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Abstract. This paper proves that certain non-classical shock waves in a rotation-
ally invariant system of viscous conservation laws possess nonlinear large-time
stability against sufficiently small perturbations. The result applies to small inter-
mediate magnetohydrodynamic shocks in the presence of dissipation.

1. Introduction

In this paper, we consider the parabolic system

ut + (\u\2u)x = μuxx, (1.1)

where x £ R , ί e R , φ , ί ) e R" (n ^ 2), μ > 0, and study the question of large time
stability of some of its shock wave solutions

u*(x9t) = φit{(x-st)μ)9 φ*(±co) = u±, u~*u+. (1.2)

System (1.1) and these shock waves have physically relevant interpretations as we
will detail soon below. The system is rotationally invariant and thus its inviscid
part

ut + (\u\2u)x = 0 (1.3)

is non-strίctly hyperbolic: The characteristic speeds

λ1(u) = \u\\ λ2(u) = 3\u\2 (1.4)

touch at the umbilic point 0; the corresponding eigenspaces

Rt(u) = ker((M 2 - λt(u))I + 2uu% / = 1, 2 ,

rotate as

R ί ( u ) = { u } \ R 2 ( u ) = WLu, w φ O , (1.5)
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with the base point u and couple at 0 to

R1(0) = R2(0) = R». (1.6)

Correspondingly, system (1.3)/(1.1) is endowed with a variety of shock waves of
different types which do not occur for strictly hyperbolic systems and small
amplitude (nor, typically, for large amplitude: e.g., they do not exist in gas dynamics
under standard assumptions). Of these non-classical shock waves, we are interested
here in overcompressive shocks, which are characterized by

λί(u-)>s>λ2(u+). (1.7)

The goal of this paper is to prove that overcompressive shocks for (1.1) can be
stable against small perturbations, i.e., given the profile φ* of an (appropriate)
overcompressive shock wave and a function u0: R -• RM (of appropriate type) such
that

is small (in an appropriate sense), then the solution u of (1.1) with initial data
u0 converges time-asymptotically to another profile φ:

lim sup |M(X, t) - φ(x - st/μ)\ = 0 . (1.8)
ί-* oo xeJR.

The situation is thus similar to that of small shocks associated with genuinely
nonlinear modes [14]. There are, however, two important differences between the
stability of overcompressive shocks and that of classical Laxian shocks. To describe
the first of them, recall that from any viscous shock wave (1.2), any phase shift
xh>jc + <5,ίelR, trivially produces another (just shifted) shock wave with the same
end states. For classical Laxian shock waves, the profile φ is vice versa uniquely
determined modulo such phase shifts. By contrast, in the case of overcompressive
shocks, whole families of orbitally different profiles exist. Correspondingly, the
asymptotic profile φ in (1.8) generically differs from the profile φ* of the unper-
turbed solution not only by a phase shift, but by a true change in shape. This
additional freedom compensates for the fact that the ordering of shock and
characteristic speeds associated with an overcompressive shock allows for a smaller
number of diffusion waves [14] than in the classical case. Like the phase shift in the
classical case, the phase and shape of the asymptotic overcompressive shock wave
can be determined directly from specific components of the integral of the per-
turbation ΊΪQ. The second important difference between overcompressive and
classical shocks consists in the fact that while it is generally believed that the
stability of Laxian shocks is uniform in the viscosity μ, this is certainly not so for
the overcompressive shocks that we consider. This non-uniformity is obvious from
the fact that their inviscid versions

(u~, x<st

Φ> 0 = 1 +
( t r , x>st

are completely unstable against generic perturbations [4, 8]. Indeed, with decreas-
ing μ, ever smaller perturbations, e.g., of the form

ΰo = g( jμ\ g appropriate,
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give rise to wave patterns which differ markedly from any stationary shock wave
with whatever profile φ [5, 8, 10, 15].

