy Tx*y*: . 20
X IX ﬁDyyZO‘l‘ O(aZ)' ( )
By solving the balance eq_uation in the direction_qormal to 4 1) 302 2nin+2
the free surface, the resulting normal stress condition canbe __, 2 n2—4an—4/(n+2)(2—n)
p=—2a’SRé’ hyy
expressed as 2n
gh*\2]-1 Jh* oh*\ 2 — a{2 Re, [(@yy)"hy+ (0y)" Loy I} +0(a?),
1+ X* 2Tx*y*(97_ Ty*y*_Tx*x* O"? (21)
9%h* oh*\2] 737 h¢+ eyhy+ ¢, =0. (22
—n*
* S*{ Ix*2 I+ ( IxX* ) J Pa (12 Subscripts ok, y, xx, yy, andxy are used to represent various

partial derivatives of the associated underlying variable. In

The kinematic condition that the flow does not travel acrosg. qe ofn=1. the pseudoplastic film flow becomes a typical
a free surface can be given as classical Ne’wtonian flow

oh*  gh* Since the long perturbed wave may introduce flow insta-
u* —v*=0, (13)  hility, it is sometimes advantageous to employ the small

wave to perturb the film flow. Mathematically, this can be
whereh* is the local film thicknessp? is the atmosphere done by expandinge and p in terms of some small wave
pressure, an&* is the surface tension. The variable that is numbera as

+
at* - oIx*

associated with a superscript™ stands for a dimensional — ond +0O(a? 23
quantity. By introducing a stream functiap*, the dimen- ¢=¢ot ag +0(a’), @3
sional velocity components can be expressed as p=po+ ap;+0(a?). (24

Downloaded 27 Aug 2008 to 140.116.208.24. Redistribution subject to AIP license or copyright; see http://jap.aip.org/jap/copyright.jsp



J. Appl. Phys., Vol. 89, No. 12, 15 June 2001 Cheng, Chen, and Lai 8241

By plugging the above two equations into E¢s?)—(22), we n(h—y)2* M 4 (y4+2ny—hn)ht+ @M

can solve system governing equations order by order. IPo= 2+n ) (29)
practice, the nondimensional surface tens®rns a large

value, the terma?S can then be treated as a quantity of n+1\3n°-2n/n+2
zeroth order-* 15 After collecting all terms of zeroth order po=— 2a2SRe™ ~4n—4/n+2)@-n) TS Ry .

(«®) in the governing equations, one has a set of zeroth order (30)

equations as
After collecting all terms of first order«?) in the governing

(n+1)" ; ) :
-1 _ equations, one has a set of first-order equations as
(QDOyy)n Poyyy™ — ni+n (25 q q
Re” 1-n

Poy= 0. (26) 991yyy:T (Poxt Poty T PoyPoxy ‘POXQDOyy) , (3D
The boundary conditions associated with the equations of 1 ne1
zeroth order are given as P1y=R& T(N=2)(@oyy)" “@oxyy~2(n—1)

Po= Poy= 0, at y=0, (27) ><(‘)DOyy)n_ZQDOxy(POyyy]- (32

The boundary conditions associated with the equations of
(29) first order are given as

(Pl:()Dlyzoa at y:01 (33)

Poyy=0,
Po=— 242S Rq?],n2—4n—4/(n+2)(2—n)
3n2-2n/n+2

hyk, at y=h. ¢1yy=0,
(34)

: : =2Re ! "+ "oyl aty=h.
The solutions for the equations of zeroth order can be P1 & 1(@oyy) et (o)™ “e00] y=
given as The solutions for the equations of first order can be given as

n+1
2n

3-n
{2n(2+n)(2+3n)h!* &N (h—y)2* N —n(142n)h N (h—y)3* @M

¢1=Re1hxn(1+ﬁ

+h2* @MW —n(7h+ 14hn+6hn?)+ (1+2n)(3+2n)(2+3n)y]}/[2(1+n)?(2+ n)(1+2n)(2+3n)]

o/t n+1 3n2-2n/n+2 1-n ) )
+2a’SRe, *"" ETS Ry 1+ [n(h—y)?T WM 1Ny 4 2ny—hn)]/[(1+n)(1+2n)],
(395
1 n
F)1=R;1 1+ ﬁ) [—2h'"(h—y)1~ MW h—y]. (36)

