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In this paper we consider a nonlinear model of a biological wastewater treatment process, based on two microbial popula-
tions and two substrates. The model, described by a four-dimensional dynamic system, is known to be practically verified
and reliable. First we study the equilibrium points of the open-loop system, their stability and local bifurcations with respect
to the control variable. Further we propose a feedback control law for asymptotic stabilization of the closed-loop system
towards a previously chosen operating point. A numerical extremum seeking algorithm is designed to stabilize the dynam-
ics towards the maximum methane output flow rate in the presence of coefficient uncertainties. Computer simulations in
Maple are reported to illustrate the theoretical results.
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1. Introduction

Biological wastewater treatment using anaerobic diges-
tion is a process where microorganisms decompose the
organic compounds inside the effluent to reduce the pol-
lutant concentration in the outlet stream below a specified
value, usually fixed by environmental and safety rules. At
the same time, this process can also produce valuable en-
ergy (methane). This complex ecosystem involves plenty
of bacterial species, whose dynamics are difficult to grasp
due to physiological reasons. The operation of such pro-
cesses poses a number of practical problems, since anaer-
obic digestion is a complex nonlinear system, which is
known to be unstable, see, e.g., (Antonelli et al., 2003)
and the references there. One of the main drawbacks in
the modelling and control of anaerobic digestion lies in the
difficulty to monitor on-line the key biological variables of
the process. A second drawback is the high uncertainty of
the models describing the biological process; this is due to
the fact that in most cases the reproducibility of laboratory
and practical experiments is not guaranteed, hence the ex-
perimental data are noisy and the reason for the noise is
difficult to specify. Thus developing control systems only
based on simple measurements that guarantee the stability
of the process in the presence of uncertainties is of pri-
mary importance. For further information about different

control approaches see, e.g., (Antonelli et al., 2003; Hein-
zle et al., 1993; Mailert et al., 2004) and the references
there.

The present paper is devoted to studying a four-
dimensional nonlinear control system that models a
wastewater treatment process. In the previous work
(Dimitrova and Krastanov, 2006), the authors designed
an adaptive stabilizing feedback control law for the same
model in the presence of parameter uncertainties. This
adaptive feedback depends on observable state variables
s1 and x1 (see the definitions below) and stabilizes asymp-
totically the closed-loop system towards an (unknown)
equilibrium point such that its projection on the s1-axis is
equal to a previously chosen operating point s∗1. Here we
propose a feedback law for asymptotic stabilization that is
more practically oriented, i.e., it depends only on on-line
measurable quantities.

The paper is organized as follows: Section 2 presents
shortly the dynamic model of the biological wastewater
treatment process. Section 3 is devoted to studying the
local one-parameter bifurcations of the equilibrium points
of the open-loop system: it is shown that the dynamics
undergo transcritical bifurcations with respect to the con-
trol input (the dilution rate) u. Assuming that the model
parameters are unknown but bounded within intervals,
asymptotic stabilization of the dynamic system towards
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a previously chosen operating point (called also reference
or set point) is studied in Section 4. In order to prove that
the closed-loop system is asymptotically stable, a suitable
Lyapunov function is constructed explicitly. Choosing in a
proper way different operating points, an algorithm is used
in Section 5 to stabilize the dynamic system towards the
equilibrium point where the maximum production of bio-
gas (methane) is achieved. This problem is known as ex-
tremum (peak) seeking. In the literature, extremum seek-
ing algorithms are usually designed in the form of block
diagrams (schemes) that are implemented on a bioreac-
tor to tune the dilution rate of the open-loop system, see,
e.g., (Marcos et al., 2004; Simeonov et al., 2004; 2007;
Wagner et al., 1999). The algorithm presented here, in
contrast to the above mentioned, is numerical; it is de-
signed to stabilize the closed-loop system towards the de-
sired maximum operating point. Computer simulations
illustrating the robustness of the theoretical results are re-
ported in Section 6. The extremum seeking algorithm is
sketched in Appendix.

2. Model description

We consider a model of an anaerobic digestion process,
based on two main reactions (Bernard et al., 2001; Hess
and Bernard, 2008): (a) acidogenesis, where the or-
ganic substrate (denoted by s1) is degraded into volatile
fatty acids (VFA, denoted by s2) by acidogenic bacteria
(x1); (b) methanogenesis, where VFA are degraded into
methane CH4 and carbon dioxide CO2 by methanogenic
bacteria (x2). We assume that the methane flow rate is
the measurable output and denote it by Q. The mass bal-
ance model in a continuously stirred tank bioreactor is de-
scribed by the following nonlinear system of ordinary dif-
ferential equations:

ds1

dt
= u(si

1 − s1) − k1 ·μ1(s1)·x1, (1)

dx1

dt
= (μ1(s1) − αu) · x1, (2)

ds2

dt
= u(si

2−s2)+k2 ·μ1(s1)·x1−k3 ·μ2(s2)·x2, (3)

dx2

dt
= (μ2(s2) − αu)·x2, (4)

Q = k4 · μ2(s2) · x2, (5)

where

μ1(s1) =
μmaxs1

ks1 + s1
,

μ2(s2) =
μ0s2

ks2 + s2 +
( s2

kI

)2

are model functions of the specific growth rates of the mic-
roorganisms. The first one, μ1(s1), presents the Monod
law; the second one, μ2(s2), presents the Haldane law

Table 1. Definition of the model variables and parameters.
s1 concentration of chemical oxygen

demand (COD) [g/l]
s2 concentration of volatile fatty

acids (VFA) [mmol/l]
x1 concentration of acidogenic bacteria [g/l]
x2 concentration of methanogenic bacteria [g/l]
u dilution rate [day−1]
si
1 influent concentration s1 [g/l]

si
2 influent concentration s2 [mmol/l]

k1 yield coefficient for COD
degradation [g COD/(g x1)]

k2 yield coefficient for VFA
production [mmol VFA/(g x1)]

k3 yield coefficient for VFA
consumption [mmol VFA/(g x2)]

k4 coefficient [l2/g]
μmax maximum acidogenic biomass

growth rate [day−1]
μ0 maximum methanogenic biomass

growth rate [day−1]
ks1 saturation parameter associated

with s1 [g COD/l]
ks2 saturation parameter associated

with s2 [mmol VFA/l]
kI inhibition constant associated

with s2 [(mmol VFA/l)1/2]
α proportion of dilution rate reflecting

process heterogeneity
Q methane gas flow rate

and exhibits substrate inhibition, that is, there is a point
s̃2 such that μ2(s2) achieves its maximum (Bastin and
Dochain, 1990),

s̃2 = kI

√
ks2 . (6)

The state variables s1, s2 and x1, x2 denote substrate and
biomass concentrations, respectively: s1 represents the or-
ganic substrate, characterized by its chemical oxygen de-
mand (COD), s2 denotes the volatile fatty acids (VFA), x1

and x2 are the acidogenic and methanogenic bacteria. The
definition of the model parameters is given in Table 1.

The parameter α ∈ [0, 1] represents the proportion of
bacteria that are affected by the dilution; α = 0 and α = 1
correspond to an ideal fixed bed reactor and to an ideal
continuous stirred tank reactor, respectively (cf., for exam-
ple, (Alcaraz-González et al., 2002; Antonelli et al., 2003;
Bernard et al., 2000; 2001; Grognard and Bernard, 2006;
Schoefs et al., 2003)). The dilution rate u is considered as
a control variable.



