
Nonlinear stick-spiral model for predicting mechanical behavior of single-walled carbon

nanotubes

Jingyan Geng and Tienchong Chang*
Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, People’s Republic of China

�Received 31 July 2006; revised manuscript received 31 October 2006; published 26 December 2006�

Based on a molecular mechanics concept, a nonlinear stick-spiral model is developed to investigate the

mechanical behavior of single-walled carbon nanotubes �SWCNTs�. The model is capable of predicting not

only the initial elastic properties �e.g., Young’s modulus� but also the stress-strain relations of a SWCNT under

axial, radial, and torsion conditions. The elastic properties, ultimate stress, and failure strain under various

loading conditions are discussed and special attention has been paid to the effects of the tube chirality and tube

size. Some unique mechanical behaviors of chiral SWCNTs, such as axial strain-induced torsion, circumfer-

ential strain-induced torsion, and shear strain-induced extension are also studied. The predicted results from the

present model are in good agreement with existing data, but very little computational cost is needed to yield

them.
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I. INTRODUCTION

The amazing mechanical properties such as exceptional
high stiffness and tensile strength of carbon nanotubes
�CNTs� make them highly potential and ideal candidates for
multifarious applications including super-strong materials
and nanomechanical devices.1–3 Much efforts have been
made to investigate the mechanical properties of CNTs be-
cause a clear understanding of these properties is essential to
ensure the optimum performance of CNTs in potential appli-
cations.

There are many experimental studies that gave direct
proof of the exceptional mechanical properties of CNTs. By
investigating vibration frequencies of cantilevered CNTs

within a transmission electron microscope �TEM�, Treacy et

al.4 obtained the Young’s modulus of multiwalled carbon

nanotubes �MWCNTs� in the range from 0.4 to 4.15 TPa,

with a mean value of 1.8 TPa; Krishnan et al.5 found the

Young’s modulus of single-walled carbon nanotubes

�SWCNTs� varying from 0.9 to 1.7 TPa;5 Poncharal et al.6

reported the Young’s modulus of about 1 TPa for small di-

ameter MWCNTs, while for the MWCNT with large diam-

eters, the Young’s modulus would be dramatically reduced

up to 1 order because of the presence of rippling. By analyz-

ing the bending behavior of MWCNTs which were manipu-

lated by an atomic force microscope �AFM�, Wong et al.7

obtained an average value for the Young’s modulus of

1.28±0.59 TPa and Salvetat et al.8 obtained a value of

0.81−0.16
+0.41 TPa, with no distinct dependence on the tube diam-

eter. Yu et al.9 directly applied axial tensile force on both

ends of a MWCNT using two AFM tips, and measured the

Young modulus ranging from 0.27 to 0.97 TPa and the ulti-

mate strength of the outmost layer varying from

11 to 63 GPa. A unique failure mode of the MWCNT

�“sword-in-sheath”� was first observed in the work. Another

direct measurement performed by Demczyk et al.10 indicated

that the ultimate strength of a MWCNT is about 150 GPa,

and a value of 0.97 TPa derived for Young’s modulus from a

bending test was also reported.

Theoretical studies may provide more detailed informa-

tion than an experimental investigation because a simulta-

neous measure of both mechanical behavior and structural
details �such as the chirality� of a CNT remains a challenge
to date. Two categories of theoretical approaches, namely the
bottom-up approach based on quantum or molecular me-
chanics and the top-down approach based on continuum me-

chanics, are frequently used to study mechanical properties

of nanostructured materials. Most of bottom-up approaches

need a numerical procedure, such as molecular dynamics

simulations, whereas many top-down methods are capable of

giving analytical solutions to the problems considered.

Elastic properties and mechanical behavior of CNTs have

been extensively studied by bottom-up calculations,11–37 in

which some studies paid special concerns on the effect of the

structural details. Based on the Tersoff-Brenner potential,

Robertson et al.11 predicted by molecular dynamics that the

elastic constants along the tube axis generally soften with

decreasing tube radius. Similar results were reported in tight

binding calculations by Hernandez et al.,12 ab initio calcula-

tions by Sanchez-Portal et al.,13 lattice dynamics calculations

by Popov et al.14 Some of these works showed that the elas-

tic “constants” of a SWCNT are dependent on the tube

chirality. The effects of geometrical detail on the failure26–37

of a SWCNT have also been investigated. Two types of fail-

ure process, i.e., brittle fracture due to direct bond breaking

and plastic deformation due to dislocation �Stone-Wales de-

fect� evolution, were studied in these studies.30–37 In particu-

lar, Nardelli et al.31–34 showed by ab initio calculations that

the mechanical behavior �including strain release mechanism

and failure process� of nanotubes under large tensile strain

strongly depends on their chirality and diameter. Extensive

discussions on these dependences can also be found in a

recent paper by Dumitrica et al.37

Bottom-up approaches may, in principle, be used to inves-

tigate the behavior of any systems if atomic interactions

could be determined. However, direct simulation of large

scale problems �with long time or large volume� remains a

heavy computer task. To reduce computational costs, many

top-down approaches38–49 have been proposed to investigate

the mechanical behavior of CNTs, which makes some large

scale problems such as buckling of thick MWCNTs capable
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of being studied. Besides, much effort has been made to

derive explicit solutions based on continuum mechanics. For

instance, following the pioneering work of Yakobson et

al.,15,30 thin shell theory was frequently use to analytically

model CNTs.50–58 The applicability and limitations of shell

models was outlined in Wang et al.59

Recently, explicit solutions for the elastic properties of

CNTs were derived within the framework of molecular me-

chanics, making the mechanical behavior of CNTs possible

to be analytically investigated by bottom-up approaches. A

truss model is presented by Odegard et al.60,61 to establish

the relation between effective bending rigidity and molecular

properties of a graphene sheet by equating the molecular

potential energy to the mechanical strain energy. A similar

model was used by Wang62 to obtain the effective in-plane

stiffness and bending rigidity of achiral �i.e., armchair and

zigzag� SWCNTs. Chang and Gao63 established a “stick-

spiral” model and obtained the first closed-form expressions

for the longitudinal Young’s modulus and Poisson’s ratio of

achiral SWCNTs. The closed-form expressions for elastic

properties of achiral SWCNTs under various loading condi-

tions were presented by Shen and Li64 via a energy approach.

Leung et al.65 obtained Young’s modulus for zigzag CNTs by

developing an equivalent truss model. These expressions are

concise but capable of directly linking material properties at

different length scales. The effects of structural details on the

elastic properties of CNTs can thus be reflected by these

expressions. However, these results are limited to achiral

nanotubes. The closed-form expressions for the axial elastic

properties of chiral carbon nanotubes were presented more

recently by Chang et al.66,67 using the stick-spiral model.

