
M. S. Yao 
Department of Mechanical 

Engineering 
BruneI University 

West London, U.K. 

Nonlinear Structural Dynamic 
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Ritz Vector Reduced 

Basis Method 

The large number of unknown variables in a finite element idealization for dynamic 
structural analysis is represented by a very small number of generalized variables, 
each associating with a generalized Ritz vector known as a basis vector. The large 
system of equations of motion is thereby reduced to a very small set by this transforma­
tion and computational cost of the analysis can be greatly reduced. In this article 
nonlinear equations of motion and their transformation are formulated in detail. A 
convenient way of selection of the generalized basis vector and its limitations are 
described. Some illustrative examples are given to demonstrate the speed and validity 
of the method. The method, within its limitations, may be applied to dynamic problems 
where the response is global in nature with finite amplitude. © 1996 John Wiley & 

Sons, Inc. 

INTRODUCTION 

Nonlinear dynamic analysis of large scale struc­

tures is quite a daunting and costly job using con­

ventional methods. The number of unknowns 

from a meaningful finite element idealization may 

approach tens of thousands; and the changing 

stiffness properties resulting from the nonlinear 

behavior demands a step by step calculation in 

the time domain, requiring perhaps tens of thou­

sands of steps to achieve a steady state in some 

cases. This combination puts a heavy strain on 

computational resources, even with the availabil­

ity of the latest supercomputers and parallel proc­

essors. It is therefore important to develop a 

method that would reduce the computational 

cost, and at the same time obtain a solution of 

sufficient accuracy. 
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Various modal synthesis approaches have 

been applied to nonlinear dynamic analysis using 

either the tangent eigenmodes (Nickell, 1976; 

Morris, 1977) or special basis vectors (Idelsohn 

and Cardona, 1985). The frequent reevaluation of 

these vectors in a large nonlinear system is just 

as costly. Various techniques for choosing master 

degrees offreedom developed for the linear analy­

sis (Henshell and Ong 1975) have not yet been 

extended to the nonlinear cases and cannot be ap­

plied. 

In the early 1980s Wilson and colleagues (Wil­
son and Yuan, 1982; Bayo and Wilson, 1984; Wil­

son and Bayo 1986) proposed an algorithm that 

generates a special sequence of orthogonal Ritz 

vectors without involving eigenvalue analysis. 

Wilson et al.'s method has the advantage of taking 

into account the spatial distribution of applied 
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load. It has been successfully applied to linear 

dynamic analysis and in some cases has led to 

more accurate results than those using the same 

number of eigenmodes as basis vectors (Alvaro 

and Coutinho, 1987). Wilson et ai. 's method was 

further developed and used successfully in vari­

ous applications (Bayo and Wilson, 1984; Joo et 

aI., 1989), including the large system dynamic 

analysis coupled with local nonlinearities by 

Ibrahimbegovic and Wilson (1989, 1990a,b) and 

Ibrahimbegovic et ai. (1990). 

In this article a convenient way of selecting 

the basis vectors and its application in global non­

linear dynamic analysis is described. Nonlinear 

equations of motion and their transformation are 

formulated in detail in this study. The nonlinear 

problem discussed here is confined to the global 

large displacement nonlinearity only. It excludes 

problems such as impact where large permanent 

local deformation can occur. 

The method proposed here for the reduction 

of computer cost is the reduced basis technique. 

Basically, it transforms the large number of un­

knowns r A into a very small number of generalized 
displacement variables q by 

(1) 

where each column of the transformation matrix 

T A is a generalized Ritz vector known as a basis 
vector (bold characters represent a matrix or vec­

tor). The nonlinear equations of equilibrium in rA 

can then be expressed in terms of q and the size 

of the problem thereby greatly reduced. 