Nonlinear stabilizing control of an uncertain bioprocess model 443

3. Bifurcation analysis of the equilibrium
points of the open-loop system

In this section we shall consider the open-loop system (1)–
(4), that is, we assume that the control input u is a positive
parameter.

3.1. Equilibrium points. The equilibrium points are
solutions of the nonlinear algebraic system obtained from
(1)–(4) by setting the right-hand side functions to zero,
that is,

u · (si
1−s1)−k1 · μ1(s1) · x1 = 0, (7)

(μ1(s1) − αu) · x1 = 0, (8)

u·(si
2−s2)+k2 ·μ1(s1)·x1−k3 ·μ2(s2)·x2 = 0, (9)

(μ2(s2) − αu) · x2 = 0. (10)

We are looking for nonnegative solutions sj and xj ,
j = 1, 2, of the above system. For that reason, we as-
sume that the following inequalities are valid (Bastin and
Dochain, 1990; Hess and Bernard, 2008):

s1 ≤ si
1, s2 ≤ si

2 +
k2

k1
si
1. (11)

The second inequality in (11) is motivated by the fact that
the imbalance between acidogenesis and methanogenesis
might lead to the accumulation of VFA (s2) and therefore
to the acidification (x2 = 0) of the bioreactor; thus si

2 +
(k2/k1)si

1 can be considered as a worst-case upper bound
of the total concentration s2 (Hess and Bernard, 2008).
As mentioned before, the Haldane model function μ2(s2)
achieves a maximum at the point s̃2 (see (6)). We assume
that

s̃2 ≤ si
2, (12)

otherwise μ2(s2) would be monotonically increasing for
s2 ≥ 0 as the Monod law μ1(s1) for s1 ≥ 0 does.

Equations (7) and (8) are uncoupled with respect to
s2 and x2. They possess a nontrivial solution

s
(1)
1 (u) =

αuks1

μmax − αu
, x

(1)
1 (u) =

si
1 − s1(u)

αk1
,

u ∈
(

0,
1
α

μ1(si
1)
) (13)

and a trivial solution (called the wash-out state with re-
spect to x1)

s
(2)
1 (u) = si

1, x
(2)
1 (u) = 0 for all u > 0. (14)

Write

u1 =
1
α

μ1(si
1).

Note that u < u1 implies s
(1)
1 (u) < si

1. For u = u1 we
get

s
(1)
1 (u1) = s

(2)
1 (u1) = si

1, x
(1)
1 (u1) = x

(2)
1 (u1) = 0.

Consider (10) and assume first that x2 �= 0. Then
μ2(s2) − αu = 0 is equivalent to the following quadratic
equation with respect to s2:

αu

k2
I

s2
2 + (αu − μ0)s2 + αuks2 = 0, (15)

for which the discriminant

Δ(u) = α2

(
1 − 4

ks2

k2
I

)
u2 − 2αμ0u + μ2

0

vanishes at the points

u2 =
μ0

α
(
1 + 2

√
ks2/kI

) , u(2) =
μ0

α
(
1 − 2

√
ks2/kI

) .

Obviously, u2 > 0 and signu(2) = sign
(
1 − 2

√
ks2/kI

)
.

Let first u ∈ (0, u2]. Then Δ(u) ≥ 0 and αu < μ0

are valid. Thus (15) possesses two positive roots,

s
(1)
2 (u) =

2αuks2

μ0 − αu +
√

Δ(u)
, (16)

s
(2)
2 (u) =

μ0 − αu +
√

Δ(u)
2αu/k2

I

. (17)

If u(2) > 0 is fulfilled, then Δ(u) ≥ 0 for u ∈
[u(2), +∞). In this case, αu > μ0 holds true and the two
roots (16) and (17) are negative, which is physically im-
possible. Therefore the admissible interval for the steady
states (16), (17) is (0, u2]. It is straightforward to see that

u2 =
1
α

μ2(s̃2).

Further, solving (9) with s1 = s
(1)
1 (u), x1 = x

(1)
1 (u),

we obtain the roots

x
(1)
2 (u) =

si
2 − s

(1)
2 (u) + αk2x

(1)
1 (u)

αk3
,

x
(2)
2 (u) =

si
2 − s

(2)
2 (u) + αk2x

(1)
1 (u)

αk3
.

Substituting x
(1)
1 (u) by x

(2)
1 (u) = 0 into the above

expressions for x
(1)
2 (u) and x

(2)
2 (u), we obtain

x
(3)
2 (u) =

si
2 − s

(1)
2 (u)

αk3
, x

(4)
2 (u) =

si
2 − s

(2)
2 (u)

αk3
.

Assume now that x2 = 0 in (10) holds true, that is,
we set

x
(5)
2 = 0.

Then solving (9) with s1 = s
(1)
1 (u) and x1 = x

(1)
1 (u)

implies

s
(3)
2 (u) = si

2 +
k2

k1

(
si
1 − s

(1)
1 (u)

)
for u ∈ (0, u1) .



444 N. Dimitrova and M. Krastanov

Finally, solving (9) with s1 = si
1, x1 = 0 leads to

s
(4)
2 (u) = si

2.

All components of the equilibrium points should be
nonnegative. This condition determines the admissible
values for the parameter u. First let us note that s

(1)
2 (u) is

a monotonically increasing function of u whereas s
(2)
2 (u)

is monotonically decreasing on (0, u2]. Moreover,

s
(1)
2 (0) = 0, s

(1)
2 (u2) = s

(2)
2 (u2) = s̃2 ≤ si

2,

limu→0 s
(2)
2 (u) = +∞.

Therefore, x(3)
2 (u) ≥ 0 for u ∈ (0, u2]. Further,

x
(4)
2 (u) ≥ 0 ⇐⇒ s

(2)
2 (u) ≤ si

2 ⇐⇒ u ≤ 1
α

μ2(si
2).

Write

u3 =
1
α

μ2(si
2).

According to the assumption (11), s
(2)
2 (u) should satisfy

s
(2)
2 (u) ≤ si

2 +
k2

k1
si
1,

which is possible if and only if

u ≥ 1
α

μ2

(
si
2 +

k2

k1
si
1

)
.

Write

u4 =
1
α

μ2

(
si
2 +

k2

k1
si
1

)
.

Further, x
(2)
2 (u) is a monotonically increasing func-

tion of u, limu→0 x
(2)
2 (u) = −∞ and x

(2)
2 (u2) > 0. Thus

there is a unique point

u5 ∈ (0, u2) such that x
(2)
2 (u5) = 0. (18)

Then x
(2)
2 (u) ≥ 0 if and only if u ≥ u5.