This model can also been used to investigate the effect of

structural details on the buckling of CNTs.68,69

Despite many advantages such as high efficiency, the

stick-spiral model currently suits only for studying mechani-

cal behavior of chiral CNTs under small strains because in

which harmonic potentials are used to model interatomic in-

teractions. In a recent study, Belytschko et al.26 provided a

Morse type potential to describe the bond stretch and bond

angle variation. The calculated results from this potential are

in good agreement with those from Brenner’s potential that

is widely used to stimulate the mechanical behavior of CNTs.

The potential may be readily introduced into the above ana-

lytical models to conduct an theoretical study of the me-

chanical behavior of chiral CNTs under large strains, as per-

formed by Xiao et al.70,71 for achiral tubes.

In this paper, we develop a nonlinear stick-spiral model

by incorporating the Morse type potential presented by Be-

lytschko et al.26 into the fully established linear stick-spiral

model.67 The nonlinear mechanical behavior of chiral CNTs

under large strains can thus be studied analytically. The

model is shown to be highly efficient and accurate enough

compared with the existing results. The effects of the tube

size and tube chirality on the mechanical behavior of a

SWCNT under axial loading, lateral pressure, and torsion are

analyzed in detail. In particular, some unique mechanical be-

haviors of chiral SWCNTs, such as axial strain-induced tor-

sion, circumferential strain-induced torsion, and shear strain-

induced extension are also studied.

II. NONLINEAR STICK-SPIRAL MODEL OF A SWCNT

In the stick-spiral model,63,66,67 an elastic stick with an

axial stiffness of K� and an infinite bending stiffness is used

to model force-stretch relationship of the carbon-carbon

bond, and a spiral spring with a stiffness of K� is used to

model the twisting moment resulting from an angular distor-

tion of the bond angle. In such a model, the total potential

energy of a SWCNT can be given by

E = E� + E� =
1

2
�

i

K��dri�
2 +

1

2
�

j

K��d� j�
2, �1�

while the stretching force resulting from bond elongation and

the twisting moment resulting from bond angle variation is

calculated by

F*�dri� = K�dri, �2�

M*�d� j� = K�d� j , �3�

where dri is the bond elongation of bond i and d� j is the

variance of bond angle j.

The above model is only suitable for analysis of mechani-

cal behavior of CNTs under small deformations. When a

SWCNT subjected to a relatively large strain is considered,

nonlinear potentials must be introduced to describe the be-

havior of atoms far away from their equilibrium positions. In

this paper, we choose a Morse type potential presented by

Belytschco et al.26 The total potential energy of a SWCNT is

given by

E = E� + E� = �
i

De��1 − e−���ri��2 − 1� +
1

2
�

j

k���� j�
2�1

+ ksextic��� j�
4� , �4�

with De=0.6031 nN nm, �=26.25 nm−1, k�

=1.42 nN nm/rad2, ksextic=0.754 rad−4, and � is the defer-

ence operator used to represents the variation of a parameter

from its equilibrium value.The stretching force resulting

from bond elongation and the twisting moment resulting

from bond angle variation can be calculated by differentiat-

ing the first and the second terms of Eq. �4� with respect to

bond elongation �ri and bond angle variation �� j, respec-

tively

F*��ri� = 2�De�1 − e−��ri�e−��ri, �5�

M*��� j� = k��� j�1 + 3ksextic��� j�
4� . �6�

Once Eqs. �2� and �3� are replaced by Eqs. �5� and �6� in

a original stick-spiral model, a nonlinear model can be estab-

lished straightforwardly. More details are shown in Appendix

A. The definitions of some physical parameters to be dis-

cussed, such as stress and strain, can be found in Appendix

B.

III. RESULTS AND DISCUSSIONS

A. Axial loading

The nonlinear stress-strain relationships are shown in Fig.

1 for axial loaded SWCNTs with different chiralities. It is
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seen that the linear response of a SWCNT is confined within

a very small strain region ��±3% �. With increasing tensile

strain, the stress-strain curve tends to flatten out, indicating

that the SWCNT under tension is strain softening. In contrast

to the tensile case, the SWCNT under compression is strain

hardening. The tensile stress-strain relations from the present

analytical approach agree well with those from the numerical

simulations based on molecular dynamics29,35,36 and molecu-

lar mechanics.26 In the present paper, we focus only on the

bond breaking failure mode and the calculations under axial

compression are terminated at a relatively small strain �that

is assumed not beyond the buckling threshold�. The proce-

dure of investigating the CNT buckling using the stick-spiral

model can be seen in our previous works.68,69

Figure 2 shows the initial axial Young’s modulus against

the tube diameter. Here the initial modulus is defined as the

slope of the stress-strain curve at zero strain. We see that the

initial Young’s modulus increases with increasing tube diam-

eter, approaching a limit value of graphite. For a given tube

diameter, the initial Young’s modulus increases with increas-

ing tube chiral angle. The smaller the tube diameter, the

stronger the dependence of the Young’s modulus on the tube

size and tube chirality. The effects of tube chirality and tube

size may be neglected when the tube diameter is larger than

2.0 nm. The present predictions for the initial Young’s modu-

lus are in reasonable agreement with those given by various

theoretical methods. Many works such as tight bonding

calculations,12 lattice dynamics,14 and atomistic-based con-

tinuum analysis43 showed that Young’s modulus increases

with increasing tube diameter. Tight binding simulations by

Hernandez et al.12 gave the values for the Young’s modulus

ranging from 0.91 TPa to 1.25 TPa. Ab initio calculations by

Sanchez-Portal et al.13 showed that the Young’s modulus var-

ies from 0.97 to 1.09 TPa. The present results agree well

also with existing experimental data for Young’s modulus of

CNTs. Using an atomic force microscopy, Wong et al.7 mea-

sured a Young’s modulus of 1.28±0.59 TPa; Salvetat et al.8

obtained an average Young’s modulus of 1 TPa. Similar re-

sults were reported by Krishman et al.5 using a transmission

electron microscope �1.3−0.4
+0.6 TPa� and Yu et al.9 using a scan-

ning electron microscope ��1 TPa�. The Young’s modulus

of graphite can be obtained as 1.14 TPa �corresponding to an

in-plane stiffness of 386 J /m2� by the limiting case of a

SWCNT with an infinite diameter, in good agreement with

experimental value of 1.06 TPa.

