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Nonlinear stage of Benjamin-Feir instability in
forced/damped deep-water waves

Andrea Armaroli,1, 2, a) Debbie Eeltink,1, 2 Maura Brunetti,1, 2 and Jérôme Kasparian1, 2
1)GAP, Université de Genève, Chemin de Pinchat 22, 1227 Carouge,

Switzerland
2)Institute for Environmental Sciences, Université de Genève, Boulevard Carl-Vogt 66,

1205 Genève, Switzerland

(Dated: 21 November 2017)

We study a three-wave truncation of a recently proposed damped/forced high-order
nonlinear Schrödinger equation (DF-HONLS) for deep-water gravity waves under
the effect of wind and viscosity. The evolution of the norm (wave-action) and
spectral mean of the full model are well captured by the reduced dynamics. Three
regimes are found for the wind-viscosity balance: we classify them according to the
attractor in the phase-plane of the truncated system and to the shift of the spectral
mean. A downshift can coexist with both net forcing or damping, i.e. attraction
to period-1 or period-2 solutions. Upshift is associated to stronger winds, i.e. to a
net forcing where the attractor is always a period-1 solution. The applicability of
our classification to experiments in long wave-tanks is verified.

I. INTRODUCTION

The development of accurate propagation equations for water waves in the ocean has
benefitted from the evolution of computational capacity and the abundance of experimental
data from human activities in the oceans (e.g. oil platforms) and satellites. The study of
the role of different physical effects, particularly in relation to the debate about the origin
and explanation of rogue waves1–3, has a practical impact on the forecast and prevention
of catastrophic ship accidents and a fundamental interest in understanding the limits of
applicability of the current approximated models.
Naturally, the first step is to include in one dimensional propagation equations the two

main forcing and damping mechanisms, viscosity and wind. The former is an unavoidable
limit in laboratory facilities, the impact of which on propagation is non-trivial4–9; the
latter10,11 has attracted much interest in theoretical and experimental efforts, particularly
in recent years12–17.
The nonlinear Schrödinger equation (NLS), a universal model used, among others, to

describe the propagation of gravity waves in deep-water, can be extended so as to include
forcing and damping terms which describe the effect of wind and viscosity in one-dimensional
propagation18. Forcing and damping can be decomposed in a homogeneous contribution at
the same order (in the wave steepness) of the conventional NLS and a frequency-dependent
(dispersive) higher-order term, which is thus in direct competition with the Dysthe higher-
order corrections to NLS (HONLS)19. Some experimental results in wave tanks, where
spectral asymmetry develops, can be thus better understood. Consider, for example, the
Benjamin-Feir instability (BFI), the growth of modulated waves on top of a uniform carrier
wave20–22: earlier experiments showed indeed a downshift of the frequency peak of the
wave23.
It was theoretically demonstrated that viscosity stabilizes BFI4,5 and can lead to a spectral

downshift8, while wind can destabilize even modes outside the conventional BFI band in an
asymmetric fashion14. The experimental assessment is complicated by the limited length
of available wave-tanks, inaccurate estimates of viscosity, turbulent wind-water interaction
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and wave-breaking of large waves. It seems clear, however, that the interplay of wind and
viscosity can lead to both up- and down-shift18.
We remark here that the definition of spectral shift can refer to peak frequency24 or to

spectral mean8,18, the former is experimentally more practical, but the latter is certainly
more scientifically sound25. In fact the HONLS for the envelope of the free-surface elevation
conserves only the norm and predicts a spectral peak downshift, albeit not permanent; the
spectral mean of its solutions exhibits instead a temporary upshift. This is a consequence
of the breaking of the translational symmetry of the system (i.e. the momentum is not
conserved), which can be restored by a different choice of variables26–28. These canonical
variables involve not only the envelope of the surface elevation but also the velocity potential
and thus do not correspond to experimentally accessible quantities, for which the HONLS
proves effective29–31.
Finally, we should not forget that exact solutions, such as the Akhmediev breather

(AB)32,33, are not available in the HONLS case; we rely instead on a three-mode truncation25,34,35.
This approach provides good approximated solutions and allows a more flexible choice of
initial conditions and range of parameters than conventional approximated ABs13,15,36.
We recently showed25 that the phase-plane topology in conjunction with the unbalance

of BFI sidebands provide, for a single unstable mode, a clear and simple classification of
the solutions of HONLS and the associated temporary spectral upshift.
Here we apply the same approach to the forced/damped equation presented in Ref.18 and

explicitly derive a system of ordinary differential equations (ODEs) correctly describing the
nonlinear behavior of the BFI in that model. We demonstrate that the topology of orbits
in the reduced phase space is a complementary criterion (besides upshift and downshift)
to understand the long-distance evolution of water waves under the action of wind and
viscosity.
After presenting the model equation and the allowed regimes (Section II), we recall in Sec-

tion III the three-wave truncation and its predictions for the conservative case. Next we clas-
sify the solutions in terms of phase-plane trajectories and spectral shift in the forced/damped
regimes and discuss the limits and perspectives of our model and analysis (Section IV). Sec-
tion V is devoted to conclusions.