Relative to a given u~ e Rn\{0}, let π: R" -• R" denote the orthogonal projec-
tion on the line L = Rw~ and π1 = idR« — π that on the complement L1. We
summarize the above discussion by stating our main result in precise terms:

Theorem 1. Consider a viscous shock wave solution

u*(x91) = φ+((x - st)/μ)9 φ*(± co) = u±

o/(l. l), with u~ Φ 0 , M + = αu~, - i < α < 0 ( - this implies that (1.7) holds - ) , and

a perturbation ΰ^e J?1 (R, Rn). If the quantities

oo oo

m * = ί πl(u*(x> fy)dx, m= J π1"(MO(X))dx
— oo — oo

are sufficiently small, then a unique profile φ with φ(± oo) = </>*(+oo) = u± is
determined through the relation

00 00

J Φ(x/μ)- φ*(x/μ)dx= f ΰ~0{x)dx.
— oo — oo

Ifΰ^ is small in the sense that the function Uo given by

X

U0(x)= j (φt(x/μ) + ΰϊ{x))-φ{x/μ))dx
— 00

satisfies

l l ^ o I In2.2 (R) < 1 ,

(— how small \\ U0\\H2 2(R) n a s t° ^e depends on α, \u~ \ and μ(ϊ); but not onrn^.m as
long as these latter are small —), then the solution u 0/(1.1) with data

u(x9 0) = φ*(x/μ) + i^(x), x e R ,

converges in the sense o/(1.8) to the viscous shock wave with profile φ.

This will be proved in Sect. 3, after preliminary observations on the viscous
profiles in Sect. 2. For a previous stability result on overcompressive shock waves
in a different model we refer the reader to [17].

In the rest of this introduction, we want to comment in some detail on the
motivation for studying system (1.1), (1.3) and its overcompressive shock waves.

In physical systems of conservation laws, rotational invariance typically arises
due to natural isotropy. While in the classical and most prominent example for
conservation law theory, i.e., gas dynamics, such isotropy is superposed with
Galilean invariance in a geometrically non-generic way, other systems such as
those describing magnetohydrodynamic or elastic plane waves display rotational
symmetry in its generic form, which induces a mode coupling such as described in
(1.4), (1.5), (1.6). Their modeling character has motivated previous mathematical
study of (1.3) and similar systems; cf. [13,16, 5, 9,15]. It turned out that the specific
model (1.1)/(1.3) can be formally derived from larger systems via asymptotic
expansion techniques (see [2]) and that this had even been done as early as in 1974,
when Cohen and Kulsrud obtained the inviscid version (1.3) as an approximation
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of one-species magnetofluid-dynamics that they used to study certain features of
the solar wind [3]. The overcompressive shock waves of the viscous version (1.1)
which we study in this paper are good descriptions of certain non-classical shock
waves that arise in physical systems. Especially, in magnetohydrodynamics they
represent what is traditionally called intermediate shocks. In the inviscid frame-
work, intermediate magnetohydrodynamic shocks are extremely unstable waves,
a property for which, according to [18], they have been excluded from certain
considerations on physical situations in which they might indeed be relevant
building blocks. In recent years, this possibility has repeatedly been pointed out by
Brio and Wu, see [1, 18, 19] and references therein. (Cp. also [6] and references
there.) It seems that our result yields the first proof that intermediate magneto-
hydrodynamic shock waves can be stable in the presence of dissipation.

2. Profiles of Overcompressive Shocks

The profile φ of any viscous shock wave is a heteroclinic trajectory of the o.d.e.
system

φ' = (\φ\2 - s ) φ - b , (2.1)

in which the speed 5 and the relative flux b are given by the Rankine-Hugoniot
conditions

(\u+\2-s)u+ =(\u-\2-s)u- =b (2.2)

with

u±=φ(±oo). (2.3)

The phase portrait of (2.1) is easy to analyze; see [8]. Here, we focus attention on
the case of overcompressive shocks. We start with

Lemma 1. (i) u~9 u + e I R n satisfy the inequality λ1(u~)> s> λ2{uJr) ((1.7) with
sfrom (2.2)) if and only if

t Γ + 0 and u+=otu~, α ε | - - , 0 J . (2.4)

(ii) In this case, there is an (n — l)-parameter family of viscous profiles (2.1)—(2.3).