It should be noted that different definitions of effective

tube thickness would result in different values of Young’s

modulus of a SWCNT. For example, with the effective tube

thickness varying from 0.066 nm to 0.69 nm reported in the

literatures, the difference between the maximum and the

minimum value of the calculated Young’s moduli will be

more than 10 times. However, when the surface Young’s

modulus �or the in-plane stiffness� is used, the deviation re-

sulted from ill-defined tube thickness will be eliminated.63

We note further that Young’s modulus may also be defined

using the whole cross section �the SWCNT is viewed as a

solid cylinder� rather than the net cross section �the SWCNT

is viewed as a hollow cylinder, as in this paper�. The calcu-

lated Young’s modulus following this definition will decrease

with increasing tube diameter.64

Figure 3 shows the secant axial modulus versus axial

strain for SWCNTs with different chiral angles but approxi-

mately the same diameter. We see that the axial elastic modu-

lus shows strong dependence on the axial strain. With in-

FIG. 1. �Color online� Chirality dependent axial stress-strain

relationships for SWCNTs.

FIG. 2. Chirality and size dependent initial axial Young’s modu-

lus of SWCNTs.

FIG. 3. �Color online� Dependence of the axial secant modulus

on the axial strain.
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creasing tensile strain, the secant modulus of a SWCNT
decreases almost in a linear fashion. The secant modulus
depends also on the tube chirality, especially at large strains.
For instance, the maximum deviation of the secant modulus
due to different chirality may be more than 10% when the
tensile strain is larger than 10%, even for large tubes.

Longitudinal Poisson’s ratio as a function of the tube di-
ameter is shown in Fig. 4. Poisson’s ratio decreases with
increasing tube diameter, approaching the limit value �0.195�
of graphite for large tubes. For a given tube diameter, Pois-
son’s ratio decreases with an increasing in tube chiral angle.
The chirality and size dependence is significant only for the
tubes with diameters smaller than 2.0 nm. Although the
present results are in reasonable agreement with some exist-
ing data �e.g., Sanchez-Portal et al.13�, there is no unique
opinion that is widely accepted for the dependence of Pois-
son’s ratio on the tube diameter. Even completely contrary
conclusions were reported in the literatures. Tight binding
calculations by Hernandez et al.12 indicated that Poisson’s
ratio for armchair tubes increases from 0.247 to 0.256 with
increasing tube diameter from �6,6� to �15,15�, while for zig-
zag tubes, Poisson’s ratio decreases from 0.275 to 0.270 with
increasing tube size from �10,0� to �20,0�. To the contrary,
Popov et al.14 obtained that, with increasing tube diameter,

Poisson’s ratio decreases for armchair tubes, but increases

for zigzag tubes. The contradiction may be attributed to two

aspects. First, there is no sufficient data to eliminate the pos-

sible calculating errors during numerical procedures. For in-

stance, only two points are available for zigzag tubes in Her-

nandez et al.’s work. Second, the relationship between

Young’s modulus and shear modulus from continuum me-

chanics is frequently used to extract Poisson’s ratio from

numerical data, as in Popov et al.’s work. In fact, recent

findings from both molecular dynamics calculations21 and

analytical investigations67 showed that this relationship is not

retained for a SWCNT. Hence if the formula from isotropic

continuum mechanics was directly used to calculate Pois-

son’s ratio, severe deviations must be caused. Despite the

mentioned contrary results, as can be expected, the present

results show the same trends as all the previous calculations

based on molecular mechanics approach.63,64,66,67,70

Many efforts have been made to investigate the failure of

SWCNTs under axial tension, and two primary failure pro-

cesses were observed in the studies.30–37 The first one is
brittle fracture �via direct bond breaking�, while the second is
plastic deformation �via Stone-Wales bond rotation�. Brittle
failure always leads to a sudden fracture of SWCNTs,
whereas plastic deformation may result in necking phenom-
enon through dislocation evolution.31,35 Brittle-to-ductile
transition has been extensively discussed by Nardelli et
al.31,32 and Dumitrica et al.37 from an atomic point of view.
They found that the failure mode of a SWCNT depends not
only on tube chirality, but also on applied strain rate and
ambient temperature.31–34,37 It is obvious that the present
simple analytical model could not capture both the two
modes because bond rotation behavior is not taken into ac-
count. Thus it predicts only bond breaking �brittle� failure.
That is, once the tube failed �corresponding to the inflection
point of a local broken bond�, its loading capacity losses
immediately.71 This is the favorable failure mode at low tem-
peratures. On the other hand, the present model is based on

an empirical potential26 that may not be very accurate under

very large strains compared to quantum mechanical calcula-

tions, as discussed extensively by Zhao et al.34 Hence, the

present model gives only reference values for tensile strength

and failure strain of SWCNTs under brittle fracture, and

more accurate results should be obtained by experiments,9,10

molecular dynamics, or ab initio calculations.26–37

The ideal tensile strength of the SWCNT under brittle

fracture is the maximum value of the tensile stress which is

approached at the inflection point of the stress-strain

curve.26,27,70,71 The failure strain is the applied strain corre-

sponding to the tensile strength. Shown in Figs. 5�a� and 5�b�
is respectively the axial tensile strength and failure strain

versus tube diameter. Significant influence of the tube chiral-

ity on the tensile strength and failure strain can be seen in the

figure. Of particular interest is that the tensile strength is

insensitive to the tube diameter, and so does the failure

strain. Both the tensile strength and failure strain approach

their limit values when the tube diameter is larger than 1 nm.

The tensile strength and the failure strain for armchair tubes

�120 GPa and 21%� are about 25% and 30% higher than

those for zigzag tubes �95 GPa and 16.4%�, respectively. Our

predictions are in reasonable agreement with some existing

results. Molecular mechanics simulations by Belytschko et

al.26 predicted that the tensile strengths and failure strains of

armchair and zigzag tubes are 112 GPa and 18.7%, and

93.5 GPa and 16%, respectively. They found also that the

tube size has no effect on the tensile strength. Ogata and

Shibutani27 using a tight binding method gave the tensile

strength of about 108 GPa and 114 GPa for zigzag and arm-

chair SWCNTs, respectively. Molecular dynamics simula-

tions by Xiao et al.29 indicated that the tensile strengths for

both armchair and zigzag SWCNTs are about 80 GPa, while

the failure strain for zigzag and armchair tubes are 15% and

17%, respectively. Liew et al.35 obtained by molecular dy-

namics a tensile strength of 114 GPa and a failure strain of

28% for �10, 10� tubes.

The axial tensile strength and failure strain of SWCNTs

�with diameters larger than 2 nm� versus the tube chirality is

shown in Fig. 6. It is seen that, with increasing tube chiral

angle, the tensile strength of a SWCNT increases monoto-

nously. However, the variation of the axial failure strain is

FIG. 4. Chirality and size dependent axial Poisson’s ratio of

SWCNTs.
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quite complicated. With an increase in the chiral angle, the

failure strain increases first to its maximum value at a chiral

angle of about 26°, then decreases to a local minimum at

about 29°, and then increases to the value for armchair tubes.