II. MODEL EQUATIONS

Consider the following damped/forced HONLS (DF-HONLS)18 for the space evolution
of a narrow-band wave-packet propagating in the x̃ direction under the action of wind and
viscosity. It reads as

∂A

∂x̃
+ i

k0
ω2
0

∂2A

∂t̃2
+ ik30A|A|2

︸ ︷︷ ︸

NLS

=
k30
ω0

(

6|A|2 ∂A
∂t̃

+ 2A
∂|A|2
∂t̃

+ 2iAH
[
∂|A|2
∂t̃

])

︸ ︷︷ ︸

HO corrections

−4
k30
ω0
νA− 20i

k30
ω2
0

ν
∂A

∂t̃
︸ ︷︷ ︸

Viscous damping

+
k0
ω0

ΓmA+ 4i
k0
ω2
0

Γm
∂A

∂t̃
︸ ︷︷ ︸

Wind forcing

(1)

where A(x̃, t̃) is the complex amplitude of the surface elevation [m], k0 is the carrier
wavenumber [m-1], ω0 =

√
gk0 (g is the standard acceleration due to gravity) is the associ-

ated angular frequency in the deep water limit, x̃ and t̃ denote space and time in a frame
co-moving at the group velocity Cg = ω0/2k0 of the wave. H[·] stands for the Hilbert trans-
form. ν [m2/s] is defined as the wave dissipation effects, including the kinematic viscosity
of the fluid, surface impurities and side-wall mechanical friction, while the wind blowing in
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the direction of the wave propagation leads to a growth rate Γm [s−1] of the wave energy, as
predicted by the Miles mechanism10. The left-hand side is the conventional NLS, which can
be derived from the Euler equations in the incompressible irrotation limit, by means of the
method of multiple scales (MMS) at third order in the steepness ε ≡ k0A0/

√
2 (A0 is the

reference amplitude of an ideally stable Stokes’ wave). The right hand side is composed by
HO corrections (fourth-order)19,26,37, viscous damping—in the limit of small viscosity6, and
forcing due to wind—a correction in the pressure balance at the water/air interface10,14.
We remark that damping and forcing consist each of a homogeneous (third-order) and a
derivative part (fourth-order), see App. A.

In order to minimize the number of free parameters, we define the adimensional variables
τ ≡ t̃/T0, ξ ≡ x̃/L0, a(ξ, τ) ≡ A/A0 with T0 = 1/(ω0ε) and L0 = 1/(2ε2k0) and rewrite (1)
as

∂a

∂ξ
+ i

1

2

∂2a

∂τ2
+ i|a|2a

︸ ︷︷ ︸

NLS

= δ0a+ iδ1
∂a

∂τ
︸ ︷︷ ︸

DF

+ ε

{

8|a|2 ∂a
∂τ

+ 2a2
∂a∗

∂τ
+ 2iaH

[
∂|a|2
∂τ

]}

︸ ︷︷ ︸

HO corrections

(2)

where δ0 ≡ T0

2ε (Γm − 4k20ν) and δ1 ≡ 2T0(Γm − 5k20ν) are the coefficient of the 0th and

1st-order damping/forcing contributions (3rd and 4th-order, when referred to the MMS
expansion of Euler equations). In the angular frequency domain ( ∂

∂τ
→ −iΩ), we write the

damping/forcing terms as

g(Ω) ≡ δ0 + δ1Ω. (3)

In the absence of wind (Γm = 0), the spectrally homogeneous damping dominates; vice-
versa for vanishing viscosity (ν = 0), the homogeneous wind forcing prevails. Notice,
however, that δ0 and δ1 are each the balance of wind- and viscosity-related contributions
with different coefficients. Thus, in principle, the wind strength can be tuned to obtain δ0
and δ1 of nearly the same magnitude or even δ1 dominant over δ0. Similar conditions of
wind and viscosity compensating each other have been studied12 and allow one to explore
the dispersive nature of damping and forcing.

Since ν ≥ 0 we have that 4εδ0 ≥ δ1, thus we obtain three regimes: (i) δ0 < 0, δ1 < 0 with
4ε|δ0| ≤ |δ1| (ii) δ0 > 0, δ1 < 0 and (iii) 4εδ0 ≥ δ1 > 0. We will study in section IV what
they lead to.

