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The compositional dependence of the cubic lattice parameter in Ge1-ySny alloys 

has been revisited. Large 1000-atom supercell ab initio simulations confirm 

earlier theoretical predictions that indicate a positive quadratic deviation from 

Vegards’ law, albeit with a somewhat smaller bowing coefficient, θ = 0.047 Å, 

than found from 64-atom cell simulations (θ = 0.063 Å). On the other hand, 

measurements from an extensive set of alloy samples with compositions y < 0.15 

reveal a negative deviation from Vegard's law. The discrepancy with earlier 

experimental data, which supported the theoretical results, is traced back to an 

unexpected compositional dependence of the residual strain after growth on Si 

substrates. The experimental bowing parameter for the relaxed lattice constant of 

the alloys is found to be θ = -0.066 Å. Possible reasons for the disagreement 

between theory and experiment are discussed in detail. 

 

PACS:  61.66.Dk, 61.50.Ah, 81.05.Cy 

I. INTRODUCTION 

Linear interpolation between the parent compounds is the simplest approach for estimating the 

properties of semiconductor alloys. While this scheme, in principle naïve, works surprisingly 

well for a variety of properties and material systems, applications that require very accurate 

values of certain parameters have prompted systematic studies of departures from linearity. A 
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good example is the compositional dependence of band gaps.  In laser or detector devices, the 

exact emission or cut-off wavelengths are of primary importance, and therefore even small 

deviations from linearity may be of practical significance in this context. Similarly, a detailed 

knowledge of the deviations from Vegard’s law1 in the compositional dependence of the lattice 

constant can be used for accurate determinations of the alloy composition using X-ray 

diffraction. 

The deviations from linear behavior in the compositional dependence of alloy properties 

are often characterized by introducing bowing parameters (quadratic coefficients). The 

magnitude of these bowing parameters has been successfully correlated with the mismatch in 

size and electronic properties between the constituent atoms.2 For example, a comparative study 

of the optical properties of Si1-xGex and Ge1-ySny alloys3 reveals much larger bowing parameters 

in the latter, which has been attributed to the larger difference in atomic sizes as well as 

electronegativities. In the case of the cubic lattice parameter, a small negative deviation from 

linearity was observed in Si1-xGex alloys,4 whereas a small positive departure was reported for 

Ge1-ySny alloys.5 This qualitatively different behavior has been confirmed in a number of ab 

initio theoretical studies.5-9  

The different signs of the bowing parameters in Si1-xGex and Ge1-ySny alloys provide a 

unique insight into the origin of the deviations from Vegard’s law. Using a simple structural 

model of the alloys that assumes force constants independent of the bond nature, Mousseau and 

Thorpe showed that in a Si1-xGex alloy the observed negative deviation from Vegard’s law 

obtains if the equilibrium heteronuclear Si-Ge bond length is smaller than the average of the 

homonuclear Si-Si and Ge-Ge lengths.10 However, they were unable to confirm that this is the 

main cause of bowing, since they lacked an independent way to determine the equilibrium bond 
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lengths and they could not rule out other factors, such as different force constants or clustering 

effects. Strong evidence for the bond-length origin of the bowing was provided by Chizmeshya 

et al., who studied solid-state systems as well as molecular analogs consisting of tetrahedral 

clusters of the form A(BH3)4, where A and B can be C, Si, Ge, or Sn.5 Their crucial finding is 

that the difference between heteronuclear and average homonuclear bonds in the molecular 

compounds is about the same, in magnitude and sign, as in the corresponding solid phases. In 

particular, the trends in the molecular compounds are in perfect agreement with the predicted 

positive bowing in Ge1-ySny alloys and negative bowing in Si1-xGex alloys. 

