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Abstract. During the last decade the chaotic behavior in MEMS resonators have been reported in a number of works. Here,
the chaotic behavior of a micro-mechanical resonator is suppressed. The aim is to control the system forcing it to an orbit of
the analytical solution obtained by the multiple scales method. The State Dependent Riccati Equation (SDRE) and the Optimal
Linear Feedback Control (OLFC) strategies are used for controlling the trajectory of the system. Additionally, the SDRE tech-
nique is used in the state estimator design. The state estimation and the control techniques proved to be effective in controlling
the trajectory of the system. Additionally, the robustness of the control strategies are tested considering parametric errors and
measurement noise in the control loop.
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1. Introduction

Recently, a significant research effort has been devoted to the report and to the analysis of the chaotic behavior
in Microelectromechanical (MEM) resonators. Several works aim to provide design constraints for research, manu-
facturing or industrial applications of a simple Microelectromechanical System (MEMS), since many devices such
as microsensors and micromachines can be built from MEMS. Nevertheless, in some cases, chaotic behavior is
unavoidable appearing in the operation of MEMS, degrading the system’s performance [1-4,8,27].

A number of works can be found in the litterature attempting to suppress the chaotic behavior in nonlinear dy-
namical systems by driving the system to a periodic orbit in the state space. The State Dependent Ricatti Equation
(SDRE) and the Optimal Linear Feedback Control (OLFC) have been applied to chaos suppression in the following
works [6,10,11,19]. Additionally, the SDRE and the OLFC techniques also have been applied to chaos suppression
in MEMS [5,6]. Other techniques have also been applied in chaos suppression, such as the Robust Adaptive Fuzzy
Control [8] and the Fuzzy Sliding Mode Control [9].

The SDRE techique [12-15] is an effective algorithm to synthesize nonlinear feedback control by allowing nonlin-
earities in the state space equations with design flexibility provided by state-dependent weighting matrices [16]. On
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Fig. 1. Micro-mechanical resonator.

the other hand, the OLFC [17] considers the quadratic nonlinear Lyapunov function, explicitly expressing the form
of a minimized functional in order to solve the optimal nonlinear control design problem, fulfilling the sufficient
stability conditions [18,19].

Here, the SDRE and OLFC techniques are used to suppress the chaotic behavior of a simple microelectrome-
chanichal resonator. Additionally, a state feedback controller/observer is designed to suppress the chaotic behavior.
The SDRE technique is used to allocate the poles of the state observer, and the observed states are used by the state
feedback compensator in order to compute the control signal. In addition, the robustness of the control techniques
are tested to parameter uncertainties, by means of a sensitivity analysis.

The paper is organized as follows. The mathematical model of the MEM resonator is shown in Section 2, with
the Lyapunov exponents, Poincaré map and simulations results of the MEM resonator exhibiting chaotic behavior.
In Section 3 an approximate analytical periodic solution is obtained by the perturbation method. The control system
designs are shown in Section 4.

2. Micro-mechanical resonator mathematical model

The MEM resonator considered in this work is shown in Fig. 1 as consisting of a movable plate between two
fixed plates (see [9]). The voltage V' (¢) applied to the movable plate is composed of a polarization voltage V},, and
an alternating voltage V; sin(wt).

In Fig. 1 d is the distance between the plates, & is the conservative spring force coefficient, whereas (in Eq. (2)) k3
and ko represente the linear and nonlinear spring force coefficients, x is the lateral movement, m is the front panel
mass, AC is the polarization voltage (V},) and DC is the alternating voltage (V; sin(wt)).

The equation of motion of the central plate is given by:

mi = —F, — F.+ F. ey

where F}, is the conservative spring force, F, is the force due to damping effects and F is the electric force.
The mechanical forces [6] are given by:

F, = kiz + ksa® (2)
F.=ci €)

and the electrical force [20] by:

Co s (Vo +Vi sin(wt))® —

1% Co__ya
2 (d—x)

1
F, = -0y
2(d+x)??

“)
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where () is the capacitance of the parallel plates.
From the foregoing equations the MEM resonator equation of motion is given by:

Co Co 2

1 1
i+ i+ ko + ksa® = 2 —— (V, 4 V;sin(wt))? — = —2—_V?2, 5
mé + ¢t + kix + ksx 2<d_w)2(p+ sin(wt)) ACETIEL 3)
: : : : w 2 k z c kad? CoV?
and considering the following relations [8]: w = =, t = wol,wj = Fu= G, = o= a3 = 2= 7 = 55,
0
and 0 = 2"(/—‘/1', the dimensionless equation of motion is given by:
u + w4 oz =y ! - ! + 2 sin(wT) (6)
° 1-uw? (1+u?) (1-u)? '
Defining the state variables as:
y1=u (7
Y2 =/ ®)
the dimensionless equation of motion Eq. (6) is transformed into the state space equation:
Y1 = Y2
1 1 o (€))
! = e — Y1 — sy + ( — )—|— sin(wT’
Vo= i = - Y (T 5 T w0 ) T T (wT)

