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Nonlinear stability analysis of the thin pseudoplastic liquid film
flowing down along a vertical wall
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Department of Mechanical Engineering, Far-East College, Tainan, Taiwan, Republic of China
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Department of Mechanical Engineering, National Cheng-Kung University, Tainan, Taiwan,
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This article investigates the weakly nonlinear stability theory of a thin pseudoplastic liquid film
flowing down on a vertical wall. The long-wave perturbation method is employed to solve for
generalized nonlinear kinematic equation with free film interface. The normal mode approach is
used to compute the linear stability solution for the film flow. The method of multiple scales is then
used to obtain the weak nonlinear dynamics of the film flow for stability analysis. It is shown that
the necessary condition for the existence of such a solution is governed by the Ginzburg–Landau
equation. The modeling results indicate that both subcritical instability and supercritical stability
conditions are possible to occur in a pseudoplastic film flow system. The results also reveal that the
pseudoplastic liquid film flows are less stable than Newtonian’s as traveling down along the vertical
wall. The degree of instability in the film flow is further intensified by decreasing the flow indexn.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1359152#
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I. INTRODUCTION

The stability of a film flow is a research subject of gre
importance commonly needed in mechanical, chemical,
nuclear engineering industries for various applications
cluding the process of paint finishing, the process of la
cutting, and heavy casting production processes. It is kno
that macroscopic instabilities can cause disastrous condit
to fluid flow. It is thus highly desirable to understan
the underlying flow characteristics and associated tim
dependent properties so that suitable conditions for homo
neous film growth can be developed for various indust
applications.

The problem of the stability of the laminar flow of a
ordinary viscous liquid film flowing down an inclined plan
under gravity was first formulated and solved numerically
Yih.1 The transition mechanism from laminar flow to turb
lent flow was elegantly explained by the Landau equatio2

That shed a light for later development on nonlinear fi
stability. The Landau equation was later rederived by Stu3

using the disturbed energy balance equation along with R
nolds stresses. Benjamin4 and Yih5 formulated the disturbed
wave equation of free flow surface. The flow stability of t
long disturbed wave was carefully studied and some cha
teristics of the flow stability on an inclined plane are o
served. These include~1! the flow that is disturbed by a
longer wave is less stable than that disturbed by a sho
wave; ~2! the film flow is less stable as the inclined ang
increases;~3! the film flowing down a vertical plate become
unstable as the critical Reynolds number becomes ne
zero; ~4! the film flow becomes relatively stable as the s
face tension of the film increases;~5! the velocity of the

a!Electronic mail: ckchen@mail.ncku.edu.tw
8230021-8979/2001/89(12)/8238/9/$18.00
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unstable long disturbed wave is approximately twice of
wave velocity traveling on the free surface.

Benney6 investigated the nonlinear evolution equation
free surface by using the method of small parameters.
solutions thus obtained can be used to predict nonlinear
stability. However, the solutions cannot be used to pred
supercritical stability since the influence of surface tension
not considered in the analysis of the small-parame
method. The effect of surface tension was realized by m
researchers as one of the necessary conditions that will
to the solution of supercritical stability. Lin,7 Nakaya,8 and
Krishna and Lin9 considered the significance of surface te
sion and treated it in terms of zeroth order terms in la
studies. Pumiret al.10 further included the effect of surfac
tension into the film flow model and solved for the solita
wave solutions. Hwang and Weng11 showed that the condi
tions of both supercritical stability and subcritical instabili
are possible to occur for a liquid film flow system. An e
tensive review on the stability of falling liquid can be re
ferred to Chang.12 Renardy and Sun13 and Tsaiet al.14 have
done the work on both linear and nonlinear stability analy
of a fluid film flowing down along an inclined or vertica
plate. Detailed flow analysis is indeed of great importance
the development of stability theory for characterizing vario
flow film conditions.

