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Nonlinear stratified spindown of an along-isobath current over an insulated slope

is shown to develop asymmetries in the vertical circulation and vertical relative

vorticity field. During spindown, cyclonic vorticity is weakened to a greater extent

than anticyclonic vorticity near the boundary because of buoyancy advection. As

a consequence, Ekman pumping is weakened over Ekman suction. Momentum

advection can weaken Ekman pumping and strengthen Ekman suction. Time-dependent

feedback between the geostrophic flow and the frictional secondary circulation

induces asymmetry in cyclonic and anticyclonic vorticity away from the boundary.

Buoyancy advection over a slope can modify the secondary circulation such that

anticyclonic vorticity decays faster than cyclonic vorticity outside the boundary layer.

In contrast, momentum advection can cause cyclonic vorticity to spin down faster

than anticyclonic vorticity. A scaling and analytical solutions are derived for when

buoyancy advection over a slope can have a more significant impact than momentum

advection on these asymmetries. In order to test this scaling and analytical solutions,

numerical experiments are run in which both buoyancy and momentum advection are

active. These solutions are contrasted with homogeneous or stratified spindown over a

flat bottom, in which momentum advection controls the asymmetries. These results are

applied to ocean currents over continental shelves and slopes.

Key words: geophysical flows, ocean circulation, topographic effects

1. Introduction

When a geostrophic current flows over a boundary, frictional processes drive Ekman

flows that have important consequences for the dynamics of the circulation as well as

the modification and redistribution of tracers. Lateral variations in the Ekman transport

induce Ekman pumping and suction that drive interior secondary circulations. On a

flat bottom in a homogeneous fluid, classical spindown occurs when the frictionally

driven secondary circulation decelerates the current. In linear theory, Ekman pumping

is proportional to the vertical relative vorticity, ζ (Charney & Eliassen 1949). In a

homogeneous fluid, previous studies have shown that momentum advection causes

asymmetry in the vertical velocity and vertical relative vorticity field. At order Rossby
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number, ǫ = U/f L, Ekman advection of momentum weakens Ekman pumping in
cyclonic regions, ζ > 0, and strengthens Ekman suction in anticyclonic regions, ζ < 0
(Benton, Lipps & Tuann 1964; Hart 1995, 2000; Pedlosky 2008), where U is the
characteristic flow speed, f is the planetary vorticity (assumed positive in this work),
and L is the characteristic lateral length scale.

Despite weaker Ekman pumping than Ekman suction, the frictionally driven
circulation causes cyclonic vorticity to spin down faster than anticyclonic vorticity
because of lateral momentum advection (Zavala Sansón & van Heijst 2000; Zavala
Sansón 2001; Benthuysen & Thomas 2012a). These aspects of nonlinear spindown
are complicated in a stratified fluid, in which diffusion and buoyancy advection are
active. Furthermore, over a slope, the frictionally driven circulation couples with the
buoyancy field. The purpose of this work is to show how buoyancy advection can
modify the asymmetry in Ekman pumping and suction as well as anticyclonic and
cyclonic vorticity during stratified spindown over a slope.

1.1. Stratified spindown over a flat bottom

Over a flat bottom in a semi-infinite vertical domain, the stratified, geostrophic
flow adjusts in three stages in the limit ǫ ≪ 1. First, within an inertial period,
Tinertial = 2πf −1, an Ekman layer forms in a depth δe =

√
2ν/f , where ν is the

kinematic viscosity. Then, Ekman pumping and suction sets up an interior secondary
circulation that decelerates the geostrophic flow. Stratification limits the vertical
penetration of the secondary circulation over a Prandtl depth, HP = f L/N (e.g. Holton
1965), where N is the buoyancy frequency. The geostrophic flow decelerates on a
spindown time scale, Tspindown = E−1/2f −1, where the Ekman number, E = (δe/HP)

2, is
assumed small. For an insulated boundary, Holton (1965) also showed that density
variations occur over a diffusive boundary layer of depth δT = E1/4HP, which is
thicker than the Ekman layer. We refer to this diffusive boundary layer as the thermal
boundary layer. For initially constant stratification, the buoyancy field adjacent to the
boundary evolves uniformly by diffusion and remains decoupled from the Ekman
dynamics in the small-Rossby-number regime. Viscous effects arise in the interior flow
on a diffusive time scale, Tdiffusive = E−1f −1, and remove the geostrophic shear left by
spindown.

In the interior, cyclonic vorticity decays faster than anticyclonic vorticity for
increasing Rossby number, in part due to lateral momentum advection. Since the
interior geostrophic flow is vertically sheared, vertical momentum advection also
contributes to this asymmetry. In regions of cyclonic vorticity, vertical advection
brings lower-momentum fluid upward and tends to enhance spindown of the cyclone.
In contrast, in regions of anticyclonic vorticity, vertical advection brings higher-
momentum fluid downward and tends to slow spindown of the anticyclone. Thus,
during stratified spindown over a flat bottom, cyclones decay faster than anticyclones
due to lateral and vertical momentum advection despite weaker Ekman pumping than
Ekman suction.

1.2. Stratified spindown over a slope

Over an insulated slope inclined at an angle θ to the horizontal, the buoyancy field
couples with the frictionally driven circulation and can suppress spindown. MacCready
& Rhines (1991) show that for a uniform flow, cross-isobath Ekman advection of
density tilts the isopycnals over a diffusive boundary layer. This isopycnal tilt weakens
the geostrophic flow overlying the Ekman layer, hence reducing the bottom stress.
This process is described as buoyancy shutdown of the Ekman transport (MacCready



Nonlinear stratified spindown over a slope 373

& Rhines 1991). For long times, the Ekman transport decays as (t/Tshutdown, MR)
−1/2

(MacCready & Rhines 1991), where t is time, and approaches an upslope transport

MThorpe = κ cot θ (Thorpe 1987), where κ is the diffusivity. The decay time scale is

Tshutdown,MR = (σ−1 + S)(cos θS2(1 + S))
−1

f −1, (1.1)

where σ = ν/κ is the Prandtl number and S = (N tan θ/f )2 is the slope Burger number

(MacCready & Rhines 1991).

When the initial flow has vertical relative vorticity, stratified spindown by Ekman

pumping and suction also leads to a decaying Ekman transport in time. Then, both

spindown and buoyancy shutdown couple in their influence on the Ekman transport

(e.g. Chapman 2002). For small Rossby numbers and sufficiently small slope Burger

numbers, buoyancy shutdown locally weakens the geostrophic vertical relative vorticity

(Benthuysen 2010). Hence both Ekman pumping and Ekman suction are suppressed to

the same extent.

In this work, we examine nonlinear stratified spindown over a slope and the ensuing

asymmetries that arise in Ekman pumping and suction and cyclonic and anticyclonic

vorticity. The spindown problem is formulated in § 2. In § 3, we determine a scaling

for when buoyancy advection over a slope affects these asymmetries. In § 4, a system

of equations is used to solve for the nonlinear correction to stratified spindown of

a sinusoidal laterally sheared current over a slope. The asymmetries arising from

buoyancy advection over a slope are compared with nonlinear spindown over a flat

bottom for both homogeneous and stratified fluids. In § 5, numerical experiments

are performed to examine the extent to which the analytical solutions are valid

for idealized flows applicable to continental slopes. These numerical experiments

support the scaling arguments and demonstrate that buoyancy advection can have a

more significant impact than momentum advection on the asymmetries in the vertical

velocity and vertical relative vorticity field. The numerical discretization of the system

of equations is included in the Appendix. In § 6, results are discussed and summarized.

2. Formulation

2.1. Basic equations

The adjustment of an along-isobath current is examined in an incompressible,

Boussinesq fluid rotating about the vertical axis at an angular velocity f /2. The

coordinate system is rotated at an angle θ with respect to the horizontal, as shown

in figure 2(a). The slope angle is assumed sufficiently small such that cos θ ≈ 1 and

sin θ ≈ θ . The density field is assumed only temperature-dependent and is defined

in the unrotated coordinate system as ρ = ρo + ρ̂(ẑ) − (ρo/g)b, where ẑ is the

vertical coordinate and the background stratification is constant, N2 = −(g/ρo) dρ̂/dẑ.

Buoyancy, b, is defined as the buoyancy anomaly with respect to the background

density field, ρo + ρ̂. The total pressure field is decomposed into a component due to

the background stratification and a dynamical component, p.

In the rotated coordinate frame, where z is the coordinate normal to the topography,

the flow is composed of an along-isobath current, u, in the x-direction, a cross-isobath

flow, v, in the y-direction, and a flow normal to the sloping boundary, w, in the

z-direction. The kinematic viscosity and the diffusivity are assumed constant, and

the Prandtl number, ν/κ , is assumed equal to one. No along-isobath variations are

assumed. A semi-infinite vertical domain is considered, where the Prandtl depth HP is
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the current’s characteristic vertical scale. The equations that describe the dynamics are

∂u

∂t
+ v

∂u

∂y
+ w

∂u

∂z
− f (v + θw)= ν

(
∂2u

∂y2
+ ∂2u

∂z2

)
, (2.1)

∂v

∂t
+ v

∂v

∂y
+ w

∂v

∂z
+ fu = − 1

ρo

∂p

∂y
− θb + ν

(
∂2v

∂y2
+ ∂2v

∂z2

)
, (2.2)

∂w

∂t
+ v

∂w

∂y
+ w

∂w

∂z
+ f θu = − 1

ρo

∂p

∂z
+ b + ν

(
∂2w

∂y2
+ ∂2w

∂z2

)
, (2.3)

∂b

∂t
+ v

(
∂b

∂y
− N2θ

)
+ w

(
∂b

∂z
+ N2

)
= κ

(
∂2b

∂y2
+ ∂2b

∂z2

)
, (2.4)

∂v

∂y
+ ∂w

∂z
= 0. (2.5)

The equations are non-dimensionalized as follows (primes indicate dimensionless
variables):

y = Ly′, z = HPz′, t = Tspindownt
′, (2.6)

u = Uu′, v = Uv′, w = UΓw′, (2.7)

b = N2HPb′, p = ρoN2H2
Pp′, (2.8)

where U is a characteristic along-isobath flow speed, L is a characteristic lateral length
scale, and Γ = HP/L is the aspect ratio, which is equal to the Prandtl ratio, f /N.

