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Abstract

We consider a nonlinear one-dimensional Stefan problem for a semi-infinite material
x > 0, with phase change temperature T'y. We assume that the heat capacity and the
thermal conductivity satisfy a Storm’s condition and we assume a convective boundary
condition at the fixed face + = 0. An unique explicit solution of similarity type is
obtained. Moreover, asymptotic behavior of the solution when h — 400 is studied.
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1 Introduction

As in [4, 8, 10] we consider the following one phase nonlinear unidimensional Stefan problem
for a semi-infinite material x > 0, with phase change temperature 7%

s(T)%—f:%{k(T)g—ﬂ , O0<oz<X(t), t>0, (1)
k(T(O,t))g—Z(O,t) = %[T(O,t)—Tm] ,h>0, t>0, (2)
T(X(t),t) =Ty, (3)

*All correspondence concerning this paper should be sent to first author.
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k(Tf)g—Z(X(t),t) —aX(t), t>0, (4)

X(0) =0 (5)

where the positive constant « is pL, L is the latent heat of fusion of the medium, p is the
density (assumed constant), T, is the temperature of the medium 7,,, < T'(0,¢) < Ty and hyg
is the positive heat transfer coefficient.

We assume that the metal exhibits nonlinear thermal characteristics such that the heat
capacity ¢,(7') > 0 and the thermal conductivity k(7') > 0 satisfy a Storm’s condition

1,2,5,6,7,9]
d ( S(T)>
aT %(T)

s(T)

=\ =const. >0, (6)

where s(T") = pc,(T).

Condition (6) was originally obtained by [9] in an investigation of heat conduction in
simple monoatomic metals. There, the validity of the approximation (6) was examined for
aluminium, silver, sodium, cadium, zinc, copper and lead.

In [7] the free boundary problem (1) — (6) (fusion case) for the particular case k(T') =
pc/ (a+bT)* and s(T) = pe = constant was studied. The explicit solution of this problem
was obtained through the unique solution of an integral equation with time as a parameter.
A similar case with the constant temperature at the fixed face x = 0 was also studied.

In [2] two nonlinear Stefan problems analogous to (1)—(5) with phase change temperature
Ty and the Storm’s condition (6) are considered. In one case a heat flux boundary condition
of the type q(t) = % and in the other case a temperature boundary condition 7" = T, < T}
at the fixed face x = 0 are assumed. Solutions of similarity type are obtained in both cases
and the equivalence of the two problems is demonstrated.

The goal of this paper is to determine the temperature T' = T'(x,t) and the position of
the phase change boundary at time ¢, X = X (t), which satisfy the problem (1) — (6) . In the
section 2 we show how to find a unique solution of the similarity type for this problem. In
Section 3 we study the asymptotic behavior when h — +00. We prove that the solutions
T = Ty(z,t), X = Xu(t) of (1) — (5) converges to the solution T' = Tio(z,t), X = Xo(t) of
an analogous Stefan problem with temperature condition 7'(0,¢) = T,, when h — +oo0.

2 Existence and uniqueness of the solution to the Ste-

fan problem with convective boundary condition on
the fixed face

We consider the problem (1) — (6) and we propose a similarity type solution given by [2, 3, 4]

X

T(x,1) = 20) . €= % (7)




where

X(t)=~/27vt ,t>0

is the free boundary and ~ is assumed a positive constant to be determined.

Then we have that the problem (1) — (5) is equivalent to

F(®)D"(€) + K (®)22(5) +7s(P)P() =0 , 0<E<1,

k(®(0))®'(0) = ha/27[®(0) — T, ,
o(1) =Ty,
kE(@(1))®'(1) = ay .
If we define

then a parametrization of the Storm condition (6) is

1 dy Ly

@) =3z =30

and then we have that the following problem is equivalent to (9) — (12)

% Z—fz—g =0, 0<¢<l
Y (0) = —=\hy/2y [P(y(0)) — T]
y'(1) = —a\y,
k(T
y(l) =0 = S(Tf) .

k

PR

where P is the inverse function of the decreasing function

Lemma 1 A parametric solution to the problem (15) — (18) is given by

Fuy (1)
Fuo (ul)

§=pi(u) =

I ORICED)

Yy = SDQ(U) = Fu (ul)

ug < u < uy
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where the function F,, = F,,(u) was defined in [2] as follow

u

2
’LL2 22 exp(fﬁ) - u u
Fuy(u) = exp(—13)+u /GXP(—7)dZ — | = y/Eu [9 (75 \/L%) -9 ( 5 Um

uo

where ug, uy are the parameter values which verify that £ = p1(up) =0 and £ = v1(uy) = 1,

exp(—a?)

g(z,p) =erf(z)+p . p>0,2>0

and N
erf(x) 2 /e p(—2*)dz, z >0
= — X — 5 .