The system of Eq. (9) has been studied in [8,9], showing chaotic motion for the set of parameters ;1 = 0.01,
as = 12, v = 0.338, 0 = 0.03558 and w = 0.5, as it can be seen in Fig. 2. The plate displacement is shown
in Fig. 2(a) and the phase portrait in Fig. 2(b). In Fig. 2(c) it can be seen that the system has a positive Lyapunov
exponent. In Fig. 2(d) the Poincaré map is shown.

From Fig. 2 it can be seen that the MEM resonator system presents chaotic behavior. In order to suppress the
chaotic motion the control system drives the system to a previously determined periodic orbit. That periodic orbit is
determined by the perturbation method in the next section.

3. Analytical solution

In order to obtain the approximate analytical solution the multiple scales method is used as described in [21].
However, to simplify the mathematical reasoning, the rational terms in Eq. (9) are replaced by a polynomial function,
around the equilibrium point. The techinique follows [25,26] due to the fact that the van der Waals force is highly
nonlinear, it is written in terms of the Taylor series expation, considering the constant, the linear, the cubic and the
quadratic terms. This approach simplifies the mathematical reasoning, when applying the perturbation techniques,
and the analysis of the damping and elastic constant parameters, since the cubic and quadratic terms are easier to
handle. However,

Here, the polynomial approximation [22] minimizes the error functional

0.5
7= [ 15w - P du (10)
—0.5
resulting in the following approximations:
1 1
- = 11.0263u> + 0.0674u? 11
(1—w)? (Q+u)? ut b an
1
> = 6.426u” + 4.498u” 4 1.8525u + 0.9585. (12)

(1 -u)p?
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Fig. 2. Micromechanical resonator dynamics without control.

Replacing Eqs (11) and (12) into Eq. (6) results:
u” 4 '+ u+ agu® + azu® = agu® sin(wT) 4 asu? sin(wT) 4 agu sin(wT) + f sin(wT) (13)

where a2 = —0.0228, asz = 8.2731, ag = 0.2286, a5 = 0.16, ag = 0.0659, f = 0.0341 and p = 0.01.
The multiple scales method is used to find an analytical solution of Eq. (13). This is done for a balance of order
as follows [6,7]:

u” +u+ epu + Eagu® 4 azu® = agu’ sin(wT) + 2asu? sin(wT) + 2agusin(wT) + fsin(wT) (14)

where € is the parameter responsible for this balance [21]. Considering the scales Ty = T and 11 = €7, the solutions
are sought in the following way:

u:uO(To,T1)+€U1(T0,T1)+"' (15)

Since the independent variable T was replaced by the scales Tj and 77, the derivatives with respect to 7' should
be expressed in terms of partial derivatives, such that:

d
- =D0+6D1+~-~
dr
o (16)
-3 = D3 4 2eDoDy + - --
Replacing Eq. (15) into Eq. (14) and considering the derivatives of Eq. (16) results:
(Dg + 26DOD1)(U0 + E’ul) + E[J,(DO + EDl)(’uO + E’ul) + (UO + 6,&1)
+ e2ag(ug + eur)? + eaz(uo + eur)® — €2ay(ug + euy)? sin(wlp) (17

— 2as(uo + euy)? sin(wTy) — €2ag(ug + euy) sin(wTy) — fsin(wTp) = 0
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Since a second-order periodical solution is wanted, only the terms with €? and €! are extracted [7], yielding:
e : D2uo + up = f sin(wTy) (18)
el D%ul 4+ u1 = —2DogD1ug — pDoug — agug. (19)

A possible solution for Eq. (18) in polar form is:

ug = A(Ty)e™ + Ae™ ™o 4 cc (20)
where
A= %aeiﬁ 2D
/
A= —" .
2(1 — w?) (22)

Replacing Eq. (20) into Eq. (19) results:

D3uy 4 auy = — i(2A" 4+ pA)e™ +i(2A" + pA)e™ 0 — ipwe™ ™0 + jpwe 7o

. . _ _ 3 (23)
—as [A(Tl)elT“ + AetTo 1 A(Ty)e 0 4 AeﬂwT“] )
Eliminating the secular terms in Eq. (23) results:
2iA" + i A + 3az(AA +2A%) = 0. (24)
Replacing Eqs (21) and (22) into Eq. (24) results:
a =0
3aza®?  3aza® (25)
/8/ = ﬂ + ﬂ COS(2B)
8 2
where 3 is computed numerically by integrating Eq. (25). A solution for w is given by:
Af
u=acos(T + B) + > sin(wT) (26)

where a = 0.2, = 1.8228, f = 0.0341 and w = 0.5.
Equation (26) is the sought periodic orbit.