The dimensionless equations (primes dropped) are

E1/2 ∂u

∂t
+ ǫ

(
v
∂u

∂y
+ w

∂u

∂z

)
− (v + θΓw)= E

2

(
Γ 2 ∂

2u

∂y2
+ ∂2u

∂z2

)
, (2.9)

E1/2 ∂v

∂t
+ ǫ

(
v
∂v

∂y
+ w

∂v

∂z

)
+ u = −ǫ−1 ∂p

∂y
− ǫ−1S1/2b + E

2

(
Γ 2 ∂

2v

∂y2
+ ∂2v

∂z2

)
, (2.10)

ǫΓ E1/2 ∂w

∂t
+ ǫ2Γ 2

(
v
∂w

∂y
+ w

∂w

∂z

)
+ ǫS1/2Γ 2u

= −∂p

∂z
+ b + E

2
ǫΓ 2

(
Γ 2 ∂

2w

∂y2
+ ∂2w

∂z2

)
, (2.11)

E1/2 ∂b

∂t
+ ǫv

(
∂b

∂y
− S1/2

)
+ ǫw

(
∂b

∂z
+ 1

)
= E

2

(
Γ 2 ∂

2b

∂y2
+ ∂2b

∂z2

)
, (2.12)

∂v

∂y
+ ∂w

∂z
= 0. (2.13)

2.2. Boundary and initial conditions

In the rotated coordinate frame, the equations are solved subject to the following
dimensionless no-slip, no-normal-flow, and insulated boundary conditions:

u = v = 0 at z = 0, (2.14)

w = 0 at z = 0, (2.15)

∂b

∂z
+ 1 = 0 at z = 0. (2.16)
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The horizontal domain is assumed laterally unbounded. In the semi-infinite vertical
domain,

u → u(t = 0, y) as z → ∞, (2.17)

v,w, b → 0 as z → ∞. (2.18)

The time-dependent adjustment problem is examined for an along-isobath flow with a
sinusoidal lateral structure. In the rotated coordinate frame, the initial, dimensionless,
leading-order flow is

u(t = 0, y)= cos(y). (2.19)

2.3. Parameter space

Nonlinear spindown over a slope is investigated when buoyancy shutdown can modify
the leading-order dynamics. Other frictionally driven circulations can develop to
modify the current’s structure during spindown. For example, from the insulated
boundary condition (2.16), diffusion of the initial stratification produces a laterally
uniform buoyancy anomaly, b, in the thermal boundary layer. Previous studies (e.g.
Thorpe 1987; MacCready & Rhines 1991; Benthuysen & Thomas 2012b) have shown
that this process drives an Ekman transport of magnitude κ/θ in steady state. When
this steady-state transport is much less than the initial Ekman transport induced by the
current, δeU/2, then the laterally uniform solution’s effect on spindown is negligible.
This condition, κ/θ ≪ |δeU/2|, will be considered here and written in terms of non-
dimensional parameters as E1/2 < ǫS1/2.

Spindown is considered for small slope Burger numbers, S ≪ 1, which is typical of
mid-latitude continental shelves and slopes. A small aspect ratio is assumed, Γ ≪ 1,
so that the hydrostatic relation holds in (2.11). Following past stratified spindown
theory, we consider the different dynamical balances to hold within an Ekman layer, a
diffusive thermal boundary layer, and a far-field interior region. As described in § 1.1,
the thermal boundary layer depth is thicker than the Ekman layer depth for times
longer than an inertial period. A scale separation exists between flows in the thermal
boundary layer and the interior domain when t < E−1f −1, i.e. times that are less than
a diffusive time scale. An example of the analytical solution with this boundary layer
technique is shown in figure 1. This example illustrates that the cross-isobath flow
varies over an Ekman layer depth, whereas the buoyancy field varies over a thicker
thermal boundary layer depth. The along-isobath flow has significant vertical shear
within the Ekman and thermal boundary layers and approaches its far-field state over a
Prandtl depth.

Under the above conditions, the extent to which buoyancy shutdown reduces Ekman
pumping during spindown is given by the parameter

β ≡ Tspindown

Tshutdown

= S2E−1/2. (2.20)

This key parameter measures the influence of buoyancy shutdown on stratified
spindown and enters into the dynamics through the thermal boundary layer. The
adjustment problem is examined for β 6 1. We will present solutions with β = 0,
which corresponds to stratified spindown over a flat bottom, and β = 1, in which
Ekman advection of buoyancy modifies the leading-order Ekman flow. These β values
are chosen to illustrate the novel way in which buoyancy advection over a slope
modifies the flow field.
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FIGURE 1. Example of the (a) along-isobath flow, u, (b) buoyancy anomaly, b, and (c)
cross-isobath flow, v, at y = 0 from buoyancy shutdown solutions shown in figure 3. Depth is
non-dimensionalized by HP and the Ekman and thermal boundary layer depths are indicated.
The interior domain is the region outside the boundary layers.

3. Boundary layer decomposition and scaling arguments

This section presents scaling arguments for the variables. Over a stratified slope,
the Ekman flow couples with the buoyancy field. In the linear regime, the coupling
symmetrically suppresses Ekman pumping and suction. This weakening slows the
spindown of the geostrophic current. In this work, the linear analysis is extended
into the nonlinear regime. During both homogeneous and stratified spindown over a
flat bottom, momentum advection plays a dominant role in the asymmetry in Ekman
pumping and suction and the asymmetrical spindown of cyclonic and anticyclonic
vorticity. In contrast, over a stratified slope, buoyancy advection can dominate
momentum advection in modifying the vertical velocity and vorticity fields. In this
section, a scaling for the nonlinear correction to the flow field due to buoyancy
advection is presented.

Following Thomas & Rhines (2002), the variables are decomposed into
contributions from the interior, Ekman layer and thermal boundary layer components,
where the variables u, v,w, p and b are designated with the respective i, e, and T

subscripts. In the interior domain, a laterally sheared along-isobath flow evolves
geostrophically from vortex stretching and squashing by an ageostrophic secondary
circulation over a depth HP = f L/N. In the Ekman layer, the momentum balance is
between the Coriolis and frictional terms over a height δe =

√
2ν/f , where the small-

angle approximation is applied. In the thermal boundary layer, buoyancy variations

occur over a diffusively growing depth
√

2κt. The coordinate normal to the boundary
is non-dimensionalized in the interior as z′ = z/HP, in the thermal boundary layer as

ξ ′ = z/δT , where δT = (2κTspindown)
1/2 = E1/4HP, and in the Ekman layer as η′ = z/δe,

where δe = E1/2HP.



Nonlinear stratified spindown over a slope 377

3.1. Stratified spindown: interior and Ekman layer scalings and equations

In the interior, outside the viscous boundary layers, the along-isobath flow, ui = O(1),
is hydrostatic and geostrophic. Hence, interior pressure scales as pi = O(ǫ) from (2.10)
and interior buoyancy scales as bi = O(ǫ) from (2.11).

The interior along-isobath flow spins down through a frictionally driven ageostrophic
circulation emanating from the top of the Ekman layer. At O(1), the Ekman pumping
condition is

wi(z = 0)= −E1/2 1

2

∂ui

∂y
(z = 0), (3.1)

and wi,we = O(E1/2). By continuity, the interior cross-isobath flow is vi = O(E1/2).
The secondary circulation ψ is defined by v = −∂ψ/∂z and w = ∂ψ/∂y.

In order to satisfy no-slip boundary conditions, the Ekman layer velocity
components are ue, ve = O(1). From (2.12), cross-isobath Ekman advection of
the background stratification balances buoyancy diffusion and be = O(ǫS1/2). From
hydrostatic balance, pe = O(ǫS1/2E1/2).

3.2. Buoyancy shutdown: thermal boundary layer scalings

Linear stratified spindown is modified by Ekman advection of buoyancy over
the slope. The process is illustrated in figure 2(a). By the insulating boundary
condition (2.16), a thermal boundary layer develops through buoyancy diffusion,
where a non-dimensional Ekman buoyancy flux ∂be/∂z ∼ [be]/(δT/HP) is balanced
by a thermal boundary layer buoyancy flux ∂bT/∂z ∼ [bT]/(δT/HP), where [ ]
denotes the variable’s scale. Thus, the thermal boundary layer buoyancy anomaly
scales as bT = O([be](δT/δe)) = O(ǫS1/2(δT/δe)). From (2.11), pressure scales as
pT = O([bT](δT/HP)) = O(ǫS1/2(δT/δe)(δT/HP)). From (2.10), the buoyancy anomaly
balances a geostrophic along-isobath flow that scales as uT = O(ǫ−1S1/2[bT]) =
O(S(δT/δe)). By applying δT/δe = E−1/4 and the β parameter, the scaling for the
along-isobath flow in the thermal boundary layer is uT = O(β1/2). This flow opposes
the interior along-isobath flow, reducing the geostrophic flow near the bottom. Hence,
buoyancy shutdown suppresses the Ekman transport at O(β1/2) and causes symmetrical
weakening in Ekman pumping and suction.

From (2.9), a cross-isobath flow develops at vT = O(β1/2E1/2). By continuity, the
vertical velocity is wT = O(β1/2E3/4). This cross-isobath flow is weaker than the
cross-isobath Ekman flow by O(β1/2E1/2), and the vertical velocity is weaker than
the interior and Ekman vertical velocity by O(β1/2E1/4).

3.3. Nonlinear buoyancy shutdown

Next, we consider the scaling argument for when buoyancy advection leads
to asymmetry during nonlinear spindown. Cross-isobath Ekman advection of the
thermal boundary layer buoyancy anomaly in § 3.2 leads to an additional buoyancy
anomaly, b′

e, in the Ekman layer. From (2.12), ǫve∂bT/∂y ∼ ∂2b′
e/∂η

2 and b′
e =

O(ǫ[be](δT/δe)) = O(ǫ2S1/2(δT/δe)). The Ekman flow advects buoyancy toward (away
from) the cyclonic (anticyclonic) axis of the interior flow.