FINITE ELEMENT NONLINEAR 
DYNAMIC ANALYSIS 

Following the usual finite element procedure, the 

displacements U within an element are expressed 

in terms of nodal parameters r as 

U = w(x, y, z)r, (2) 

where w is a matrix of shape function. For the 

Cartesian coordinate system, with the nonlinear 

(Green Lagrange) strains defined by 

e = au + ! [(au)2 + (av)2 + (aw)2] 
x ax 2 ax ax ax 

(3) 

etc., the strain vector 

({ } denotes a column vector) may be written as 

(5) 

where Bo is the usual linear strain interpolation 
matrix, arising from the linear terms in Eq. (3) 

and BI the nonlinear terms. Explicitly 

rt(SxwY(Sxw) 

rt(SywY(Syw) 

rt(SzwY(Szw) 
BI(r) = t (6) 

rt[(SxwY(Syw) + (Syw) (Sxw)] , 

rt[(SywY(Szw) + (SzwY(Syw)] 

rT(SzwY(Sxw) + (SxwY(Szw)] 

where Sr = alax, S" = alay, etc.; BI(r) is a (6 x 

n) matrix, the (r) merely indicating that it is a 

linear function of r. Hence, 

(7a) 

and 

(7b) 

The increment (and the variation) of strain is 

therefore given by 

de = [ Bo + ~ BI(r) ] dr + ~ BI(dr)r 

= [Bo + BI(r)] dr = [B(r)] dr. 

The stress (Piola-Kirchhoff) vector 

(8) 

(9) 

is calculated from the constitutional relationship 

S = De, (10) 



where the matrix D is a constant for elastic mate­

rials. Otherwise Eq. (10) can be written in incre­

mental form in which D will also be a function 

ofr. 
For dynamic problems, there will also be iner­

tia force f; = -mii and damping force fd = - co 
(assuming viscous damping), as well as the ap­

plied surface force fs and other types of the body 

force f b • Application of the principle of virtual 

displacement gives the weak form of the equilib­

rium statement: 

J aetS dv = J ant(fb + f; + fd) dv 

+ J antfs dA, 

(11) 

which becomes the usual equation of motion in 

matrix form, 

Mr + Ci + F = R(t), (12) 

where 

(13a) 

is the mass matrix; 

(l3b) 

is the damping matrix; 

is the equivalent nodal force, which is a known 

function of time t; and finally 

F = J Bt(r)S dv (13d) 

is the internal force vector arising from the 

stresses in the element. For elastic nonlinear dy­

namic analysis 

F = J Bt(r)De dv 

= J [Bo + BI(r)]t D [Bo + ~ BI(r) J dvr (14) 

= K(r)r, 

where K(r) is the current secant stiffness matrix. 

It contains three parts: a constant matrix as in 
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the linear analysis 

Ka = J BbDBo dv ; (15a) 

a matrix that is a linear function of r, 

(I5b) 

and another matrix that is quadratic in r, 

(15c) 

Equation (12) is nonlinear because the stiff­

ness matrix K(r) keeps changing with r. Hence 

the principle of superposition loses its validity, 

leaving the step by step integration in the time 

domain as the only alternative. In this article the 

explicit central difference scheme is used in con­

junction with a lumped mass matrix, which is 

known to give acceptable accuracy, providing 

the time step does not exceed the convergence 

limit. 

FORMULATION OF REDUCED SYSTEM 

The computing cost can always be reduced by 

reducing the number of unknown variables. How­

ever, this cannot be done by coarsening the finite 

element mesh because it would jeopardize the 

integrity of the structural idealization. The idea 

of selecting some master degrees of freedom is 

therefore most attractive, but the usual practice 

based on some static or dynamic condensation 

schemes (Henshell and Ong, 1975) has not been 

extended to the nonlinear case where the stiffness 

changes with displacement. The reduced basis 

method bypasses this difficulty. It represents the 

entire set of displacement unknowns rA by a much 

smaller set of generalized variables q as in Eq. 