A vast majority of studies on thin-film flow problem
were devoted to the stability analysis of Newtonian fluid
The film flow of non-Newtonian fluids attracted less atte
tion in the past. The rheological behaviors of fluids duri
the plastic manufacture, the lubrication of bearings, or
glue in biological chemistry do not obey the Newtonian po
tulate. In recent years, the microstructure of fluid flows h
emerged as a research subject of great interest to man
8 © 2001 American Institute of Physics
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searchers. Hunget al.15 employed the method of nonlinea
analysis to study the stability of thin micropolar liquid film
flowing down along a vertical plate. The results of the
study indicated that the micropolar parameter plays an
portant role in stabilizing a film flow. The viscoelastic flui
a subclass of microstructure flows, exhibits a great dea
influence on the normal and shear stresses in flow films.
stability problem of a falling film of viscoelastic fluid ha
been studied by Gupta16 who considered the stability of
small-amplitude falling fluid of second order. The lon
wavelength disturbance is used in the article to conduc
linear stability analysis. After deriving the viscoelastic an
log of the Orr–Sommerfeld equation with the requis
boundary condition, Gupta pointed out the viscoelastic eff
can destabilize the film flow. Chenget al.17 further studied
the nonlinear stability analysis of thin viscoelastic liquid fil
flowing down on a vertical wall. They also demonstrated t
the viscoelastic property has a destabilizing effect on
nonlinear film flow system.

In practical applications, pseudoplastic fluids that sh
shear thinning are widely used in the analysis to characte
the molten polyethylene and polypropylene, and solutions
carboxymethylcellulose~CMC! in water, polyacrylamide in
water and glycerin, and aluminum laurate in decalin a
m-cresol in various industrial sectors. Almost all polym
solutions and melts that exhibit a shear-rate dependent
cosity are pseudoplastic. The polymeric fluid drains mu
more quickly than the Newtonian fluid when the fluids a
allowed to flow out by gravity in the vertical tubes.18 The
viscosity of the macromolecular fluid appears to be lower
the higher shear rate part of the experiment. For many e
neering applications, this is the most important characteri
of polymeric fluids. Ng and Mei19 studied the roll waves on
a shallow layer of mud modeled as a power-law fluid. T
results indicated that longer roll waves, with dissipation
the discontinuous fronts, cannot be maintained if the unifo
flow is linearly stable, when the fluid is slightly non
Newtonian. However, when the fluid is highly non
Newtonian, very long roll waves may still exist even if th
corresponding uniform flow is stable to infinitesimal distu
bances. Hwanget al.20 studied the linear stability of power
law liquid film flows down an inclined plane by using th
integral method. The results reveal that the system will
more unstable when power-law exponentn decreases.

The stability analysis of the pseudoplastic film flow is
interesting research area in both theoretical development
practical applications. So far the weakly nonlinear stabi
analysis of a thin pseudoplastic liquid film flowing down
vertical wall has not been seriously investigated. Howev
since the types of stability problems are of great importa
in many practical applications, the behavior of a pseudop
tic liquid film traveling down along a vertical wall is care
fully studied in this article by employing both linear an
nonlinear stability analysis theories. The influence
pseudoplastic property on finite-amplitude equilibrium
studied and characterized mathematically. The sensiti
analysis of the flow index n is also carefully conducted. S
eral numerical examples are presented to verify the solut
Downloaded 27 Aug 2008 to 140.116.208.24. Redistribution subject to AI
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and to demonstrate the effectiveness of the proposed mo
ing procedure.

II. GENERALIZED KINEMATIC EQUATIONS

Figure 1 shows the configuration of a thin pseudoplas
liquid film flowing down on a vertical wall. The pseudopla
tic fluid that gives shear thinning to the Ostwald–de Wa
model obeys the constitutive equation of state21

t i j 52p* d i j 12mnQei j , ~1!

wheret i j is the stress tensor,ei j is the rate-of-strain tensor
mn is the dynamic viscosity of pseudoplastic flow,p* is the
isotropic pressure, and

Q5@2~ex* x*
2

1ey* y*
2

!14ex* y*
2

#~n21!/2

5H 2F S ]u*

]x* D 2

1S ]v*

]y* D 2G1S ]v*

]x*
1

]u*

]y* D 2J ~n21!/2

,

~2!

whereu* andv* are the velocity components inx* andy*
directions, respectively, and n is the flow index (n,1). The
principles of mass and momentum conservation for an
thermal incompressible pseudoplastic flow configurat
leads one to a set of system governing equations.21 The gov-
erning equations can be expressed in terms of Cartesian
ordinates (x* ,y* ) as