Obviously, s̃2 ≤ si
2 (see (12)) implies

u4 < u3 ≤ u2. (19)

Finally, we have the following six equilibrium points

E1(u) =
(
s
(1)
1 (u), x(1)

1 (u), s(1)
2 (u), x(1)

2 (u)
)

,

u ∈ (0, min{u1, u2}],
E2(u) =

(
s
(1)
1 (u), x(1)

1 (u), s(2)
2 (u), x(2)

2 (u)
)

,

u ∈ [max{u4, u5}, min{u1, u2}],
E3(u) =

(
s
(1)
1 (u), x(1)

1 (u), s(3)
2 (u), 0

)
, u ∈ (0, u1],

E4(u) =
(
si
1, 0, s

(1)
2 (u), x(3)

2 (u)
)

, u ∈ (0, u3],

E5(u) =
(
si
1, 0, s

(2)
2 (u), x(4)

2 (u)
)

, u ∈ [u3, u2],

E6(u) =
(
si
1, 0, si

2, 0
)
, u ≥ 0.

Remark 1. The equilibrium point E2(u) does not exist
if u1 < max{u4, u5}.

Remark 2. It follows from (9) and (7) that x2 = 0,
s2 = si

2 always leads to x1 = 0, s1 = si
1.

Figure 1 presents the curves (branches) of the steady
state components as functions of the parameter u.

3.2. Local one-parameter bifurcations of the
equilibrium points. Denote, for simplicity, z =
(s1, x1, s2, x2) and by G=G(z; u)= (G1, G2, G3, G4)

T

the vector of right-hand side functions of (1)–(4). It is
known that if an equilibrium point is hyperbolic, that is,
when the linearization (Jacobian matrix) DG(z0; u0) =
DzG(z0; u0) at some equilibrium point z0 for some value
of u = u0 does not possess eigenvalues on the imagi-
nary axis, then (z0; u0) is linearly stable or unstable. This
means that varying u slightly in a neighborhood of u0 will
not change the nature of the stability of the steady state
(Carr, 1981; Wiggins, 1990). When (z0; u0) is not hyper-
bolic, that is, when DG(z0; u0) has some eigenvalues on
the imaginary axis, then for u close to u0 a new dynam-
ical behavior can occur. In what follows we shall con-
sider the simplest way in which an equilibrium point can
be nonhyperbolic, namely, when DG(z0; u0) possesses
a single zero eigenvalue with the remaining eigenvalues
having nonzero real parts.

The Jacobian matrix has the form

DG(z; u) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂G1

∂s1

∂G1

∂x1
0 0

∂G2

∂s1

∂G2

∂x1
0 0

∂G3

∂s1

∂G3

∂x1

∂G3

∂s2

∂G3

∂x2

0 0
∂G4

∂s2

∂G4

∂x2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Taking into account the particular expressions of the right-
hand side functions Gi(z; u), i = 1, . . . , 4, the determi-
nant |DG(z; u)| of DG(z; u) can be formed as a product
|DG(z; u)| = |D1G(z; u)| · |D2G(z; u)|, where

|D1G(z; u)|
=

∂G1

∂s1

∂G2

∂x1
− ∂G1

∂x1

∂G2

∂s1

= −u (μ1(s1) − αu) + αk1ux1
d

ds1
μ1(s1),

|D2G(z; u)|
=

∂G3

∂s2

∂G4

∂x2
− ∂G3

∂x2

∂G4

∂s2

= u

(
αk3x2

d
ds2

μ2(s2) − (μ2(s2) − αu)
)

.
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(a)
s1i

s11(u)

u1
0

s1

u

(b)

x11(u)

u1

0

x1

u

(c)
s22(u)

s21(u)

s2i

u1u2

s23(u)

0

s2

u

(d)

x22(u)

x23(u)

x24(u)

x21(u)

u5

u3

u2
0

x2

u [1mm]

Fig. 1. Branches of equilibrium points vs. u in the case when
u2 < u1: (a) s1-components, (b) x1-components, (c)
s2-components, (d) x2-components. Notation: (a) s1i
:=si

1, s11(u):=s
(1)
1 (u); (b) x11(u):=x

(1)
1 (u); (c) s2i:=si

2,
s2j(u):=s

(j)
2 (u), j = 1, 2, 3; (d) x2j(u):=x

(j)
2 (u), j =

1, 2, 3, 4.

In what follows we shall assume that |D1G(z; u)| and
|D2G(z; u)| do not vanish simultaneously at an equilib-
rium point.

Case 1. |D1G(z; u)| = 0, |D2G(z; u)| �= 0.
In this case we have the following nonhyperbolic

equilibrium points:

H1 =

(
si
1, 0, s

(1)
2 (u1),

si
2 − s

(1)
2 (u1)

αk3
; u1

)

if u1 < u3 ≤ u2,

H2 =

(
si
1, 0, s

(2)
2 (u1),

si
2 − s

(2)
2 (u1)

αk3
; u1

)

if u3 < u1 < u2,

H3 =
(
si
1, 0, si

2, 0; u1

)
if u1 < u2, u1 �= u3.

Case 2. |D1G(z; u)| �= 0, |D2G(z; u)| = 0.
The nonhyperbolic equilibrium points are

H4 =
(
si
1, 0, si

2, 0; u3

)
if u1 < u3,

H5 =
(

si
1, 0, s̃2,

si
2 − s̃2

αk3
; u2

)
if u1 < u2, u2 �= u3,

H6 =
(
s
(1)
1 (u2), x

(1)
1 (u2), s̃2,

si
2 − s̃2 + αk2x

(1)
1 (u2)

αk3
; u2

)
if u2 < u1,

H7 =
(

s
(1)
1 (u2), x

(1)
1 (u2), si

2,
k2

k3
x

(1)
1 (u2); u2

)

if u3 = u2 < u1,

H8 =
(
s
(1)
1 (u5), x

(1)
1 (u5), s

(3)
2 (u5), 0; u5

)
if u5 < u1.

Our goal is to determine the nature of the stability of
Hj , j = 1, . . . , 8, for u near the corresponding critical
value ui. To do this, we shall find the reduction of the
system (1)–(4) at each nonhyperbolic point to its corre-
sponding center manifold (Carr, 1981; Wiggins, 1990).

Proposition 1. The system of ODEs (1)–(4) undergoes a
transcritical bifurcation at each one of the nonhyperbolic
points Hj , j = 1, 2, . . . , 8.

Proof. We shall consider in detail the point H8. Write,
for simplicity,

s∗1 = s
(1)
1 (u5), x∗

1 = x
(1)
1 (u5), s∗2 = s

(3)
2 (u5).

The following coordinate change

ξ1 = s∗1 − s1, η1 = x∗
1 − x1, ξ2 = s∗2 − s2,

η2 = x2, v = u5 − u

transforms H8 into zero (0, 0, 0, 0; 0) =: (0; 0). Using
Taylor approximations of μ1(s∗1 − ξ1) and μ2(s∗2 − ξ2)
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Table 2.