The full curve for the failure strain is just like a long dipper.

To reveal the physics behind the curve, further study is

needed. Results from molecular mechanics simulations by

Belytschko et al.26 and quantum mechanics based calcula-
tions by Dumitrica et al.37 are also presented for comparison
and reasonable agreements are found. We note that the
present predicted ideal tensile strength and the failure strain,
as well as the mentioned theoretical results, is significantly
higher than some experimental values. For example, Yu et

al.9 measured the tensile strength ranging from

11 to 63 GPa, and the failure strain from 10% to 13% using

a scanning electron microscope; Walters et al.72 using atomic

force microscopy obtained the tensile strength of 45±7 GPa

for SWCNTs. The lower experimental values might be attrib-

uted to the presence of defects, the measuring errors, and so

on.

We investigated also a very interesting phenomenon of

so-called axial strain-induced torsion �ASIT�. Due to the

geometrical asymmetry, torsional deformation may occur

even in a chiral SWCNT subjected only to an axial loading.

It is seen from Fig. 7 that the ASIT angle increases monoto-

nously with an increasing in tensile strain. Namely, a chiral

SWCNT is twisted by an axial tensile strain. However, the

ASIT of a SWCNT under compression is quite different.

With increasing compressive strain, the induced torsional

angle decreases under a relatively small strain, but increases

after the strain is larger than a critical value. In other words,

when subjected to an axial compressive strain, a SWCNT

untwists first and then twists again. This means that a rela-

tively large compressive stain and a tensile strain will twist a

chiral SWCNT in the same direction. It is very likely that

ASIT would modify the electric properties of an axial loaded

SWCNT. Hence this feature should be paid special attention

in designing CNT-based electromechanical devices in which

high sensitivity must be ensured. Figure 7 shows also that the

ASIT of a chiral SWCNT is significantly dependent on the

tube chirality. For a given tube diameter, the maximum un-

twisting angle induced by axial compressive strain increases

with increasing tube chiral angle for tubes with chiral angle

smaller than � /12, while for tubes with chiral angle larger

than � /12, the maximum untwisting angle decreases with

FIG. 5. �a� Axial tensile strength versus tube diameter. �b� Axial

failure strain versus tube diameter.

FIG. 6. �Color online� Variation of axial tensile strength and

failure strain against tube chiral angle. Note that although the ten-

sile strength is increases with increasing chiral angle, the variation

of failure strain is not monotonic.

FIG. 7. �Color online� Axial strain-induced torsion angle of chi-

ral SWCNTs with approximately the same diameter. The maximum

untwisting angle occurs for SWCNTs with a chiral angle of about

� /12. Note that a chiral SWCNT will twist in the same direction

under a relatively large compressive strain and under a tensile

strain.

NONLINEAR STICK-SPIRAL MODEL FOR PREDICTING… PHYSICAL REVIEW B 74, 245428 �2006�

245428-5



increasing tube chiral angle. These observations consist very

well with those given by a two-dimensional continuum

model18 and those from molecular dynamics simulations.24

B. Radial pressure

Figure 8 shows the nonlinear stress-strain relationships

under radial pressure for different SWCNTs with approxi-

mately the same diameters. Very similar to the case of axial

loading, a SWCNT may be softened by an internal pressure,

but hardened by an external pressure.

The initial circumferential Young’s modulus and Pois-

son’s ratio versus tube diameter are shown respectively in

Figs. 9 and 10. It is interesting to find that the circumferential

elastic modulus and Poisson’s ratio of a SWCNT exactly

equal to those along axial direction, in agreement with our

previous observations.67 However, it should be noted that the

elastic properties of a SWCNT are strongly strain dependent

due to their significant nonlinearity, which consequently

leads to a unique elastic anisotropy of SWCNTs, i.e., strain-

induced elastic anisotropy �SIEA�.
Figure 11 shows the secant circumferential modulus as a

function of circumferential strain. We can see that the secant

modulus almost linearly decreases with increasing circumfer-

ential strain. The larger the chiral angle, the higher the de-

creasing rate. As a result, the secant circumferential modulus

of a SWCNT at large circumferential tensile strain �say

�3%� will reverse their dependence to the tube chirality, i.e.,

decreases with increasing tube chiral angle, in contrast to the

initial circumferential modulus �see Fig. 9�. Namely, the se-

cant circumferential modulus of an armchair SWCNT will be

smaller than a zigzag SWCNT under a relatively large cir-

cumferential tensile strain. Our results show also that the

secant modulus under large strain �say �5%� depends more

significantly on tube chirality.

The circumferential tensile strength and the failure strain

are presented in Figs. 12�a� and 12�b�, respectively. In con-

trast to the axial tensile case, a SWCNT having the smaller

chiral angle possesses a larger circumferential tensile

strength and failure strain. For instance, the circumferential

tensile strength and failure strain for zigzag nanotubes �
121 GPa and 23%� are, respectively, about 25% and 50%

higher than those for armchair nanotubes �95 GPa and 16%�.
As can be expected, due to the geometrical similarity along

tensile direction in graphene plane, the circumferential ten-

sile strength and failure strain for zigzag �or armchair� tubes

are very close to the longitudinal tensile strength and failure

strain for armchair �or zigzag� tubes. We see also from the

FIG. 8. �Color online� Chirality dependent circumferetial stress-

strain relationships for SWCNTs.

FIG. 9. Chirality and size dependent initial circumferential

Young’s modulus of SWCNTs.

FIG. 10. Chirality and size dependent circumferential Poisson’s

ratio of SWCNTs.

FIG. 11. �Color online� Dependence of the circumferential se-

cant modulus on the circumferential strain.
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two figures that both the circumferential tensile strength and

failure strain are insensitive to the tube diameter. Figure 13

shows the circumferential tensile strength and failure strain

versus tube chirality for SWCNTs with diameters larger than

2 nm. We can see that both the tensile strength and failure

strain decrease monotonously with increasing chiral angle.

Similar to the case of axial loading, torsion deformations

may also be induced by the circumferential strain �see Fig.

14�. In contrast to ASIT, the circumferential strain-induced

torsion �CSIT� angle of a SWCNT under compressive cir-

cumferential strain �external pressure� increases monoto-

nously with increasing strain, while under tensile circumfer-

ential strain �internal pressure�, with increasing strain, the

torsional angle decreases under a relatively small strain, but

increases once the strain beyond a critical value. This means

that, when subjected to an internal pressure, a SWCNT un-

twists first and then twists again in the opposite direction,

i.e., the same sense as under external pressure. We see from

Fig. 14 that the tube chirality has significant effect on the

CSIT of a SWCNT. The maximum untwisting angle occurs

for tubes with a chiral angle of � /12, and vanishes for

achiral tubes.