VT 0

The unknowns v, ug and uy, must verify the following system of equations

uo = V2\h [P (M> - Tm] ,

(o Fry (us)]?

ie exp(—4)
Vb))

 —exp(—%)

N A F ()

Proof. A parametric solution of (15) was deduced in [4] and it is given by

u

u? z?
¢ = ¢i(u) =0y exp(—?) +u /exp(—?)dx + 4
0

u
2

i
v = a0 = viC: | [exp(= )zt Cr | ux0
0

where ('] and (5 are integration constants to be determined.
We choose ug and u; be such that ¢1(ug) = 0 and ¢1(u1) = 1, we obtain that

uo

_u 2
C, = _exp(—5) /exp(—%)dx :

Ug

ul

fad 2
Ca= e +ur [ -T2y [exp(- Ty

ug

(21)

(27)

(28)



Then, we have

and

y = pa(u) =

that is (15) — (18).

Next we prove that the unknowns ug, u; and v must satisfy (22) — (24). From (29) and

(30) we have
J(e) — Bl Viexp(—%)
¢ (u) fexp(—%)dx _ exp(=)

uo

ug
then

y'(0) = —v/yuo
and taking into account that

w2
_ —Feap(~)
UOFuo (ul)

y(0)

and from (16) we have (22).
Analogously we have

and by (17) we have

(31)

(32)

(33)

(34)



that is (23).
Last, we have

ﬁ{—ﬁ +f exp(—ﬁm}
uQ 2

y(1) = po(u) = ;
U2 ex —m T
exp(—3) + u (_p(u_og) + [ exp(—é)dz)

and taking into account (18) and (23) we obtain (24). W

Next we want to find ug, u; and v the solutions to the equations (22) — (24). We can
rewrite the system (22) — (24) as follow

ot (o Tm> _ eap(—u}) %
R R o 0
exp(—3)
VA = 2 (37)
S (8) -1 ()
M (uy) :9(\1%,%) (38)
where . )
e =2 (75 7% (o +) )
Lemma 2 The real function F,, and M satisfy the following properties:
Fuo (uO) =0 ) F (+OO) =0 (40)
F;O(x):g{erf (&) -9(%%)} <o (41)
M(0) = +o00, M(400)=1 and M'(z) <O0. (42)

Proof. See [1] and [2]. W

Lemma 3 (Existence of the solution)
There ezists a solution of the system (36) — (38) given by

om0 o3 )
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where g 15 a solution of

o o _ yexp(—ug)
e caTes))

N

Proof. Because M is a decreasing function there exists the inverse function M1 and from
(38) for each ug there exists a unique u; given by

s (o3 5)
If we replace (46) in (37) and (36) we have
exp(—uj(uo))

2
u2 ul(uO)
a?\? (—eXp(u_OQO) — f exp(—%)dm)

uo

and

P ( U o ) _ uwg)ezp(—ug) (48)
" (o Py (w1 (up))]
We define the function

G(ug) := P (jg;M + Tm)

which satisfies G(0) = £(T;,,) and G'(uo) < 0, and let

H(uy) = V(Uo)exp(—ug)2_
[0 Fug (w1 (u0))]

From (24), (46) and (47) it follows that
2yiexp(—uj)
25
o2 7
i s (") < (3 )
H(0) = y?, H(+00) = +oc and H (ug) > y?, Vuy > 0.

k k
Since T, < Ty we conclude G(0) = — (T, > —(Tf) = yi = H(0). Taking into account
s s

that the properties of G and H there exists @iy < u = (T; — T,,) v/2hA which satisfies (48).
Then by (46) and (47) we complete the solution @3 = u1(dy) and J-y(@g) to the system
(36) — (38) . m

H(Uo) =

Sk



Lemma 4 (Uniqueness of the solution)
The solution (g, u1,7) to the system (22) — (24) is unique.