(1). Each displacement variable q; in q can be 

considered as a master degree of freedom in the 

general sense. It is associated with the ith column 

of the transformation matrix T A, which is a special 

mode shape of all the displacement in rA and is 

called a basis vector. 

For an individual element the nodal displace­

ment may be similarly expressed in terms of q as: 
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r= Tq, 

r= Tq, 

r = Tq, 

(16) 

where T is the appropriate rows of TA ; therefore, 

for each element Eq. (12) then becomes 

MTq + CTq + KTq = R(t). (17) 

The principle of virtual displacement gives the 

general force Q corresponding to (i.e., doing work 

on) q as 

Q(t) = rR(t) = TtMTq + rCTq + rKTq. (18) 

If the basis vectors in T A are orthogonalized and 

normalized with respect to the mass matrix M, 

then 

(19) 

For the convenience of this exercise, it was 

assumed that damping is the viscous type and the 

damping matrix C is proportional to M by a factor 

of a, then Eq. (18) becomes 

q + aq + Lq = Q, (20) 

which is the equation of motion (12) expressed in 

terms of the reduced set of variables q. The matrix 

L in this equation is of course the stiffness matrix 

for the reduced system, transformed from the 

original stiffness K by 

L=rKT. (21) 

Remembering, however, that K is a quadratic 

function of r as given in Eq. (14), it must now be 

changed to a quadratic function of Tq instead. 

For nonlinear dynamic analysis by explicit inte­

gration, the internal force F is usually calculated 

element by element by Eq. (13d) and assembled 

into the global force vector. This disposes of the 

need to store the assembled stiffness matrix and 

is in fact one of the advantages of the explicit 

algorithm. This practice could naturally be car­

ried over to the reduced system, for which the 

generalized internal force vector becomes 

(22) 

Here the internal force F can be calculated by 

Eq. (13d) as before, with the displacement r = 

Tq in the B matrix. In this way, the internal force 

F for every element has to be calculated in the 

full system and then transformed by r to the 

reduced system. This procedure requires the in­

ternal force F to be evaluated at every incremental 

time step, which is expensive in an explicit algo­

rithm where the step size is usually very small. 

It is also quite unnecessary unless the stress dis­

tribution in the structure has to be monitored at 

every step. 

Fortunately, it is possible to proceed with the 

dynamic calculation in the reduced system once 

the basis vectors in the transformation matrix T A 

have been selected, enabling the generalized 

force Fq to be obtained in a different way. It con­

sists of working out the transformed stiffness ma­

trix L of Eq. (21) explicitly. Recalling that the 

stiffness matrix K(r) of Eq. (14) contains three 

parts, two of which are dependent on the matrix 

B,(r) of Eq. (6), it can be expressed in terms of 

the basis vectors in T and the reduced variables 

q as follows. 

Let the element nodal displacement transfor­

mation be expressed as 

n 

r = Tq = 2: tiqi' 
i~' 

(23) 

where ti is the part of the ith basis vector appro­

priate to the element, and n is the total number 

of the basis vectors. Then the matrix B,(r) of Eq. 

(6) becomes 

n 

B,(r) = B,(Tq) = 2: B,(t)qi. (24) 
i~' 

B,(t) simply denotes the same matrix as in Eq. 

(6) but with ti in the place of r. The matrices K, 

and K2 in Eq. (15) can now be written as 

and 

K, = ~ J[ Bj(t)DBo + l B&DB,(t)] dVqi' 

(25a) 

(25b) 

Each individual matrix may be given a concise 

name as 

(26a) 



and 

Kij = J B\(t;)DB,(t) du, (26b) 

then 

and the transformed stiffness matrix for the re­

duced system in Eq. (21) becomes 

L = TtKT = r(Ko + K, + K2)T 

= Lo + L, + L2• 

The first term 

(28) 

(29a) 

is independent of the generalized displacement q. 