4. Nonlinear control design
In this section the control system is designed aiming to suppress the chaotic behavior observed in Section 2. This
is accomplished by determining the control signal U that carries the system e(t), from any initial state, to the final
state:
e(c0) = 27
with

1" (28)

e=y—-y=[yi—% y2— 12

where ¥ (t) is the vector of the desired orbit, and y(¢) is the state space representation of the system of Eq. (6).
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4.1. Aplication of the OLFC technique

In this section the state space model of the MEM resonator in Eq. (9) is considered with the control law U, and is
described by:

Y1 =12
4 (v + 20 sin(wT) + yrosin(wT)) y1 o . (29)
/ 3
Yo = —HY2 — Y1 — Q3yy + + sin(wT') + U
SR 1=y =y
with
U = 1o + uoy (30)

where ug is the feedback control and 1 is the feedforward control.
Considering

4 (v 4 20 sin(wT) + g10sin(wT)) 71 B o
11— 33)? (1-g)

and replacing Eq. (31) into Eq. (30) and considering Eq. (28) results:

o = Gy + pij2 + G1 + a3y — sin(wT) (31)

el = es

(4 + 20 sin(wT) + (e1 + g1)o sin(wT)) (e1 + 1)

(1—(e1 +71)?)?
4y +20sin(wT) + yrosin(wT)) g o sin(wT) —
-3 Tt e ne?)

The system of Eq. (32) can be written in the following way:

eh = —pes —e1 — az(er +§1)° + azf + (32)

g .
m Sln(’lUT) + ’LLOf.

e = Ae+ G(e,y) + Buys (33)

where
0 1
A= [1H}, (34)
0

B - M , (35)

and
0

ot — )3 4 i (%3 +sin(@T)(2+ (g1 — 51))) o(yr — 51)
Gle,y) = o =g+ o+ 0 (o~ )
4 (v 4 20 sin(wT) + y10sin(wT)) 71 o

1-57 ’ ((1 A I ERG —Ug%w)

sin(wT)
(36)
According to [18,19], if there are matrices Q, R and P, such that:

Q=Q-G%(e,z*)P — PG(e, z*) (37)
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is positive definite, then the control signal u, s is optimal, minimizing the cost functional:
o ~
J = / e’ Qe + quRuofdt (38)
0

and transfers the nonlinear system from any initial condition to the final state of Eq. (27). The matrices Q, R and P
are the error weighting matrix, the control signal weighting matrix and the Riccati solution matrix, respectively.
The control signal u, is determined by the equation

u,; = —R'BTPe = —ke (39)

where P is the solution of the algebraic Riccati equation

PA+ AP -PBR 'B"P+Q=0. (40)
Considering
102 0
R=[1077], (42)

and solving the LQR problem using Matlab™, results:
1,y = [—99.005 —100.975] e. (43)

The simulation result for the OLFC technique is shown in Fig. 3, comparing the controlled and the uncontrolled
phase portraits (Fig. 3(a)). Additionally, the error function e and the quadratic error function L(7T') = e’ Qe, where
Q is computed from Eq. (37), are shown in Figs 3(b) and (c), respectively.

It can be noticed from Fig. 3 that the OLFC effectively drives the MEM resonator to the periodic orbit obtained
from the multiple scales method (Eq. (26)), suppressing the chaotic behavior.

4.2. Aplication of the SDRE technique

In this section the SDRE is applied to the problem of chaos suppression for the MEM resonator. The dynamic
system of Eq. (29) rewritten in the following form:

y =A(y) +BU, +F(y,T) (44)

T . . . . A
where y = [yl yg} is the time dependent state vector, y’ € R? is the states first order time derivatives vector,
U, = u,s + 1, is the control signal, usy is the feedback control signal, 01, is the feedforward control signal, and

0 1
Aly) = g (4~ + 20 sin(wT) J2r2ylcr sin(wT)) | (45)
L (1 —wi)
[ 0
F(y,T) = | osin(wT) | . @7
L (1—97)?
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Fig. 3. OLFC simulation results.
The cost function for the regulator problem is given by:
[
=3 | YAy +ul R (48)
0
where Q(y) is a semi-positive definite matrix, and R(y) is positive definite.
Assuming full state feedback the control law is given by:
u;s = —R'(y)B" (y)P(y)y = —k(y)y, (49)
where P(y) is the solution of the SDRE, given by:
AT(y)P(y) + P(y)A(y) - P(y)B(y)R"'(v)B" (¥)P(y) + Q(y) = 0. (50)
Defining the feedforward control signal as:
0
U= | osin(w?) |, (5D
(1—97)?
and replacing Eq. (51) into Eq. (44), results:
y = A(y) + Buyy. (52)
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Fig. 4. SDRE simulation results.