While the work of Chizmeshya et al. provides a convincing framework for understanding 

the origin of bowing in the compositional dependence of the lattice constant in group-IV alloys, 

the problem cannot be considered definitively solved because the smallness of the quadratic 

terms make their theoretical evaluation and experimental determination quite challenging. On the 

theoretical side, earlier ab initio theoretical calculations for Si1-xGex alloys indicated a positive 

deviation from linearity,11 in disagreement with the experimental results from Dismukes et al.,4 

and with more recent calculations.12,13 This suggests that convergence issues, as well as artificial 

correlations introduced by the small supercells used to simulate the alloy, may affect the 

predicted deviations from linearity. Accordingly, we have carried out ab initio lattice constant 

calculations in very large (1000 atom) supercells, which provide a statistically accurate 

description of the random alloy. We optimized the supercell cell shape, dimensions, and internal 

atomic positions to obtain highly converged equilibrium structures with residual cell stresses less 

than 1 kbar and atomic forces less than 5 meV/Å. These calculations confirm the earlier 

predictions of a positive deviation from Vegard's law. 



 4

On the experimental side, the problem is particularly difficult because bulk-like Ge1-ySny 

samples are not available, and the measurements must be performed on epitaxial alloys on Si 

substrates. A good illustration of the experimental difficulties associated with thin film 

measurements is provided by the work of Kasper et al,14 who determined the lattice parameter in 

Si1-xGex films grown pseudomorphically on Si and could only verify Dismukes’ earlier bulk 

data4 in a semi-quantitative way due to the uncertainties in the Ge concentrations and in the 

strain corrections. In the case of Ge1-ySny alloys, the experimental evidence so far is based on 

measurements of Ge1-ySny films grown directly on (001) Si.5 In this work, the c lattice constant 

perpendicular to the growth plane was obtained from the (004) x-ray reflection in the 

tetragonally distorted diamond structure. In view of the low residual strain in the samples, the 

measured c was identified with the relaxed cubic lattice constant a0. The systematic error 

incurred by using this approximation does not affect the sign of the quadratic term in the 

compositional dependence of the lattice constant as long as the residual strain can be assumed to 

be the same for all samples, a reasonable assumption at the time.  In subsequent years, however, 

we have accumulated increasing evidence that this residual strain is strongly correlated with the 

alloy composition, to the extent that a systematic error might be introduced in the determination 

of the bowing parameters for the alloy if a strain correction is not applied. In view of these 

complications, we have measured x-ray reciprocal space maps (RSMs) of the (224) reflection for 

a large set of Ge1-ySny alloys grown on Si substrates. From these measurements we extract the 

relaxed cubic lattice parameter, and we find that the deviation from Vegard's law is negative. 

Thus we conclude that that there is a remaining disagreement between theory and experiment in 

the case of Ge1-ySny alloys. The experimental lattice constant bowing parameter for the Ge1-ySny 

alloy, however, is less than the bowing parameter for the Si1-xGex alloy as a fraction of the lattice 
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constant mismatch between the parent elemental semiconductors, whereas the bowing 

parameters for all other measured properties are much larger in Ge1-ySny than in Si1-xGex. This 

suggests that the data may be viewed as a qualitative confirmation of theory if we assume that 

the predicted trend to positive bowing in Ge1-ySny alloy is overcompensated by an intrinsic or 

extrinsic contribution that is unaccounted for in the theoretical simulations. 

The remainder of the paper is organized as follows: in Sect. II we present the new 

theoretical simulations, in Sect. III we present the new experimental data, and in Section IV we 

discuss the divergent conclusions from theory and experiments and analyze possible reasons for 

the discrepancy. 