By plugging the solutions for the equations of both the zeroth and the first orders into the dimensionless free surface kinematic
equation of Eq(22), the nonlinear generalized kinematic equation can be obtained and presented as

h+A(h)hy+B(h)hy,+ C(h)hy .t D(h)h§+ E(h)h,h,,,=0, (37
where
1

A(h)= hl+(l/n)( 1+, (39
B(h)_ 3nn—2(1+n)4—na Ren h3+(3/n) (39)

~ (2+n)(1+2n)(2+3n)

273n2+3n+2/n+2n72n2+4n/n+2(1+ n)2n2—3n+2/n+2a3s Ren—zn/n+2 h2+ ()

Clh= 112n (40
D(h)_ 9nn72(l+ n)57na R%h2+(3/n) (41)

 (2+n)(1+2n)(2+3n)
E(h)= 2—:';n2+3n+2/n+2n—2n2+3n—2/n+2(1Jr n)2n2—3n+2/n+2a35 quzn/n+2 h1+n (42)
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In the case oh=1, Eq. (37) is reduced to the fluid of no d=d,+id;=A+i(B-C), (47)

viscoelastic effect. The reduced set of equations have been . L
carefully derived and presented by Chestcal X’ whered, is linear wave speed, artfi is linear growth rate of
' the amplitudes. The flow is linearly unstable supercritical

IIl. STABILITY ANALYSIS condition ford;>0, and is linearly stable subcritical condi-

tion for d;<0.
The dimensionless film thickness when expressed in per-

turbed state can be given as
h(x,t)=1+ 5(x,t), (43 B. Nonlinear stability analysis

where z is a perturbed quantity to the stationary film thick- The method of multiple scales can be used to study the
ness. After the above equation is inserted into B3) and  nonlinear stability using the notions given as
all terms up to the order of® are collected, the evolution

equation ofyn can be obtained and given as J_ 9 J J

—— —+e—+82—, 48
, a ot Cat, Coat, (48)
N+ A7+ B 7yt C ot D 175+ E 17x 17xxx

" " J J + J (49)

— e —tg—

=—{ A’77+7772) 77x+(B’77+7772) Txx oXIX 0%
" 7](8,X,X1,t,t1,t2):87]1+ 82772+837]3, (50)
+|C'p+ > 772) Tesxxt (D+D' ) 52 wheree is a small perturbation parameteg=st, t,=et,