By the insulating boundary condition, (2.16), an additional buoyancy anomaly
develops in the thermal boundary layer, where b′

T = O([b′
e](δT/δe))= O(ǫ2S1/2(δT/δe)

2).
From (2.10), the corresponding geostrophic along-isobath flow scales as u′

T =
O(ǫ−1S1/2[b′

T])= O(S(δT/δe)
2ǫ). The additional buoyancy anomaly causes greater (less)

weakening of the geostrophic flow in cyclonic (anticyclonic) regions than in the linear
case. This weakening leads to weaker cyclonic vorticity than anticyclonic vorticity
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FIGURE 2. (a) Linear buoyancy shutdown. Consider the spindown of an initially barotropic
jet, U, that is laterally symmetric about yo. Convergence in the cross-isobath Ekman flow,
ve, induces Ekman pumping, wi(z = 0), and suction. Since the jet is laterally symmetric,
Ekman pumping on the cyclonic axis, yc, is equal to Ekman suction on the anticyclonic axis,
ya. Ekman advection of the stratification leads to a positive buoyancy anomaly (enclosed
within the grey dashed line) that is distributed over a thermal boundary layer depth. This
positive buoyancy anomaly tilts the isopycnals (grey solid lines), weakening the bottom
geostrophic velocity. Hence the Ekman flow is weakened, and Ekman pumping and suction
are weakened to the same extent. (b) Nonlinear buoyancy shutdown. Consider the nonlinear
adjustment due to stronger initial speed U. Two forms of buoyancy advection strengthen
(weaken) the positive buoyancy anomaly (enclosed within the grey dashed line) around
the cyclonic (anticyclonic) axis. First, cross-isobath Ekman flow, ve, advects the buoyancy
anomaly downslope. Second, in the thermal boundary layer, Ekman pumping (suction)
advects the buoyancy anomaly upward (downward). The isopycnals (grey solid lines) tilt
more steeply around the cyclonic axis. The resulting buoyancy anomaly enhances (reduces)
the weakening of the Ekman flow around the cyclonic (anticyclonic) axis. Thus, Ekman
pumping is suppressed to a greater extent than Ekman suction.

in the thermal boundary layer. From the Ekman pumping condition, (3.1), buoyancy
advection weakens Ekman pumping to a greater extent than Ekman suction. We define
this process as nonlinear buoyancy shutdown and it is illustrated in figure 2(b).

From the above scaling argument, the correction to the along-isobath flow by
nonlinear buoyancy shutdown occurs at O(S(δT/δe)

2ǫ) = O(SE−1/2ǫ) and, in terms
of β, is equal to

β1/2E−1/4ǫ. (3.2)

From the above scaling, nonlinear buoyancy shutdown can dominate momentum
advection effects at O(ǫ) when β > E1/2. Furthermore, nonlinear buoyancy shutdown
enters into the leading-order dynamics when β1/2E−1/4ǫ > 1. In the following analysis,
we examine how this mechanism affects the asymmetric spindown of cyclonic and
anticyclonic vorticity.

In order to perform a perturbation expansion, the scaling (3.2) for the nonlinear
correction is assumed less than O(1). Furthermore, in order to illustrate the role
of buoyancy advection during spindown over a slope, β = O(1) is assumed. The
Rossby number is constrained to ǫ 6 β−1/2E1/4. From these assumptions, the dominant
nonlinear correction for spindown over a stratified slope occurs by nonlinear buoyancy
shutdown rather than momentum advection at O(ǫ).

From the above scaling arguments, the variables are expanded as

u = ui + β1/2uT + ue, (3.3)
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v = E1/2vi + β1/2E1/2vT + ve, (3.4)

w = E1/2wi + β1/2E3/4wT + E1/2we, (3.5)

ψ = E1/2ψi + β1/2E3/4ψT + E1/2ψe, (3.6)

b = ǫbi + β1/2S−1/2ǫbT + ǫS1/2be, (3.7)

p = ǫpi + S1/2ǫpT + ǫS1/2E1/2pe. (3.8)

Next, a closed system of equations is formulated and solved to examine how nonlinear

buoyancy shutdown affects Ekman pumping and suction and subsequently feeds back

into the interior along-isobath flow.

4. Analytical solutions

4.1. Expansion to O(E−1/4ǫ)

In order to examine how nonlinear buoyancy shutdown affects the current’s vertical

circulation and spindown, the variables are expanded to O(E−1/4ǫ) as follows:

(u, b, p)=
n=1∑

n=0

(ǫE−1/4)
n
(u(n), b(n), p(n)) (4.1)

= (u(0), b(0), p(0))+ ǫE−1/4(u(1), b(1), p(1)). (4.2)

At n = 0, the vertical velocity and vertical vorticity decay symmetrically from

buoyancy shutdown. The n = 1 correction provides the asymmetric decay due to

nonlinear buoyancy shutdown. The momentum and buoyancy equations are presented

below to O(ǫE−1/4) for each region. The Ekman layer equations are

−ve = 1

2

∂2ue

∂η2
, (4.3)

ue = 1

2

∂2ve

∂η2
, (4.4)

−ve + ǫE−1/4ve

∂bT

∂y
(ξ = 0)= 1

2

∂2be

∂η2
, (4.5)

∂ve

∂y
+ ∂we

∂η
= 0. (4.6)

The thermal boundary layer variables are evaluated at the bottom owing to small

vertical variations within the Ekman layer.

Next, the thermal boundary layer equations are

∂uT

∂t
− vT + ǫE−1/4wi(z = 0)

∂uT

∂ξ
= 1

2

∂2uT

∂ξ 2
, (4.7)

uT = −bT, (4.8)

∂bT

∂t
+ ǫE−1/4wi(z = 0)

∂bT

∂ξ
= 1

2

∂2bT

∂ξ 2
, (4.9)

∂vT

∂y
+ ∂wT

∂ξ
= 0. (4.10)
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In the thermal boundary layer, the interior vertical velocity is approximated by its
value at the bottom owing to small vertical variations over the thermal boundary layer
thickness.

The inviscid equations in the interior domain are

∂ui

∂t
− vi = 0, (4.11)

ui = −∂pi

∂y
, (4.12)

0 = −∂pi

∂z
+ bi, (4.13)

∂bi

∂t
+ wi = 0, (4.14)

∂vi

∂y
+ ∂wi

∂z
= 0. (4.15)

The interior secondary circulation, ψi, is defined as vi = −∂ψi/∂z and wi = ∂ψi/∂y,
where

∂2ψi

∂y2
+ ∂2ψi

∂z2
= 0 (4.16)

is forced by Ekman pumping and suction at the boundary.
The equations are solved subject to the following boundary conditions:

ui(z = 0)+ β1/2uT(ξ = 0)+ ue(η = 0)= 0, (4.17)

ve(η = 0)= 0, (4.18)

wi(z = 0)+ we(η = 0)= 0, (4.19)

∂bT

∂ξ
(ξ = 0)+ ∂be

∂η
(η = 0)= 0, (4.20)

ui → ui(t = 0, y) as z → ∞, (4.21)

vi,wi, bi → 0 as z → ∞, (4.22)

uT, vT,wT, bT → 0 as ξ → ∞, (4.23)

ue, ve,we, be → 0 as η→ ∞. (4.24)

In the insulated boundary condition above, (4.20), the laterally uniform solution for
buoyancy, b, has been decomposed from the total solution. This solution satisfies
∂b/∂z + 1 = 0. As stated in § 2.3, this contribution to the total solution has been
removed in order to focus on the solution arising from the initial along-isobath flow.
The general Ekman layer solution is

u(n)e = −
(

u
(n)
i (z = 0)+ β1/2u

(n)
T (ξ = 0)

)
exp(−η) cos η, (4.25)

v(n)e =
(

u
(n)
i (z = 0)+ β1/2u

(n)
T (ξ = 0)

)
exp(−η) sin η, (4.26)

w(n)
e = 1

2

∂

∂y

(
u
(n)
i (z = 0)+ β1/2u

(n)
T (ξ = 0)

)
exp(−η)(sin η + cos η), (4.27)
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for n = 0, 1. The Ekman buoyancy solutions are

b(0)e = −
(

u
(0)
i (z = 0)+ β1/2u

(0)
T (ξ = 0)

)
exp(−η) cos η, (4.28)

b(1)e = −
(

u
(1)
i (z = 0)+ β1/2u

(1)
T (ξ = 0)+ ϕ(0)U

(0)
T (ξ = 0) sin(2y)

)
exp(−η) cos η. (4.29)

Next, the Ekman transport is defined as

Me =
∫ ∞

0

ve(t, y, η) dη =
n=1∑

n=0

(ǫE−1/4)
n
M(n)

e (4.30)

and

M(n)
e = 1

2

(
u
(n)
i (z = 0)+ β1/2u

(n)
T (ξ = 0)

)
. (4.31)

By the no-normal-flow boundary condition, Ekman pumping is given by

wi(z = 0)=
n=1∑

n=0

(ǫE−1/4)
n
w
(n)
i (z = 0) (4.32)

and

w
(n)
i (z = 0)= −1

2

∂

∂y
(u
(n)
i (z = 0)+ β1/2u

(n)
T (ξ = 0)). (4.33)

The Ekman pumping solution is transformed into a boundary condition on ψi,

∂ψ
(n)
i

∂t
(z = 0)= 1

2

(
∂ψ

(n)
i

∂z
(z = 0)− β1/2 ∂u

(n)
T

∂t
(ξ = 0)

)
. (4.34)

Next, the Ekman buoyancy solutions, (4.28) and (4.29), as well as the geostrophic
relationship, (4.8), are used to transform the no-normal-buoyancy-flux boundary
condition, (4.20), into a boundary condition on uT ,

∂u
(n)
T

∂ξ
(ξ = 0)= u

(n)
i (z = 0)+ β1/2u

(n)
T (ξ = 0). (4.35)

