N
N

N

HAL

open science

Nonlinear strain gradient elastic thin shallow shells

K.A. Lazopoulos

» To cite this version:

K.A. Lazopoulos. Nonlinear strain gradient elastic thin shallow shells. European Journal of Mechanics
- A/Solids, Elsevier, 2011, 10.1016/j.euromechsol.2010.12.011 . hal-00734538

HAL Id: hal-00734538
https://hal.archives-ouvertes.fr/hal-00734538

Submitted on 23 Sep 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.archives-ouvertes.fr/hal-00734538
https://hal.archives-ouvertes.fr

Accepted Manuscript =

European Journal of
Mechanics

Title: Nonlinear strain gradient elastic thin shallow shells ’WOJ]‘]’-‘ |

Authors: K.A. Lazopoulos

PII: S0997-7538(10)00149-X
DOI: 10.1016/j.euromechsol.2010.12.011
Reference: EJMSOL 2666

To appearin:  European Journal of Mechanics / A Solids

Received Date: 20 August 2010
Revised Date: 30 October 2010
Accepted Date: 21 December 2010

Please cite this article as: Lazopoulos, K.A. Nonlinear strain gradient elastic thin shallow shells,
European Journal of Mechanics / A Solids (2011), doi: 10.1016/j.euromechsol.2010.12.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to

our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and all
legal disclaimers that apply to the journal pertain.


http://dx.doi.org/10.1016/j.euromechsol.2010.12.011

Nonlinear strain gradient elastic thin shallow shells

K.A.Lazopoulos
Mechanics Department
School of Mathematical Sciences (SEMFE)
National Technical University of Athens
5 Heroes of Polytechnion Ave.
Zografou Campus, Athens,
GR 157 73 Greece
e-mail : kolazop@central.ntua.gr

&
A.K.Lazopoulos
Mathematical Sciences and Mechanics Dpt.
Hellenic Military Academy
Vari, Grece

Abstract. The governing equilibrium equations for strain  gradient elastic thin

shallow shells are derived, considering non-linear strains and linear constitutive strain
gradient elastic relations. Adopting Kirchhoff’s theory of thin shallow structures, the

equilibrium equations, along with the boundary conditions, are formulated through a
variational procedure. It turns out that new terms are introduced, indicating the
importance of the cross-section area in bending of thin plates. Those terms are
missing from the existing strain gradient shallow thin shell theories. Those terms
highly increase the stiffness of the structures. When the curvature of the shallow shell

becomes zero, the governing equilibrium for the plates are derived.

1.Introduction.

Thin plate theory has found a lot of applications in the areas of micromechanics and
nano-mechanics. Thin films, micro-electromechanical systems and nano-
electromechanical systems are typical applications of the thin beam theory, where size
effects have been observed. Many researchers , Papargyri et al [2003], Lazopoulos
[2004], have correlated thin beam theory with the strain gradient elasticity theories
Mindlin [1965], Altan & Aifantis [1997], Ru & Aifantis [1993], Yang et al [2002].

The theory of gradient strain elasticity has been applied to many mechanics problems



in plasticity and dislocation, Aifantis [2003], Fleck et al [1997,1993,1994]. Further
applications of the strain gradient elasticity theories have appeared in lifting various
singularities in fracture problems, Altan & Aifantis [1997] and around concentrated
forces like the Flamant problem, Lazar & Maugin [2006].

In the present work the bending Kirchhoff's plate theory will be discussed into the
context of a simplified strain gradient elasticity theory, where new terms, depending
not only on the moment of inertia of the cross-section but also on the area of the
cross-section are introduced. Those terms highly increase the stiffness of the plate.
The author, Lazopoulos [2009], has already studied the behavior of thin strain
gradient elastic beams using the proposed procedure. Terms of the same type have
been introduced in bending of beams by Yang et al. [2006] and their theory has been
applied to various bending problems, Lam et al [1985], Park & Gao [2008], Ma et al
[2008]. Nevertheless, that couple stress theory does not include a substantial part of
the strain gradient theory that is the increase of the higher order derivatives in the
governing equilibrium equations. Those terms are necessary for the development of
boundary layers which are characteristic of the strain gradient elasticity applications.
Furthermore Yang et al.[2002] ends up with a symmetric stress tensor assuming zero
couple moment, Eq.(27). This requirement is an additional condition which is not
derived by any principle of mechanics. Further, couple stresses and symmetric stress
tensor is not compatible. In fact the present theory bridges the theories bending
theories presented by Papargyri et al [2003] and Yang et al. [2002] in a consistent way
including not only the higher order derivatives in the governing equilibrium
equations, necessary for the development of boundary layers missing from the theory
of Yang et al.[2002], but also the terms depending upon the cross-section area missing
from the theory of Papargyri et al. [2003], that highly increase the stiffness of the thin
beam when the beam thickness reduces. The governing equilibrium equation for the
thin plate with the corresponding boundary conditions will be derived through a
variational approach for plate bending problems.