X1 = eX. By plugging the above expressions into E4) and
after expansion, one has

+(E+E’ +0(7%), 44
( 7)ok (7) “4 (L0+8L1+82L2)(8 771+827]2+83773):—82N2—83N3,
where the values oA\, B, C, D, E, and their derivatives are (5D
all evaluated at the dimensionless height of the film1. where
A. Linear stability analysis d J 92 ot
Lo=—=+A—+B—-—5+C—4, (52)
As the nonlinear terms of Eq44) are neglected, the gt Igx IX IxX
linearized equation is obtained and given as L 9 A P . PR L ac P s
Nt ANt Byt C = 0. (45 l_atl 0Xq X X, ax3 Xy’ (53
In order to use the normal mode analysis we assume that 9 92 92 92
) Ly=—+B—+6C— —, 54
n=aexgi(x—dt)]+c.c., (46) 2at,  oxe IX* X2 9
wherea i_s the perturbation amplitude, and c.c. is the_com- No=A" 71715+ B’ 71715t C 71 1t D 7o
plex conjugate counterpart. The complex wave celedtys
given as + E71x1xxx (55)
|
N3=A"(71m2xF 71x72F M1 77lx1) +B' (71720 2n1771xx1+ N1xx72) +C' (1 7]2xxxx+4771771xxxx1+ Nixxxx72)
+D(271xm2x+ 271x 771x1) + E(71xM2xxxt 3 71x 7]1xxx1+ NixxxM2xt 7]1xxx771x1) + %A" 77% Nixt % B” 77% 71xx
+ % c” 77% Nt D' 71 W%x'l' B 71 71x M1y (56)
|
Equation(51) can now be solved order by order. The equa-  ga J%a 5 _ .
tion of the orderO(e) is given asL,7;=0, and the corre- EJFDlW_ dia+(E;+iF;)a“a=0, (59
sponding solution can be given as !
7]1=a(X1,t1,t2)eX[:[i(X—drt)]-i-C.C. (57) Where
The solution of 5,, after solving the secular equation of
orderO(&?), gives (B'—C'+D—-E) —A
. e=e t+ie= +i , 60
ny=ea’ exd 2i(x—d,t)]+c.c. (58 o 16C—4B 16C—4B (60
By plugging both »; and 7, into the equation of order
O(&?%), the resulting equation becomes D,=B-6C, (61)
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E,=(—5B'+17C' +4D—10E)e,—A’e, TABLE I. Various states of the Landau equation.
Linearly stable Subcritical |\ 172 Conditional
+(= % B"+ % C"+D'—E’'), (62) (subcrii/ical regioh  instability sa0<(g ag—0 stability
d,<0 E,<0 !
F1=(—5B'+17C'+4D—10E)e;+A’e,+ 3 A”. (63 o Subcritical
In the above expressions, the overhead bar denotes the com- #80=> E_Il) %ol §f§'e°s've
plex conjugate. Equatio(b9) is generally referred to as the
Ginzburg—Landau equatidf.It can be used to investigate Subcritical a,—0
the weak nonlinear behavior of the fluid film flow. In order (absolutg
to solve for Eq(59), the solution for a filtered wave in which Zta:'gty
the spatial modulation does not exist and the diffusion term !
in Eq. (59) vanishes is used to simplify the equation and to
obtain a solution of the form Linearly unstable  Supercritical aol
(supercritical region explosive
a=agexd —ib(ty)t,]. (64  di>0 sEtateO
<
By substituting the solution of a filtered wave into E§9) ' o \v2
and dropping out the second term, one can obtain the expres- Supercritical Saoﬂ(gl)
sions as E'tab"”y F,
1>0 N¢,—d, +d—
dag . 5 Ea
TZZ(S di—Ejag)ao, (65
d[b(t2)tz] _Fal 66)
oty

flow stability can then be expressed as a function of the
Of course, ifE; becomes zero, E@65) is reduced to a linear Reynolds number of the Newtonian flow, Rélow index,n,
equation. The second term on the right-hand side o &).  and dimensionless perturbation wave numbey,respec-
is induced by the effect of nonlinearity. It can either decel'tive|y. Some important observations are Concluded and com-
erate or accelerate the exponential growth of the linear dispared with the results of theoretical derivation given in this
turbance based on the signsthfandE; . Equation(66) can  article and many conclusive results appeared in the literature.
be used to modify the perturbed wave speed caused by in-  Figure 1 shows the schematic diagram of a pseudoplastic
ﬁnitesimal diSturbanCES and appeared in the non”near Sy$row trave"ng down a|ong a Vertica' p|ate_ Physica' param_
tem. In the linear unstable regiod;(>0), the condition for  eters that are selected for study include the Reynolds
a supercritical stable region to exist is givenE&s>0. The  numbers of Newtonian flow ranging from 0 to 1(®) the

threshold amplitudesay, is given as dimensionless perturbation wave numbers ranging from 0 to
d; 0.12;(3) the values of flow index are 1.0, 0.98, and 0.95; and
£ay= \/E: (67) (4) the other quantities of physical properties are speci-
1 fied asS*=0.0726 N/m, p=997.1 kg/mi, and u,=8.94
and the nonlinear wave speed is given as X 10" *Pas$. The neutral stability curve is obtained by com-
= puting the conditions of linear stability for a linear amplitude
Nc,=d, +e2b=d, +d, _1) (68) growth rate ofd;=0. The stability of flow field ¢—Re
S plang is separated into two different regions by the neutral