Proof (2.2) is satisfied for some b, if either \u~ \2 = \u+ \2 = s, or u~ = 0, or w~ Φ θ
and u+ = ocu~ for some α e R . In the first two of these three cases, inequality
(1.7) is obviously wrong. In the third case, however, it is equivalent to
I > l + α + α 2 > 3α2, and thus to α e (— \, 0). This proves (i). To deduce (ii),
assume that (2.4) holds. By (1.7), u~ is an unstable node, u+ is a stable node of (2.1).
As is easy to check from (2.2), system (2.1) has precisely one more rest point besides
u~ and u + , namely

(w + )* = α*u~ with α * = — 1 — α e ί — 1, — -

This third rest point lies on the invariant line through u~ and u + . Since it lies
outside the segment between u~ and w+, this segment is contained in the unstable



Nonlinear Stability of Overcompressive Shock Waves 151

manifold of u as well as in the stable manifold of u +. As these manifolds are in fact
open sets in 1RM, the proof of Lemma 1 is complete. D

Remarks, (i) The closure Ji* of the intersection of the unstable manifold of u~ and
the stable manifold of (w + )* is homeomorphic to S"" 1 . It induces a family of
non-classical viscous shock waves of a different kind (cf. [13, 7]), which we do not
consider in this paper, (ii) The set Jί of points which belong to the image of
heteroclinic trajectories φ of (2.1) from u~ to u + , i.e., in other words, of states that
can appear in viscous shock waves u satisfying (1.2), (2.1)-(2.4), is bounded. (Its
boundary consists in the union of M* and the closed straight line segment between
u+ and (w + )*.) Since furthermore all three rest points u~, w + , (u + )* lie on
a common line, there exists (cf. ([15]) a constant M* > 0 such that each of these
shock waves satisfies

f πλ(u(x,t))dx J n\φ(y))dy < μM* .

This shows that stability in the sense of Theorem 1 requires smallness of the

perturbation in the sense that \m# + rn\ < μM*.
Among the overcompressive shock waves characterized by Lemma 1, we

consider especially those which assume values near the line L through u~ and u +.
We collect some useful properties of them in

Lemma 2. For any α e (— \, 0) and u+ = au~ Φ 0, there are constants Mu M2,
δx > 0 such that the following holds.

(i) For any m e L1 with \m\ ̂  M 1 ? there is precisely one function φ that satisfies
((2.1H2.3)),

J π±(Φ(x))dx = m and d = φ(0) - ) - u ~ e Lx, \d\^δi.
— oo ^

(ii) The mapping mv-+d is a diffeomorphism from {meL1: \m\ £Ξ MΊ} to {deL1:
Idlύδ,}.
(iii) These profiles are uniformly bounded:

\φ(x)\^l for all x e R .

(iv) Near u +, their direction is uniformly "almost longitudinal"': To any K > 0, there
exists a value ξ+ > a such that

π(φ(x))<ξ + φ'(x)
< K

\φ'(x)\ v

holds with I = u~/\u~\for all X G R , if\m\ ^ M 2 .