C. Torsion loading

Figure 15 shows stress-strain relationships under torsion

for SWCNTs with different chiral angles. The torsional re-

FIG. 12. �a� Circumferential tensile strength versus tube diam-

eter. �b� Circumferential failure strain versus tube diameter.

FIG. 13. �Color online� Circumferential tensile strength and fail-

ure strain versus tube chirality.

FIG. 14. �Color online� Circumferential strain-induced torsion

angle of chiral SWCNTs with approximately the same diameter.

The maximum untwisting angle occurs for SWCNTs with a chiral

angle of about � /12. Note that a relatively large tensile strain will

result in a torsion in the same direction as under a compressive

strain.

FIG. 15. �Color online� Shear stress-strain curves for SWCNTs

with different chiralities. Note that the torsion response of a chiral

SWCNT is significantly dependent on the twisting direction be-

cause of their geometrical asymmetry.
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sponse of a SWCNT is in fact more complicated than the
above two cases, because the failure mode of a SWCNT
under torsion might be either fracture or buckling, depending

on tube size as well as constraint exerted on the tube. Hence

we simply define the shear stress and strain at the inflection

point of the stress-strain curve as the ideal shear strength and

failure strain. We believe such definitions would give refer-

ence values for the upper limits of the shear strength and

failure strain of a SWCNT. Figure 15 shows that the torsion

response of a SWCNT is almost linear in a relatively large

strain range �±10% �, which agrees well with the findings for

zigzag tubes from a molecular dynamics simulation by Ya-

kobson et al.,15 and from an ab initio calculation by Ertekin

and Chrzan.73 A very important phenomenon to which spe-

cial attention should be paid is that the mechanical behavior

of a chiral SWCNT is dependent on the torsion direction,

which could be seen more clearly in the following discus-

sions.

The dependences of the ideal shear strength and failure

strain on the tube chirality are shown in Fig. 16 for SWCNTs

with diameters larger than 2 nm. To our surprise, we find that

the variations of both the two mechanical properties are not

monotonic. In twisting direction, with increasing chiral angle

from zero to � /6, the ideal shear strength and failure strain

increase from the values �115 GPa and 30.1%� for zigzag

tubes to their maximum values �146 GPa and 41.3%� at a

chiral angle of about � /18 �9.6 degree in our calculations,

slightly dependent on tube diameters�, and then decreases to

the values �99 GPa and 28.5%� for armchair tubes. In un-

twisting direction, however, with increasing chiral angle

from zero to � /6, the ideal shear strength and failure strain

decrease from the values �115 GPa and 30.1%� for zigzag

tubes to their minimum values �95 GPa and 27.8%� at a chi-

ral angle of about � /9 �18.1° in our calculations, slightly

dependent on tube diameters�, and then increases to the val-

ues �99 GPa and 28.5%� for armchair tubes. The curves for

the shear strength along both the twisting and untwisting

directions form a sail-like pattern, so does the curves of the

shear failure strain. It is found that the ideal shear strength

and failure strain for achiral tubes are independent of the

loading directions due to their geometrical symmetry, and

both the mechanical properties for zigzag tubes are slightly

higher than those for armchair tubes.

The initial shear modulus as a function of tube diameter is

shown in Fig. 17. We can see that the initial shear modulus

increases with increasing tube diameter and approaches the

predicted graphite value. For a given tube diameter, a nano-

tube with a smaller chiral angle has a larger initial shear

modulus. When the tube diameter is larger than 2 nm, the

dependences of the initial shear modulus on the tube chirality

and tube size are ignorable. The present results are in good

agreement with some existing predictions, such as those

from lattice dynamics by Popov et al.,14 molecular dynamics

simulations by Wang et al.21 and Gupta et al.,74 molecular

mechanics calculations by Xiao et al.70 When the tube diam-

eter approaching infinite, the shear modulus of graphite can

be predicted as 0.48 TPa, in good agreement with the experi-

ment value of 0.44±0.03 TPa.

Figure 18 presents the secant shear modulus against shear

strain. It is seen that the secant shear modulus of a SWCNT

slightly dependent on the shear strain. With a variation of the

shear strain from −10% to 10%, the maximum deviation of

the secant shear modulus of a SWCNT is no more than 5%.

This confirms the observation in Fig. 16 that the torsion be-

FIG. 16. �Color online� Non-monotonous variations of ideal

shear strength and failure strain versus tube chiralty. Note that the

shear strength and failure strain of a chiral SWCNT in the twisting

and untwisting directions are quite different.

FIG. 17. Chirality and size dependent initial shear modulus of

SWCNTs.

FIG. 18. �Color online� Dependence of the secant shear modulus

on the shear strain.

JINGYAN GENG AND TIENCHONG CHANG PHYSICAL REVIEW B 74, 245428 �2006�

245428-8



havior of a SWCNT is almost linear in a relatively large

strain range. We see also that the secant shear moduli for

achiral SWCNTs decrease with increasing shear strain, and

are independent of the torsional direction, as can be expected

according to their geometrical symmetry. However, the se-

cant shear moduli for chiral SWCNTs show dependence on

the torsional directions. The secant shear moduli of a chiral

SWCNT decreases monotonously with increasing shear

strain along the untwisting direction, while with increasing

shear strain along the twisting direction, the secant shear

moduli increase first and then decrease once the shear strain

beyond a critical value. This critical value is dependent on

the tube chiral angle. Our results indicate that the largest

critical shear strain is approached at a chiral angle of about

� /12.

We have discussed axial strain induced-torsion and cir-

cumferential strain induced torsion in the above sections. A

natural question now is whether a shear strain could induce

an axial extension in a chiral SWCNT? The answer can be

found in Fig. 19 where the variation of the shear strain-

induced extension �SSIE� is presented. It is seen that a chiral

SWCNT is shortened monotonously with increasing shear

strain along the tube twisting direction. However, with in-

creasing shear strain along the tube untwisting direction, the

SWCNT is slightly elongated first and then is shortened after

the shear strain beyond a critical value. The maximum elon-

gation occurs in the SWCNT with a chiral angle of � /12. No

matter in which direction an achiral SWCNT is twisted, it is

always shortened. It is found also that the SSIE of a zigzag

tube is more remarkable than that of an armchair tube with

the same diameter.

IV. CONCLUDING REMARKS

A nonlinear stick-spiral model is developed based on a

molecular mechanics concept. The model presents a simple

analytical method to investigate the nonlinear mechanical be-

havior of chiral SWCNTs under large strains. Comparisons

with existing results show that the present model is highly

efficient and capable of giving reasonable predictions for

mechanical properties of SWCNTs.