On the other hand, in the linearly stable regiah<(0), if ~ curve. In a linearly stable subcritical region the perturbed
E,<0, the film flow presents the behavior of subcritical in- small waves will decay as the perturbed time increases.
stability, andea, is the threshold amplitude. The condition However, in a linearly unstable supercritical region the per-
for a subcritical stable region to exist is given Bg>0. turbed small waves will grow as the perturbed time in-
Also, the condition for a neutral stability curve to exist is creases. In order to study the effect of flow indewon the
E,=0. Based upon the discussion presented above, variogability of film flow, the same film thickness is used to show
characteristic states of the Landau equation can be summghe influence of three differem values for all numerical

rized and presented in Table I. computations. The results obtained by modeling a classical
Newtonian flow(i.e., settingn=1) agree well with those
H H 17
IV. NUMERICAL EXAMPLES data given in Chenet al:

A numerical example is presented here to illustrate théA" Linear stability solutions

effectiveness of the proposed modeling approach for dealing The linear neutral stability curve can be obtained by set-
with the thin pseudoplastic liquid film flowing down on a ting d;=0 for Eq. (47). Figure 2 shows the linear neutral
vertical wall. In order to verify the result of theoretical deri- stability curves of pseudoplastic film flow with different val-
vation, a numerically generated finite amplitude perturbatiorues on flow indexn. The results indicate that the linearly
apparatus is provided for linear and nonlinear stability mod-unstable regiond;>0) becomes larger for a decreasing
eling. Based on modeling results, the condition for thin-film The temporal film growth rate is computed by using Eg.
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0.12 -
0.09 —
74
0.06 -
0.03 -
[}
4]
Re,
FIG. 2. Linear neutral stability curves for three different (a)
(47). Figures 8a) and 3b) show the temporal film growth 09
rate of pseudoplastic fluid far=0.98 andn=0.95 as com- ]
pared to that of Newtonian flow.e.,n=1). It is interesting 0.6 — ) e
to note that temporal film growth rate decreases for an in- . —— Prtaes
creasingn and a decreasing ReFurthermore, it is found 4, 1 bbb -

that both the wave number of neutral mode and the maxi-
mum temporal film growth rate increase as the valuen of
decreases. In other words, the larger the value of flow index
n is, the higher the stability of a liquid film should be.

B. Nonlinear stability solutions

06 T T T T T T T T v 1

As the perturbed wave grows to finite amplitude, the 0 2 * Re ° 8 10
linear stability theory is no longer valid for accurate predic- ‘
tion of flow behavior. The theory of nonlinear stability (b)

should be used to study whether the disturbed wave ampli-

tude in the linear stable region will become stable or un-FIG. 3. (a) Amplitude growth rate of disturbed waves in pseudoplastic flows

stable. The study also includes the subsequent nonlinear ev_tg[ three differe_nh at Rg=>5. (b) Amplitude growth rate of disturbed waves

lution of disturbance in the linear unstable region and will™ Pseudoplastic flows for three differentat a=0.06.

develop to a new equilibrium state with a finite amplitude

(supercritical stability or develop to an unstable situation.

As previously discussed, a negative valueEqf can cause Stability region ¢;<<0,E,;>0) decreases as the valuesrof

the system to become unstable. Such a condition in the linealecrease.

region is referred to as the subcritical instability. In other  The threshold amplitude in the subcritical unstable re-

words, if the amplitude of disturbances is greater than thegjion is obtained by using Eq67). Figure 5 shows the

threshold amplitude, the amplitude of disturbed wave willthreshold amplitude in the subcritical unstable region for

increase. This is contradictory to the result predicted by usvarious wave numbers with differentvalues at Rg=5. The

ing a linear theory. As a matter of fact such a condition in theresult indicates that the threshold amplitugia, becomes

subcritical unstable region can in some cases cause the sy@naller as the value of flow index decreases. In such a

tem to become explosive. situation, the film flow will become unstable. That is to say,
The neutral stability curves can be obtained by settingf the initial finite-amplitude disturbance is less than the

d;=0 for Eq.(47) andE, =0 for Eq.(62). The hatched areas threshold amplitude, the system will become conditionally

near the neutral stability curves in Figsa#-4(c) reveal that  stable. On the other hand, if the initial finite-amplitude dis-

both the subcritical instability conditiond(<0,E;<0) and turbance is greater than the threshold amplitude, the system

the explosive supercritical instability conditiord;(&>0,E;  will become explosively unstable.