]u*

]x*
1

]v*

]y*
50, ~3!

rS ]u*

]t*
1u*

]u*

]x*
1v*

]u*

]y* D 5rg1
]tx* x*

]x*
1

]ty* x*

]y*
,

~4!

rS ]v*

]t*
1u*

]v*

]x*
1v*

]v*

]y* D 5
]tx* y*

]x*
1

]ty* y*

]y*
, ~5!

wherer is a constant density of the film flow,t* is the time,
g is the gravitational acceleration, and the individual stre
components are given as

FIG. 1. Schematic diagram of a pseudoplastic thin film flow traveling do
along a vertical wall.
P license or copyright; see http://jap.aip.org/jap/copyright.jsp
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tx* x* 52p* 12mnQex* x*

52p* 12mnH 2F S ]u*

]x* D 2

1S ]v*

]y* D 2G
1S ]v*

]x*
1

]u*

]y* D 2J ~n21!/2 ]u*

]x*
, ~6!

ty* y* 52p* 12mnQey* y*

52p* 12mnH 2F S ]u*

]x* D 2

1S ]v*

]y* D 2G
1S ]v*

]x*
1

]u*

]y* D 2J ~n21!/2 ]v*

]y*
, ~7!

tx* y* 5ty* x*

52mnQex* y*

5mnH 2F S ]u*

]x* D 2

1S ]v*

]y* D 2G
1S ]v*

]x*
1

]u*

]y* D 2J ~n21!/2S ]v*

]x*
1

]u*

]y* D . ~8!

The no-slip boundary conditions on the wall surface aty*
50 are given as

u* 50, ~9!

v* 50. ~10!

The boundary conditions for free surface aty* 5h* are de-
rived based on the results given by Edwardset al.22 The
vanishing of shear stress on free surface gives ano
boundary condition as

]h*

]x* F11S ]h*

]x* D 2G21

~ty* y* 2tx* x* !

1F12S ]h*

]x* D 2GF11S ]h*

]x* D 2G21

tx* y* 50. ~11!

By solving the balance equation in the direction normal
the free surface, the resulting normal stress condition ca
expressed as

F11S ]h*

]x* D 2G21F2tx* y*

]h*

]x*
2ty* y* 2tx* x* S ]h*

]x* D 2G
1S* H ]2h*

]x* 2 F11S ]h*

]x* D 2G23/2J 5pa* . ~12!

The kinematic condition that the flow does not travel acr
a free surface can be given as

]h*

]t*
1

]h*

]x*
u* 2v* 50, ~13!

whereh* is the local film thickness,pa* is the atmosphere
pressure, andS* is the surface tension. The variable that
associated with a superscript ‘‘* ’’ stands for a dimensiona
quantity. By introducing a stream functionw* , the dimen-
sional velocity components can be expressed as
Downloaded 27 Aug 2008 to 140.116.208.24. Redistribution subject to AI
er
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u* 5
]w*

]y*
, v* 52

]w*

]x*
. ~14!

The dimensionless quantities can also be defined and g
as

x5
ax*

h0*
, y5

y*

h0*
, t5

au0* t*

h0*
, h5

h*

h0*
,

w5
w*

u0* h0*
, p5

p* 2pa*

ru0*
2 Ren5

u0*
22nh0*

n

vn
, ~15!

S5
S*

~223n213n12rn12v4g3n22!1/~n12!
, a5

2ph0*

l
,

where Ren is the Reynolds number of pseudoplastic flow,l
is the perturbed wave length, anda is the dimensionless
wave number.h0* is the film thickness of local base flow an
u0* is the reference velocity which can be expressed as

u0* 5
n

n11
S g

vn
D 1/n

h0*
~n11!/n , ~16!

where vn is the kinematic viscosity of pseudoplastic flow
Thus, the nondimensional governing equations and ass
ated boundary conditions can now be given as

~wyy!
n21wyyy52

~n11!n

n11n 1a
Ren

n
~px1w ty1wywxy

2wxwyy!1O~a2!, ~17!

py5a Ren
21@~n22!~wyy!

n21wxyy22~n21!