Nonhyperbolic points Eigenvalues Values of L
H1 = λ1 = 0, λ2 = −u1(

si
1, 0, s

(1)
2 (u1), x∗

2; u1

)
λ3,4 = 1

2 (u1 + k3m2x
∗
2)

k1
k2

αk3
d

ds1
μ1(si

1)

u1 < u3 ≤ u2 ± 1
2

√
(u1 + k3m2x∗

2)2 − 4αu1k3m2x∗
2

x∗
2 := si

2−s
(1)
2 (u1)

αk3
m2 := d

ds2
μ2(s

(1)
2 (u1))

H2 = λ1 = 0, λ2 = −u1(
si
1, 0, s

(2)
2 (u1), x∗

2; u1

)
λ3,4 = 1

2 (u1 + k3m2x
∗
2)

k1
k2

αk3
d

ds1
μ1(si

1)

u3 < u1 < u2 ± 1
2

√
(u1 + k3m2x∗

2)2 − 4αu1k3m2x∗
2

x∗
2 := si

2−s
(2)
2 (u1)

αk3
m2 := d

ds2
μ2(s

(2)
2 (u1))

H3 =
(
si
1, 0, si

2, 0; u1

)
λ1 = 0, λ2 = λ3 = −u1, λ4 = α(u3 − u1) αk1

d
ds1

μ1(si
1)

u1 < u2, u1 �= u3

H4 =
(
si
1, 0, si

2, 0; u3

)
λ1 = 0, λ2 = λ3 = −u3, λ4 = α(u1 − u3) αk3

d
ds2

μ2(si
2)

u1 < u3

H5 =
(
si
1, 0, s̃2,

si
2−s̃2
αk3

; u2

)
λ1 = 0, λ2 = λ3 = −u2, λ4 = α(u1 − u2) 1

2 (si
2 − s̃2) d2

ds2
2
μ2(s̃2)

u1 < u2, u2 �= u3

H6 = λ1 = 0, λ2 = −u2(
s
(1)
1 (u2), x

(1)
1 (u2), s̃2, x

∗
2; u2

)
λ3,4 = − 1

2

(
u2 + k1m1x

(1)
1 (u2)

)
1
2α2k2

3
d2

ds2
2
μ2(s̃2)x∗

2

u2 < u1 ± 1
2

√(
u2 + k1m1x

(1)
1 (u2)

)2

− 4αu2k1m1x
(1)
1 (u2)

x∗
2 := si

2−s̃2+αk2x
(1)
1 (u2)

αk3
m1 := d

ds1
μ1(s

(1)
1 (u2))

H7 = λ1 = 0, λ2 = −u2(
s
(1)
1 (u2), x

(1)
1 (u2), si

2, x
∗
2; u2

)
λ3,4 = − 1

2

(
u2 + k1m1x

(1)
1 (u2)

)
1
2α2k2

3
d2

ds2
2
μ2(s̃2)x∗

2

u3 = u2 < u1 ± 1
2

√(
u2 + k1m1x

(1)
1 (u2)

)2

− 4αu2k1m1x
(1)
1 (u2)

x∗
2 := k2

k3
x

(1)
1 (u2) m1 := d

ds1
μ1(s

(1)
1 (u2))

H8 = λ1 = 0, λ2 = −u5(
s
(1)
1 (u5), x

(1)
1 (u5), s

(3)
2 (u5), 0; u5

)
λ3,4 = − 1

2

(
u2 + k1m1x

(1)
1 (u5)

)
αk3

d2

ds2
2
μ2(s

(3)
2 (u5))

u5 < u1 ± 1
2

√(
u5 + k1m1x

(1)
1 (u5)

)2

− 4αu5k1m1x
(1)
1 (u5)

m1 := d
ds1

μ1(s
(1)
1 (u5))

around ξ1 = 0 and ξ2 = 0, we obtain

μ1(s∗1 − ξ1) = μ1(s∗1) −
dμ1

ds1
(s∗1) · ξ1 = αu5 − m1ξ1,

μ2(s∗2 − ξ2) = μ2(s∗1) −
dμ2

ds2
(s∗2) · ξ2 = αu5 − m2ξ2,

where

m1 :=
dμ1

ds1
(s∗1), m2 :=

dμ2

ds2
(s∗2).

Denote by G̃ the vector of the right hand-side
functions of the system (1)–(4) in the new coordinates
(ξ1, η1, ξ2, η2)T . The latter is then expressed in the fol-
lowing form, where the parameter v has been included as

a formal dependent variable:
⎛
⎜⎜⎝

ξ̇1

η̇1

ξ̇2

η̇2

⎞
⎟⎟⎠ = DG̃(0; 0) ·

⎛
⎜⎜⎝

ξ1

η1

ξ2

η2

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

g1

g2

g3

g4

⎞
⎟⎟⎠ ,

v̇ = 0

within

DG̃(0; 0)

=

⎛
⎜⎜⎝

−(u5 + k1m1x
∗
1) −αk1u5 0 0

m1x
∗
1 0 0 0

k2m1x
∗
1 αk2u5 −u5 αk3u5

0 0 0 0

⎞
⎟⎟⎠
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and

g1 = vξ1 + k1m1ξ1η1,

g2 = αvη1 − m1ξ1η1,

g3 = vξ2 − k1m1ξ1η1 − k3m2ξ2η2,

g4 = αvη2 − m2ξ2η2.

The eigenvalues λi and the corresponding eigenvectors pi,
i = 1, 2, 3, 4, of DG̃(0; 0) are respectively

λ1 = 0, p1 = (0, 0, αk3, 1)T
,

λ2 = −u5, p2 = (0, 0, 1, 0)T ,

λ3 = −1
2
(u5 + k1m1x

∗
1)

+
1
2

√
(u5 + k1m1x∗

1)2 − 4αk1m1u5x∗
1,

p3 =
(
−k1

k2
,− λ4

αk2u5
, 1, 0

)T

,

λ4 = −1
2
(u5 + k1m1x

∗
1)

− 1
2

√
(u5 + k1m1x∗

1)2 − 4αk1m1u5x∗
1,

p4 =
(
−k1

k2
,− λ3

αk2u5
, 1, 0

)T

.

Obviously, λ2 < 0. Since 0 < α < 1, it can be easily
seen that λ3 and λ4 are real negative numbers.

Forming the matrix P by taking as columns the
eigenvectors pj , j = 1, 2, 3, 4,

P =
(

p1 p2 p3 p4

)
,

and finding its inverse P−1, we make the coordinate
change

⎛
⎜⎜⎝

ξ1

η1

ξ2

η2

⎞
⎟⎟⎠ = P

⎛
⎜⎜⎝

ζ1

κ1

ζ2

κ2

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

ζ1

κ1

ζ2

κ2

⎞
⎟⎟⎠ = P−1

⎛
⎜⎜⎝

ξ1

η1

ξ2

η2

⎞
⎟⎟⎠

and obtain

⎛
⎜⎜⎝

ζ̇1

κ̇1

ζ̇2

κ̇2

⎞
⎟⎟⎠ = A ·

⎛
⎜⎜⎝

ζ1

κ1

ζ2

κ2

⎞
⎟⎟⎠+

⎛
⎜⎜⎝

f1

f2

f3

f4

⎞
⎟⎟⎠

v̇ = 0,

where

A =

⎛
⎜⎜⎝

0 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4

⎞
⎟⎟⎠

and

f1 = αvζ1 − m2ζ1(αk3ζ1 + κ1 + ζ2κ2),

f2 = v(ζ2 + κ2) − α2k2vζ1

+ (α − 1)k3m2ζ1(α k3ζ1 + κ1 + ζ2 + κ2),

f3 =
1

λ4 − λ3
[−λ3v(ζ2 + κ2) + αv(λ4ζ2 + λ3κ2)

+
k1

k2
m1(ζ2 + κ2)(λ4ζ2 + λ3κ2)

+
k1m1λ3

αk2u5
(ζ2 + κ2)(λ4ζ2 + λ3κ2)],

f4 =
1

λ4 − λ3
[λ4v(ζ2 + κ2) − αv(λ4ζ2 + λ3κ2)

− k1

k2
m1(ζ2 + κ2)(λ4ζ2 + λ3κ2)

− k1m1λ4

αk2u5
(ζ2 + κ2)(λ4ζ2 + λ3κ2)].