2. Geometrically nonlinear defor mations of a shallow thin shell.
Adopting Kirchhoff's theory for thin shallow shells along with the nonlinear strain
tensor, a simple version of Mindlin’s strain gradient elastic constitutive relations is
recalled, introducing a geometrically nonlinear theory of elasticity with

microstructure, a micro-elasticity theory equipped with two additional constitutive



coefficients, apart from the Larheonstants is used. The intrinsic bulk lengthnd
the directional surface energy lengthre the additionalonstitutive parameters.
Hence, the strain energy density function, for the present geometrically nonlinear

case, is expressed by,

W= %Aemmem + Gl * 92(%Aemmemn + Gemnemm) +
1)
1
lk(z/1 (Qmewn + emmeknn) + G(Q<mnenm + eermm)j

where, g; denotes Green's (or Lagrangean) strain apd the nonlinear strain

gradient respectively, with
1
€ =€ :E(aiuj +0,U; +0,U, mjuk)' € = & =08 (2)

andu, =u, (xk), the finite displacement field. The present form of the strain energy
density function is the simplest one for the strain gradient elasticity problems
including surface energy density, see Vardoulakis [2004].
If the shallow shell is described by the middle surface in its initial shape by the
function z(x, y), recalling Kirchoff's theory of thin shells, the components of the non-
linear Green’s tensor are expressed by,

1.2

€ = u’x+z'x W'X_Z W’xx+§w’x

1
e, = v,y+z,yw,y—ZW,W+§W,§ (3)

€&y :%(u,y+v,x)+%(z,xW,X+z,yW,),)—Zw,xy+%w,xw,y

where, (X,y) is the horizontal plane an(k,y) is the vertical displacement of the point

lying on the middle surface. The second Piola-Kirchhoff's str&ssused in

Lagrangean description is defined by,

ow
S = E =g, 9, +2Gg; + |k(/]eknn5ij + ZGekij) , k=xory (4)
]
and the double second Piola-Kirchhoff stresses by,
ow
Sik = de. = gz(Aanij + ZGij)"' l, (Aenndjk + ZGejk) - (5)
]



For the present study we consider a thin plate of thickmes®wn in Fig. 1. They-
plane is the plane of the plate, whereas the z axis is the deflection axis. The region of

the plate in the xy plane ig,@nd the boundary in the xy plane isT®e plate is

Fig.1 The geometry of the plate

bending under the action of the distributed transversal lp&dg, the edge moments

M. and the double moments,, wherec,d=v or s, the edge forc&/, , exhibiting

the (additional) deflectiorw(x,y) in the &direction.

Therefore, the variation of the strain energlyaf the plate is defined by,
A = ”_[(S, 53” + Sjkéjk )jv (6)
\Y

It is pointed out that in the existing theories for thin structures into the context of

strain gradient elasticity, the contribution of g terms does not exist Papargyri et

al [2003,2008], Park & Gao [2006], Yang et al [2002]. In the present theory, those

terms are quite important for thin structures when the thickness of the thin structures
is comparable to the bulk intrinsic length of the material. In this case the variation of
the strain energy density is expressed by,

U =[] (Su +S,, +25,%,, +(Seu®y + Sy + S, 00 ) +
v (7
(Suy Py + Sy oy + Sy Ry )+ 2(Spy By + Sy By + Sy By ) Axlydd