3~wyy!
n22wxywyyy#1O~a2!, ~18!

y50
~19!

w5wx5wy50,

y5h
~20!

wyy501O~a2!,

p522a2SRen
3n224n24/~n12!~22n!S n11

2n D 3n222n/n12

hxx

2a$2 Ren
21@~wyy!

nhx1~wyy!
n21wxy#%1O~a2!,

~21!

ht1wyhx1wx50. ~22!

Subscripts ofx, y, xx, yy, andxy are used to represent variou
partial derivatives of the associated underlying variable.
case ofn51, the pseudoplastic film flow becomes a typic
classical Newtonian flow.

Since the long perturbed wave may introduce flow ins
bility, it is sometimes advantageous to employ the sm
wave to perturb the film flow. Mathematically, this can b
done by expandingw and p in terms of some small wave
numbera as

w5w01aw11O~a2!, ~23!

p5p01ap11O~a2!. ~24!
P license or copyright; see http://jap.aip.org/jap/copyright.jsp
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By plugging the above two equations into Eqs.~17!–~22!, we
can solve system governing equations order by order
practice, the nondimensional surface tensionS is a large
value, the terma2S can then be treated as a quantity
zeroth order.11,14,15After collecting all terms of zeroth orde
(a0) in the governing equations, one has a set of zeroth o
equations as

~w0yy!
n21w0yyy52

~n11!n

n11n , ~25!

p0y50. ~26!

The boundary conditions associated with the equations
zeroth order are given as

w05w0y50, at y50, ~27!

w0yy50,
~28!

p0522a2SRen
3n224n24/~n12!~22n!

3S n11

2n D 3n222n/n12

hxx , at y5h.

The solutions for the equations of zeroth order can
given as
Downloaded 27 Aug 2008 to 140.116.208.24. Redistribution subject to AI
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n~h2y!21~1/n!1~y12ny2hn!h11~1/n!

21n
, ~29!

p0522a2SRen
3n224n24/~n12!~22n!S n11

2n D 3n222n/n12

hxx .

~30!

After collecting all terms of first order (a1) in the governing
equations, one has a set of first-order equations as

w1yyy5
Ren

n
~p0x1w0ty1w0yw0xy2w0xw0yy!

12n, ~31!

p1y5Ren
21@~n22!~w0yy!

n21w0xyy22~n21!

3~w0yy!
n22w0xyw0yyy#. ~32!

The boundary conditions associated with the equations
first order are given as

w15w1y50, at y50, ~33!

w1yy50,
~34!

p152 Ren
21@~w0yy!

nhx1~w0yy!
n21w0xy#, at y5h.

The solutions for the equations of first order can be given
inematic
w15RenhxnS 11
1

nD 32n

$2n~21n!~213n!h11~2/n!~h2y!21~1/n!2n~112n!h1/n~h2y!31~2/n!

1h21~3/n!@2n~7h114hn16hn2!1~112n!~312n!~213n!y#%/@2~11n!2~21n!~112n!~213n!#

12a2SRen
22n/n12S n11

2n D 3n222n/n12

hxxxnS 11
1

nD 12n

@n~h2y!21~1/n!1h11~1/n!~y12ny2hn!#/@~11n!~112n!#,

~35!

p15
hx

Ren
S 11

1

nD n

@22h1/n~h2y!12~1/n!1h2y#. ~36!

By plugging the solutions for the equations of both the zeroth and the first orders into the dimensionless free surface k
equation of Eq.~22!, the nonlinear generalized kinematic equation can be obtained and presented as

ht1A~h!hx1B~h!hxx1C~h!hxxxx1D~h!hx
21E~h!hxhxxx50, ~37!

where

A~h!5h11~1/n!S 11
1

nD , ~38!

B~h!5
3nn22~11n!42na Ren h31~3/n!

~21n!~112n!~213n!
, ~39!

C~h!5
223n213n12/n12n22n214n/n12~11n!2n223n12/n12a3SRen

22n/n12 h21~1/n!

112n
~40!

D~h!5
9nn22~11n!52na Renh21~3/n!

~21n!~112n!~213n!
, ~41!