The second and the third terms may be written as 

L, = TtK,T = ~ r GKOi + K&) Tqi 

(29b) 

= ~ GGOi + G&i) qi 

and 

(29c) 

where 

GOi = TtKOiT = Tt J B&DB,(t;) duT, (30a) 

Gij = TtKijT = Tt J B\(t;)DB,(t) duT = GJi. (30b) 

The Lo and all the GOi and Gij matrices can be 

calculated once the basis vectors TA have been 

chosen. They will not change from step to step 

until the basis vectors need to be updated. Alto­

gether the computer stores n, GOi matrices, and 

n(n + 1)/2, Gij matrices (because of symmetry), 

together with the Lo matrix. 
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At each time step, the total stiffness matrix of 

the reduced system L is the sum of Lo, L1, and 

L2, where L, and L2 can be calculated very quickly 

as in Eqs. (29b) and (29c), and the generalized 

internal force Fq evaluated from Fq = Lq. Thus, 

at the expense of storing (n + l)(n + 2)/2 matrices 

of size (n x n), where n is the number of basis 

vectors and is not envisaged to be much more 

than 10 from experience, the matrices Ll and L2 

can be calculated by n\n + 3)/2 multiplication. 

This enables the vector F q to be evaluated entirely 

within the reduced system space without having 

to return to the full system for the calculation of 

the force vector F and transform it back to the 

reduced system. This procedure is therefore 

much superior and to be preferred. 

It should be mentioned that in the case of a 

linear problem, the G matrices will not exist and 

the only matrix that needs to be stored is L = Lo, 

which is constant. The calculations will become 

very simple indeed. 

SELECTION OF BASIS VECTORS 

Naturally, the success of the reduced basis 

method depends critically on the ability of the 

basis vectors to accurately represent the correct 

structural behavior. This brings up the questions 

of which basis vectors are to be used, how they 

are selected, and how many of them are neces­

sary. The answer will depend on the problem 

under investigation to a certain extent. For a 

structure vibrating in a natural frequency, obvi­

ously the basis vector chosen should be the corre­

sponding natural mode, and one vector will be 

enough to solve the linear problem exactly. On 

the other hand, if the structure is subjected to 

excitation forces at random, the analytical ap­

proach may not be the appropriate tool of investi­

gation at all, let alone the reduced basis tech­

nique. Other dynamic problems such as impact 

problems with large local plastic deformation are 

similarly unsuitable for the reduced basis treat­

ment. Between these extremes, it is possible to 

devise a procedure on a rational basis that would 

be convenient and suitable for the conventional 

types of structural vibration problems. 

In nonlinear static analysis Chan and Hsiao 

(1985) found that the basis vectors can be selected 

as the predictor and the correctors of the first 

nonlinear step. These basis vectors are obtained 

naturally during the iterations of the modified 

Newton-Raphson procedure for the full system 



264 Yaa 

I· 
p 

t ! t I ~ I t ! t tl h 
~ 

L 

Llh = 10.0, q= pi! /(EI) 

4 ·5 2 

m L /(EI) = 10 Sec. 

FIGURE 1 The finite element idealization of a canti­

lever beam. 
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FIGURE 4 Cantilever under step load. Comparison 

of tip response between full system and reduced 3-

basis linear analysis. 

analysis, and have been shown to be equivalent 

to the path derivatives. They can be generated 

without any additional computation effort, and 

the reduced basis calculations can be incorpo­

rated into a normal nonlinear analysis with very 

little modification. 

In a dynamic analysis, however, the procedure 

does not generate any predictor and correctors 

as such. Instead of the iterations within a step, 

the time integration produces a changing displace­

ment vector at every step. The change is the result 

of different combinations of the natural modes at 

different times and also the change of the mode 

shapes if the displacement is large. In any case, 

if a sufficient number of such displacement vec­

tors are collected at different times and orthogo­

nalized [and normalized according to Eq. (19)] 

successively with respect to each other to make 
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FIGURE 3 Comparison of response of the cantilever to dynamic step load. 
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FIGURE 5 Cantilever under step load. Comparison 

of tip response between full system and reduced 6-

basis nonlinear analysis. 

them independent, then they constitute a set of 

basis vectors that combine to give the actual 

structural behavior at various times. 