The mechanical behavior of a SWCNT shows significant

nonlinearity under axial loading and lateral pressure. The

elastic modulus of a SWCNT is strongly dependent on the

corresponding strain. With increasing tensile train, the corre-

sponding secant modulus decreases approximately in a linear

fashion. Although the effects of tube size and tube chirality

on the initial elastic properties are remarkable only for

SWCNTs with diameter smaller than 2 nm, the secant modu-

lus under large strain is significantly influenced by tube

chirality even for large tubes. In contrast, the torsion re-

sponse of a SWCNT is almost linear in a relatively large

strain range. Of particular interest is that the torsion behavior

of a chiral SWCNT is dependent on the loading directions

because of their geometrical asymmetry.

The tensile strength and failure strain of a SWCNT are

significantly dependent on the tube chirality, but insensitive

to the tube diameter. With increasing tube chiral angle, the

axial tensile strength increases from 95 GPa for zigzag tubes

to 120 GPa for armchair tubes, while the circumferential ten-

sile strength decreases from 121 GPa to 95 GPa. Although

the circumferential failure strain decreases monotonously

with increasing chiral angle, the curve for the axial failure

strain is quite complicated and shows a dipperlike shape. The

ideal shear strength and failure strain depend not only on the

tube chirality, but also on the loading direction. With increas-

ing tube chiral angle from 0 to � /6, they increase from the

values �115 GPa and 30%� for zigzag tubes to their maxi-

mum values �146 GPa and 41%� at a chiral angle of � /18 in

the twisting direction but decrease to their minimum values �
95 GPa and 27.8%� at a chiral angle of � /9 in the untwisting

direction, and then approach the values �99 GPa and 28.5%�
for armchair tubes. The curves for both the shear strength

and failure strain along twisting and untwisting directions

form an interesting sail-like pattern.

Some unique mechanical behaviors of a chiral SWCNT,

such as axial strain-induced torsion, circumferential strain-

induced torsion, and shear strain-induced extension are stud-

ied. The results show that torsion deformation is always

coupled with both axial and circumferential deformations in

a chiral SWCNT due to the geometrical asymmetry. Special

attentions in future should be paid for nonmonotonous cou-

pling of torsion deformation with axial and circumferential

deformations, which may brings new insights in understand-

ing the coupling effects on some carbon nanotube based

electromechanical devices.
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APPENDIX A

A SWCNT can be viewed as a graphene sheet rolled into

a seamless tube with a diameter on the order of nanometers.

FIG. 19. �Color online� Shear strain-induced axial extension of

chiral SWCNTs with approximately the same diameter. Note that a

chiral SWCNT can even be elongated by a torsion in the twisting

direction.
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If the head of a vector C in graphene plane touches its tail
when the graphene sheet rolled into a tube, we call C the
chiral vector, or roll-up vector �see Fig. 20�. Because a vector
C in the graphene plane can be described as a combination of
two base vectors a and b of the hexagon by C=na+mb, with
n and m being two integers, a SWCNT can be uniquely in-
dexed by a pair of integers �n ,m� to represent its chirality or

helicity.75 The magnitude of the chiral vector, C

=	3r0
	m2+n2+mn, represents the circumference of the

nanotube, where r0=0.142 nm is the carbon-carbon bond
length. The tube radius, R, can thus be calculated by R
=C /2�. The chiral angle � of a nanotube is given by �
=arccos��2n+m� / �2	m2+n2+mn��. The two limiting cases

of nanotubes are �n ,0� �whose chiral angle is 0� and �n ,n�
�whose chiral angle is � /6�, which are usually known as
zigzag and armchair tubes based on the geometry of carbon
bonds around the circumference of the nanotube. Zigzag and
armchair tubes are achiral nanotubes because of the highly
geometrical symmetry, whereas SWCNTs with a chiral angle
of 0	�	� /6 are chiral nanotubes. Another important geo-

metrical parameter of SWCNTs is the translation vector T,

which is directed along the SWCNT axis and perpendicular

to the chiral vector C �see Fig. 20�. The magnitude of the

translation vector, T=3r0
	m2+n2+mn /dR �with dR=gcd�2n

+m ,2m+n��, corresponds to the length of the SWCNT unit

cell �which is marked in gray in Fig. 20�.
We consider a �n ,m� SWCNT subjected to an axial force

F, a radial pressure P, and an axial torque MT, as shown in

Fig. 21�a�. The nonlinear stick-spiral model can then be es-

tablished by introducing Eqs. �5� and �6� into the linear stick-

spiral model.67

The equilibriums of the external forces and the internal

forces yield

F = �n + m�f1 + mf2, �A1�

P = − ��n − m�s1 + �2n + m�s2�/�TR� , �A2�

MT = ��n + m�s1 + ms2�R , �A3�

where R is the tube radius, and f i and si are forces contrib-

uted on carbon bond along axial and circumferential direc-

tions, respectively �see Fig. 21�b��.
Equilibrium of the local structure of the SWCNT needs

f1 + f2 + f3 = 0, �A4�

s1 + s2 + s3 = 0. �A5�

Force equilibrium to bond extension leads to

f i cos �i + si sin �i = F*��ri� i = 1,2,3. �A6�

From the moment equilibrium of a bond, we obtain

ri

2
�f i sin �i − si cos �i� = M*��� j�cos 
ij

+ M*���k�cos 
ik i, j,k

= 1,2,3; i � j � k , �A7�

where 
ij, the torsion angle between the plane though ri

parallel to the nanotube axis and the plane of � j, can be

calculated by

cos 
ij = �cos �i sin �k cos � j − sin �i cos �k�/sin � j i, j,k

= 1,2,3; i � j � k . �A8�

The structural parameters �i, �I, and �i are defined in Figs.

21�b� and 21�c�.

FIG. 20. Schematic illustration of a graphene sheet and defini-

tions of geometrical parameters used to describe a nanotube. A �3,

1� tube would be formed by rolling up the graphene sheet bounded

by the two dashed lines. The unit cell of the nanotube is shown in

gray.

FIG. 21. �Color online� �a� Global structure of a chiral nanotube.

�b� Front view of local structure and schematic of the stick-spiral

model. In the model, a stick with infinite bending stiffness is used to

model force-stretch relationship of the carbon-carbon bond, and a

spiral spring is used to describe the twisting moment resulting from

an angular distortion of the bond angle. �c� Top view of local

structure.
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The geometrical relationships of a SWCNT satisfy

cos �i = sin � j sin �k cos �i + cos � j cos �k i, j,k

= 1,2,3; i � j � k . �A9�

With use of Eqs. �A8� and �A9�, the variation of bond angle

can be obtained as

��i = − ��� j cos 
 ji + ��k cos 
ki� i, j,k = 1,2,3; i � j

� k . �A10�

Cylindrical structure of a defect-free SWCNT always

needs its chiral vector to keep a closed ring, i.e., the dislo-

cation between the head and the tail of the chiral vector

should be zero no matter how the SWCNT was deformed

unless the presence of defects. This feature actually gives a

compatible equation of a deformed SWCNT as follows

��mr1 cos �1 − �n + m�r2 cos �2 + nr3 cos �3� = 0.