E~h!5223n213n12/n12n22n213n22/n12~11n!2n223n12/n12a3SRen
22n/n12 h111/n. ~42!
P license or copyright; see http://jap.aip.org/jap/copyright.jsp



e

pe

k-

at

m

al
i-

the

8242 J. Appl. Phys., Vol. 89, No. 12, 15 June 2001 Cheng, Chen, and Lai
In the case ofn51, Eq. ~37! is reduced to the fluid of no
viscoelastic effect. The reduced set of equations have b
carefully derived and presented by Chenget al.17

III. STABILITY ANALYSIS

The dimensionless film thickness when expressed in
turbed state can be given as

h~x,t !511h~x,t !, ~43!

whereh is a perturbed quantity to the stationary film thic
ness. After the above equation is inserted into Eq.~37! and
all terms up to the order ofh3 are collected, the evolution
equation ofh can be obtained and given as

nt1Ahx1Bhxx1Chxxxx1Dhx
21Ehxhxxx

52F S A8h1
A9

2
h2Dhx1S B8h1

B9

2
h2Dhxx

1S C8h1
C9

2
h2Dhxxxx1~D1D8h!hx

2

1~E1E8h!hxhxxxG1O~h4!, ~44!

where the values ofA, B, C, D, E, and their derivatives are
all evaluated at the dimensionless height of the filmh51.

A. Linear stability analysis

As the nonlinear terms of Eq.~44! are neglected, the
linearized equation is obtained and given as

h t1Ahx1Bhxx1Chxxxx50. ~45!

In order to use the normal mode analysis we assume th

h5a exp@ i ~x2dt!#1c.c., ~46!

wherea is the perturbation amplitude, and c.c. is the co
plex conjugate counterpart. The complex wave celerity,d, is
given as
a

f

r

Downloaded 27 Aug 2008 to 140.116.208.24. Redistribution subject to AI
en

r-

-

d5dr1 idi5A1 i ~B2C!, ~47!

wheredr is linear wave speed, anddi is linear growth rate of
the amplitudes. The flow is linearly unstable supercritic
condition for di.0, and is linearly stable subcritical cond
tion for di,0.

B. Nonlinear stability analysis

The method of multiple scales can be used to study
nonlinear stability using the notions given as

]

]t
→ ]

]t
1«

]

]t1
1«2

]

]t2
, ~48!

]

]x
→ ]

]x
1«

]

]x1
, ~49!

h~«,x,x1 ,t,t1 ,t2!5«h11«2h21«3h3 , ~50!

where« is a small perturbation parameter,t15«t, t25«2t,
x15«x. By plugging the above expressions into Eq.~44! and
after expansion, one has

~L01«L11«2L2!~«h11«2h21«3h3!52«2N22«3N3 ,
~51!

where

L05
]

]t
1A

]

]x
1B

]2

]x2 1C
]4

]x4 , ~52!

L15
]

]t1
1A

]

]x1
12B

]

]x

]

]x1
14C

]3

]x3

]

]x1
, ~53!

L25
]

]t2
1B

]2

]x1
2 16C

]2

]x2

]2

]x1
2 , ~54!

N25A8h1h1x1B8h1h1xx1C8h1h1xxxx1Dh1x
2

1Eh1xh1xxx ~55!
N35A8~h1h2x1h1xh21h1h1x1
!1B8~h1h2xx12n1h1xx1

1h1xxh2!1C8~h1h2xxxx14h1h1xxxx1
1h1xxxxh2!

1D~2h1xh2x12h1xh1x1
!1E~h1xh2xxx13h1xh1xxx1

1h1xxxh2x1h1xxxh1x1
!1 1

2 A9h1
2h1x1 1

2 B9h1
2h1xx

1 1
2 C9h1

2h1xxxx1D8h1h1x
2 1E8h1h1xh1xxx . ~56!
Equation~51! can now be solved order by order. The equ
tion of the orderO(«) is given asL0h150, and the corre-
sponding solution can be given as

h15a~x1 ,t1 ,t2!exp@ i ~x2drt !#1c.c. ~57!

The solution ofh2 , after solving the secular equation o
orderO(«2), gives

h25ea2 exp@2i ~x2drt !#1c.c. ~58!