We remark that the approximation (3) is obtained from a perturbation series expansion
and provides an idealized form of dispersive forcing/damping which is not physical, because
forcing and damping diverge at Ω → ±∞. A more physical parametrization includes at least
a parabolic correction −δ2Ω2 with 0 < δ2 ∼ O(ε2), in order to account for viscosity to limit
energy growth outside the considered bandwidth. In Refs.38,39 it is shown that a phase
transformation permits to put the equation in time-symmetric form: nonlinear damping
must be included and the coefficients of non-linear phase modulation and damping combine
to give the coefficients of the new model. This transformation is very insightful to get a
damped-forced NLS and its solitary waves. In our case we prefer working with the simplest
possible nonlinear coefficients (neglecting non-linear contributions of wind and viscosity,
certainly of higher-order) and to disregard the parabolic term, which would be of fifth-order
in steepness, see above. We verified that, if up to a 5% extra overall damping is included,
its impact is negligible on the results presented below. An estimate of < delta2 is presented
in App. A.
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III. THREE-WAVE TRUNCATION

We apply to (2) the three-wave truncation approach34 (p. 527) and briefly recall, as a
reference, its results25 in the case of no damping/forcing. At the beginning of the wave-
tank we excite a homogeneous carrier wave perturbed by a pure oscillation at normalized
angular frequency Ω. As the normalized a ∼ O(1), we can assume that the initial norm N ≡
∫∞

−∞
|a|2dτ = N0 = 1, so that the peak BFI gain occurs for ΩM ≈ ±

√
2N0(1− 3

2

√
2N0ε)

19,26,

closer to the BFI cut-off frequency (Ωc =
√
2N0(1− 2

√
2N0ε)) than to zero. Thus, letting

Ω = ΩM only a single mode is unstable and the four-wave mixing products of ±Ω are stable:
this represents an approximation of the AB solution for the HONLS.

We can thus restrict our analysis to a three-mode Ansatz

a(ξ, τ) = a0(ξ) + a1(ξ)e
−iΩτ + a−1(x)e

iΩτ (4)

which, inserted in (2), allows us to obtain the following system of complex ODEs:

ȧ0 = −i
(

|a0|2 + 2 |a1|2 + 2 |a−1|2
)

a0 − 2ia∗0a1a−1 + δ0a0
︸︷︷︸

DF

+ iεΩ
{
−8(|a1|2 − |a−1|2)a0 + 4(|a1|2 − |a−1|2)a0 + 2 s

[
(|a−1|2 + |a1|2)a0 + 2a∗0a−1a1

]}

︸ ︷︷ ︸

HO corrections

ȧ1 = i
Ω2

2
a1 − i

(

|a1|2 + 2 |a0|2 + 2 |a−1|2
)

a1 − ia20a
∗
−1 + δ0a1 +Ωδ1a1

︸ ︷︷ ︸

DF

+ iεΩ
{
−8(|a0|2 + |a1|2)a1 + 2(|a1|2 − 2|a−1|2)a1 − 2a20a

∗
−1 + 2 s

[(
|a0|2 + 2|a−1|2

)
a1 + a20a

∗
−1

]}

︸ ︷︷ ︸

HO corrections

ȧ−1 = i
Ω2

2
a−1 − i

(

|a−1|2 + 2 |a0|2 + 2 |a1|2
)

a−1 − ia20a
∗
1 + δ0a−1 − Ωδ1a−1

︸ ︷︷ ︸

DF

+ iεΩ
{
8(|a0|2 + |a−1|2)a−1 − 2(|a−1|2 − 2|a1|2)a−1 + 2a20a

∗
1 + 2 s

[(
|a0|2 + 2|a1|2

)
a−1 + a20a

∗
1

]}

︸ ︷︷ ︸

HO corrections

(5)

where the dot denotes the derivative with respect to ξ and s = signΩ. The main difference
with respect to Eq. 4 of Ref.25 is that damping-forcing (DF) appears as a uniform contri-
bution to the carrier wave a0 and an asymmetric contribution to a±1, consistently with the
DF function in Eq. (3).