Proof.  Suppose the assertion of the lemma is false. That is there exist two solutions
(ﬂo, ﬁ'l?’?) and (Ug;UTaV*) to (22) - (24)

We assume that @y < uf, then by (19) we have
Fua(u) _ Fﬂo(u)
Fug(ui)  Fao(@)’

*
0

£ = for uy < u < min(ty,uy). (49)

O ¥

For u = uj we have
0= Fug(ué) _ Fﬁo(ué)
Fuy(ui)  Fa ()

*
0

(50)

then Fj,(ug) = 0. This is a contradiction because Fy,(ug) = 0 if and only if u = 7,. W

Theorem 5 The problem (1) — (6) has a similarity type solution given by

Tla,t) = P (o2 (61 (@/X(1)))),  0<w<X(1) (51)
where
X(t)=+/2t, t>0 (52)
1s the free boundary, -
i) = 2 (53
ViV et (3) -9 (%
ity - 2 gﬂ)) (3] o

(g, U1,7) is the unique solution of (22) — (24) and P = (f)_l is the inverse function of the
function f
Proof. Fixed the data: a, A, h, Ty of the problem (1) — (6), we obtain the solutions of
the equations (22) — (24) given by (43), (44) and @y is the solution of (45).

Next, we obtain ¢; and ¢ given by (53),(54) respectively and the free boundary is
X (t) = \/27t. Taking into account that ¢; is an increasing function we determine ¢ * <%> :
Finally, we invert the relation (13) and from (7) we obtain (51). W

Remark 1 Si T(0,t) = Ty is constant, the convective condition (2) at the fized face v =0
of the problem (1) — (6) becomes a Neumann boundary condition given by

KI(0,1) 20 (0.1) = 2 (55)
with
qo = ]’L[TS — Tm]

The Stefan problem (1) — (6) with the condition (55) instead (2) was studied in [2).



3 Asymptotic behavior of the solution when A — +o0

Let h > 0 and T = Tj,(x,t), X = Xp(t) denote the solution to the problem (1) — (6) given
by (51) — (54). We will study the behavior of this solution when the transfer coefficient
h — 4o00. We will prove that T}, X} converges to the solution T, X, of the following

(iT (3 (}T
k

with the Storm’s condition

+(/E)
ar \ \/ ®(T)
ALAVED) _
s(T)
The problem (56) — (61) was studied in [2]. The solution is given by

Too(z,t) =P ((90200 (¢70s (17/Xoo(t))))2)

Xoo(t) = /290t

where Fo (1)
S )
_vvELer () o (3 35)]
Pl = o)

with vg < u < v;. The parameters vy, v; and 7, satisfy the following equations

’1)2
Fyo(v1) — exp (—71)

yl IV /YOO ’U]_FUO (’Ul>
— Ul
Yoo = 1+ Oé)\yl
: e

E(Tm) =Y = —\/VTOW

(62)

(63)

(64)

(65)

(66)

(67)

(68)



which are equivalent to

S(Tm) = H(vo) = . [e?“f <M1(29y(j§%ajpﬂ(>_)1§) g (v_oz’ \/%ﬂz o
exp(—75)

For simplicity of notation, we wright (uopn, u1n,vn) instead of (@op, @1n,Jn) which is the
solution of (36) — (38). Firstly we will prove that (uop, s, v,) converges to (vg, v1, Yeo) When
h — +o00. The proof of this statement is based on the following lemma:

Lemma 6 The sequences {ugp}, {uin} and {y,} are increasing and bounded. Moreover

lim g, = vo, lim wp =v1, and lim v, = Yoo
h—+o0 h—+o0 h—+oc0

Proof. From properties of function G = Gj,(z) = P! (ﬁ + Tm> we have

a) hy < hy = Gp,(z) < Gpy(z), Vor>0

b) Gp(z) < %(T,,), VYo >0, h>0.