Since the shell is thin and shallow, the transverse nornal Sessly be neglected
and the the (x,)) coordinate system can be considered approximately locally

rectangular Cartesian. Consequently, we may have
E E
S, :m(exxﬂ/ew) , Sy = = (vexx+eyy) ' Sy = 2Ge,, (8)

with E Young’s modulusy Poisson’s ratio and Ghear modulus.
For the thin shallow shell, the external forces are the body forces prescribed per unit

area of the (x,y) plane and their components in the X,y, z directions are denoted by,
X,Y,Z correspondingly. The traction per unit length of the boun@dsycomposed

by the forceR,, R, R, acting along the x,y,z directions respectively and the double



forcesR«, Ry, Ruys Ry Further, the momentdl,,M_ are the applied moments per
unit boundary length in the normdl) and the tangentia(s) directions. Non-
classical double moments),,,m_, M, , due to the gradient elasticity, are also applied

to the boundary. Therefore the principle of virtual work gives,

3 = [[[{(Suu + Sy, + 25,8, *+(Se®u + SpuBu + Soure)

+(Sy, By, + Sy By + Sy By )+ 2(Sey By + Sy By + Say sy fdlydd

_”[)_(d(+\7@/+ZdN]dxdy—§{Rde+ R, &+ R(xdj,XJ,RWd,'erRWM
S C

R AW+ M, dw,, +M AW, +MM, AW, +TL oW, +M AW, Jds ©

+

Further, we introduce the stress resultants,
No=[S.d¢, N, =[s,d¢, N, =[S,dc,

Noo = [Seodd, Ny, =[S,,d0, N, =[S,d¢,
Nyo = [S,0dd, Ny =[S,d0, N, =[S,dS,
Noo = [S,dd, Ny, =[S,d0, N, =[S,df,
M, =[S.dd¢, M, =[S, M, =[Sd¢
Mo = [SuddC, My, =[S0, Ny = [S,,¢dC,
M, = [S,¢d¢, my =[S, ddd, m, =[S, ddd,
My, =[S,,¢d7, my, =[S,,dd¢, m, =[S, {dd

(10)

Hence the principle of virtual work, Eq.(9), becomes:



N :g H—('\Wxx,xx My, +2M, ) —(%(N&(z,x+w,x)> —aiy(ﬁ;’y(z,y+w,y)>

-a%(ﬁi’y (Z, W, ) —%(ny (z,y+w,y»}ow— (NS *+ Ng, )= (N, + N;i,,x)é«}dxdy
+{M,, owdy —fM, dwcx +§M, Andy ~§M ,  Swx+§(-M,dn,,~M 3w,  )dy
+§(M, A, +M, AW, )dx +§ N2, dudy +§ Nz, dwdy + § N3, w,, Ay ~§ NS, dvax
~§N{,z,, dwdx — § N9 w, dwdx —§ N3, ducx +§ N3, dvdly — § NS z,, Swelx +§ N, z,, dwelx
~ N w,, Swax -+ § NS w, Gwdly = § (M, O, Jdy +§ (M, W, YaX —§ (M, dw,,, )dly
+§ (v, Xix—§ 2am, aw, dy +§am, S, dx+§ N2, 0 dy
~ NP e+ § N2 39 dy ~ N el cx + 2f NS & dly — 2f N, J& clx
+ Vv, M aw, Jy+ =M, M, fix+ § NS dudy + NG, z,, dvdy
+§NDw,, dwdy - N9 dvdx—~§ N z,, dx— NP w,, dx = § NP didx+§ N3 vy
—§N°z,dedx+§l\~l°z, dey—§N°W,xd/vdx+§l\~l°W, owdy

I[Xd<+Y5)/+ZdN]dxdy §RXdJ+Ryd/+F§<XdJ +R v, +(F{w Ryxy)(dj—d/)+
deN-l_ M Vde +M st’s-l_ranN’W +m$dlv’§+m/sdlv’vs}ds_ 0

(11)

with, [ ['=[],., and

~ om; 0

M, =M, - T e =2
0x ay

No=N N Ny

R ' ay

Hence, the equilibrium equations are expressed by,
N0 10 Y —
Nyx + Ny, + X =0
/0 0 vV —
Nyx + Ny, +Y =0

237 M
M, M, oM w, 0 (az a_ijngr 0z 0w o (12)
o oy oy ox|\ax ox oy oy ”

£ 9|0z, 0w N° +[%+a—wjﬁo +Z=0
ay|lay ay) ¥ \ox oax) *




Further, proceeding to the description of the boundary conditions, the following
change of the cartesian variables (x,y) to the polar ones (r,s) are defined by the
geometrical conditions,

0x ar 0s ay or 0s

where, (I,m) are the direction cosines of the normal vestot.ikewise,

Let us point out that in the already existing theories of thin plates into the context of
strain gradient elasticity, the contribution of #g terms does not exist. The present
theory includes those terms that are quite important for small thickness when the
thickness is comparable to the intrinsic length of the material.