Letting am(ξ) =
√

ηm(ξ) exp iϕm(ξ) (m = 0,±1), by exploiting the gauge invariance of
Eq. (2), we reduce the dimensionality of Eq. (5) to a system of real ODEs in 4 variables:
the norm (or wave action) N3 ≡ η0 + η1 + η−1, its fraction in sidebands η ≡ (η1 + η−1)/N3,
the relative phase ψ ≡ (ϕ1 + ϕ−1 − 2ϕ0)/2 and the normalized sideband imbalance α ≡

http://dx.doi.org/10.1063/1.5006139
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(b)

AB P2P1

FIG. 1. Classification of the DF-HONLS solutions in (ψ/π, η) plane. (a) Conservative case. Main
panel: level sets of the Hamiltonian associated to the integrable version of Eq. (6) (see Appendix
C), for ε = 0.1/

√
2, N3 = 1, α(0) = 0. In the insets the solutions of the HONLS corresponding

to three different trajectories in the phase plane: period-one (P1), period-two (P2), Akhmediev
breather AB. The latter corresponds to the separatrix in the phase plane (dashed-dotted blue line
level set to be compared to actual orbit in solid blue) and is obtained by using as initial condition
the AB solution of NLS with a = 0.32 (corresponding to the peak BFI gain of the HONLS) at
ξ = −10. Notice that the peak is reached in the HONLS later than in the NLS, as is well known
from the literature. Trajectories of the HONLS and truncated system qualitatively agree: the
topology is equivalent, see text. (b-d) Representation of the evolution under the effect of wind and
viscosity on the phase plane (ψ, η). (b) δ0 = −0.01, δ1 = −0.005, (c) δ0 = 0.005, δ1 = −0.0025 (d)
δ0 = 0.01, δ1 = 0.0025. The initial conditions (marked as red crosses) are η(0) = 0.01 for every
panel and (b) ψ(0) = 0, (c-d) ψ(0) = π/2. We observe that in each case (b-d) the solution is
attracted to a family which is different from the one pertaining to its initial conditions.

(η1 − η−1)/N3. The reduced system reads as

η̇ = 2δ1Ωα(1− η)
︸ ︷︷ ︸

DF

−2σ(1− η)
[
η2 − α2

] 1

2 sin 2ψ (6a)

ψ̇ =
Ω2

2
−N3

(

1− 3

2
η

)

+Σ

(

s(1− η) +
3

2
α

)

(6b)

+
{

σ
[
η2 − α2

] 1

2 − ση(1− η)
[
η2 − α2

]− 1

2

+Σ(1− η)α
[
η2 − α2

]− 1

2

}

cos 2ψ

α̇ = 2δ1Ω(η − α2)
︸ ︷︷ ︸

DF

−2Σ(1− η)
[
η2 − α2

] 1

2 sin 2ψ (6c)

Ṅ3 = 2N3 (δ0 + δ1Ωα)
︸ ︷︷ ︸

DF

, (6d)

with σ = (1 − 2sεΩ)N3 and Σ ≡ 2εΩN3. The DF terms δ0 and δ1 do not enter in the
evolution of phase, but break the constancy of N3 and modify the coupling between α
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and η. As proved in Ref.25, the terms preceded by Σ come from the non-conservation of
linear momentum P ≡ i

2

∫∞

−∞
(a∗τa− aτa

∗)dτ in the Dysthe equation for the envelope of
the surface elevation.
Consider a periodic function a of τ . The Fourier transform of a, â is thus evaluated only

at discrete points mΩ. Notice that N3 corresponds to the three-wave approximation of the
norm N =

∑∞
m=−∞ |â(mΩ)|2, while ΩαN3 corresponds to P =

∑∞
m=−∞mΩ|â(mΩ)|2.

Ωα can be regarded as the truncation of P/N , i.e. the spectral mean of a, which, see
Eq. (6c), does not depend directly on δ0 and shifts according to the sign of δ1. We recall
also that, frequencies outside the conventional BFI range, where the central mode η0 does
not exchange energy with its sidebands25,35, can be unstable14: the energy growth leads to
η = 1 and α = ±1 (according to the sign of δ1) and the instability rate grows linearly in δ1
and Ω, see (6d).
The ODEs for N3 (6d), N3Ωα, and Ωα (straightforward to derive from Eqs. (6c) and

(6d) are, respectively, simpler closed-form relations for the evolution of the quantities N ,
P , and P/N , which are shown in Appendix B to involve higher-order momenta, in an infinite
recursion; see Eqs. (B2), (B3), (B4).
We can also write

N̈3 − 4δ0Ṅ3 + 4δ20N3 = (2Ωδ1)
2ηN3 + εf(η, ψ, α,N3) (7)

where the function f(η, ψ, α,N3) is rapidly oscillating in ψ. Thus the sideband growth is
the source of an overall energy increase which depends only on δ21 , provided that the initial
buildup of BFI is not suppressed by δ0 < 0.
As described in Ref.25 and Appendix C, in the case of δ0 = δ1 = 0, despite the bro-

ken integrability of the reduced system (α is not conserved), the perturbed evolution is
still quasi-periodic and can be conveniently mapped on the Hamiltonian level sets of the
corresponding integrable system. The heteroclinic structure is summarized in Fig. 1(a);
we have three families of solutions (we take hereafter N3(0) = 1, α(0) = 0, η(0) = 0.01,