4.2. O(1) solution

The n = 0 solution is decomposed as

(ψ
(0)
i , u

(0)
i , u

(0)
T )=

(
ϕ(0)(t) exp(−z),U

(0)
i (t, z),U

(0)
T (t, ξ)

)
cos(y), (4.36)

where ϕ(0) measures the strength of the interior secondary circulation, which
exponentially decays over the Prandtl depth. A closed set of partial differential
equations is formed which couple the dynamics of both spindown and buoyancy
shutdown, where

∂U
(0)
i

∂t
− ϕ(0)(t) exp(−z)= 0, (4.37)

∂U
(0)
T

∂t
− 1

2

∂2U
(0)
T

∂ξ 2
= 0, (4.38)
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subject to the boundary conditions

dϕ(0)

dt
+ 1

2

(
ϕ(0) + β1/2 ∂U

(0)
T

∂t
(ξ = 0)

)
= 0, (4.39)

∂U
(0)
T

∂ξ
(ξ = 0)− U

(0)
i (z = 0)− β1/2U

(0)
T (ξ = 0)= 0, (4.40)

U
(0)
i → 1 as z → ∞, (4.41)

U
(0)
T → 0 as ξ → ∞, (4.42)

and the initial conditions

ϕ(0)(t = 0)= − 1

2
, (4.43)

U
(0)
i (t = 0)= 1, (4.44)

U
(0)
T (t = 0)= 0. (4.45)

This system of equations is solved using Laplace transforms in time, such that
(
ϕ̃(s), Ũi(s, z), ŨT(s, ξ)

)
= L [ϕ(0)(t),U

(0)
i (t, z),U

(0)
T (t, ξ)] (4.46)

≡
∫ ∞

0

(
ϕ(0)(t),U

(0)
i (t, z),U

(0)
T (t, ξ)

)
exp(−st) dt (4.47)

and

ϕ̃ = − 1

1 + 2s +
√

2βs
, (4.48)

Ũi = 1

s

(
1 − exp(−z)

1 + 2s +
√

2βs

)
, (4.49)

ŨT = −2 exp(−ξ
√

2s)

2
√
βs + (1 + 2s)

√
2s
. (4.50)

The solutions are determined by operating on (4.48)–(4.50) by the inverse Laplace
transform (Abramowitz & Stegun 1972). The temporal structure of the interior
secondary circulation is

ϕ(0)(t)= −1

2
exp(at) cos(bt)+

√
βt

2π
− 1

4b
(1 + 2a) exp(at) sin(bt)

+
√
β

2π
exp(at)

{
cos(bt)

∫ t

0

τ 1/2 exp(−aτ)

×
(

2a cos(bτ)+
[

b2 − a2

b

]
sin(bτ)

)
dτ

+ sin(bt)

∫ t

0

τ 1/2 exp(−aτ)

([
−b + a2

b

]
cos(bτ)+ 2a sin(bτ)

)
dτ

}
, (4.51)

where the coefficients are a = −(2 − β)/4, which is negative for β 6 1, and
b = +

√
β(1 − β/4)/2. In the limit β → 0, the coefficients approach a = −1/2 and

b = 0 and, from the first term in (4.51), the Ekman pumping approaches the spindown
solution over a flat bottom, where ϕspindown(t) = −(1/2) exp(−t/2). The second term
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represents the opposition to spindown by buoyancy forces and initially grows as√
βt/(2π). The third and fourth terms in (4.51) modulate the long-time behaviour of

the Ekman pumping. Buoyancy forces cause Ekman pumping to initially decay as
ϕ(0)(t ≪ 1)= −(1/2) exp((β/4 − 1/2)t)+

√
βt/(2π).

In the thermal boundary layer, the buoyancy anomaly is associated with a
geostrophically balanced along-isobath flow,

U
(0)
T (t, ξ > 0)= exp(at)√

2π

{
sin(bt)

∫ t

0

exp(−aτ − ξ 2/(2τ))√
τ

×
([
ξ
√
β

2bτ
− β

4b

]
cos(bτ)− sin(bτ)

)
dτ

+ cos(bt)

∫ t

0

exp(−aτ − ξ 2/(2τ))√
τ

×
([

−ξ
√
β

2bτ
+ β

4b

]
sin(bτ)− cos(bτ)

)
dτ

}
(4.52)

and

U
(0)
T (t, ξ = 0)=

√
β

2b
exp(at) sin(bt)−

√
2t

π

+ exp(at)√
2π

{
sin(bt)

∫ t

0

τ 1/2 exp(−aτ)

×
([

−aβ

2b
+ 2b

]
cos(bτ)−

[
β

2
+ 2a

]
sin(bτ)

)
dτ

+ cos(bt)

∫ t

0

τ 1/2 exp(−aτ)

([
aβ

2b
− 2b

]
sin(bτ)

−
[
β

2
+ 2a

]
cos(bτ)

)
dτ

}
. (4.53)

An initial along-isobath flow in the positive x-direction induces a downwelling
Ekman flow that gives rise to a positive buoyancy anomaly in the thermal boundary
layer. This buoyancy anomaly corresponds to an along-isobath flow that opposes the
interior flow and initially grows as

√
2t/π.

By suppressing Ekman pumping and suction, buoyancy shutdown inhibits the
spindown of the interior along-isobath flow. By inverse Laplace transform of (4.49),
the interior along-isobath flow is

U
(0)
i (t, z)= {1 − exp(−z) (1 − cos(bt) exp(at))} − β

4b
exp(−z + at) sin(bt)

+ 1

b

√
β

2π
exp(−z + at)

{
sin(bt)

∫ t

0

τ 1/2 exp(−aτ) (a cos(bτ)

+b sin(bτ)) dτ + cos(bτ)

∫ t

0

τ 1/2 exp(−aτ) (−a sin(bτ)+ b cos(bτ)) dτ

}
.

(4.54)

The first term, which is enclosed by braces, approaches the spindown solution in the
limit β → 0, where Ui,spindown = 1 − exp(−z)(1 − exp(−t/2)). For β = 1, buoyancy
shutdown reduces the rate at which the interior along-isobath flow decays, but the flow
continues to decay in time because Ekman pumping remains non-zero.
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FIGURE 3. The n = 0 analytical solutions for β = 0 (a–c) and β = 1 (d–f ). The sections are
shown at t = 1.4. The along-isobath flow, u (a,d), is contoured every 0.2 units, the buoyancy
anomaly, b (b,e), is contoured every 0.02 units, and the secondary circulation, ψ/E1/2 (c,f ),
is contoured every 0.05 units. The arrows indicate the direction of the secondary circulation.
The solutions are plotted with E = 6.42 × 10−4, ǫ = 0.094, S = 0 (a–c), and S = 0.16 (d–f ).

In figure 3, the solutions are plotted for stratified spindown over a flat bottom,
β = 0, and over a slope, β = 1. For β = 1, the variables are mapped onto the rotated
coordinate frame to compare with the flat bottom case. The flow is plotted at t = 1.4.
At this time, the Ekman pumping solution for β = 0 is half of its initial value and the
thermal boundary layer buoyancy anomaly β = 1 is at its maximum value.

Over a flat bottom, β = 0, the interior secondary circulation spins down the along-
isobath flow. This circulation vertically advects the stratification and gives rise to
negative (positive) buoyancy anomalies in regions of Ekman pumping (suction). Over
a slope with β = 1, positive and negative buoyancy anomalies form away from regions
of Ekman pumping and suction. These buoyancy anomalies are due to cross-isobath
Ekman advection of buoyancy and are the components of the buoyancy field that
lead to buoyancy shutdown of the Ekman transport. For β = 1, buoyancy shutdown is
evident with a weaker secondary circulation and an along-isobath flow that is not as
weak away from the boundary.

4.3. O(β1/2E−1/4ǫ) solution

The n = 1 solution structure is decomposed as

(ψ
(1)
i , u

(1)
i , u

(1)
T )=

(
ϕ(1)(t) exp(−2z) sin(2y),U

(1)
i (t) exp(−2z) sin(2y),U

(1)
T (t, ξ) sin(2y)

)
.

(4.55)
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The lateral length scale of the second harmonic is half of the lowest-order mode.
Subsequently, by (4.16), the interior secondary circulation is confined closer to the
boundary over half of the Prandtl depth. The time evolution of the nonlinear correction
is determined by the following closed set of partial differential equations:

dU
(1)
i

dt
− 2ϕ(1) = 0, (4.56)

∂U
(1)
T

∂t
− 1

2

∂2U
(1)
T

∂ξ 2
= 1

2
ϕ(0)

∂U(0)

∂ξ
, (4.57)

subject to the boundary conditions

∂ϕ(1)

∂t
+
(
ϕ(1) + 1

2
β1/2 ∂U

(1)
T

∂t
(ξ = 0)

)
= 0, (4.58)

∂U
(1)
T

∂ξ
(ξ = 0)− U

(1)
i − β1/2U

(1)
T (ξ = 0)= ϕ(0)U

(0)
T (ξ = 0), (4.59)

U
(1)
T → 0 as ξ → ∞, (4.60)

and the intial condition

(ϕ(1)(t = 0),U
(1)
i (t = 0, z),U

(1)
T (t = 0))= (0, 0, 0). (4.61)

This set of equations is solved numerically for β = 1 by the Crank–Nicolson
scheme. The details of the numerical calculation are provided in the Appendix. Next,
the correction to the vertical velocity and vertical relative vorticity from nonlinear
buoyancy shutdown is presented. These calculations are compared with the analytical
O(ǫ) correction from momentum advection during homogeneous spindown over a flat
bottom.