Further, the variation of the strain energy of the plate is defined by,

M = jﬂ(r”ds + 14, 08, )V . 8)

It is recalled that the stresses and the couple stresses after the replacement of the
Lame’ constants with the modulus of Elasticity E and Poisson’s réscome,

g =1—E2[V€kk5ij ]+| [vs,kk g +(1- V)Elu]
9)
My = [Vglkka_ + 1 v |jk]+|iw[vgkk5jk +(1_V)£jk]

and the bending moments and hyper-moments become, see Fig.2,



Fig.2 Stress resultants, moments and hyper-moments

h/2
M.z = I r,,20z
o for @,y =xory
My, = I Hap, 202
-h/2
h/2
M, = .[,uw/,,dz for g=xory
-h/2

Performing the calculus in Eq.(8) we get,

&) =~ [[(V, 00, +M G, +2M, 3w, Fixdly + fm, aw, , ds +
S c

§myde,st+§mxde,xyds
C C

with,

Mxx - Mxx _ arTlxxx _ amyxx
0x ay

) amw amyyy
M, =M, —— -4
Yy yy aX ay rnZW

Y1 oM,y _0m,,
M,=M_- - +

My, = Ml +m,m
my, =mgl +m,,m
My, = Myl +m,m
Further applying again Green’s theorem,

[[(M, 8w, +M Sw,, +2M, dw,, Jdxdy = [(M,,ow, +M ,dw, )ds-
S c

+ My,

ﬂ (Qxdw,X +Q,0W,, )dxdy
S,

where,

(10a)

(10b)

(11)

(12)

(13)



My,=M/+M m M, ,=M/I+M,m
< M, OM, < _OM,, oM, : (14)

T x oy Yoox oy
Further, we recall the geometrical conditions,

0 0 0 o _,0 0
—-m— +m
0x ov 0s

ay ov 0s
4 ( S jz Ay 92
392 | —-m— | ——tmMm —- Im
ox ov 0s ov 0s ovos 15)
02 3 a a 2 o 02 ) 62 62
—=|l=+m—| =I"—+m —+2m
oy ov  0s EYd s> ovos
62 3 0 0 0 0 o 62 ) 02
=ll——m— ||| —+m— |=I _z—m_2
oxoy ov 0s )\ ov 0s ov 0s
Moreover, the variation of the work of the external forces is,
& = [[ pawdxdy +”EaNdsdz—§mde,v ds— § M., ds - fm,dw,,, ds—
) ) ) i (16)

fm.aw, ds—fm dw,,ds
C C

The meaning of various external loading is shown on Fig.3. According to the

principle of virtual work,
N=A-E=0
Hence, Eq.(17) yields,

Fig.3 Forces, moments and hyper-moments on the boundary

—”(@X+ny+p)d/vdxdy+ﬂv ~V,)aw~(M,, - M., )Jow,,~(M . ~ M. )Jaw, s -

$lim,, -m, Jaw,,, +(m, - Jaw,+(m,, -m,)ow, Jds =0 19)

with



o h/2_
V,= [Fdz,
-h/2
~ = T T VR ~
M, =M J+M m=M_I“+M m" +2imM

M, =-M m+M I:—(~ —I\ZW)mH\ﬁxy(lz—mz)
2

v xv W xx
m, =(m,, +m,, +m,) (19)
m, =(m,, +m,, ~m,, J’

m, = 2(-m,, +m, Jm

V,=QJ+Qm

The variational equation (18) yields the governing equilibrium equation,
Qx+Q,, +P=0 (20)
And the corresponding boundary conditions,

V, =V, or ov=0 on the boundarg¢ (21a)

M,, =M, or an,,=0  on the boundarg (21b)
M.=M, or w,.=0 on the boundarg (21c)

m, =m, or ow,,, =0 on the boundar¢ (21d)

mg =My or ow, =0 on the boundar¢ (21e)

m, = My or ow, =0 on the boundar¢ (21f)
Performing the algebra, the equilibrium equation (20) becomes,

[1+ gzi‘—ijD“w—gzDDﬁw: P 22

Where, the flexural rigidity f the plate is given by,
D = Eh® /121-V?) . (23)

The corresponding classical boundary conditions are expressed by,

Vi l{_ \ 6(§;W) +g'D o) gzlﬁ? (vv,xxx+\Nv,xyy)} '