ε = 0.1/
√
2): (i) the separatrix which connects two saddle points at ψ ≈ ±π/4 (mod π)

and corresponds to an infinite period of recurrence (it generalizes the AB of the NLS) (ii)
for ψ(0) = 0, the orbit is closed and lies inside the separatrix and surrounds the center
η = ηc, ψ ≡ 0 (mod 2π), i.e. it is period-one; (iii) for ψ(0) = π/2, the orbit is open and lies
outside the separatrix, i.e. it is period-two (ψ is shifted by π at each recurrence of η). The
insets show the full spatiotemporal evolution in the three cases: the drift toward the left and
the smaller growth rate (farther focusing point for the AB) are the signatures of HONLS
corrections36,40,41. The phase-space trajectories of HONLS are topologically equivalent to
the trajectories of the low-dimensional system: a solution of a given family of the former can
be continuosly deformed into a solution of the corresponding family of the latter. We recall
that the quantitative agreement improves for frequencies closer to the BFI cut-off25,35.

IV. RESULTS AND DISCUSSION

In this section, we show that the three-wave truncation is a good approximation for the
DF-HONLS, Eq. (2), and that the three damping/forcing regimes mentioned above can be
classified according to the shift of spectral mean and the topology of the solution in the
phase plane. We checked numerically (not shown) that the value of ε chosen above prevents
wave-breaking, even under the action of wind. We use as a criterion that the amplitude
of the peaks at the focusing point of the recurrence cycles never exceeds |a| = 342,43. In
Fig. 1(b-d), the reader will find the representation of trajectories in the phase plane (ψ/π, η):
the level sets are computed at fixed N3. In Figs. 2–4 we present the simulated dynamics
of the energy exchange among the carrier wave, the pair of unstable sidebands and their
four-wave mixing product at ±2Ω [panels (a)]; we define η̄m ≡ |â(mΩ)|2; we focus here on
the three-wave approximation N3 to simulated N̄3 = η̄0 + η̄1 + η̄−1 in order to assess the
accuracy of our truncation.

http://dx.doi.org/10.1063/1.5006139
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We omit to include the simulated N , because it coincides in each case to N3 from the
truncated model. Panels (b) show the spectral shift according to its possible definitions—
unbalance (related to spectral peak) and spectral mean: in particular Ωα is compared to
P/N .

0

0.5

1
(a) η̄0 η̄1 η̄

−1 η̄2 η̄
−2

0 5 10 15

ξ

-0.2

0

0.2

0.4

(b) Ω(η1 − η
−1)/N P/N Ωα (3 waves)

N3 N̄3

FIG. 2. Simulated evolution of Eq. (2) and comparison to three-wave truncation Eq. (6), for
δ0 = −0.01, δ1 = −0.005, ψ(0) = 0. We use the shorthand η̄m = |â(mΩ)|2 for the different
spectral modes. (a) Evolution of the squared amplitude of the Stokes wave [blue (dark gray) solid
line], its unstable sideband pair (±Ω, dash-dotted lines) and second order sidebands (±2Ω, dashed
lines). Red (dark gray) [green (light gray)] lines represent the low (high) frequency sideband. The
black dotted line represent the sum of square amplitudes of Stokes wave and its unstable sidebands
(N̄3 =

∑1
m=−1 η̄m) to be contrasted to N3 obtained from Eq. (6) [purple (dark-gray) thick dash-

dotted line]. (b) Corresponding relative imbalance of sideband amplitudes Ω(η̄1 − η̄
−1)/N (solid

blue) and spectral shift P/N (dashed black), the truncated version of which, Ωα, is shown by the
dash-dotted red line.

0

0.5

1

1.5

(a)

η̄0 η̄1 η̄
−1 η̄2 η̄

−2

0 5 10 15

ξ

-0.2

0

0.2

0.4

(b) Ω(η1 − η
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FIG. 3. Same as Fig. 2 with δ0 = 0.005, δ1 = −0.0025, and ψ(0) = π/2. In panel (b) we
add the simulation result for P/N (dotted purple line) obtained by adding a parabolic damping
δ2 = −0.20ϵ2 The inset finally represents a detail of the zero crossing of P/N and Ωα.