4.4. Asymmetries during nonlinear buoyancy shutdown versus nonlinear homogeneous
spindown over a flat bottom

During nonlinear homogeneous spindown (HSD) over a flat bottom and nonlinear
stratified spindown (SSD) over a slope, asymmetries arise in the vertical velocity
and vertical vorticity field. For HSD over a flat bottom in a finite depth H, where
Γ = H/L and E = (δe/H)

2, the interior vertical velocity and vertical relative vorticity
are expanded in ǫ as

wi,HSD = w
(0)
i + ǫw

(1)
i , (4.62)

ζi,HSD = ζ
(0)
i + ǫζ

(1)
i . (4.63)

For an initial flow u = cos(y), the solutions to O(ǫ) are (Benthuysen & Thomas
2012b)

ζ
(0)
i,HSD = sin(y) exp(−t/2), (4.64)

ζ
(1)
i,HSD = 13

20
cos(2y) (exp(−t/2)− exp(−t)) , (4.65)

w
(0)
i,HSD = 1

2
sin(y) exp(−t/2)(1 − z), (4.66)

w
(1)
i,HSD = cos(2y)

(
13

40
exp(−t/2)− 6

40
exp(−t)

)
(1 − z). (4.67)
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FIGURE 4. The analytical nonlinear correction to Ekman pumping and suction on the
cyclonic and anticyclonic axis, respectively, is shown given u(t = 0) = cos(y). These
corrections are compared between HSD (solid line) and SSD over a slope (dashed line)

with β = 1. The axis w
(1)
i (z = 0)= 0 is indicated by the dotted line.

Figure 4 compares the nonlinear corrections to Ekman pumping on the cyclonic axis,

yc = π/2 + 2mπ, and Ekman suction on the anticyclonic axis, ya = −π/2 + 2mπ, where

m is an integer. For nonlinear buoyancy shutdown, w
(1)
i (z = 0) = 2ϕ(1) cos(2y) and for

nonlinear homogeneous spindown, w
(1)
i (z = 0) is given by (4.67) evaluated at z = 0. In

both cases, the nonlinear corrections are both negative.

Although Ekman pumping is weaker than Ekman suction for both cases, their

temporal evolution reveals significant differences. During HSD, Ekman and interior

momentum advection contribute to the nonlinear correction. Initially, this correction

is non-zero because the Ekman flow is set-up within an inertial period. Since the

correction is negative, Ekman pumping is weakened at yc and Ekman suction is

strengthened at ya. However, during SSD over a slope, nonlinear buoyancy shutdown

weakens Ekman pumping more than Ekman suction. This correction is initially zero

and grows to its maximum negative value at t = 0.5. Then, as the buoyancy anomaly

diffuses away from the boundary and the geostrophic flow weakens, the correction

decays in time. The correction reverses sign at t = 4.7, reaches its maximum positive

value at t = 8.3, and finally decays to zero as the along-isobath flow spins down.

Despite weaker Ekman pumping than Ekman suction from either momentum or

buoyancy advection, each mechanism causes different asymmetries in cyclonic and

anticyclonic vorticity. The nonlinear correction to the vertical relative vorticity is

shown in figure 5. During HSD, the nonlinear correction ζ
(1)
i at yc and ya from (4.65)

is negative and corresponds to faster spindown of cyclonic vorticity than anticyclonic

vorticity.

Similarly, buoyancy advection over a slope at O(β1/2E−1/4ǫ) can lead to asymmetric

spindown. The geostrophic components of the vertical relative vorticity field are

ζ
(1)
i = −2U

(1)
i (t) exp(−2z) cos(2y), (4.68)

ζ
(1)
T = −2U

(1)
T (t, ξ) cos(2y). (4.69)
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FIGURE 5. The analytical nonlinear correction to vertical relative vorticity on the cyclonic
and anticyclonic axis. For HSD over a flat bottom, the correction is presented for the

interior vertical relative vorticity, ζ
(1)
i (solid line). For SSD over a slope, with β = 1, the

corrections are presented for the interior component to the vertical relative vorticity evaluated

at the bottom, ζ
(1)
i (z = 0) (dot-dashed line), and total geostrophic component evaluated at the

bottom, β1/2ζ
(1)
T (ξ = 0)+ ζ

(1)
i (z = 0) (dashed line). The dotted line indicates ζ (1) = 0.

The total nonlinear correction to vertical relative vorticity in the thermal boundary

layer is measured by ζ
(1)
i (t, z = 0) + β1/2ζ

(1)
T (t, ξ = 0) evaluated on the cyclonic or

anticyclonic axis. Figure 5 shows the analytical corrections to the vertical relative
vorticity field in the interior and the thermal boundary layer. With β = 1, the nonlinear
correction is greater than O(ǫ) by E−1/4. In the thermal boundary layer, nonlinear
buoyancy shutdown initially weakens the geostrophic flow to a greater extent around
the cyclonic axis than the anticyclonic axis. This weakening causes the cyclonic
vorticity to decay faster than the anticyclonic vorticity in the thermal boundary layer
and corresponds to a negative correction.

When nonlinear buoyancy shutdown suppresses Ekman pumping more than Ekman
suction, the interior secondary circulation can cause cyclonic vorticity to initially decay
more slowly than anticyclonic vorticity in the interior. The correction to the interior

vertical relative vorticity, ζ
(1)
i (z = 0), is positive and reaches a maximum at t = 4.7. At

this time, the correction to the interior secondary circulation changes sign and spins
down the correction to the interior geostrophic flow.

This solution does not account for momentum advection in the interior. The
homogeneous spindown solution shows that momentum advection preferentially spins
down cyclonic vorticity at O(ǫ). This mechanism can counter nonlinear buoyancy
shutdown’s effect on the interior vorticity field. We will investigate these competing
processes in the simulations.

In the next section, numerical simulations are run to address two questions. First, to
what extent does the theory of nonlinear buoyancy shutdown explain the asymmetry
in Ekman pumping and suction? Second, does the asymmetry in cyclonic and
anticyclonic vorticity evolve as predicted by nonlinear buoyancy shutdown when
momentum advection is also present? It will be shown that nonlinear buoyancy
shutdown effects are necessary to interpret the asymmetries in the vertical velocity
and vertical vorticity fields.
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Configuration θ N2 (s−2) H (m) HP (m)

Homogeneous spindown (HSD) 0 0 266 —
Stratified spindown (SSD) 0 1.6 × 10−5 4500 266
Stratified spindown (SSD) 0.01 1.6 × 10−5 4500 266

TABLE 1. ROMS model configurations.

5. Numerical experiments

5.1. Numerical model set-up

Numerical experiments are run to compare homogeneous spindown (HSD) over a flat
bottom, stratified spindown (SSD) over a flat bottom, and stratified spindown over
a slope. The model is run for increasing Rossby number within and outside the
parameter range for which the analytical theory is valid. For stratified spindown over
a slope, the experiments are designed to show that the asymmetry in Ekman pumping
and suction cannot be explained by momentum advection alone.

Nonlinear spindown is investigated in a series of numerical experiments with
application to mid-latitude currents over continental slopes. The experiments are
performed using the regional ocean modelling system (ROMS) (Shchepetkin &
McWilliams 2005), which is a free-surface, hydrostatic, primitive-equation model
with stretched, terrain-following coordinates. This model is configured with no along-
isobath variations and a bottom boundary that is inclined to the horizontal at an angle
θ . The domain is 300 km wide with a uniform horizontal grid spacing of 1 km and is
bounded by sidewalls.

Three model configurations are considered, as shown in table 1. For HSD over a flat
bottom, the domain height is H = 266 m so that the spindown time is the same as in
the stratified configurations. In this set-up, the vertical domain has 60 grid points, with
a vertical grid resolution varying from 1 to 6 m. In the stratified configurations, the
maximum depth is 4.5 km, with a variable vertical grid of 201 points and vertical grid
resolution that ranges from 1 to 55 m. At the bottom, density satisfies the insulated
boundary condition and an approximate no-slip boundary condition is imposed. For
comparison with the analytical theory, the mixing coefficients are uniform and equal
to ν, κ = 2.27 × 10−3 m2 s−1 so that σ = 1. Uniform rotation is applied with a mid-
latitude Coriolis parameter f = 10−4 s−1. The Ekman layer depth is δe = 6.7 m, and
E = 6.42 × 10−4, Γ = 0.025.

The initial parameters are chosen within the range of current characteristics over the
continental slope. The initial along-isobath flow is given by u(t = 0, y) = U cos(y/L),
where U = 0.1, 0.2, 0.3, 0.4, 0.5 m s−1,L = 10.6 km for a narrow slope current. For
the stratified configurations, the initial stratification has a buoyancy frequency N,
where N2 = 1.6 × 10−5 s−2. From these parameters, the Prandtl depth is HP = 266 m.
For the flat bottom configuration, θ = 0 and β = 0, and for the continental slope
configuration, θ = 0.01, S = 0.16 and β = 1. The spindown time scale is Tspindown = 6.3
inertial periods.

The model output is decomposed into components corresponding to laterally
uniform and cross-isobath-varying flows. This decomposition was done to remove
the laterally uniform contribution to the flow that arises from the adjustment of the
uniform stratification. In order to isolate the laterally varying solution, the model is run
with no initial flow, and this solution is subtracted from the total model output. This
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FIGURE 6. β = 0, θ = 0, ǫ = 0.4. The stratified spindown ROMS solutions are shown at
t = 1.4 (a–c), 2.8 (d–f ), and 4.2 (g–i). The along-isobath flow, u (a,d,g), is contoured every
0.2 units, the buoyancy anomaly, b (b,e,h), is contoured every 0.08 units, and the secondary
circulation, ψ/E1/2 (c,f,i), is contoured every 0.05 units.

decomposition assumes that the coupling between the laterally uniform and laterally
sheared flow is a higher-order effect. In order to focus on the system’s subinertial
adjustment, the model output is further processed by filtering the secondary circulation
by a Butterworth low-pass filter with a cut-off frequency of 0.12f .

5.2. Asymmetries in Ekman pumping and suction

In this section, the asymmetry in Ekman pumping and suction is examined for
increasing Rossby number and compared with the analytical solutions. In particular,
we present the temporal evolution of SSD over a flat bottom and slope for a
current with U = 0.4 m s−1, ǫ = 0.4. We demonstrate the different dynamical roles
of momentum advection and buoyancy advection in setting the strength of the vertical
circulation.
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FIGURE 7. β = 1, θ = 0.01, ǫ = 0.4. The stratified spindown ROMS solutions are shown in
the rotated coordinate frame at t = 1.4 (a–c), 2.8 (d–f ), and 4.2 (g–i). The along-isobath flow,
u (a,d,g), is contoured every 0.2 units, the buoyancy anomaly, b (b,e,h), is contoured every
0.08 units, and the secondary circulation, ψ/E1/2 (c,f,i), is contoured every 0.05 units.