Thus, from center manifold theory, the stability of
(ξ1, η1, ξ2, η2) = (0, 0, 0, 0) near v = 0 can be deter-
mined by studying a one-parameter family of first-order
ODEs on a center manifold. The latter can be represented
as a graph over ζ1 and v by

W c(0)

=
{
(ζ1, κ1, ζ2, κ2; v) ∈ R

5| κ1 = h1(ζ1, v),
ζ2 = h2(ζ1, v), κ2 = h3(ζ1, v), hi(0, 0) = 0,

Dζ1hi(0, 0) = 0, i = 1, 2, 3}

for ζ1 and v sufficiently small. The points (h1, h2, h3)T

of the center manifold should satisfy

Dζ1

⎛
⎝

h1

h2

h3

⎞
⎠ · f1 − B ·

⎛
⎝

h1

h2

h3

⎞
⎠−

⎛
⎝

f2

f3

f4

⎞
⎠ = 0 (20)

within

B =

⎛
⎝

−u5 0 0
0 λ3 0
0 0 λ4

⎞
⎠ .

We now wish to compute the center manifold W c(0) ap-
proximately and to derive the dynamics on W c(0). We
assume that

h1 = h1(ζ1, v) = a1ζ
2
1 + a2ζ1v + a3v

2 + O(3),
h2 = h2(ζ1, v) = b1ζ

2
1 + b2ζ1v + b3v

2 + O(3),
h3 = h3(ζ1, v) = c1ζ

2
1 + c2ζ1v + c3v

2 + O(3).

Substituting this in (20) and equating terms with equal
powers to zero, we find

h1(ζ1, v) =
α(α − 1)k2

3m2

u5
ζ2
1 +

α2k2

u5
ζ1v + O(3),

b1 = b2 = b3 = 0, c1 = c2 = c3 = 0.
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Hence the system of ODEs reduced to the center manifold
is given by

ζ̇1 = αvζ1 − αk3m2ζ
2
1 , (21)

v̇ = 0.

Obviously, ζ1 = 0 is always an equilibrium point for
the first equation of (21) and it is stable for v < 0 and
unstable for v > 0. A change in stability occurs at the bi-
furcation value v = 0; the type of bifurcation of ζ1 = 0 is
transcritical (Wiggins, 1990). Since the remaining eigen-
values λ2, λ3 and λ4 are negative, it follows (in (z; u)-
coordinates) that H8 is a stable equilibrium for the system
(1)–(4) if u is sufficiently close to u5 with u5 < u < u1.

In a similar way it can be shown that the system of
ODEs (1)–(4) undergoes a transcritical bifurcation at Hj ,
j = 1, 2, . . . , 7. In all cases the reduced dynamics on the
center manifold are of the form

ζ̇1 = αvζ1 − Lζ2
1 ,

v̇ = 0.

Table 2 presents the eigenvalues and the constant L for
all nonhyperbolic points Hi, i = 1, . . . , 8 (H8 is included
for convenience). It is easy to see that H3 can have one
positive eigenvalue λ4 if u3 > u1. The remaining non-
hyperbolic points are stable for u sufficiently close to and
greater than the corresponding bifurcation value. �

At transcritical bifuracion points, two steady states
coalesce and exchange stability at the bifurcation value. In
the (z; u)-coordinates the following pairs of equilibrium
points coalesce at the bifurcation points (see Fig. 1):

E1(u1) ≡ E4(u1) ≡ H1, E2(u1) ≡ E5(u1) ≡ H2,
E3(u1) ≡ E6(u1) ≡ H3, E5(u3) ≡ E6(u3) ≡ H4,
E4(u2) ≡ E5(u2) ≡ H5, E1(u2) ≡ E2(u2) ≡ H6,
E1(u3) ≡ E2(u3) ≡ H7, E2(u5) ≡ E3(u5) ≡ H8.

Remark 3. If we consider (7)–(8), it is easily seen
that s

(1)
1 (u), x

(1)
1 (u) are linearly stable (attractors, with

two negative eigenvalues of the Jacobian) for any value
of u with u < u1. The second (wash-out) equilibrium
s
(2)
1 (u) = si

1, x
(2)
1 (u) = 0 is a saddle for u < u1 and

it is linearly stable if u > u1. It is shown in (Hess and
Bernard, 2008) that (s(1)

1 (u), x(1)
1 (u)) is globally asymp-

totically stable for any u < u1.

Remark 4. The values of u1 = (1/α)μ1(si
1) and

u2 = (1/α)μ2(s̃2) are uncoupled; they depend on the
particular coefficient values in the expressions of μ1 and
μ2. If u2 < u1, then all bifurcation values ui will satisfy
ui < u1 (see (18), (19)), i.e., the bifurcations will be re-
lated to the s2- and x2-components of the steady states.
Thus (s(1)

1 (u), x(1)
1 (u)) will be a stable equilibrium point

for the acidogenic stage (described by (1)–(2)) whereas
the methanogenic phase (Eqns. (3)–(4)) might undergo
transcritical bifurcations.

4. Adaptive asymptotic stabilization

As mentioned before, the model (1)–(4) describes a two-
stage process where the first two ODEs, (1)–(2), present
the acidogenic phase and the second two, (3)–(4), the
methanogenic phase. In practice, acidogenesis is much
faster than the methanogenic phase. Moreover the latter
phase can be inhibited, which on the one hand is limiting
and on the other determining for the whole process (Hess
and Bernard, 2008).

In what follows we shall assume that the first stage
of the process is already stabilized to some previously
chosen point (s∗1, x∗

1) such that 0 < s∗1 < si
1, x∗

1 > 0
(Simeonov et al., 2004; Simeonov et al., 2007). Write

c∗1 =
k2

k1
(si

1 − s∗1).

In (Antonelli et al., 2003), where a similar approach to
asymptotic stabilization of the model is used, the constant
c∗1 is assumed to be negligible and thus set to 0. We as-
sume here that c∗1 > 0. Then the methanogenic phase of
the system is described by the following ODEs:

ds2

dt
= u(si

2 − s2) + c∗1u − k3 · μ2(s2) · x2, (22)

dx2

dt
= (μ2(s2) − αu) · x2. (23)

Practically, the output methane flow rate Q (see (5)) and
the substrate concentration si

2, s2 are the only measurable
variables. Our goal is to construct a smooth feedback law
for asymptotic stabilization of (22)–(23) to some previ-
ously chosen operating (reference) point s̄2. Let us fix
such a point s̄2 ∈ (0, si

2). Then (s̄2, x̄2) with

x̄2 =
si
2 + c∗1 − s̄2

αk3

is an equilibrium point for (22)–(23).
Our main assumption is that α, k3, k4, μ0, ks2 and

kI are unknown but bounded within compact intervals [α],
[k3], [k4], [μ0], [ks2 ] and [kI ], respectively.