Choosing Q and R according to Eqs (41) and (42), and solving the LQR problem using Matlab™, the control
signal Bu, that drives the system to the desired periodic orbit can be computed.

The simulation results for the SDRE technique can be seen in Fig. 4. The SDRE technique also have been effective
to suppress the chaotic behavior in the MEM resonator.

4.3. Controler — observer design

In this section a controller — observer is designed to suppress the chaotic behavior of the MEM resonator. Consid-
ering the system of Eq. (52) represented in the following form:

¥ =A(y) +Bi e
z=Cy (54)

Assuming that the state y can be approximated by the state ¥, such that

y' = A(y) + Bi — Ko(y)(Cy — Cy) (55)
2=Cy (56)

with
i=-RYy)B"(y)P(y)y = —k3)3, (57)

where P(y) is the solution of the SDRE Eq. (50). Equation (55) represents the state observer. The last term of the
right-hand side of Eq. (55) is a correction term involving the measured output and the estimated output signal.
Subtracting Eq. (53) from Eq. (55) yields the observer error, given by:

e = (Ay) —Ko(¥)C0)y — (A(y) - Ko(¥)C)y (58)
where
=y -y (59)
The dynamic behavior of the error vector is determined by the eigenvalues of the matrices:
(Aly) —Ko(¥)C) (60)
(A(y) — Ko(¥)C) (61)
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If the eigenvalues of the matrices Eqs (60) and (61) have negative real part, then, for any initial error the estimation

error will tend to zero over time. That is, § — y for any y(0) and (0).
Therefore the choice of the weighting matrix K (y) must be such that the matrices Eqs (60) and (61) are stable.

The matrix K(y) can be obtained by considering the optimal feedback gain [24] given by:

Ko(y) = P(3)CHR () (62)
where P (¥) is the solution of the SDRE, given by:
P(y)AT(y) + A()P(¥) - P(¥)CT (1R ()CHIPE) + QF) = 0. (63)
The cost function is given by:
I U P
J=3 / ¥y QE)y + o' R(y)adt (64)
to
where Q(¥) is a semi-positive definite matrix, and R(y) is positive definite.
Considering
102 0
Q [ 0 102] ! (65)
A 103 0
R=R=[1077], (67)
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The state observer and the controller can be obtained. As it can be seen in Fig. 5 the proposed state observer
for nonlinear systems is effective in suppressing the chaotic behavior in the MEM resonator. Additionally, using

the SDRE to compute the matrix Ko (¥) generated stable matrices Eqs (60) and (61), resulting that the observer
converge to the actual state.

4.4. Control system performance in the presence of parametric errors and measurement noise

Mathemematical models frequently present parametric uncertainties and are affected by measurement noise. In
this section the performance OLFC, SDRE and state observer techniques are compared in the presence of parametric
errors and measurement noise. The parameter uncertainties and the measurement errors are introduced in the system
through a data set, as proposed by [23]. To test the effect of parameter uncertainties on the performance of the
controller, the parameters in the control system will be added to a random function generating errors up to + 20%
of each parameter.

On the other hand, the effect of measurement noise on the performance of the controller is tested by adding to the
control signal a sinusoidal function with random frequency and amplitude, given by:

noise = Y(T) sin(wT) (68)

where ¢(T') = 0.05 £ 0.002r(T"), @(T) = 0.5 £ 0.027(T"), and r(¢) is a normally distributed random function.
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As it can be seen from Figs 6(a) and (b) the OLFC technique presents better response when the system is not
subject to parameter uncertainties and noise measurement. On the other hand, Figs 6(c) and (d) show that the SDRE
is more robust when the system is subject to parameter uncertainties and noise measurement.

In Fig. 7 the performance of the state observer design is tested for the same parametric uncertaities, as in the
OLFC and SDRE cases. Figure 7(a) shows the error response of the perturbed system. In Fig. 7(b), the eigenvalues
of the matrix A(y) Eq. (45) can be seen, and despite the peturbation over the simulation time, the have negative
real parts, assuring stabe error response. Additionally, from Figs 6(a) and (b), it can be seen that the state observer
presents the same performance as in the case without parametric uncertainties.

5. Conclusion

Three control techniques are used to suppress the chaotic behavior present in a simple MEM resonator, namely: the
OLFC, the SDRE and an observer-controller designed with the SDRE. The three techniques proved to be effective
in suppressing the chaotic behavior. Additionally, the OLFC, SDRE and state observer methods were tested in
the presence of parameter uncertainties and measurement errors, the results pointed out that the SDRE is more
robust in this case. Also, the techniques allow the design of the controllers and of the observer without the need of
linearization.
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