Over a flat bottom (figure 6), momentum advection modifies stratified spindown and
the vertical circulation in two ways. First, the along-isobath flow weakens faster about
the cyclonic axis, yc = π/2, than the anticyclonic axis, ya = −π/2, and is caused by
lateral momentum advection. Second, momentum advection causes Ekman pumping to
decay faster than Ekman suction. The secondary circulation streamlines spread apart
on the cyclonic axis and squeeze together on the anticyclonic axis.

Over a slope, new features emerge as buoyancy advection modifies the spindown
dynamics. Figure 7 shows the current’s temporal evolution for θ = 0.01, β = 1,U =
0.4 m s−1, and ǫ = 0.4. In contrast to the flat bottom configuration, the buoyancy
field has its maximum and minimum anomalies within the thermal boundary layer.
These buoyancy anomalies tend to converge on the cyclonic axis. The isopycnals
(not shown) indicate the formation of a density front, a maximum in the cross-
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FIGURE 8. For HSD over a flat bottom, the ROMS solutions for Ekman pumping (solid line)
at yc and Ekman suction (dashed line) at ya are compared with the analytical solutions for
Ekman pumping (+) and Ekman suction (©). The solutions are shown for ǫ = 0.1, 0.3, 0.5
with increasing asymmetry for increasing Rossby number.

isobath density gradient, on the cyclonic axis. The buoyancy anomaly convergence
correlates with a weakening in the near-bottom geostrophic flow and the cyclonic
vorticity. The secondary circulation shows that the streamlines are more widely
spaced on the cyclonic axis than on the anticyclonic axis. This spacing is consistent
with the predicted behaviour due to nonlinear buoyancy shutdown and Ekman
momentum advection. The correction from nonlinear buoyancy shutdown scales as
O(β1/2E−1/4ǫ) = 6.3ǫ and is expected to modify the secondary circulation to a greater
extent than momentum advection. In contrast to the flat bottom solution, cyclonic
vorticity spins down more slowly than anticyclonic vorticity in the interior. This slower
spindown is consistent with weaker Ekman pumping rather than Ekman suction, which
opposes momentum advection in the interior. Thus, over a slope, nonlinear buoyancy
shutdown contributes in weakening Ekman pumping to a greater extent than Ekman
suction. The resulting secondary circulation opposes the momentum advection effect
on the asymmetry in the interior vertical vorticity.

The numerical model solutions are compared with the analytical solutions to
evaluate the relative contributions of momentum advection and buoyancy advection to
Ekman pumping and suction. The temporal decay in Ekman pumping at yc and Ekman
suction at ya is shown in figure 8 for HSD over a flat bottom and figure 9 for SSD
over a slope. From the analytical results, Ekman pumping is wp = wi(yc, z = 0) and
Ekman suction is ws = −wi(ya, z = 0). In the numerical model, Ekman pumping and
suction are measured by the vertical velocity evaluated at z = 0.08, outside the Ekman
layer base at z = 0.03. This height is chosen from the average height of the maximum
absolute vertical velocity on the cyclonic and anticyclonic axes. During SSD over a
slope, Ekman pumping and Ekman suction are influenced by both nonlinear buoyancy
shutdown and momentum advection. Despite the presence of momentum advection, the
numerical solutions to Ekman pumping and suction by nonlinear buoyancy shutdown
show good initial agreement with the analytical prediction. Although the analytical
theory for nonlinear buoyancy shutdown is strictly valid for ǫ < β−1/2E1/4 = 0.16 given
the model parameters, the correction is applied to ǫ = 0.5.
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FIGURE 9. For SSD over a slope, with β = 1, the ROMS solutions for Ekman pumping
(solid line) at yc and Ekman suction (dashed line) at ya are compared with the analytical
solutions for Ekman pumping (+) and Ekman suction (©). The solutions are shown for
ǫ = 0.1, 0.3, 0.5 with increasing asymmetry for increasing Rossby number.

The numerical solutions for Ekman pumping and suction show a slower decay

rate than the analytical solutions. For HSD over a flat bottom, this difference may

arise due to an imperfect implementation of the no-slip boundary condition in the

numerical model. The difference is also explained by the O(ǫ2) correction providing

a non-negligible contribution at higher Rossby number. From Hart (2000)’s formula,

the O(ǫ2) correction is 15ǫ/56 as large as the O(ǫ) correction, ranging from 0.02

for ǫ = 0.1 to 0.13 for ǫ = 0.5. This O(ǫ2) correction tends to enhance both Ekman

pumping and suction, which is consistent with the discrepancy between the numerical

and analytical solutions.

For SSD over a slope, the slower decay rates may be explained by several

reasons, including an imperfect no-slip boundary condition in the numerical model.

At early time, t < 1, nonlinear buoyancy shutdown reduces Ekman pumping and

suction in the numerical solutions, although these quantities are systematically larger

than the analytical solutions. This systematic error may be explained by an O(E1/4)

correction from vertical advection of the laterally uniform buoyancy anomaly in the

thermal boundary layer (Benthuysen 2010). This correction causes Ekman pumping

and suction to increase from the O(1) solution during SSD over a flat bottom. At

later times, t > 1, the correction from nonlinear buoyancy shutdown in the analytical

solutions underestimates the difference between Ekman pumping and suction. The

breakdown in the theory is in part due to the neglect of momentum advection. In the

analytical theory, vertical diffusion of the buoyancy anomalies weakens the correction

to Ekman pumping, leading to a reversal in its sign. In the numerical solutions, Ekman

advection of momentum appears to become important in sustaining the asymmetry in

Ekman pumping and suction throughout spindown. Despite the discrepancy between

the analytical and numerical solutions, the asymmetry in Ekman pumping and suction

at early times is consistent with the prediction by nonlinear buoyancy shutdown. This

indicates that momentum advection plays a secondary role then.

The ratio of Ekman pumping, wp, to Ekman suction, ws, is shown in figure 10

at t = 1.4 for increasing Rossby number. For HSD over a flat bottom and
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FIGURE 10. The ratio of Ekman pumping, wp, to Ekman suction, ws, is presented at t = 1.4
for increasing Rossby number. The ROMS solutions are presented for HSD over a flat bottom
(△), SSD over a flat bottom (+), and SSD over a slope (©). The analytical solutions are
shown for HSD over a flat bottom (dashed line), calculated from (4.66)–(4.67) and SSD over
a slope (solid line), calculated from (4.32) with β = 1.

u(t = 0)= cos(y) this ratio is (Benthuysen & Thomas 2012a)
∣∣∣∣
wp,HSD

ws,HSD

∣∣∣∣=
1 − ǫα1(t)

1 + ǫα1(t)
, (5.1)

where

α1(t)= 13

20

(
1 − 6

13
exp(−t/2)

)
. (5.2)

From the above ratio, α1(t = 1.4)= 0.50, and a MacLaurin series expansion in ǫ yields
the ratio |wp,HSD/ws,HSD| = 1 − ǫ for ǫ ≪ 1.

For SSD over a slope, with β = 1,w(1)
p /w

(0)
p = −0.18 at t = 1.4, and a MacLaurin

series expansion in ǫ, where ǫ ≪ 1, yields the ratio |wp/ws| = 1 − 0.36E−1/4ǫ

or 1 − 2.3ǫ. These measures show that the asymmetry in Ekman pumping and
suction becomes more pronounced by nonlinear buoyancy shutdown than momentum
advection for increasing Rossby number. Although the analytical estimates for Ekman
pumping and suction show deviations from the numerical solution, the ratio |wp/ws|
shows agreement. For early times, the ratio of Ekman pumping to Ekman suction for
SSD over a flat bottom is weaker than the ratio from HSD. This result occurs because
the aforementioned O(E1/4) correction increases both Ekman pumping and suction,
thereby reducing the ratio. The significant point in figure 10 is that the asymmetry in
Ekman pumping and suction shown for SSD over a slope cannot be accounted for by
momentum advection alone.

The asymmetry in Ekman pumping at yc and Ekman suction at ya has consequences
for the lateral structure of Ekman pumping. Figure 11 shows the temporal evolution in
Ekman pumping for increasing Rossby number. In each configuration, weaker Ekman
pumping at yc than Ekman suction at ya is balanced by Ekman pumping where the
initial geostrophic flow is an absolute maximum or minimum, i.e. at y/π = m and
m = −1, 0, 1. The asymmetry in Ekman pumping at yc and Ekman suction at ya

becomes more pronounced for increasing Rossby number. In the SSD solutions with
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FIGURE 11. Ekman pumping is shown for ǫ = 0.1 (a–c), 0.3 (d–f ), 0.5 (g–i) and contoured
every 0.2 units. The ROMS solutions are shown for HSD over a flat bottom (a,d,g), SSD over
a flat bottom (b,e,h) or over a slope (c,f,i).

higher Rossby numbers, Ekman pumping becomes greater off the cyclonic axis than
on the cyclonic axis. Interestingly, for SSD over a slope with ǫ = 0.5, an intense spike
of Ekman pumping occurs at t = 1.71 and y/π= 0.13 (figure 11i). The only other time
when the Ekman pumping reaches this value is at t = 0.09, during the initial formation
of the Ekman layer. Thus, buoyancy advection is shown to play a significant role in
altering Ekman pumping away from the cyclonic axis. Intense vertical flows out of
the boundary layer are produced even where the far-field, geostrophic vertical relative
vorticity is zero.