�A11�

We now have 15 independent equations given by Eqs.

�A1�–�A7�, �A10�, and �A11�, and 18 independent variables

F, P, MT, f1, f2, f3, s1, s2, s3, �r1, �r2, �r3, ��1, ��2, ��3,

��1, ��2, ��3. We note here that F, P, and MT are applied

external forces. Once these forces are given, the present

problem is solvable. For example, letting P=0 and MT=0,

with a stepwise increase in the axial strain �, the mechanical

behavior of a SWCNT under axial loading can be obtained

via the non-linear stick-spiral model.

APPENDIX B

In this paper, a SWCNT is treated as a cylindrical shell

�with a constant effective thickness t� other than a solid rod.

Thus the axial, circumferential, and shear stresses �, �, and

�� and strains ��, ��, and �� can be defined as, respectively

 =
F

Ct
=

�n + m�f1 + mf2

	3r0t	n2 + mn + m2
, �B1�

� =
PR

t
= −

�n − m�s1 + �2n + m�s2

3r0t	n2 + mn + m2
, �B2�

� =
MT

RCt
=

�n + m�s1 + ms2

	3r0t	n2 + mn + m2
, �B3�

� =
�T

T
=

d��2n + m�r1 cos �1 − �n − m�r2 cos �2 − ��2m + n�r3 cos �3��

3r0
	n2 + mn + m2

, �B4�

�� =
�C

C
=

d�mr1 sin �1 − �n + m�r2 sin �2 + nr3 sin �3�

	3r0
	n2 + mn + m2

, �B5�

� =
���2n + m�r1 sin �1 − �n − m�r2 sin �2� − �2m + n�r3 sin �3��

3r0
	n2 + mn + m2

. �B6�

It should be noted that different values for the effective

thickness t of a SWCNT have been obtained in the literatures

according to different physical requirements, ranging from

0.066 nm to 0.69 nm, with maximum deviations up to 10

times.63 Different values for effective tube thickness will ob-

viously affect the quantities of some mechanical parameters,

such as the stress and thus the elastic modulus. However,

different choices of the value for effective tube thickness

have no effect on the qualitative characters of these param-

eters. Therefore, for the convenience of comparison with the

existing results, we simply take the value of effective thick-

ness of a SWCNT as 0.34 nm, as is most commonly used in

the literatures.

We note further that the following initial values presented

by Chang et al.66,67 for a �n ,m� tube have been used in the

present calculations

r1 = r2 = r3 = r0, �B7�

�1 = arccos
2n + m

2	n2 + mn + m2
,

�2 =
4�

3
+ �1, �3 =

2�

3
+ �1, �B8�

�1 =
�

	n2 + mn + m2
cos �1,

�2 =
�

	n2 + mn + m2
cos
�

3
+ �1�,

�2 =
�

	n2 + mn + m2
cos
�

3
− �1� . �B9�

NONLINEAR STICK-SPIRAL MODEL FOR PREDICTING… PHYSICAL REVIEW B 74, 245428 �2006�

245428-11



*Corresponding author. Email address: tchang@staff.shu.edu.cn
1 R. E. Smalley and B. I. Yakobson, Solid State Commun. 107, 597

�1998�.
2 R. H. Baughman, A. A. Zakhidov, and W. A. de Heer, Science

297, 787 �2002�.
3 A. N. Guz and Y. Y. Rushchitskii, Int. Appl. Mech. 39, 1271

�2003�.
4 M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature �Lon-

don� 381, 680 �1996�.
5 A. Krishnan, E. Dujardin, T. W. Ebbesen, P. N. Yianilos, and M.

M. J. Treacy, Phys. Rev. B 58, 14013 �1998�.
6 P. Poncharal, Z. L. Wang, D. Ugarte, and W. A. de Heer, Science

283, 1513 �1999�.
7 E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971

�1997�.
8 J. P. Salvetat, A. J. Kulik, J. M. Bonard, G. A. D. Briggs, T.

Stockli, K. Metenier, S. Bonnamy, F. Beguin, N. A. Burnham,

and L. Forro, Adv. Mater. �Weinheim, Ger.� 11, 161 �1999�.
9 M. F. Yu, O. Lourie, M. J. Dyer, K. Moloni, T. F. Kelly, and R. S.

Ruoff, Science 287, 63 �2000�.
10 B. G. Demczyk, Y. M. Wang, J. Cumings, M. Hetman, W. Han,

A. Zettl, and R. O. Ritchie, Mater. Sci. Eng., A 334, 173 �2002�.
11 D. H. Robertson, D. W. Brenner, and J. W. Mintmire, Phys. Rev.

B 45, 12592 �1992�.
12 E. Hernandez, C. Goze, P. Bernier, and A. Rubio, Phys. Rev. Lett.

80, 4502 �1998�.
13 D. Sanchez-Portal, E. Artacho, J. M. Soler, A. Rubio, and P. Or-

dejon, Phys. Rev. B 59, 12678 �1999�.
14 V. N. Popov, V. E. Van Doren, and M. Balkanski, Phys. Rev. B

61, 3078 �2000�.
15 B. I. Yakobson, C. J. Brabec, and J. Bernholc, Phys. Rev. Lett.

76, 2511 �1996�.
16 A. Garg, J. Han, and S. B. Sinnott, Phys. Rev. Lett. 81, 2260

�1998�.
17 R. C. Krenn, D. Roundy, M. L. Cohen, D. C. Chrzan, and J. W.

Morris, Phys. Rev. B 65, 134111 �2002�.
18 Y. N. Gartstein, A. A. Zakhidov, and R. H. Baughman, Phys. Rev.

B 68, 115415 �2003�.
19 Y. Wang, X. X. Wang, and X. G. Ni, Modell. Simul. Mater. Sci.

Eng. 12, 1099 �2004�.
20 K. M. Liew, C. H. Wong, X. Q. He, M. J. Tan, and S. A. Meguid,

Phys. Rev. B 69, 115429 �2004�.
21 L. F. Wang, Q. S. Zheng, J. Z. Liu, and Q. Jiang, Phys. Rev. Lett.