Let ω = (α, k3, k4, μ0, ks2 , kI) be the vector of the
exact (unknown) values of the model parameters. Set

β̄ =
k3

k4(si
2 + c∗1 − s̄2)

,

and let β− > 0 and β+ > 0 be arbitrary real numbers
such that β̄ ∈ (β−, β+).

Following (Antonelli et al., 2003), we extend the sys-
tem (22)–(23) by adding the differential equation

dβ

dt
= −C(β−β−)(β+−β)k4μ2(s2)x2(s2− s̄2), (24)

where C > 0 is an arbitrary constant.
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Define the following map:

K(s2, x2, β)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βk4μ2(s2)x2 − γ(s2 − s̄2)
if βk4μ2(s2)x2 − γ(s2 − s̄2) > 0,

βk4μ2(s2)x2

if βk4μ2(s2)x2 − γ(s2 − s̄2) < 0,

{βk4μ2(s2)x2 − �γ(s2 − s̄2) : � ∈ [0, 1]}
if βk4μ2(s2)x2 − γ(s2 − s̄2) = 0,

(25)

where γ is a positive constant. This multivalued map
K(s2, x2, β) is upper semicontinuous with compact and
convex values.

We have to point out that the quantity k4μ2(s2)x2 in
(24) and (25) is equal to Q and is on-line measurable.

Theorem 1. For each starting point (s2(0), x2(0), β(0))
from the set Ω̃0 with

Ω̃0 =
{
(s2, x2, β)| s2 > 0, x2 > 0, β ∈ (β−, β+)

}
,

there exists a feedback control law k(s2, x2, β) ∈
K(s2, x2, β) that stabilizes asymptotically the control sys-
tem (22)–(23) and (24) to (s̄2, x̄2, β̄).

Remark 5. We formulate a stabilization result assuming
that the control u is unbounded. In practice, some bounds
for the control do exist due to physical evidence. Let us as-
sume that u ∈ [umin, umax]. In the proof presented below,
we construct explicitly a Lyapunov function V . Assuming
that the value of the parameter k4 belongs to the interval
[k−

4 , k+
4 ], an estimate of the constrained stability region of

the above controller can be obtained using the level sets of
V , i.e.,

Ξ = {x ∈ Rn : V (x) ≤ cmax} ,

where cmax > 0 is the largest number for which every
element of Ω̃0 ∩ Ξ is contained in the set

Θ =
{

(s2, x2) :
umin + γ(s2 − s̄2)

β+ k+
4

≤ μ2(s2)x2 ≤ umax + γ(s2 − s̄2)
β− k−

4

}
,

consisting of all points that satisfy the control constraints.

Proof. We set

Ω0 =
{
(s2, x2, β)| si

2 > s2 > 0, x2 > 0,

β ∈ (β−, β+)
}

.

Since the multivalued map K(s2, x2, β) is upper semicon-
tinuous with compact and convex values, there exist a se-
lection k(s2, x2, β) of the multivalued map K(s2, x2, β)

such that the closed-loop system Σ(ω) with exact but un-
known values for the model parameters has at last one
local solution starting from an arbitrary point of the set
Ω0 (cf., for example, the monograph (Filippov, 1988)).
Let us note that Σ(ω) is obtained from (22)–(23) and
(24) by substituting the control variable u by the feedback
k(s2, x2, β). Denote

k(s2, x2, β) = βk4 ·μ2(s2)·x2−�(s2, x2, β)·γ ·(s2−s̄2),

where �(s2, x2, β) is a constant, equal to 1, 0 or � with
� ∈ [0, 1], depending on the conditions in the right-hand
side branches of (25).

For convenience, we set

ζ = (s2, x2), ζ = (s̄2, x̄2).

One can directly verify that the set Ω0 is strongly invariant
with respect to (22)–(23) and (24) (Clarke et al., 1998).
This means that every trajectory of the closed-loop system
Σ(ω) starting from a point (ζ, β) ∈ Ω0 remains in Ω0. In
particular, the coordinates of all points of this trajectory
will never vanish. Moreover, if the initial point belongs
to the larger set Ω̃0, then every trajectory of Σ(ω) starting
from a point (ζ, β) ∈ Ω̃0 enters the set Ω0 in finite time.
For that reason we can assume without loss of generality
that the initial point belongs to the set Ω0.

Using the fact that si
2 = s̄2 + αk3x̄2 − c∗1, the equa-

tions (22)–(23) of the closed-loop system Σ(ω) can be
written as follows:

ds2

dt
= −k(s2, x2, β) · (s2 − s̄2 + αk3(x2 − x̄2))

− k3(μ2(s2) − αk(s2, x2, β)) · x2, (26)

dx2

dt
= (μ2(s2) − αk(s2, x2, β)) · x2. (27)

Consider the function

V (ζ, β)

= (s2 − s̄2 + k3(x2 − x̄2))2

+ Γ

(∫ s2

s̄2

v − s̄2

si
2 − v

dv +
1
C

∫ β

β̄

w − β̄

(w − β−)(β+ − w)
dw

)

where the parameter Γ > 0 will be determined later.
Clearly, the values of this function are nonnegative. If
we denote by F (ζ, β) the right-hand side of (26)–(27),
(24) and take into account the definition of the map
K(s2, x2, β) from (25), then it can be directly checked
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that for each point (ζ, β) of Ω0,

〈grad V (ζ, β), F (ζ, β)〉
= −2k(s2, x2, β)(s2 − s̄2)2

−
(

Γ
(

�(s2, x2, β)γ +
k3μ2(s2)x2

(si
2 − s2)(si

2 − s̄2)

))

· (s2 − s̄2)2

− 2(1 + α)k3 · k(s2, x2, β)(s2 − s̄2)(x2 − x̄2)

− 2αk2
3 · k(s2, x2, β)(x2 − x̄2)2.

The discriminant D(ζ, β) of the last expression, consid-
ered as a quadratic function with respect to s2 − s̄2 and
x2 − x̄2, is

D(ζ, β)

= −4k2
3 · k(s2, x2, β) · �(s2, x2, β) · γ

· (2α · Γ + (1 − α)2(s2 − s̄2)
)

− 4k2
3 · k(s2, x2, β) · μ2(s2) · x2

·
(

Γ · 4αk3

(si
2 − s2)(si

2 − s̄2)
− k4(1 − α)2β

)
.

Now we choose the positive parameter Γ in such a
way that the following inequalities are satisfied:

2α · Γ + (1 − α)2(s2 − s̄2) > 0,

Γ · 4αk3

(si
2 − s2)(si

2 − s̄2)
− k4(1 − α)2β > 0.

Then D(ζ, β) < 0 is fulfilled for each point (ζ, β) from
the set Ω0. Hence,

〈grad V (ζ, β), F (ζ, β)〉 < 0

for each point (ζ, β) ∈ Ω0 \ {(ζ̄ , β̄)}.