5.3. Asymmetries in spindown of cyclonic and anticyclonic vorticity

In this section, we consider the asymmetries that arise in the vertical relative vorticity
field during spindown. For the ǫ = 0.4 numerical solutions, the spindown of the
vertical relative vorticity on the cyclonic axis and on the anticyclonic axis is compared
in figure 12. The vertical relative vorticity in HSD over a flat bottom (figure 12a)
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FIGURE 12. Cyclonic vorticity (solid line), evaluated at yc = π/2, and anticyclonic vorticity
(dashed line), evaluated at ya = −π/2, decay asymmetrically for ǫ = 0.4. The ROMS
solutions are shown for (a) HSD over a flat bottom in the interior domain, (b) SSD over
a flat bottom in the interior at z = 0.5, and SSD over a slope (c) in the interior at z = 0.5 and
(d) in the thermal boundary layer at z = 0.15.

decays faster than SSD over a flat bottom (figure 12b) because SSD has vertical shear

in the geostrophic flow. In both configurations, cyclonic vorticity, ζc, decays faster than

anticyclonic vorticity, ζa. The ratio |ζc/ζa| decreases from 0.76 at t = 1.4 to 0.69 at

t = 2.8 in figure 12(a) and from 0.83 at t = 1.4 to 0.74 at t = 2.8 in figure 12(b).

Similarly, over a stratified slope, the interior cyclonic vorticity initially decays faster

than anticyclonic vorticity at z = 0.5 (figure 12c). Within an inertial period, the interior

secondary circulation is set-up and spins down the current over a Prandtl depth.

During this initial spindown, lateral and vertical momentum advection causes cyclonic

vorticity to spin down faster than anticyclonic vorticity. However, in contrast to the

flat bottom solutions, cyclonic vorticity becomes greater than anticyclonic vorticity at

t = 0.7 and remains greater. At z = 0.5, the ratio |ζc/ζa| grows from 1.05 at t = 1.4

to 1.10 at t = 2.8. In contrast to in the interior, cyclonic vorticity decays faster than

anticyclonic vorticity in the thermal boundary layer at z = 0.15 (figure 12d). These

temporal differences support the notion that nonlinear buoyancy shutdown can oppose

momentum advection impact on vertical vorticity during spindown.
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FIGURE 13. Vertical profiles of cyclonic vorticity (solid line), evaluated at yc = π/2, and
anticyclonic vorticity (dashed line), evaluated at ya = −π/2, for t = 1.4 and ǫ = 0.4. The
ROMS solutions are shown for (a) HSD over a flat bottom, (b) SSD over a flat bottom, and (c)
SSD over a slope. The Ekman and thermal boundary layer depths are indicated in (c).

For each configuration, the vertical profiles of cyclonic and anticyclonic vorticity

are shown in figure 13. By t = 1.4, the mean vertical relative vorticity is reduced to

approximately half of its initial value in HSD over a flat bottom. Similarly, for SSD

over a flat bottom, cyclonic vorticity is weaker than anticyclonic vorticity outside the

Ekman boundary layer. For these solutions, the profiles approach one in the far-field

because the secondary circulation tends to spin down the current over a Prandtl

depth. For SSD over a slope, the vertical profiles are more complex. At one Prandtl

depth, cyclonic vorticity is slightly less than anticyclonic vorticity. However, between

z = 0.25 and z = 0.73, cyclonic vorticity is greater than anticyclonic vorticity. In this

region, the interior secondary circulation spins down anticyclonic vorticity faster. This

occurs because Ekman suction is greater than Ekman pumping to the extent that

it opposes the effects of momentum advection. Within the thermal boundary layer,

cyclonic vorticity is notably weaker than anticyclonic vorticity and is correlated with

buoyancy anomalies converging on the cyclonic axis.

The ratio of cyclonic vorticity to anticyclonic vorticity is shown in figure 14

for increasing Rossby number. For nonlinear homogeneous spindown, this ratio is

(Benthuysen & Thomas 2012a)

∣∣∣∣
ζc,HSD

ζa,HSD

∣∣∣∣=
1 − ǫα2(t)

1 + ǫα2(t)
, (5.3)

where

α2(t)= 13

20
(1 − exp(−t/2)). (5.4)
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FIGURE 14. The ratio of cyclonic vorticity, ζc, at yc to anticyclonic vorticity, ζa, at ya is
presented at t = 1.4 for increasing Rossby number. The ROMS solutions are shown for HSD
over a flat bottom (△) at z = 0.5, SSD over a flat bottom at z = 0.5 (+), and SSD over a slope
at z = 0.15 (©) and at z = 0.5 (∗). The analytical solutions are shown for HSD over a flat
bottom at z = 0.5 (dashed line), evaluated from (4.64)–(4.65), and SSD over a slope at z = 0.5
(solid line), where β = 1 is applied. The axis |ζc/ζa| = 1 is indicated by the dotted line.

At t = 1.4, the flat bottom solutions at z = 0.5 and the slope solution at z = 0.15
show that cyclonic vorticity is increasingly weaker than anticyclonic vorticity for
increasing Rossby number. The ratio for the HSD analytical solution (5.3) agrees with
the numerical solutions.

For SSD over a slope, the numerical solutions at z = 0.5 show that the ratio
of cyclonic to anticyclonic vorticity increases for increasing Rossby number.
The analytical ratios calculated using (4.68)–(4.69) overestimate the numerical solution
ratios. Thus, at t = 1.4, nonlinear buoyancy shutdown alone overestimates the
asymmetry between cyclonic and anticyclonic vorticity. This overestimate occurs
because momentum advection is neglected in the nonlinear buoyancy shutdown
solution. However, nonlinear buoyancy shutdown is still necessary to explain the
asymmetry in cyclonic and anticyclonic vorticity for SSD over a slope.

6. Conclusions

For stratified spindown over a slope, new criteria have been identified for when
buoyancy advection is important in generating asymmetries in vertical velocity and
vertical relative vorticity. Cross-isobath Ekman advection of buoyancy and vertical
advection of buoyancy strengthens (weakens) buoyancy anomalies within the thermal
boundary layer about the cyclonic (anticyclonic) axis. From geostrophy, the cyclonic
vorticity is weakened to a greater extent than anticyclonic vorticity in the thermal
boundary layer. This process, defined here as nonlinear buoyancy shutdown, weakens
Ekman pumping more than Ekman suction at O(β1/2E−1/4ǫ) and can enter into the
leading-order dynamics when β1/2E−1/4ǫ > 1.

Nonlinear buoyancy shutdown’s suppression of Ekman pumping more than Ekman
suction has consequences for the interior vertical vorticity’s evolution. If buoyancy
advection modifies the secondary circulation to a greater extent than O(ǫ), then the
effects of momentum advection are subdominant. Hence, the interior anticyclonic
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vorticity decays faster than cyclonic vorticity. This asymmetric decay contrasts with

nonlinear spindown over a flat bottom in either a stratified or homogeneous fluid.

In these configurations, the interior cyclonic vorticity decays faster than anticyclonic

vorticity. Numerical solutions support the predictions of the asymmetries in the vertical

circulation and vertical relative vorticity due to nonlinear buoyancy shutdown.

Nonlinear buoyancy shutdown may play an important role in setting the lateral

structure of slope currents over topography for flows with β > 1. At mid-latitudes

(f = 10−4 s−1), we estimate β for typical continental shelves (N2 = 10−5–10−4 s−2, θ =
10−4–10−3) and continental slopes (θ = 0.005–0.01). For an Ekman depth of δe = 10 m

and a water depth of O(100 m), the Ekman number is E = 0.01 and yields values of

β = 10−9–10−3 over the continental shelf and β = 0.01–10 over the continental slope.

This range of values suggests that buoyancy shutdown may occur to a greater extent

over the continental slope than over the continental shelf.

On the lower continental slope, measurements of the North Atlantic Deep Western

Boundary Current at the Blake Outer Ridge reveal a frictional bottom boundary layer

embedded within a thicker bottom mixed layer (Stahr & Sanford 1999). The bottom

mixed layer is thicker and the Ekman transport is weaker on the downslope side of

the current (see figures 11 and 12 in Stahr & Sanford 1999). This feature is also

a characteristic of nonlinear buoyancy shutdown (e.g. figure 2b) and thus may be

evidence of this process. Having said this, the cross-isobath density gradients within

the bottom mixed layer in the observations are small with little vertical shear in the

along-slope flow, indicating that other processes govern the dynamics than linear and

nonlinear buoyancy shutdown.

In summary, this work has provided insight into the nonlinear coupling between

frictionally driven flows and the buoyancy field. Future challenges include identifying

features of nonlinear buoyancy shutdown in observations and understanding how this

mechanism can modify the evolution of three-dimensional structures, such as slope

vortices, and their vertical circulation.

Appendix. Discretization of the equations for linear and nonlinear stratified

spindown

This appendix presents the numerical method that is used to solve for the n = 0, 1

corrections to stratified spindown on a sloping bottom to validate the n = 0 analytical

solution and ROMS solutions. The equations are solved using the Crank–Nicolson

method (Crank & Nicolson 1947), in which the partial derivatives in time and space

are discretized at a fictitious point in between two time steps.