The number of basis vectors necessary to give 

an accurate representation depends to a certain 

extent on the nature of the problem. For a usual 

vibration problem under cyclic excitation force, 

the response will be cyclic in nature, dominated 

by the natural modes near the excitation fre­

quency. It appears that about six vectors is suffi­

cient. This number is more or less independent of 

the size ofthe structure. For the natural vibration 

problem in a linear analysis one mode is enough, 

no matter how large or small the structure is. 

More complicated excitation problems may re­

quire a large number of vectors. Of course, the 

more vectors used the more accurate the reduced 

basis analysis is, but it requires more storage 

space and computing time. 
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NUMERICAL EXAMPLES 

The examples given below are mainly for the pur­

pose of showing the validity of the reduced basis 

method and comparing its efficiency with a nor­

mal full system analysis. Full details of the calcu­

lation may be found in Yao (1989). 

The first example is a cantilever beam that is 

idealized into five elements with 56 degrees of 

freedom as shown in Fig. 1. This example is used 

here to show the validity of the coding because 

the analytical solution can be found in Holden 

(1972) and the numerical solution in Bathe and 

Ozdemir (1976) using the same elements. The 

loading on the beam is standardized to a uniformly 

distributed load P, which is applied as various 

functions in time. Whether the response is linear 

or nonlinear will depend on the amplitude of P 

that is represented here nondimensionally as q = 

(PL 3)/ EI as shown in Fig. 2 for a static analysis. 

Figure 3 compares the dynamic response at the 

tip with that of Bathe et al. (1975) when a distrib­

uted load q = 2.85 is applied as a step load. 

Figure 4 shows that the tip response to a step 

load (q = 2.85) from a 3-basis reduced linear anal­

ysis is almost identical with that from a full system 

analysis. The reduction factor, which is the ratio 

of computational time needed for reduced system 

analysis to that of the full system analysis, for 

this case is 12.2%. Figure 5 shows that a nonlinear 

analysis of the same problem needs six bases to 

get a comparable accuracy. As a consequence of 

the increase in the number of basis, the factor is 

reduced to only 42.3%. 

The next example is a shallow arch fixed at 

both ends; the geometry and properties are shown 

h=43mm 
!'T""lil------L=lOOOmm-------''--------------F----1~ 

z,w 

L 
a 

~a=14mm 
A---A 

X,U 9 

E = 3.0x 10 MPa, 

v = 0.38, 

m=I.2Kg/mm 3 

R=2928mm 

FIGURE 6 Geometry of the shallow arch with fixed ends. 
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Variation of 1st natural 

frequency with amplitude 
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FIGURE 7 Shallow arch under step load (50 N). Cen­

tral deflection response, 8-basis reduced system com­

pared to full system analysis. 

in Fig. 6. It is idealized into 22, 8-node isopara­

metric plane stress elements, with 226 degrees of 

freedom. The displacement responses at midspan 

due to a step load of 50 N for nonlinear full system 

and 8-basis reduced analysis are compared in Fig. 

7. The change of the first natural frequency is 

also shown there. In spite of the short analysis 

duration, the cost is reduced to 25.6%. 

When a 5-N point load at the middle span var­

ies sinusoidally at a frequency of w = 465 rad/s, 

that is very close to the first natural frequency of 

463.9 rad/s, so that resonance is expected. The 

displacement at the center for a purely linear anal­

ysis using three bases is compared to the full 

system analysis in Fig. 8. The bases were picked 

during the first half-cycle of the full system analy-

FIGURE 8 Shallow arch under sinusoidal excitation 

(w = 465 rad/s, p = 5 N). Central deflection response 

(assumed linear), 3-basis reduced system compared to 

full system analysis. 