Applying LaSalle’s invariance principle (cf., for ex-
ample, (Khalil, 1992)), it follows that every solution
of the system (22)–(23), (24) is defined on the inter-
val [0, +∞) and approaches the largest invariant set of
(22)–(23), (24), which is contained in the set Ω0 ∩{
(ζ, β) ∈ R3 : s2 = s̄2, β ∈ (β−, β+)

}
. Taking into ac-

count the definition of the multivalued map K(·), it is easy
to see that this invariant set consists of the single point
(ζ̄ , β̄). Hence the feedback k(·) stabilizes asymptotically
the control system (22)–(23), (24) to the point (ζ̄ , β̄) on
the set Ω0. �

5. Adaptive stabilization towards the
maximum methane flow rate

In practice, only the substrate concentrations s2 and si
2

and the effluent methane flow rate Q are measurable on-
line (cf., for example, (Antonelli et al., 2003)). Consider

Eqn. (5) and let as before s2 ∈ (0, si
2) be some reference

point. Then the function

Q(s2) = k4 · μ2(s2) · si
2 + c∗1 − s2

αk3
,

which is defined on the set of all steady states, has a max-
imum at a unique point smax

2 ∈ (0, si
2), that is, Qmax =

Q(smax
2 ). Denote

umax =
1
α

μ2(smax
2 )

and

xmax
2 =

si
2 + c∗1 − smax

2

αk3
.

Our goal now is to stabilize the methanogenic dy-
namic system (22)–(23) towards the (unknown) maximum
methane flow rate Qmax. For that purpose we write (24)
in the form

dβ

dt
(t) = −C(β(t) − β−)(β+ − β(t))Q(t)(s2(t) − s̄2),

(28)
where Q(t) means the methane flow rate measured at the
moment of time t. We would like to point out that not
only Q(t) but all quantities in (28) are on-line measurable.
Thus the values of its solution can also be determined on-
line. Since the solution of (28) depends on s̄2, we denote
it by βs̄2(t), t ∈ [0, +∞). The last fact allows us to apply
on-line the feedback control law

(s2, Q, βs̄2) −→ k(s2, Q, βs̄2)
= βs̄2 Q − �(s2, Q, βs̄2) · γ · (s2 − s̄2).

(29)

According to Theorem 1, this feedback will asymp-
totically stabilize the control system (22)–(23), (28) to the
point (s̄2, x̄2, β̄s̄2) with

(s̄2, x̄2, β̄s̄2) =
(

s̄2,
si
2 + c∗1 − s̄2

αk3
,

k3

k4(si
2 + c∗1 − s̄2)

)
.

To stabilize the dynamics (22)–(23), (28) by means
of the feedback (29), we use the fact that Theorem 1 is
valid for any reference point s̄2 ∈ (0, si

2). We shall
construct a sequence of points {s̄n

2}, n = 1, 2, . . ., and
use an extremum seeking iterative algorithm to generate
a sequence {Qn}, which converges to Qmax. The algo-
rithm is carried out in two stages: in Stage 1, an interval
[S] = [S−, S+] is found such that [S−, S+] ⊂ (0, si

2) and
smax
2 ∈ [S−, S+]; in Stage 2, the interval [S] is refined us-

ing an elimination procedure based on a Fibonacci search
technique (Karmanov, 2000). Stage 2 produces the final
interval [S∗−, S∗+] such that [S∗−, S∗+] ⊆ [S−, S+] ⊂
(0, si

2), smax
2 ∈ [S∗−, S∗+] and S∗+ − S∗− ≤ ε.

The main steps of the numerical extremum seeking
algorithm are presented in Appendix.
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Fig. 2. Time evolution of (a) s2(t), (b) x2(t), (c) Q(t), (d) feed-
back k(t); horizontal line segments go through smax

2 ,
xmax

2 , Qmax and umax, respectively.

6. Numerical simulation

As mentioned before, the exact value of the parameter
vector

ω = (α, k1, k2, k3, k4, μmax, ks1 , μ0, ks2 , kI)

is not known. Practical experiments and parameter esti-
mation results (cf. (Alcaraz-González et al., 2002; Grog-
nard and Bernard, 2006; Mailert et al., 2004; Sime-
onov, 1994; Simeonov, 1999)) give only bounds for the
vector components. For that reason, we assume that the
model parameters are bounded within compact real inter-
vals [α], [k1], [k2], [k3], [k4], [μmax], [ks1 ], [μ0], [ks2 ] and
[kI ], respectively. Denote by [ω] the corresponding vector
with interval components:

[ω] = ([α], [k1], [k2], [k3], [k4], [μmax], [ks1 ],
[μ0], [ks2 ], [kI ]).

Using the intervals for the parameters, we can find the
bounds β− and β+ for β̄ explicitly,

β− =
k−
3

k+
4 (si

2 + c∗1 − s̄2)
, β+ =

k+
3

k−
4 (si

2 + c∗1 − s̄2)

for any reference point s̄2. In the extremum seeking algo-
rithm these bounds are computed for every choice of the
reference point s̄2.

In the numerical simulations we consider the follow-
ing intervals for the coefficients

[α] = [0.3, 0.6], [k1] = [9.5, 11.5],
[k2] = [27.6, 29.6], [k3] = [1064, 1084],
[k4] = [650, 700], [μmax] = [1, 1.4],

[ks1 ] = [6.5, 7.9], [μ0] = [0.64, 0.84],
[ks2 ] = [8.28, 10.28], [kI ] = [15, 17].

These intervals are chosen to enclose experimentally vali-
dated coefficient values, see e.g., (Alcaraz-González et al.,
2002; Antonelli et al., 2003).

One can easily see that for any choice of ω ∈ [ω] the
relation u2 < u1 holds true (see Remark 4).

The input concentrations si
1 and si

2 are assumed to be
constant, si

1 = 7, si
2 = 70. Further, we take s̄1 = 1.4.

To demonstrate the robustness of the feedback with
respect to the model uncertainties we proceed as follows:
At the initial moment (t0 = 0), we choose random values
for the model parameters from the corresponding inter-
vals and consider them as the “exact” vector ω. These va-
lues are kept constant until the system stabilizes to Qmax.
Then, at some time moment t = t1 > t0, another set
of random values for the model parameters is chosen to
represent again the “exact” vector ω. The process is re-
peated. Thereby the last computed values for s2, x2 and β
are considered as new initial conditions.
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During algorithm execution, all intermediate numeri-
cal values for s2, x2, Q and the feedback k were collected
in arrays and then plotted to visualize the results. Figure 2
shows the time profiles of the state variables s2(t) and
x2(t) (plots (a) and (b), respectively), of Q(t) (plot (c))
and of the feedback k(t) (plot (d)). In the plots the hori-
zontal dash-line segments go through smax

2 , xmax
2 , Qmax

and umax, respectively. The vertical line segments mark
the moment of time t1, where the coefficients are ran-
domly changed.

The numerical simulations were carried out in the
computer algebra system Maple. Thereby we used sym-
bolic manipulations to find steady states, an ODE solver
together with the implemented extremum seeking algo-
rithm and graphic visualization facilities to plot the nu-
merical results.