95, 105501 �2005�.
22 C. L. Zhang and H. S. Shen, Carbon 44, 2608 �2006�.
23 X. Chen and G. Cao, Nanotechnology 17, 1004 �2006�.
24 H. Y. Liang and M. Upmanyu, Phys. Rev. Lett. 96, 165501

�2006�.
25 T. Chang, J. Hou, and X. Guo, Appl. Phys. Lett. 88, 211906

�2006�.
26 T. Belytschko, S. P. Xiao, G. C. Schatz, and R. Ruoff, Phys. Rev.

B 65, 235430 �2002�.
27 S. Ogata and Y. Shibutani, Phys. Rev. B 68, 165409 �2003�.
28 Y. Shibutani and S. Ogata, Modell. Simul. Mater. Sci. Eng. 12,

599 �2004�.
29 T. Xiao, X. Xu, and K. Liao, J. Appl. Phys. 95, 8145 �2004�.
30 B. I. Yakobson, M. P. Campbell, C. J. Brabec, and J. Bernholc,

Comput. Mater. Sci. 8, 341 �1997�.
31 M. B. Nardelli, B. I. Yakobson, and J. Bernholc, Phys. Rev. Lett.

81, 4656 �1998�.

32 M. B. Nardelli, B. I. Yakobson, and J. Bernholc, Phys. Rev. B 57,

R4277 �1998�.
33 M. B. Nardelli, J. L. Fattebert, D. Orlikowski, C. Roland, Q.

Zhao, and J. Bernholc, Carbon 38, 1703 �2000�.
34 Q. Zhao, M. B. Nardelli, and J. Bernholc, Phys. Rev. B 65,

144105 �2002�.
35 K. M. Liew, X. Q. He, and C. H. Wong, Acta Mater. 52, 2521

�2004�.
36 K. M. Liew, C. H. Wong, and M. J. Tan, Acta Mater. 54, 225

�2006�.
37 T. Dumitrica, M. Hua, and B. I. Yakobson, Proc. Natl. Acad. Sci.

U.S.A. 103, 6105 �2006�.
38 P. Zhang, Y. Huang, P. H. Geubelle, P. A. Klein, and K. C.

Hwang, Int. J. Solids Struct. 39, 3893 �2002�.
39 M. Arroyo and T. Belytschko, Phys. Rev. Lett. 91, 215505

�2003�.
40 D. Qian, G. J. Wagner, and W. K. Liu, Comput. Methods Appl.

Mech. Eng. 193, 1603 �2004�.
41 A. Pantano, D. M. Parks, and M. C. Boyce, J. Mech. Phys. Solids

52, 789 �2004�.
42 H. W. Zhang, J. B. Wang, and X. Guo, J. Mech. Phys. Solids 53,

1929 �2005�.
43 X. Guo, J. B. Wang, and H. W. Zhang, Int. J. Solids Struct. 43,

1276 �2006�.
44 G. Cao and X. Chen, Phys. Rev. B 73, 155435 �2006�.
45 T. S. Gates, G. M. Odegard, S. J. V. Frankland, and T. C. Clancy,

Compos. Sci. Technol. 65, 2416 �2005�.
46 M. Wang, X. Zhang, and M. W. Lu, Phys. Rev. B 72, 205403

�2005�.
47 A. Y. T. Leung, X. Guo, X. Q. He, H. Jiang, and Y. Huang, J.

Appl. Phys. 99, 124308 �2006�.
48 M. Meo and M. Rossi, Compos. Sci. Technol. 66, 1597 �2006�.
49 C. W. S. To, Finite Elem. Anal. Design 42, 404 �2006�.
50 C. Q. Ru, Phys. Rev. B 62, 16962 �2000�.
51 C. Y. Wang, C. Q. Ru, and A. Mioduchowski, Int. J. Solids Struct.

40, 3893 �2003�.
52 S. Kitipornchai, X. Q. He, and K. M. Liew, Phys. Rev. B 72,

075443 �2005�.
53 M. J. Longhurst and N. Quirke, J. Chem. Phys. 124, 234708

�2006�.
54 H. S. Shen, Int. J. Solids Struct. 41, 2643 �2004�.
55 X. Wang and H. K. Yang, Phys. Rev. B 73, 085409 �2006�.
56 H. S. Shen and C. L. Zhang, Phys. Rev. B 74, 035410 �2006�.
57 Q. Wang, V. K. Varadan, and S. T. Quek, Phys. Lett. 357, 130

�2006�.
58 Y. Q. Zhang, G. R. Liu, and X. Han, Phys. Lett. 349, 370 �2006�.
59 C. Y. Wang, C. Q. Ru, and A. Mioduchowski, ASME J. Appl.

Mech. 71, 622 �2004�.
60 G. M. Odegard, T. S. Gates, L. M. Nicholson, and K. E. Wise,

Compos. Sci. Technol. 62, 1869 �2002�.
61 G. M. Odegard, T. S. Gates, L. M. Nicholson, and K. E. Wise,

Report No. NASA/TM-2002–211454 �2002�.
62 Q. Wang, Int. J. Solids Struct. 41, 5451 �2004�.
63 T. Chang and H. Gao, J. Mech. Phys. Solids 51, 1059 �2003�.
64 L. Shen and J. Li, Phys. Rev. B 69, 045414 �2004�.
65 A. Y. T. Leung, X. Guo, X. Q. He, and S. Kitipornchai, Appl.

Phys. Lett. 86, 083110 �2005�.
66 T. Chang, J. Geng, and X. Guo, Appl. Phys. Lett. 87, 251929

�2005�.

JINGYAN GENG AND TIENCHONG CHANG PHYSICAL REVIEW B 74, 245428 �2006�

245428-12



67 T. Chang, J. Geng, and X. Guo, Proc. R. Soc. London, Ser. A

462, 2523 �2006�.
68 T. Chang, W. Guo, and X. Guo, Phys. Rev. B 72, 064101 �2005�.
69 T. Chang, G. Li, and X. Guo, Carbon 43, 287 �2005�.
70 J. R. Xiao, B. A. Gama, and J. W. Gillespie, Int. J. Solids Struct.

42, 3075 �2005�.
71 J. R. Xiao and J. W. Gillespie, Phys. Rev. B 74, 155404 �2006�.

72 D. A. Walters, L. M. Ericson, and M. J. Casavant, Appl. Phys.

Lett. 74�25�, 3803 �1999�.
73 E. Ertekin and D. C. Chrzan, Phys. Rev. B 72, 045425 �2005�.
74 S. Gupta, K. Dharamvir, and V. K. Jindal, Phys. Rev. B 72,

165428 �2005�.
75 C. T. White, D. H. Robertson, and J. W. Mintmire, Phys. Rev. B

47, 5485 �1993�.

NONLINEAR STICK-SPIRAL MODEL FOR PREDICTING… PHYSICAL REVIEW B 74, 245428 �2006�

245428-13