We start by generalizing the findings of Ref.9, where the evolution of an AB is studied
under the action of small viscosity; we add here a weak wind to partly compensate the
viscous damping: we take δ0 = −0.01 and δ1 = −0.005. The initial conditions are the
same as mentioned at the end of the previous section, with ψ(0) = 0. In Fig. 2(a) we
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FIG. 4. Same as Fig. 3 with δ0 = 0.01 and δ1 = 0.0025.

observe several cycles of quasi-recurrence. As expected η̄−1 grows more than η̄1. Instead
of reconverting back all the energy to η̄0, the former does not return to zero and gradually
increases from one cycle to the other, the latter oscillates as in the undamped case. The
total energy decays, so at each recurrence cycle the conversion is weaker and the period
is longer. N̄3 deviates only slightly (about 15% at maximum conversion) from N3: this
confirms the soundness of the truncation. Specifically, η̄2 acquires less than 10% of the
total energy and its opposite at η̄−2 is one order of magnitude smaller, consistently with
the temporary mean upshift caused by HO corrections. The downshifting trend is apparent
in Fig. 2(b): the peak downshift and mean upshift due to HO corrections are temporary,
but are not exactly reverted at each cycle; the average of P/N points downward and the
three-wave Ωα approximation represents qualitatively well this trend both on the short and
long ξ scales: at each breathing period (which the truncation overestimates by about 25%)
a temporary upshift is observed. Despite a lower maximum value (by half) for Ωα than
for P/N , they agree remarkably well in the decrease of the value attained at the end of
each cycle with respect to its beginning. In Fig. 1(b), we observe that the trajectory in
the phase plane crosses the separatrix during the first recurrence cycle and is attracted to
a period-two orbit, characterized by a longer recurrence period. This is a consequence of
energy damping.

Thus our representation provides an insight to how a small viscosity causes a generic
solution inside or on the separatrix to cross into an open orbit with longer recurrence
periods. From the definition of δ0 and δ1, we can affirm that a small viscosity is inextricably
associated to a downshift of the spectral mean.
The second example is δ0 = 0.005, δ1 = −0.0025, i.e. when the wind dominates the con-

stant part of the forcing but is overruled by viscosity in the linear dispersive contribution.
These values are sufficiently small to guarantee the validity of the model (3) and the exper-
imental feasibility, see below and App. A. We start from a period-two orbit, ψ(0) = π/2.
The energy grows and is concentrated in η̄−1, which does not return to zero at each re-
currence cycle, while η̄0 is less affected, see Fig. 3(a). η̄1 oscillates instead with a constant
amplitude and is back to zero at each breathing period. Notice that the period of recurrence
is shortened at each cycle. η̄±2 oscillate quasi periodically as in the HONLS case. Thus
our truncation is still valid here, because only 3 sidebands take part in the evolution and
the others are forced to follow them, see the small deviation of N̄3 from N3 (or equivalently
N). Fig. 1(c), we observe that the period-two solution is thus attracted to oscillate around
a point in the phase-plane which corresponds to the original center of the HONLS (0, ηc)
(see Appendix C). We choose the phase of the initial conditions outside the separatrix,
such that a crossing to the other orbit is observed, demonstrating the attraction. An initial
condition inside the separatrix would stay inside and the attraction would not be apparent.
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In panel (b) we see that, analogously to the previous case, the average spectral shift points
downwards but it is weaker because of smaller value of |δ1|. The truncated model still pre-
dicts, in a qualitative way, both the monotonic increase of N3 and the oscillating decrease
of P/N . Both δ0 and δ1 contribute to a net forcing; the additional energy is concentrated
on η−1. This example is the only one where a parabolic correction of Eq. (3) has an effect:
the period of recurrence is 2% shorter and the accumulated downshift about 50% larger
(around ξ = 12.5), but not qualitatively different from Ωα, see the dotted line in Fig. 3(b).
It can be verified that these first two examples correspond to the results presented in

Ref.12.
Finally we explore the case where viscosity is negligible with respect to wind forcing

at both orders, i.e. δ0 = 0.01 and δ1 = 0.0025. The orbit is attracted from a period-
two [ψ(0) = π/2] to a period-one orbit (as in the previous case, every solution ultimately
crosses the separatrix), see Fig. 1(d); the period of recurrence is again shortened at each
cycle, Fig. 4. The energy is transferred to larger η̄−1 oscillations and an average growth
of η̄1, that does not return to zero, Fig. 4(a). η̄±2 still evolve almost unaffected. While
the oscillations of the spectral peak are wider, the spectral mean shows a clear upshifting
trend Fig. 4(b). This is consistent with the findings of Ref.18 and shows the importance of
properly defining the spectral shift: the apparent downshift of the peak is only temporary
and corresponds to the focusing points as predicted by the conservative HONLS, but a
permanent upshift of the mean is caused by wind.
We conclude this section with three remarks. First, even for Fig. 4, as far as the accuracy

of the three-wave truncation is concerned, N3 superimposes perfectly to N and, from the
plot of N̄3, at most 25% of the energy is converted to higher-order sidebands. We checked
(not shown) that a five-wave version of Eq. (5) better matches with the solution of (2) (from
50% to 30% underestimation of the peak P/N and from 25% to 10% overestimation of the
period of recurrence, analogously to what is observed in the NLS and HONLS cases25,35),
but at the expense of the availability of a simple phase-plane analysis.
Second, the need of a very long wave-tank, in order to observe many recurrence cycles, is