By plugging bothh1 and h2 into the equation of orde
O(«3), the resulting equation becomes
- ]a

]t2
1D1

]2a

]x1
2 2«22dia1~E11 iF 1!a2ā50, ~59!

where

e5er1 iei5
~B82C81D2E!

16C24B
1 i

2A8

16C24B
, ~60!

D15B26C, ~61!
P license or copyright; see http://jap.aip.org/jap/copyright.jsp
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E15~25B8117C814D210E!er2A8ei

1~2 3
2 B91 3

2 C91D82E8!, ~62!

F15~25B8117C814D210E!ei1A8er1
1
2 A9. ~63!

In the above expressions, the overhead bar denotes the
plex conjugate. Equation~59! is generally referred to as th
Ginzburg–Landau equation.23 It can be used to investigat
the weak nonlinear behavior of the fluid film flow. In ord
to solve for Eq.~59!, the solution for a filtered wave in which
the spatial modulation does not exist and the diffusion te
in Eq. ~59! vanishes is used to simplify the equation and
obtain a solution of the form

a5a0 exp@2 ib~ t2!t2#. ~64!

By substituting the solution of a filtered wave into Eq.~59!
and dropping out the second term, one can obtain the exp
sions as

]a0

]t2
5~«22di2E1a0

2!a0 , ~65!

]@b~ t2!t2#

]t2
5F1a0

2. ~66!

Of course, ifE1 becomes zero, Eq.~65! is reduced to a linea
equation. The second term on the right-hand side of Eq.~65!
is induced by the effect of nonlinearity. It can either dec
erate or accelerate the exponential growth of the linear
turbance based on the signs ofdi andE1 . Equation~66! can
be used to modify the perturbed wave speed caused by
finitesimal disturbances and appeared in the nonlinear
tem. In the linear unstable region (di.0), the condition for
a supercritical stable region to exist is given asE1.0. The
threshold amplitude,«a0 , is given as

«a05Adi

E1
, ~67!

and the nonlinear wave speed is given as

Ncr5dr1«2b5dr1di S F1

E1
D . ~68!

On the other hand, in the linearly stable region (di,0), if
E1,0, the film flow presents the behavior of subcritical i
stability, and«a0 is the threshold amplitude. The conditio
for a subcritical stable region to exist is given asE1.0.
Also, the condition for a neutral stability curve to exist
E150. Based upon the discussion presented above, var
characteristic states of the Landau equation can be sum
rized and presented in Table I.

IV. NUMERICAL EXAMPLES

A numerical example is presented here to illustrate
effectiveness of the proposed modeling approach for dea
with the thin pseudoplastic liquid film flowing down on
vertical wall. In order to verify the result of theoretical der
vation, a numerically generated finite amplitude perturbat
apparatus is provided for linear and nonlinear stability m
eling. Based on modeling results, the condition for thin-fi
Downloaded 27 Aug 2008 to 140.116.208.24. Redistribution subject to AI
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flow stability can then be expressed as a function of
Reynolds number of the Newtonian flow, Re1, flow index,n,
and dimensionless perturbation wave number,a, respec-
tively. Some important observations are concluded and c
pared with the results of theoretical derivation given in th
article and many conclusive results appeared in the literat

Figure 1 shows the schematic diagram of a pseudopla
flow traveling down along a vertical plate. Physical para
eters that are selected for study include~1! the Reynolds
numbers of Newtonian flow ranging from 0 to 10;~2! the
dimensionless perturbation wave numbers ranging from 0
0.12;~3! the values of flow index are 1.0, 0.98, and 0.95; a
~4! the other quantities of physical properties are spe
fied as S* 50.0726 N/m, r5997.1 kg/m3, and mn58.94
31024 Pa sn. The neutral stability curve is obtained by com
puting the conditions of linear stability for a linear amplitud
growth rate ofdi50. The stability of flow field (a2Re1

plane! is separated into two different regions by the neut
curve. In a linearly stable subcritical region the perturb
small waves will decay as the perturbed time increas
However, in a linearly unstable supercritical region the p
turbed small waves will grow as the perturbed time
creases. In order to study the effect of flow indexn on the
stability of film flow, the same film thickness is used to sho
the influence of three differentn values for all numerical
computations. The results obtained by modeling a class
Newtonian flow ~i.e., settingn51) agree well with those
data given in Chenget al.17

A. Linear stability solutions

The linear neutral stability curve can be obtained by s
ting di50 for Eq. ~47!. Figure 2 shows the linear neutra
stability curves of pseudoplastic film flow with different va
ues on flow indexn. The results indicate that the linearl
unstable region (di.0) becomes larger for a decreasingn.
The temporal film growth rate is computed by using E

TABLE I. Various states of the Landau equation.