~ 

o 

FIGURE 9 Same result as Fig. 8 obtained with 1-

basis reduced system. 

sis, and the cost is reduced to 1.21% for a real 

analysis time of 0.7 s. In fact, because the excita­

tion is so near to the fundamental mode, one basis 

is quite sufficient in the case, as shown in Fig. 9. 

The effect of picking the basis late (after one full 

cycle) and a short analysis time (0.5 s) increases 

the cost to 3% in spite of the smaller number of 

basis vectors. 

However, the linear assumption is incorrect 

as the displacement amplitude increases due to 

resonance and the nonlinear effect should be 

taken into account. Figure 10 compares the time 

history of the central displacement from nonlinear 

analysis using 6-basis and 8-basis analysis with 

that of the full system. The bases were selected 

during the first 1.5 cycles of vibration. The chang­

ing frequency of the first mode is also shown. The 

cost reduction for the former is to 9.25% and the 

latter 17.5%. 

If the excitation frequency changes to 628 

rad/s, halfway between the first and the second 

natural frequency (789.9 rad/s), the response will 

no longer be dominated by the first mode. Figure 

11 gives the displacement history at the center 

and shows that the reduced basis analysis with 

six basis vectors is still adequate and reduces the 

cost to 7.9%. To investigate a case of really large 

modal mixing, an impulse represented by a force 

of 100 N is applied for a very short time duration 

of 0.0002 s. Comparison between linear and non­

linear (not given here) full system analysis shows 

that the impulse is not large enough to produce 

a nonlinear response. Figure 12 shows the differ­

ence between the central displacement from an 

8-basis reduced analysis with its full system coun­

terpart. Although the agreement is less perfect 

than the previous cases, the general picture is still 



1\ ~ 
~\ 

t-t-~r- r- r-

1\1 ~ \ 
.5 Xl( 1 2 

\ 
o 

~ , 

FE Analysis Using Ritz Vector Method 267 

Variation of the first natural freq uency 

r- with displacement amplitude 

I 

IS 

t:::::= 

A ...... 
,t\ f· 

v.~ ., \3 
V ( 

.5OTime 

lOOmsec.) 

Full system anal ysis 

ult Reduced 8-b res 

Reduced 6-b result 

FIGURE 10 Shallow arch under sinusoidal excitation (w = 465 rad/s, p = 5 N). Central 

deflection response (nonlinear), from 6- and 8-basis reduced system compared to full sys­

tem analysis. 

acceptable. Only the very high frequency compo­

nents are missing. The cost for the computation 

is reduced to 16.9%. 

It should be noted that all the analyses shown 

involved tens of thousands of time marching 

steps. In this context, the closeness of the results 

is truly remarkable. 

Variation of Ist natural 

frequency with amplitude 

FIGURE 11 Shallow arch under sinusoidal excitation 

(w = 628 rad/s, p = 60 N). Central deflection response 

(nonlinear), 6-basis reduced system compared to full 
system analysis. 

CONCLUSION 

The examples show conclusively that the reduced 

basis method can be used as a substitution for a 

full system analysis of certain types of vibration 

problems with highly accurate results. A large 

reduction in computing cost is achieved by using 
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FIGURE 12 Shallow arch under impUlse load. Cen­

tral deflection response from 8-basis reduced system 

analysis compared to full system. 
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this method. The simple examples shown above 

demonstrated the speed and potential of the 

method. It is safe to speculate that with the in­

crease of the problem size, the reduced system 

analysis will be more profitable. 

However, the method, as it stands, is not suit­

able for all dynamic problems. Some radically 

different ways of selecting the basis vectors will 

be required before it can be applied to problems 

with more complicated responses. Within its own 

limitations, the method can be used with confi­

dence for linear and geometrically nonlinear vi­
bration problems. 
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