We consider hy < hs , if ugp, and ugp, are the solutions of Gy, () = H(x) and Gp,(z) =
H(x) respectively, by a) and properties of function H we have that wug,, < uop,. Moreover
from b) results ugp, < vg for all A > 0 . Then, {ug,} is an increasing bounded sequence and
there exists g such that

lim  wug, = p.
h—+o00
Letting h — +oo on Gy, (uon) = H (uop) yields £(T;,) = H (). By uniqueness of the solution
of (69) results 1y = vy.
From (38) we have

e (33 2)

Because {ugp} is increasing, M and g are decreasing functions we have that the sequence
{uyp} is increasing. Moreover taking into account ug, < vg and (71) follows

e (3 2) 2 6 ()
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for all A > 0.
By (72) we obtain

im g — T M (g (M 2N (g (e 1Y)
= (35 )4 (G )

Finally, letting h — +o00 in (37) we have

li = Yoo-
h—lgloo Th = Yoo
It follows easily of (37) and (38) that /v, = % Taking into account uy, < v; we
AAY1
have ny oy
1hY1 191
o < =17 VYh>D0.
= +aly; T 1+ aly; 7
|

Corollary 7 Foreacht > 0, the sequence {X,(t)} is monotonically increasing and hlim Xn(t) =
—400
Xoo(t).

We can now define an extension T, = T(z,t) € C' [0, Xoo(t)] of Tj(z,t) as follows
Th(ZE,t) Zf 0<z< Xh(t)
Th(l',t) = ar/2 (73)
V4Th .
———— (= X,())+ Ty if Xp(t) <z < Xo(t

. T)
Lemma 8 The functions T}, € C' [0, X (¢))] satisfy |%| < M on [0, Xoo(t)] for all h > 0,
x
t>0.

Proof. Let ¢ >0 and z € [0, Xoo(t)].
If z € [Xp(t), Xoo(t)] then

yﬁfh(x,t)‘ /29
Or ' 2k(THVE

For otherwise, this is « € [0, X}(¢)) according to (7) and (13) we have

Pte = (i (xtm) 2 (i) . (i) w0
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k
Since — is decreasing and T, < Tj(x,t) < T, from (13) we have y; < y, (X:(t)> < %o,
s
for all ~ > 0. From (6) follows that

1
/ 2 T
P (i (=) 1< prrs

where k,, = min{k(T),T,, <T <Ty}. Taking into account (29), (30), (53) and Lemma 6

we have
1

- 1
v (x5) X0 vat|L-erf (%)
Then for x € [0, X (¢)) results

|8Th(x,t)| < Yo
Oz Mkt [1 —erf <%)] .

Summaring, for all h > 0 and = € [0, X (t)] we obtain

OTat) | oo "
O 2k(Ty)Vt M1k /it [1 —erf (\%)}

and this precisely the assertion of the lemma. W

Lemma 9 We have hlim Th(z,t) = Too(z,t) for each t >0 and = € [0, Xoo(1)] .

—+00
Proof. Lett > 0and x € [0, Xo(?)). By Corollary 7 there exists ho = ho(z) > 0 such that
x € [0, X (t)] for all h > hg. We consider Tj(z,t) for h > hy we have

Ty, t) = Tl t) = P ( (s (57 (2/X0(0))))°) (74)

Taking into account Lemma 6, Corollary 7, (53) and (54) we obtain that the sequence
{Th(,t)} converges to T (x,t). If & = Xo(t) then Tj,(Xoo(t), ) = T = Too(Xoo(t), 1)

Hence, the sequence {T}(z,t)} converges to T (x,t) pointwise on [0, Xoo(t)] for each
t>0.

Theorem 10 For each t > 0 we have the family of functions {Th} converges uniformly to
T for h — 400 on [0, Xoo(1)].

Proof. By Lemma 8, for any ¢ > 0 the functions T}, (x,t) are equicontinuous on [0, X (t)]
and from Lemma 9 converges pointwise to T (z,t) for h — +o0. Then, by Ascoli Arzela
lemma we obtain their uniform convergence on [0, X (t)]. ®
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4 Conclusions

One phase nonlinear, one-dimensional Stefan problems for a semi-infinite material x > 0,
with phase change temperature 7y has been considered with the assumption of a Storm’s
condition for the heat capacity and thermal conductivity and a convective condition at
the fixed face. Existence and uniqueness of a similarity type solution has been obtained.
Moreover, the convergence of this problem to problem with temperature condition at the
fixed face when h — 400 has been proved.
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