Linearly stable
~subcritical region!
di,0

Subcritical
instability
E1,0

Subcritical
~absolute!
stability
E1.0

«a0,S di

E1
D1/2

«a0.S di

E1
D 1/2

a0→0

a0→0

a0↑

Conditional
stability

Subcritical
explosive
state

Linearly unstable
~supercritical region!
di.0

Supercritical
explosive
state
E1,0

Supercritical
stability
E1.0

a0↑

«a0→S di

E1
D1/2

Ncr→dr1di

F1

E1
P license or copyright; see http://jap.aip.org/jap/copyright.jsp
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~47!. Figures 3~a! and 3~b! show the temporal film growth
rate of pseudoplastic fluid forn50.98 andn50.95 as com-
pared to that of Newtonian flow~i.e., n51). It is interesting
to note that temporal film growth rate decreases for an
creasingn and a decreasing Re1. Furthermore, it is found
that both the wave number of neutral mode and the m
mum temporal film growth rate increase as the value on
decreases. In other words, the larger the value of flow in
n is, the higher the stability of a liquid film should be.

B. Nonlinear stability solutions

As the perturbed wave grows to finite amplitude, t
linear stability theory is no longer valid for accurate pred
tion of flow behavior. The theory of nonlinear stabilit
should be used to study whether the disturbed wave am
tude in the linear stable region will become stable or u
stable. The study also includes the subsequent nonlinear
lution of disturbance in the linear unstable region and w
develop to a new equilibrium state with a finite amplitu
~supercritical stability! or develop to an unstable situatio
As previously discussed, a negative value ofE1 can cause
the system to become unstable. Such a condition in the lin
region is referred to as the subcritical instability. In oth
words, if the amplitude of disturbances is greater than
threshold amplitude, the amplitude of disturbed wave w
increase. This is contradictory to the result predicted by
ing a linear theory. As a matter of fact such a condition in
subcritical unstable region can in some cases cause the
tem to become explosive.

The neutral stability curves can be obtained by sett
di50 for Eq.~47! andE150 for Eq.~62!. The hatched area
near the neutral stability curves in Figs. 4~a!–4~c! reveal that
both the subcritical instability condition (di,0,E1,0) and
the explosive supercritical instability condition (di.0,E1

,0) are possible to occur for all values ofn used in this
study. It is interesting to note that the neutral stability curv
of di50 andE150 are shifted as the values ofn decrease.
The area of shaded subcritical instability region decrea
and the area of shaded supercritical instability region
creases as the values ofn decrease. The area of subcritic

FIG. 2. Linear neutral stability curves for three differentn.
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stability region (di,0,E1.0) decreases as the values ofn
decrease.

The threshold amplitude in the subcritical unstable
gion is obtained by using Eq.~67!. Figure 5 shows the
threshold amplitude in the subcritical unstable region
various wave numbers with differentn values at Re155. The
result indicates that the threshold amplitude«a0 becomes
smaller as the value of flow indexn decreases. In such
situation, the film flow will become unstable. That is to sa
if the initial finite-amplitude disturbance is less than t
threshold amplitude, the system will become conditiona
stable. On the other hand, if the initial finite-amplitude d
turbance is greater than the threshold amplitude, the sys
will become explosively unstable.