The labels j and k denote the non-dimensional time index and the thermal boundary

layer vertical coordinate index, respectively. The numerical solution is calculated on a

grid from 1 6 j 6 J and 1 6 k 6 K, where the initial conditions are applied at j = 1

and the maximum number of time steps and spatial steps in the domain are given

by J and K, respectively. The linear problem is solved by first discretizing the set of

equations, boundary conditions, and initial conditions (4.37)–(4.45) that describe the

linear dynamics of spindown and buoyancy shutdown. Then, the numerical solution for

the linear dynamics is applied to the set of equations and boundary conditions that

describe nonlinear buoyancy shutdown and (4.56)–(4.60).
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A.1. Discretization of the n = 0 equations

At n = 0, the interior along-isobath flow is U
(0)
i (t, z)= 1 −Ψ (0)(t) exp(−z). The interior

along-isobath flow evolves as

dΨ (0)

dt
+ ϕ(0) = 0, (A 1)

where ϕ(0) is solved below. The coupled set of partial differential equations reduces to
the diffusion equation

∂U
(0)
T

∂t
= 1

2

∂2U
(0)
T

∂ξ 2
, (A 2)

for t > 0, 0 < ξ <∞, subject to the following boundary conditions of no-slip, Ekman
pumping, no-normal-buoyancy-flux at the bottom, and no far-field thermal boundary
layer flow:

ϕ(0) + 1

2
(1 − Ψ (0) + β1/2U

(0)
T (ξ = 0))= 0, (A 3)

dϕ(0)

dt
+ 1

2

(
ϕ(0) + β1/2 ∂U

(0)
T

∂t
(ξ = 0)

)
= 0, (A 4)

∂U
(0)
T

∂ξ
(ξ = 0)+ 2ϕ(0) = 0, (A 5)

U
(0)
T → 0 as ξ → ∞, (A 6)

and the following initial conditions:

(Ψ (0)(t = 0),U
(0)
T (t = 0), ϕ(0)(t = 0))= (0, 0,− 1

2
). (A 7)

These equations are discretized, where λ ≡ 1/2 for the Crank–Nicolson scheme,
q ≡ 1t/1ξ , r ≡ 1t/(2(1ξ)2), 1t is the non-dimensional time step, and 1ξ is the
non-dimensional thermal boundary layer grid step. The discretized diffusion equation
is

−λrU
(0)
T |k+1

j+1 + (1 + 2λr)U
(0)
T |kj+1 − λrU

(0)
T |k−1

j+1

= (1 − λ)rU
(0)
T |k+1

j + (1 − 2r(1 − λ))U
(0)
T |kj + (1 − λ)rU

(0)
T |k−1

j , (A 8)

for j> 1, 1< k < K. The boundary condition for U
(0)
T at ξ = 0 is derived such that it is

consistent with the diffusion equation, where

∂U
(0)
T

∂t

∣∣∣∣∣

k=1

j+ 1
2

=
(
λ

2

)
∂2U

(0)
T

∂ξ 2

∣∣∣∣∣

k=1

j+1

+
(

1 − λ

2

)
∂2U

(0)
T

∂ξ 2

∣∣∣∣∣

k=1

j

. (A 9)

From an expansion of U
(0)
T at k,

∂2U
(0)
T

∂ξ 2

∣∣∣∣∣

k

j

= 2

(1ξ)2
(U

(0)
T |k+1

j − U
(0)
T |kj )−

(
2

1ξ

)
∂U

(0)
T

∂ξ

∣∣∣∣∣

k

j

. (A 10)
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Then, at k = 1, with (A 5),

∂2U
(0)
T

∂ξ 2

∣∣∣∣∣

k=1

j

= 2

(1ξ)2
(U

(0)
T |k=2

j − U
(0)
T |k=1

j )+
(

4

1ξ

)
ϕ(0)|j. (A 11)

Equation (A 4) is discretized on the Crank–Nicolson stencil at j + 1/2, k = 1, so that

ϕ(0)|j+1 =
(

4 −1t

4 +1t

)
ϕ(0)|j −

(
2β1/2

4 +1t

)
(U

(0)
T |k=1

j+1 − U
(0)
T |k=1

j ). (A 12)

Then, from substituting (A 11)–(A 12) into (A 9), the boundary condition for U
(0)
T , j >

1, becomes
(

1 + 2λr + 4β1/2λq

4 +1t

)
U
(0)
T |k=1

j − 2λrU
(0)
T |k=2

j

=
(

1 + 4β1/2λq

4 +1t
− 2(1 − λ)r

)
U
(0)
T |k=1

j−1 + 2(1 − λ)rU
(0)
T |k=2

j−1

+
(

2λq

(
4 −1t

4 +1t

)
+ 2(1 − λ)q

)
ϕ(0)|j−1. (A 13)

The boundary condition as ξ → ∞ becomes

U
(0)
T |k=K

j = 0. (A 14)

The initial conditions become

(Ψ (0)|j=1,U
(0)
T |kj=1, ϕ

(0)|j=1)= (0, 0,− 1

2
). (A 15)

From (A 8), U
(0)
T is determined at each time step, j> 1, by solving

A0U
(0)
T |16k6K−1

j = b0, (A 16)

where A0 is a K − 1 × K − 1 tridiagonal coefficient matrix with elements determined

by the left-hand side of (A 8), U
(0)
T |16k6K−1

j is the K − 1 × 1 solution column vector,
and b0 is the K − 1 × 1 column vector with elements determined by the right-hand side
of (A 8), subject to the boundary conditions (A 13)–(A 14). Then, once the solution

for U
(0)
T is solved at each time step, ϕ(0) is determined from (A 12). Finally, the time

evolution for the interior along-isobath flow is solved from the discretized no-slip
boundary condition, (A 3), such that

Ψ (0)|j = 1 + 2ϕ(0)|j + β1/2U
(0)
T |k=1

j . (A 17)

This set of equations is solved with the Thomas algorithm for σ = 1 and β = 1,
where 1t = 0.001, 1ξ = 0.02 on a grid from t = 0 to 20 and ξ = 0 to 10.
Thus, J = 20001,K = 501, r = 1.25, and q = 0.05. The maximum error between the
numerical solution for ϕ(0) as calculated above and the analytical solution, (4.51), is
0.02%.

A.2. Discretization of the n = 1 equations

At n = 1, the interior along-isobath flow is Ψ (1)(t)≡ U
(1)
i (t). It evolves as

dΨ (1)

dt
− 2ϕ(1) = 0, (A 18)
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and the forced diffusion equation is

∂U
(1)
T

∂t
− 1

2

∂2U
(1)
T

∂ξ 2
= 1

2
ϕ(0)

∂U
(0)
T

∂ξ
, (A 19)

for t > 0, 0 < ξ <∞, subject to the following boundary conditions of no-slip, Ekman
pumping, no-normal-buoyancy-flux at the bottom, and no far-field thermal boundary
layer flow:

ϕ(1) + 1

2
(Ψ (1) + β1/2U

(1)
T (ξ = 0))= 0, (A 20)

dϕ(1)

dt
+ ϕ(1) +

(
β1/2

2

)
∂U

(1)
T

∂t
(ξ = 0)= 0, (A 21)

∂U
(1)
T

∂ξ
(ξ = 0)+ 2ϕ(1) = ϕ(0)U

(0)
T (ξ = 0), (A 22)

U
(1)
T → 0 as ξ → ∞, (A 23)

and the following initial conditions:

(Ψ (1)(t = 0),U
(1)
T (t = 0), ϕ(1)(t = 0))= (0, 0, 0). (A 24)

The forced diffusion equation is discretized using the Crank–Nicolson scheme, where
λ≡ 1/2 and

−λrU
(1)
T |k+1

j + (1 + 2λr)U
(1)
T |kj − λrU

(1)
T |k−1

j

= (1 − λ)rU
(1)
T |k+1

j−1 + (1 − 2r(1 − λ))U
(1)
T |kj−1 + (1 − λ)rU

(1)
T |k−1

j−1

+ q

16
(ϕ(0)|j + ϕ(0)|j−1)(U

(0)
T |k+1

j−1 − U
(0)
T |k−1

j−1 + U
(0)
T |k+1

j − U
(0)
T |k−1

j ), (A 25)

for j> 1, 1< k < K. The boundary conditions are discretized as in the previous section
such that they are consistent with the diffusion equation. Then, at k = 1, with (A 22),

∂2U
(1)
T

∂ξ 2

∣∣∣∣∣

k=1

j

= 2

(1ξ)2
(U

(1)
T |k=2

j − U
(1)
T |k=1

j )

+
(

4

1ξ

)
ϕ(1)|j −

(
2

1ξ

)
ϕ(0)|jU(0)

T |k=1

j . (A 26)

Equation (A 21) is discretized on the Crank–Nicolson stencil at j + 1/2, k = 1, so that

ϕ(1)|j+1 =
(

2 −1t

2 +1t

)
ϕ(1)|j −

β1/2

2 +1t

(
U
(1)
T |k=1

j+1 − U
(1)
T |k=1

j

)
. (A 27)

By substitution of (A 26)–(A 27) into the diffusion equation on the stencil used in the
Crank–Nicolson scheme, the boundary condition for j> 1 becomes

(
1 + 2λr + 2β1/2λq

2 +1t

)
U
(1)
T |k=1

j − 2λrU
(1)
T |k=2

j

=
(

1 + 2β1/2λq

2 +1t
− 2(1 − λ)r

)
U
(1)
T |k=1

j−1 + 2(1 − λ)rU
(1)
T |k=2

j−1
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+
(

2λq

(
2 −1t

2 +1t

)
+ 2(1 − λ)q

)
ϕ(1)|j−1 − λqϕ(0)|jU(0)

T |k=1

j

− (1 − λ)qϕ(0)|j−1U
(0)
T |k=1

j−1 −
(
1t

4

)
(ϕ(0)|j−1 + ϕ(0)|j)

2
. (A 28)

The boundary condition as ξ → ∞ becomes

U
(1)
T |k=K

j = 0. (A 29)

The initial conditions become

(Ψ (1)|j=1,U
(1)
T |kj=1, ϕ

(1)|j=1)= (0, 0, 0). (A 30)

From (A 25), U
(0)
T is determined at each time step, j> 1, by solving

A1U
(1)
T (j, 1 6 k 6 K − 1)= b1, (A 31)

where A1 is a K − 1 × K − 1 tridiagonal coefficient matrix with elements determined

by the left-hand side of (A 25), U
(1)
T |16k6K−1

j is the K − 1 × 1 solution column vector,
and b1 is a K − 1 × 1 column vector with elements determined by the right-hand side
of (A 25), subject to the boundary conditions (A 28)–(A 29). Then, ϕ(1) is determined

from (A 27), after the solution for U
(1)
T is solved at each time step. Finally, the time

evolution for the interior along-isobath flow is solved from the discretized no-slip
boundary condition, (A 20), such that

Ψ (1)|j = −2ϕ(1)|j − β1/2U
(1)
T |k=1

j . (A 32)

The above set of equations is solved with the Thomas algorithm, subject to the

previously calculated numerical solution for U
(0)
T and ϕ(0) with σ = 1 and β = 1. The

grid is set up from t = 0 to 10 and ξ = 0 to 10, where 1t = 0.001,1ξ = 0.02, J =
10001,K = 501, r = 1.25 and q = 0.05.
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