Proof. Fix α e (— \, 0). For d e L 1, consider the trajectory φd of (2.1) satisfying

(2.5)
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For sufficiently small \d\, φd(±oo) = u* and the transverse mass

md= j πL{φd{x))dx
— 00

is finite. Obviously,

φd{Έ.) c L + [0, oo) d, (2.6)

and thus

m d = m{p)lL \ϊd = pi1 w i t h p e R , Z1 e L \ \lL\ = 1

with some smooth function m. Equations (2.5) and (2.6) imply that m'(0) > 0 and
thus

det
dnΐ

~dd
= det(m'(0)idLχ)Φ0;

d = 0

so the implicit function theorem yields assertions (i) and (ii). To prove part (iii), we
consider d Φ 0, let Z1 = d/\d\ and represent φd in polar coordinates as

φd(x) = r(x) (I cos θ(x) + I1 sin θ(x)) (2.7)

with r: R -• (0, oo), θ: R -^ (0, π). Equation (2.1) becomes

r> = (r2 - s ) r - IfoI cos θ ,

rθf = | f t | s inθ.

r cannot have a maximum at any finite point x e R , since r'(x) = 0 implies
r"(χ) = (|b|sin9(x))2/^W > 0. Since r ( - o o ) = 1, r(oo) = |α|, (iii) follows. To see
(iv), note that due to

λί(u+)-s<λ2(u+)-s<0

and

integral curves of (2.1) which are uniformly close enough to L are asymptotically
tangent to L when they approach u + . •

We introduce the notation

a(u) = (\u\2 -s)u~b

a n d

A{u) = \u\2l Λ-luu1 .

Our proof of Theorem 1 is based on the following technical

Lemma 3. Consider fixed α e ( - | , 0 ) , u~ with |w~| = l, and u+ =<xu~. If
de {u~}λ is sufficiently small, then there exist a constant k > 0 and a uniformly
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bounded smooth function $ : R -• R such that the inequality

-~((a V)A)(u) + w(π(u))\a(u)\(A(u) ~sl)-^ \w(π(u))a(u)\21 ^ k\a(u)\I

(2.8)

holds for all points u that lie on the orbit Od oj"(2.1) which contains the point \u~ + d.

Proof. We assume first that d = 0 and show that in this case (2.8) holds with

(2.9)

Since d = 0, we must check (2.8) for all points u = ξl, a < ξ < 1,1 = u . We have

a(u) = - \a(ξl)\l,

-l-{{a V)A)(u)=\a{ξl)\ξ{l + 2llτ),

and

A(u) - si = ξ2(I + 21Γ) - (1 + α + α 2 ) / .

The left-hand side of (2.8) is thus equal to \a(ξl)\B(ξ) with

+ a + a2)I - ^Hξ)\a

and we are left with showing that

B{ξ) > kl (2.10)

with some constant c > 0. From (2.9) we see that

Γ)>-^I for ξ^-^ (2.11)

For ξ e ( α, — - L we write

B(ζ) = (ξ- 3ξ2)(I + 2//τ) + 3(1 + α + α 2 ) / - y

check that

\a(ξl)\ = \(ξ2 - (1 + α + α 2 ))^ + (α + α 2 ) | < - ^ α ,

and deduce that for these ξ

B(ξ) ^ (3(α - 3α2) + 3^(1 + α + α2) + ^ α ) / ^ 1
V 8 / 6 4
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This and (2.11) prove that (2.10), and thus (2.8) (for d = 0), hold with k = - | . To

remove the assumption d = 0, we now observe that by regular perturbation and
upon lowering k if necessary, (2.8) continues to hold for all points u which satisfy

ξ+£π(u)£ξ- (2.12)

with α < ξ+ < ξ~ < 1 and lie on the orbits Od as long as \d\ is smaller than some
δ (ξ+, ξ " ) > 0. Using assertion (iv) of Lemma 2, we can say the same even if ξ + = α.
When ξ" / 1, however, the direction of α, which is discontinuous near u~ even for
small d9 plays a sensitive role in (2.8). To deal with this problem, we use (1.7) and
part (iii) of Lemma 2 and observe that there are a number cα > 0 and, for every
ε > 0, values ξε e (0, 1) and δε > 0 such that

A(u) -sl> cj

and

\a(u)\ <ε

hold for all

ueθά with 4 ^ π(u) < 1, if |d| < δε .