In the linearly unstable region, the linear amplificatio
rate is positive, while the nonlinear amplification rate
negative. Therefore, a linear infinitesimal disturbance in
unstable region will reach such a finite equilibrium amp
tude as given in Eq.~65! instead of going infinite. The
threshold amplitude in the supercritical stable region is

FIG. 3. ~a! Amplitude growth rate of disturbed waves in pseudoplastic flo
for three differentn at Re155. ~b! Amplitude growth rate of disturbed wave
in pseudoplastic flows for three differentn at a50.06.
P license or copyright; see http://jap.aip.org/jap/copyright.jsp
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tained by using Eq.~67!. Figure 6 shows the threshold am
plitude in the supercritical stable region for various wa
numbers under different values of flow indexn at Re155. It
is found that the increase ofn will lower the threshold am-

FIG. 4. ~a! Neutral stability curves of Newtonian film flows forn51; ~b!
neutral stability curves of pseudoplastic film flows forn50.98; ~c! neutral
stability curves of pseudoplastic film flows forn50.95.
Downloaded 27 Aug 2008 to 140.116.208.24. Redistribution subject to AI
plitude, and the flow will become relatively more stable. T
wave speed of Eq.~47! predicted by using the linear theor
is a constant value for all wave numbers. However, the w
speed of Eq.~68! predicted by using nonlinear theory is n
longer a constant. It is actually a function of wave numb
Reynolds number, and flow indexn. The nonlinear wave
speed is plotted in Fig. 7 for various wave numbers ann
values. It is found that the nonlinear wave speed increase
the value ofn decreases.

As discussed above, it becomes apparent that the st
ity characteristic of a film flow traveling down along a ve
tical plate is significantly affected by the value of flow inde
n. That is to say, in almost a full working range the stabil
of a pseudoplastic film flow gradually decreases as the va
of n decreases. The pseudoplastic fluid (n,1) drains much
more quickly than the Newtonian fluid (n51) when the flu-
ids are allowed to flow out by gravity in the vertical tube
This phenomenon agrees well with the conclusion given
Bird et al.18 By settingn51, the results of a classical New
tonian flow are obtained. As compared to the modeling
sults given by Chenget al.,17 it is found that both solutions
agree well with each other.

FIG. 5. Threshold amplitude in subcritical unstable region for three differ
n and variousa at Re155.

FIG. 6. Threshold amplitude in supercritical stable region for three differ
n and variousa at Re155.
P license or copyright; see http://jap.aip.org/jap/copyright.jsp
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V. CONCLUDING REMARKS

The stability of a thin pseudoplastic liquid film flowin
down on a vertical wall is studied in this article by using t
method of long wave perturbation. The generalized nonlin
kinematic equations of the fluid film on free surface of t
wall is derived and numerically estimated to investigate
fields of flow stability associated with differentn values of
flow index. Based on the results of numerical modeling, s
eral conclusions are given as follows:

~1! In the linear stability analysis the neutral stabili
curve that separates the flow field into two different regio
was first computed for a linear amplitude growth rate ofdi

50. The modeling results indicate the linearly unstable
gion becomes larger for a decreasingn. It is also noted that
the increasing value ofn and the decreasing value of Re1 will
reduce the growth rate of temporal film. In other words, it
interesting to note that the flow becomes relatively stable
is perturbed by short waves at a low Reynolds number an
larger flow index.

~2! In the nonlinear stability analysis, it is noted that t
area of shaded subcritical instability region decreases as
value ofn decreases. On the other hand, the area of sha
supercritical instability region increases as the value on
decreases. It is also shown that the area of subcritical st
ity region decreases as the value ofn decreases. It is note
that the threshold amplitude«a0 in the subcritical instability
region decreases as the value of flow indexn decreases. If

FIG. 7. Nonlinear wave speed in supercritical stable region for three dif
ent n and variousa at Re155.
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the initial finite-amplitude disturbance is greater than t
threshold amplitude value, the system will become exp
sively unstable. The increase of the flow indexn will de-
crease both the threshold amplitude and nonlinear w
speed in the supercritical stability region, therefore, the fi
flow will become relatively more stable.

~3! The stability of the pseudoplastic film flow decreas
as the value ofn decreases. When a pseudoplastic liquid fi
flow is modeled as a non-Newtonian flow, it possesses
characteristic of shear thinning effect. The smaller flow
dex n of the pseudoplastic fluid will tend to destabilize th
flow in motion. Physically, the pseudoplastic fluid of th
film flow will decrease the effective viscosity as the flo
travels down along a vertical plane, it can, therefore, incre
the convective motion of flow. The decreasing flow indexn
indeed plays a significant role in destabilizing the flow and
thus of great practical importance.
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