the main limitation to experimentally discriminate the three regimes; the longest tank we
are aware of is 200 m long9. As an example, for 0 < ξ < 15, L0 = 13.33 m, and the resulting
k0 = 7.50m−1. The resulting time scaling factor is then T0 = 1.649 s. We can derive that
for the example of Fig. 2, Γm = 1.78 × 10−3 [s−1] and ν = 1.17 × 10−5 [m2/s], for Fig. 3,
Γm = 5.18× 10−3 [s−1] and ν = 2.11× 10−5 [m2/s] and finally Γm = 1.26× 10−3 [s−1] and
ν = 1.77 × 10−6 [m2/s] for Fig. 4. The corresponding wind speeds are estimated to 2.78,
4.38, 2.40 [m/s] respectively10.
Third, we should not forget that in Eq. (1) the viscous contribution to boundary condi-

tions is derived in the linear limit for small k0 (gravity waves) and small viscosity5,6 and
the model of wind may be inaccurate if we enter in a turbulent regime.

V. CONCLUSIONS

We applied a three-wave truncation to study the recently derived forced/damped high-
order nonlinear Schrödinger equation for one dimensional gravity waves in deep water under
the concurrent effect of wind and viscosity. Damping and forcing are modeled in the fre-
quency domain by a homogeneous plus a linear term. The low-dimensional approach proves
effective to approximate the evolution of one unstable mode evolution. N3 perfectly matches
to the norm N and Ωα represents a good approximation of the spectral mean P/N , with
the advantage of evolving according to simple real closed-form ODEs.
These results allow us to classify the solutions of the damped/forced HONLS according

to two complementary parameters: the shift of the spectral mean and the topology of orbits
in the phase plane of a low dimensional dynamical system. A downshift is compatible with
a period-one attractor, if wind dominates the homogeneous contribution (in frequency), or
period-two attractor, if viscosity dominates at both orders. The elusive spectral upshift
coexists, instead, only with the attraction to a period-one orbit, if wind forcing dominates
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both constant and linear forcing terms.
The proposed analysis and classification is not model-specific and will allow to better

understand the role of wind-forcing and viscosity on water waves in very long tanks and to
guide the improvement of the available propagation models.
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Appendix A: A simple linear derivation of damping/forcing terms

We present here a simple derivation of the damping and forcing terms in Eq. (1), which
does not require to apply the method of multiple scales, as in Ref.18, but a simple linear
argument. It is well known and easy to verify that the linear part of the evolution equation
is derived from the dispersion relation ω(k), while the propagation equation of Eq. (1) is
based on k(ω); this explains the simple form of HONLS not involving dispersion corrections
of order higher than the second.

Viscous damping

We start from the well-known implicit equation for the dispersion relation under the
action of viscuous damping6,44

(

2− i
ω

νk2

)2

+
g

ν2|k|3 = 4
(

1− i
ω

νk2

) 1

2

.

The conventional dispersion relation, i.e. ω(k) ≈
√
gk−2iνk2, is obtained by neglecting the

right-hand side of the implicit equation. In the limit of small viscosity, νk2/ω ∼ O(ϵ2), we
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can easily invert the dispersion relation at order O(ϵ) as k(ω) ≈ ω2

g
+ 4iν ω

5

g3
. The damping

can be Taylor-expanded around ω0 as 4ν
g3
(ω5

0 + 5ω4
0Ω + 10ω3

0Ω
2 + . . .), where we identify

the first two terms with the homogeneous and linear damping in Eq. (1). The parabolic

damping term is thus δ̃D2 = − 40νω3

0

g3
in the dimensional equation and δD2 = − 20νk2

0

ω0

.

Wind forcing

According to Miles mechanism10, the extra pressure due to wind forcing divided by the
fluid density can be written as P

ρ
= γηx. It is possible to identify γ = ω0

k2
0

Γm, where Γm is

the growth rate at frequency ω0 defined above. The dispersion relation is now the solution
of the algebraic equation −ω2+g|k|+iγk2 = 0, where we neglect viscosity. For γk2 ∼ O(ϵ2),

we write k(ω) ≈ ω2

g
− iγ ω

4

g3
. The forcing is thus expanded as γ

g3
(ω4

0 + 4ω3
0Ω+ 6ω2

0Ω
2 + . . .).

As above, the first two terms correspond to homogeneous and linear (derivative) forcing in

Eq. (1). The parabolic correction to forcing, δ̃F2 =
6γω2

0

g3
, is adimensionalized as δF2 = 3Γm

ω0

.