7. Conclusion

In the paper we studied a four-dimensional nonlinear
dynamic system which models a biological two-stage
wastewater treatment process. It was shown that the open-
loop system undergoes local transcritical bifurcations of
the steady states when the control parameter (the dilution
rate) u takes different admissible values. Assuming that
the acidogenesis (first stage) had been already stabilized
to some operating point s∗1, a nonlinear adaptive feedback
was proposed, which stabilizes asymptotically the closed-
loop second stage dynamics (the methanogenic phase) to-
wards the maximum methane production rate Qmax. For
that purpose, we first showed that for any previously cho-
sen reference point s̄2 we can asymptotically stabilize the
model to an equilibrium point ζ̄ = (s̄2, x̄2), whose pro-
jection on the s2-axis is s̄2. It should be pointed out
that if the control input u is unbounded, then stabiliza-
tion is global in the sense that the starting point can be
any point from the unbounded set Ω̃0. Further, a numeri-
cal extremum seeking algorithm was used to stabilize the
closed-loop system into an interval [S∗], containing the
equilibrium point smax

2 for which the methane output flow
rate Q takes its maximum Qmax. The interval [S∗] can be
made as tight as desired depending on a constant ε > 0,
which has to be celebrated by the user. Assuming that the
model parameters are unknown but bounded within com-
pact intervals, numerical experiments were carried out to
demonstrate the robustness of the proposed control law.
Our further efforts will be directed to designing an adap-
tive feedback law for asymptotic stabilization of the whole
four-dimensional dynamics towards some reference point;
this feedback law should depend on on-line measurable
model quantities and be robust with respect to model un-
certainties.
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Appendix

Below we present the main steps of the numerical ex-
tremum seeking algorithm. The steps are executed in the
given order except as indicated by branching. We assume
tolerances ε > 0, h > 0 and εs > 0 to be given.

Extremum Seeking Algorithm

Stage 1. Determine an interval [S] = [S−, S+] such that
[S] ⊂ (0, si

2] and smax
2 ∈ [S].

Step 1.0. Choose s̄0
2 ∈ (0, si

2). Apply the feedback
k(s2, Q, βs̄0

2
) to stabilize the system to s̄0

2. Ac-
cording to Theorem 1, there exists a moment of
time t0 > 0 such that |s2(t0) − s̄0

2| < εs; set
s̄0
2 := s2(t0), Q0 := Q(t0).

Step 1.1. Set σ := 1, s̄1
2 := s̄0

2 + σh. Apply the feedback
k(s2, Q, βs̄1

2
) to stabilize the system to s̄1

2. Ac-
cording to Theorem 1, there exists a moment of
time t1 > 0 such that |s2(t1) − s̄1

2| < εs; set
s̄1
2 := s2(t1), Q1 := Q(t1). If Q1 > Q0 then

go to Step 1.3 else go to Step 1.2.

Step 1.2. Set σ := −1, s̄1
2 := s̄0

2 + σh. Apply the feed-
back k(s2, Q, βs̄1

2
) to stabilize the system to s̄1

2.
According to Theorem 1, there exists a moment
of time t1 > 0 such that |s2(t1) − s̄1

2| < εs; set
s̄1
2 := s2(t1), Q1 := Q(t1).
If Q1 > Q0 then go to Step 1.3.
If Q1 ≤ Q0 then set h := h/2;

if h ≤ ε/2 then set [S∗] := [s̄0
2 − ε, s̄0

2 + ε]
and stop computations without going to
Stage 2;

if h > ε/2 then go to Step 1.1.

Step 1.3. Set h := 2h, s̄2
2 := s̄1

2 + σh. Apply the feed-
back k(s2, Q, βs̄2

2
) to stabilize the system to s̄2

2.
According to Theorem 1, there exists a moment
of time t2 > 0 such that |s2(t2) − s̄2

2| < εs; set
s̄2
2 := s2(t2), Q2 := Q(t2).

If Q2 ≤ Q1 then set [S] = [S−, S+] := [s̄0
2, s̄

2
2]

and go to Stage 2.

If Q2 > Q1 then set s̄0
2 := s̄1

2, s̄1
2 := s̄2

2, Q1 :=
Q2; repeat Step 1.3.

Stage 2. Starting with [S] = [S−, S+], determine an in-
terval [S∗] = [S∗−, S∗+] with smax

2 ∈ [S∗] and S∗+ −
S∗− ≤ ε.

Denote s0−
2 := S−, s0+

2 := S+, λ := (
√

5 − 1)/2;
compute Δ1 := s0+

2 − s0−
2 .

Step 2.0. Compute Δ2 := (1 − λ)Δ1, p0 := s0−
2 + Δ2,

q0 := s0+

2 − Δ2.

Step 2.1. Apply the feedback k(s2, Q, βp0) to stabilize
the system to p0. According to Theorem 1,
there exists a moment of time tp0 > 0 such
that |s2(tp0) − p0| < εs; set p0 := s2(tp0),
Qp0 := Q(tp0).
Apply the feedback k(s2, Q, βq0) to stabilize
the system to q0. According to Theorem 1,
there exists a moment of time tq0 > 0 such
that |s2(tq0 ) − q0| < εs; set q0 := s2(tq0),
Qq0 := Q(tq0).

Step 2.2. Set Δ3 := q0 − p0.

If Qp0 > Qq0 then set s1−
2 := s0−

2 , s1+

2 := q0,
p1 := s1−

2 + Δ3, q1 := p0;

If Qp0 ≤ Qq0 then set s1−
2 := p0, s1+

2 := s+
0 ,

p1 := q0, q1 := s1+

2 − Δ3.

Compute Δ1 := s1+

2 − s1−
2 .
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Step 2.3. If Δ1 ≤ ε then set [S∗] := [s1−
2 , s1+

2 ]
and stop computations.
If Δ1 > ε then

if p1 ≥ q1 then set s0−
2 := s1−

2 , s0+

2 := s1+

2

and go to Step 2.0.
if p1 < q1 then

if Qp0 > Qq0 then apply the feedback
k(s2, Q, βp1) to stabilize the system to p1.
According to Theorem 1, there exists a mo-
ment of time tp1 > 0 such that |s2(tp1) −
p1| < εs; set p1 := s2(tp1), Qp1 :=
Q(tp1).
if Qp0 ≤ Qq0 then apply the feedback
k(s2, Q, βq1) to stabilize the system to q1.
According to Theorem 1, there exists a mo-
ment of time tq1 > 0 such that |s2(tq1) −
q1| < εs; set q1 := s2(tq1), Qq1 :=
Q(tq1).

Set p0 := p1, q0 := q1, s0−
2 := s1−

2 ,
s0+

2 := s1+

2 , Qp0 := Qp1 , Qq0 := Qq1 ;
go to Step 2.2.

Comments on the Algorithm

1. The algorithm works on-line. Having determined the
desired interval [S∗], we set s̄2 := (S∗− + S∗+)/2 and
stabilize the dynamic system towards it. The computa-
tional process continues to work without any changes until
the system changes due to parameter perturbations. Then
the algorithm starts to work either from Stage 1 or from
Stage 2 depending on whether s̄2 belongs to [S] or [S∗].

2. At any step of the algorithm, the last computed values
for s2 and x2 are used as initial conditions for the next
step. For β, the last computed value is checked whether
β ∈ (β−, β+); if not, then it is changed to β = (β− +
β+)/2.

3. The algorithm may terminate at Step 1.2 without going
to Stage 2 only in the case when the current set point s̄2

is sufficiently close to the maximum point smax
2 , that is if

|s̄2 − smax
2 | ≤ ε.
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