Letting

Γ - 3, ξ < - 7

A(ξ) = 0, - T ^ ^ . ( 2 1 3 )

we see that with wε instead of vv, (2.8) holds for all points u e Od as soon as ε > 0 is
small enough and \d\ < min{<5(α, ζε), δε}. We pick such an ε and redefine w as
a smoothed variant of wf. D

3. Stability Proof

We turn to proving Theorem 1. Consider thus u~ Φ 0, α e ( — | , 0 ) , u+ = au~.
Assume that \u~ \ = μ = 1. By the scaling properties of (1.1), this means no loss of
generality. Consider a profile φ%, i.e., a solution of (2.1)—(2.3), with small transverse
mass m% = J ί ^ nL(φ^(x))dx, and a perturbation ΰ^ e ££X(R, Rw) with small trans-
verse mass m = 1™^ πL(ΰ^(x))dx. Using part (i) of Lemma 2 and phase shifting if
necessary, we find precisely one (other) profile φ such that

j φ(x)-φ*(x)dx= J
— oo — oo

It remains to show that if the function Uo, given by
X

U0(x)= j 0,(x) + ui(*)-0
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is sufficiently small in H2'2(R\ then the solution u of (1.1) with initial data φ* + Wo~
satisfies (1.8). In order to do this, we work with the so-called integrated equation,
i.e., the system

Ut(x, t) + (A(φ(x)) - si) Ux(x, t) + Q(φ(x), Ux(x, t)) = Uxx(x, t) (3.1)

which governs the integrated perturbation

X

U(x,t)= J u(x + st)-φ(x)dx .
— oo

Equation (3.1) is obtained by subtracting the equation for u* (u% is given by (1.2))
from that for u, integrating the result with respect to x, and Taylor expanding the
flux difference \u\2u — \u*\2u*. The latter gives rise to the quadratic remainder g,
which is easily checked to obey the estimate

We treat (3.1) by an energy method. In describing this treatment now, we only
sketch the basic steps, since they are known from the pertinent literature [11, 14].
The decisive specific estimate, which uses new technical ingredients to deal with the
mode coupling (1.4)—(1.6), is formulated as Theorem 2 and proved in the second
half of this section.

For given data and any β > 0, let Tβ ^ 0 be the largest time such that the
solution exists until Tβ and satisfies

sup {\U\,\Ux\}£β. (3.3)
Rx[0, Tβ]

A standard short time estimate shows that there is a /?x > 0 with the property that
for all β E (0, βx) there exists yβ > 0 such that

\\U(-,0)\\H2,2m^yβ => Tβ>0.

Moreover, for such β, yβ and U( , 0), well-known considerations on (3.1) yield the
energy estimate

f*( ,0)|lέ..2(R) + J J \Ux\
2dxdt], (3.4)

O - o o /

which holds for all TE [0, Tβl~] with some c that does not depend on T. Suppose
now one has also

Theorem 2. There is aβ2e (0, βx) such that for all β e (0, β2), the solution U of (3.1)
satisfies

oo T oo oo

j \U(x, T)\2dx + J I \Ux\
2dxdt^c j \U{x, 0)|2 dx (3.5)

— oo 0 — 0 0 — oo

for all Te [0, Tβ2] with some c > 0 which does not depend on T

T h e n o n e c a n c o m b i n e (3.4) a n d (3.5) t o find β,δ>0 s u c h t h a t

=> \\U(-,T)\\H2,2m^yβ f o r a l l Γ e [ 0 , 7 > ] .
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This, however, means that for such data Tβ = oo. Then, (3.5) implies

J J \Ux\
2dxdt< oo . (3.6)