Net parabolic damping/forcing

The balance of the two parabolic terms of damping and forcing allows us to extend Eq. (3)
to

g(Ω) = δ0 + δ1Ω+ δ2Ω
2,

with δ2 = δF2 + δD2 = T0ϵ(3Γm − 20νk20). The choice of δ0,1 in the text limits the total
damping of the unstable sidebands to 5%, i.e. exp(−δ2ΩMξ) > 0.95 at the end of the
wave-tank.

Appendix B: Evolution of moments

We mentioned in the text that the HONLS conserves only the norm N in the surface-
elevation formulation, while it conserves also P in the velocity potential formulation. We
recall also that in this latter case it conserves also the Hamiltonian E ≡ E0 − ϵE1, with
E0 = 1

2

∫∞

−∞

(
|aτ |2 − |a|4

)
dτ and E1 = i

∫∞

−∞
|a|2

[
2(a∗τa− aτa

∗)−H[|a|2]τ
]
dτ . Properly

canonical versions were derived, see27.
We report here briefly the evolution of the most important quantities (norm, momentum,

spectral mean) in the damped-forced model, in order to better compare to the approximated
results reported in the text, Eqs. (6c) and (7).
From Eq. (1) it is easy to obtain, for the dimensional quantities,

dÑ

dx̃
=

2k0
ω0

(
Γm − 4νk20

)
Ñ +

8k0
ω2
0

(
Γm − 5νk20

)
P̃

where Ñ ≡
∫∞

−∞
|A|2dt̃ = A2

0T0N and P̃ ≡ −Im
{∫∞

−∞
A∗
t̃
Adt̃

}

= A2
0P

dP̃

dx̃
=

2k0
ω0

(
Γm − 4νk20

)
P̃ +

8k0
ω2
0

(
Γm − 5νk20

)
Q̃− 4k30

ω0
R̃

where Q̃ ≡
∫∞

−∞
|At̃|2 dt̃ and R̃ ≡ Im

[∫∞

−∞
|A|2A∗At̃t̃ dt̃

]

. The spectral mean ω̃m ≡ P̃

Ñ
thus

evolves according to

d

dx̃
ω̃m ≡ 8k0

ω2
0

(
Γm − 5νk20

)

(

Q̃

Ñ
− ω̃2

m

)

− 4k30
ω0

R̃

Ñ
(B1)
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The first term in the right-hand side of Eq. (B1) is the effect of the fourth-order contribution
of wind and viscosity, the second one appears because of the symmetry breaking in the
surface-elevation HONLS.
We can write the same equations from Eq. (2) as well. They read as

Ṅ = 2δ0N + 2δ1P (B2)

which corresponds to Eq. (6d),

Ṗ = 2δ0P + 2δ1Q− 4εR (B3)

where we use Q = T0/A
2
0Q̃ and R = T0/A

4
0R̃.

The norm evolves according to

N̈ − 4δ0Ṅ + 4δ20N = 4δ21Q− 8εδ1R,

the form of which is identical to Eq. (7), where we identify the forcing proportional to δ21
and the small oscillating terms proportional to R.
Finally we derive from Eq. (B1) the evolution of the spectral mean (ωm ≡ P/N = ω̃mT0)

in normalized form:

ω̇m = 2δ1

(
Q

N
− ω2

m

)

− 4ε
R

N
, (B4)

which can easily be put in one-to-one correspondence to Eq. (6c).
We conclude that, while the space evolution of each quantity involves higher-order mo-

menta, the truncation gives us more transparent and closed form relationships among them.

Appendix C: Hamiltonian function of three-wave truncation

In the absence of forcing/damping, the HONLS for the velocity potential can be written

without the term 2a2 ∂a
∗

∂τ
in Eq. (2). We showed in Ref.25 that the three wave truncation

conservesN3 and α, thus the system is reduced—without loss of generality we letN3 = 1—to
a one degree-of-freedom system in the conjugate variables (ψ, η) with Hamiltonian function

(η̇ = ∂H
∂ψ

, ψ̇ = −∂H
∂η

), with Hamiltonian

H(ψ, η) = −
(
Ω2

2
− σ + ϵ4Ωα

)

η − 3

4
η2

+ ϵsΩη2 + σ(1− η)
[
η2 − α2

] 1

2 cos 2ψ (C1)

with σ = (1 − 2sϵΩ). The extrema of H correspond to the fixed point of the dynam-
ics. For α = 0 it is easy to derive the saddle point from which the separatrix emanates
(

ψ = ± 1
2 cos

−1
(

Ω2

2σ − 1
)

, η = 0
)

and the center
(

ψ ≡ 0 (mod π), ηc =
4σ−Ω2

3+4σ−4ϵ|Ω|

)

.
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