0x
2 4
m{_ 5 a(gyw) 4 gD a(gyw) g 1r2]2D (V\N,W+W,Wy)}
oron=0 on the bounda@ . (24)

10



oDl )+ gDt L, )|
v g% 02D /h)(w,,, +vw,,

| {-D(w,xx+w,w)+gza(wwwwuwm,w)-}
m +
12D /0?)(w,, +w, )

am{- D(1- V)W, +9*D (L~ VWi +W, ) }
orow,=0 on the bounda@ . (25)
—D(W,XX+VW,W)+g DAW o TV W, 1+v) XXW)— ~
_ g2 (12D /h?) (WXX+|/W )
vs:_Irn< "4
= DWWy, )+ G DY W L VW, )=
g (12D/h2)(vw +ww)
(12 = m2 = D(1= V)W, + 7D (1= V) Wy + )}
orow ;= 0 on the bounda@ . (26)

Likewise, the non-classical boundary conditions are,

[— gzD(W,XXX+I/W,ny)—|XD(W,XX+VW,W)]| +
[— gzD(WW+VW,yW)— |yD(W,XX+VW,W)]m+

[— gZD(W,XW+l/W,XXX)— |XD(W,W+VW,XX)]| +

P 4
M =| [ [ g D(w +VW] ) |yD(W,W+VW,XX)]m+ @7

- 9°D(1-V)w,,, -, D{L-v)w, || +

[ g”D(1- V), I, D{L-v)w,, Jm

or ow,, = 0on the boundarg.

-9°Dlw,_ +vw, . || Dlw, +vw, I +

Xyy yy
[— gZD(WW+VW,Wy)—IyD(W,XX+|/W,W)]m+

— [— gzD(W,XW+VW,XXX)—|XD(W,W+VW,XX)]| + (28)

[ g D(W +UW, ) |yD(W,yy+I/W,XX)]m—
- 9?D(1-v)w,,, 1, DA-V)w ]l—
[ g?D(1- )W,yxy—IyD(l—v)W,xy]m

or ow = Oon the boundarg.

11



-[— gzD(w +UW, )—|XD(W,XX+VW,W)]| -
[—g D W, FV W, ) |yD(W,XX+VW,yy)]m+ 29)
[— gZD(W,ny+I/W )—I D(W, +I/W,XX)]| +

[—g DW oy VW, )—|yD(W,W+VW,XX)]m

or ow = Oon the boundary C.

3. The simply supported rectangular plate.

Consider a simply supported rectangular plate with sadasdb along thex andy
directions, subjected to lateral distributed Igad he present example is similar to the
one presented by Papargyri et al [2008]. The classical boundary conditions are,
w=0, My=0 ,atx=0,a (30)
w=0, My=0 ,aty=0,b

Further, the non-classical boundary conditions, @48-f) are defined by

Wy,=0, at x=0,a (31)
Wy=0, at y=0,b

Finaly the boundary conditions are defined in theagact form by,

w=0, Ww=W,=0, at x=0,a andy=0,b. (32)
Assuming that,

w(x, y) = ii A, sm—smnTny (33)

And expressing the transversal loash@ similar form, through Fourier series, we get

p(x,y)= > P sinm—fsin% (34)
meL n=1

and

An = P (35)

D[(1+12(9/h){ a”2 sz) +gz(maf2+nbf2”

where, his the thickness of the plate. The classical case withiggl¥en by,

12



c _ P
AC = mn . 36
(mzﬂ2 nzanz (30)
D L7

a’ b?

For the square plate, we get,

A _, (" + n2f :
A I(1+ 12(g/h)2)(m2 + nz)2 + 772(g/a)2(m2 + nz)EJ

Further, for the case of the first mode, witkn=1, the relative displacement with

(37)

respect to the classical onéiwdefined by,

W 1 (38)

W 1+12(g/h)? +2m%(g/a)

Fig.4. Variation of the relative plate displacement with respect to g/h and g/a

Figure 4. exhibits the variation of the displacemenbver the classical displacement

w® when the intrinsic length g, the thickness h and the length of the side of the square

plate vary. The term including g/h is new and it is introduced here. It is missing from

the work of Papargyri et al [2008]. Nevertheless, its influence is high for small

thicknesses, when the intrinsic lengtisgomparable to the thickness.