0 - o o

Through an integration step of the form

\Ux{x,t)\2^c{τuτ2)J ] \Ux\
2dxdt, t > τ2 > τx > 0 ,

t — Z2 — GO

(3.6) implies the desired decay result

lim sup I l/x(x,t)I = 0 .
ί->oo xeIR

Establishing Theorem 1 is thus reduced to the

Proof of Theorem 2. The main idea is to circumvent technical difficulties associated
with the mode coupling (1.4)—(1.6) by avoiding diagonalization of the symmetric
system (3.1). Correspondingly, we replace the traditionally used monotonicity
(λ o φ)' < 0 of the principal speed by the matrix inequality {A o φ)' < 0. This latter
holds along most of the profile orbit φ(ΊR); the fact that it does not hold everywhere
is dealt with by considerations whose results have been expressed in Lemmas 2 and
3 above. To simplify the proof, we have chosen to use a weight function
w: R -> (0, oo) (see [12]) and define V = V{x, t) through

U(x91) = w(x) V(x91) . (3.7)

Substituting (3.7) into (3.1) and dividing by w yields

1 1 w' w"
Vt + - {A(φ) - si) (wV)x + - Q(φ9 (wV)x) = Vxx + 2 — Vx + — V .

w w w w

We multiply by V* and integrate with respect to x and t to obtain

J |K(x, T)\2dx + j J -Vt(A(φ)-sI)(wV)xdxdt
— oo O — o o

+ ί ί -V'Q(φ,(wV)x)dxdt
0 - o o w

oo Γ oo

= j \V(x,0)\2dx-S i \Vx\
2dxdt

— oo O — o o

T oo

ί ί
O - o o W W

Integrating by parts and using the symmetry (!) of A, we write the second term on
the left-hand side as

τ °° / 1 W
(J J

0 - o o
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Another integration by parts shows that the last term on the right-hand side is
equal to

T oo / /\2

J j (I) Wfdxdt.
0 -oo \ w J

Due to (3.2), (3.3), the third term on the left-hand side is

^ 3 J j -\V\(\φ\ + \Ux\)\(wV)x\
2dxdt

0 - o o W

^ 6 f j \wV\(\φ\ + \Ux\) (\VX\
2+ - \ V \ 2 ) d x d t

O - o o \ \ W / /

/ T oo Γ GO / / \ 2

g6j8(l+j8) j J |Kx|
2dxΛ + J j - | F | 2

V 0 -oo O-oo \ W /

Combining these facts and making β small enough, we find

V(x, T)\2dx] f Vt(-l-{Aoφ
( φ )

- o o 0 - o o \ l W

oo 1 Γ co 3 T oo / / \ 2

^ j |F(x,0)|2rfx--J J |FJ2rfxΛ + -J J - \V\2dxdt. (3.8)
-oo 2 0 -oo l 0 -oo \ W /

By statement (ii) of Lemma 2 and (sufficient) smallness of m*,m, the image φ(ΊR) of
the asymptotic profile φ is the orbit 0 d of (2.1) through the point \ u~ + d with
sufficiently small d so that Lemma 3 applies. With the function w whose existence
Lemma 3 establishes, we now choose the weight w through

^ R, and w ( - o o ) = l .
w(x)

Since \φ'(x)\ decays exponentially for |x | -> oo and w is uniformly bounded, w is
well-defined and satisfies

c^<\w(x)\<cu |w'(x)|<c2 (3.9)

as well as

\W{x)\<c3\φ'(x)\ (3.10)

for all x e R , with appropriate c1,c2,c3 > 0. Remembering that φ' = aoφ, we use
Lemma 3 to deduce

Γ o o / i / \ 3 T o ° / w ' V

ί ί F ' ~o^°^) ' + ~(A(Φ)-sI) )Vdxdt--\ J — \V\2dxdt
O - o o \ 2 W / 2 0 - o o \ W /

^fcf J | 0 ' | | K | 2 d x Λ .
0 - o o
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Combining this with (3.9) and (3.10), we conclude that

T oo 1 T oo

:f J |wΊ|Γ|2rfxrfί + - j J \Vx\
2dxdt

O — o o O — o o

^c J \V(x,0)\2dx .
— 00

By means of (3.9), this implies

oo T oo

J \wV(x, T)\2 dx + f J |(wK
— oo O — o o

for some c > 0; this is (3.5). D
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