<0) are possible to occur for all values ofused in this In the linearly unstable region, the linear amplification

study. It is interesting to note that the neutral stability curvesate is positive, while the nonlinear amplification rate is

of d;=0 andE;=0 are shifted as the values nfdecrease. negative. Therefore, a linear infinitesimal disturbance in the

The area of shaded subcritical instability region decreasegnstable region will reach such a finite equilibrium ampli-

and the area of shaded supercritical instability region intude as given in Eq(65) instead of going infinite. The

creases as the values ofdecrease. The area of subcritical threshold amplitude in the supercritical stable region is ob-
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FIG. 4. (a) Neutral stability curves of Newtonian film flows far=1; (b)
neutral stability curves of pseudoplastic film flows for0.98; (c) neutral
stability curves of pseudoplastic film flows far=0.95.

tained by using Eq(67). Figure 6 shows the threshold am-
plitude in the supercritical stable region for various wave
numbers under different values of flow indeyat Rg=>5. It

is found that the increase of will lower the threshold am-

Cheng, Chen, and Lai
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2ea,

0.6

0.105

FIG. 5. Threshold amplitude in subcritical unstable region for three different
n and variouse at Rg=5.

plitude, and the flow will become relatively more stable. The
wave speed of Eq47) predicted by using the linear theory

is a constant value for all wave numbers. However, the wave
speed of Eq(68) predicted by using nonlinear theory is no
longer a constant. It is actually a function of wave number,
Reynolds number, and flow index The nonlinear wave
speed is plotted in Fig. 7 for various wave numbers and
values. It is found that the nonlinear wave speed increases as
the value ofn decreases.

As discussed above, it becomes apparent that the stabil-
ity characteristic of a film flow traveling down along a ver-
tical plate is significantly affected by the value of flow index
n. That is to say, in almost a full working range the stability
of a pseudoplastic film flow gradually decreases as the value
of n decreases. The pseudoplastic fluid<{(1) drains much
more quickly than the Newtonian fluidh& 1) when the flu-
ids are allowed to flow out by gravity in the vertical tubes.
This phenomenon agrees well with the conclusion given by
Bird et al® By settingn=1, the results of a classical New-
tonian flow are obtained. As compared to the modeling re-
sults given by Chengt al,’ it is found that both solutions
agree well with each other.

0.4 —

0.3 —

2eq,

0.2 =1

I
0.070
o

0.060 0.065 0.075 0.080

FIG. 6. Threshold amplitude in supercritical stable region for three different

n and variousx at Rg=>5.
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23 = the initial finite-amplitude disturbance is greater than the
threshold amplitude value, the system will become explo-
bl Ll SO sively unstable. The increase of the flow indexwill de-

22 — - crease both the threshold amplitude and nonlinear wave
N "*-\_\ speed in the supercritical stability region, therefore, the film
e flow will become relatively more stable.
21— (3) The stability of the pseudoplastic film flow decreases

________ as the value oh decreases. When a pseudoplastic liquid film
________________ flow is modeled as a non-Newtonian flow, it possesses the

20 — 7 characteristic of shear thinning effect. The smaller flow in-

— dex n of the pseudoplastic fluid will tend to destabilize the

-0 flow in motion. Physically, the pseudoplastic fluid of thin

1.9 T T | film flow will decrease the effective viscosity as the flow
0.05 0.06 0.07 0.08

travels down along a vertical plane, it can, therefore, increase
the convective motion of flow. The decreasing flow index
FIG. 7. Nonlinear wave speed in supercritical stable region for three differindeed plays a significant role in destabilizing the flow and is
entn and various at Rg=>5. thus of great practical importance.
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