4.Conclusion-further research

Theory of thin strain gradient elastic plates is presented including new terms

involving only the thickness (area of the cross-section) and not the moment of inertia

of the cross-section. Those terms are important for thin plates because exhibit high

increase of the stiffness of the plates. The present theory might be the basis for the

13



study of behavior of thin films, thin shells and generally the stability of thin
structures.
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Appendix
Computation of the in-plane stresses.
Ez Ez Ez
Txx = —m(W,XX'H/W,W)_ IXW(W'XXX-H/W’XW)_ Iym(w'yxxﬂ/w'yyy)
__ Ez ( N )—I Ez ( N )—I Ez ( N )
TW_ 1-p? W’W VW, X1-p2 W’ny VW0 Y1-p2 W’YW VW’VXX (Al)
= ., Ez . Ez W
Yoo 14y Y 1+ Y Y14y W
Computation of the hyper-stresses.
5, Ez Ez
Hex =0 ]__T(W’XXX-H/W’XW)_IXW(W'XX-H/W’yy)
Ez
,uyxx=—g21_ 2(W'yxx VW'yyy)_Iyl_Vz( 'xx+VW’yy)
7 —gzl_vz(w,xxﬂ/w,yy)
(A2)
=g 2 o )1 )
/nyy g 1—I/2 W’xyy VW, o xl_Vz ryy VWi
=g o )1, o,
Hyyy 9 1-p2 Wayyy TV W y1-12 Wy TV Wi
E
— 2
oy == 5 (e v, )

Computation of the moments and hyper-moments
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M., = -D(w, +vw,, )-1,D(w,  +vw,, )-1,D(w, . +vw,,, )
M, = —D(W,W+VW,XX)—|XD(W,XW+I/W,XXX)—|yD(W,yyy+VW,yxx)
M, =-D(1-v)w,, -1, D(1-v)w,,, I, DI1-v)w,,,
My = —gZD(W,XXX+VW,XW)—|XD(W,XX+VW,W)
My, = —gZD(W,yXX+VW,Wy)—|yD(W,XX+VW,W)
m,, =—-g°>(@12D /hz)(w,xx+vw,yy)
m,, = —gzD(W,XW +vw,xxx)—IXD(w,W+vw,xx) (A3)
m,, = —gZD(w,Wy+vw,yxx)—IyD(W,yy+vw,XX)
. ,12D

My, =9 h2 (W’yy+VW’xx)
m,, = -9°D(1-v)w,,, -1,D(T-Vv)w,, a=xy
m, =g 20,
m, =g 20,
M, = —D(W,XX+VW,W)+ gzD(W,W+VW,WW+(l+ V)W,XXW)—

g’ (12D/h2)(w,xx+vw,w)
M, = -D{w, +w, )+ g?Dlwy,,, +w,  +1+V)w, )~

(A4)

g2 2D /h?) (W, +w, )

M,, =-D(1-v)w,,+g?D(1- v)(w,w+w,xyyy))— g’ 12Dk(112.—v) W,

oo ~D(w, , +vw,,, )+ g°D(W, o w1+ VW, )~ .
- g2 @2D /1) (w, , +vw,, )

m{— D(1- VW, +G7D (1~ V)W +W, ) - 92%‘%}

M,, = I{— D(1-v)w,,+g°D(1- v)(w,xxxy+w,xwy))— g’ 12Dr(;—v) W,xy} +

- D(WV,XX+W,W)+ gZD(vw,XXXX+W,WW+(1+ V)W,XXW)— (AS)
g’ @2D /hz)(vw,xx+w,yy)

Computation of shear forces
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o(0%w) , o 0(0w) _ 42120 a(0°w)

0, =-D D A6
< x 9 ox h>  oOx (A6)
63, -D a(Dzw) +g%D 6(D4w) _ gzg O(DZW)
ay ay h oy
Computation of hypermoments along the boundary
= |- g°D(W, VW, |-, Dlw, +vw, )| +

[— gZD(W,W+VW,Wy)— |yD(W,XX+VW,yy)]m

m,, = [‘ gzD(W,XWWW,XXX)—|XD(W,W+VW,XX)I +

[_ gzD(W’yyy+VW’y><><) B lyD(W’yy+VW’xx)]m

My, = |- 9?D(1- VW, -1, DA-VIw,, ] +
[‘ 9°D(1- V)W,Wy—lyD(l—V)W,Xy]m
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