II. THEORY 

For the alloy simulation we adopted 1000-atom super-cells comprised of a 5x5x5 array of 

conventional 8-atom crystallographic cells, in which the Sn and Ge atoms are randomly 

distributed on the available sites. We specifically consider two alloy compositions: the first 

containing 50% Sn, where any deviations from average behavior are expected to be close to 

maximal, and a 10% Sn model which overlaps with the high end of the composition range 

explored in our study. The latter is expected to provide a useful point of comparison with 

experiment. The 1000-atom super cell models represent a significant refinement over our earliest 

calculations for this system in which much smaller 64-atom super cells were used to describe 

SnyGe1-y alloy compositions with Sn content from 0-50%.5  In this case, however, highly 

symmetric ordered atomic distributions were used in order to make the calculations tractable. In 

subsequent work on related Si1-ySny alloys we incorporated the random nature of the alloys using 

both discrete 64-atom distributions, as well as special quasi-random (SQS) cells.15 In this regard 

the present treatment using the very large supercells is expected to inherently capture most 
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random lattice pair-correlations up to about the 6th nearest neighbor. As we shall show below, 

our Ge1-ySny simulations yields nearly Gaussian bond species distributions which follow the 

expected limiting statistical behavior based on concentration products, namely y2, 2y(1-y) and (1-

y)2 for Sn-Sn, Sn-Ge and Ge-Ge bonds, respectively. For a 1000-atom diamond lattice unit cell, 

the number of bonds is 2000 (e.g., four bonds per tetrahedral site, times ½ for double counting). 

Thus, for example, for 10% Sn concentration our Ge1-ySny  alloy representation should contain 20 

Sn-Sn bonds, 360 Sn-Ge bonds and 1620 Ge-Ge bonds. In practice we find that our random 

configurations contain distributions that deviate from these ideal values by only 1-2 bonds, 

suggesting that our approach should be sufficient to capture the essential structural properties of 

real alloys. 

The ground state energy calculations of the random alloys, and elemental Ge and Sn 

lattices were all carried out using the VASP electronic structure code.16,17 We employed the 

Ceperley-Alder parameterization of the local density functional (CA-LDA)18,19 for exchange-

correlation energy, a plane wave cutoff of 350 eV and a single k-point centered at Γ, which is 

found to be adequate in view of the large lattice dimensions (~30 Å). Special precautions were 

taken to ensure that the calculations of the elemental α-Ge and α-Sn reference system properties 

and those of the alloys are performed consistently, and at the same level of fidelity. In particular, 

we ensured that all internal integration grids and sampling procedures were identical in all cases, 

and that all symmetrizations were explicitly “switched off”. Using these computational 

conditions we then simultaneously optimized the supercell shape and dimensions, and the atomic 

positions, to obtain very accurate equilibrium structures with a residual cell stress and atomic 

forces of less than ~1 kbar and ~0.005 eV/Å, respectively. 
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The key outcomes of our study are summarized in Table 1 which lists the electronic ground state 

energies U0 and lattice parameters a0 for the elemental reference states (α-Ge and α-Sn), as well 

as the compositionally average (Vegard) values corresponding to 10% and 50% Sn content. Note 

that energies produced by VASP (listed here as U0) are relative to spin-compensated neutral 

atoms, and not spin-polarized ground state configurations.  All of the lattice constants listed in 

the table correspond to a conventional crystallographic cell, and were obtained by dividing the 

supercell edge length by 5 (small distortions in edge length ~0.001 Å were averaged). Our LDA 

values for the lattice constants of α-Ge and α-Sn are 0.57% and 0.49% smaller than their 

corresponding experimental values at room temperature. Since the calculations correspond to 

static values, a more meaningful comparison is with low-temperature lattice constants corrected 

for zero-point vibrational expansion. The experimental static values are extrapolated from the 

asymptotically linear temperature dependence observed at high temperatures,20 and proceeding 

this way we find the that the differences between theory and experiment are reduced to 0.46% 

(α-Ge) and 0.35% (α-Sn). The residual discrepancy is typical for this level of DFT. Also listed in 

the table are values from our prior work which were obtained using a similar DFT treatment at 

the CA-LDA level using the much small a 64-atom setting, but a higher cutoff energy (600 eV), 

and a 3x3x3 Monkhorst-Pack sampling for reciprocal space integrations. The agreement is 

clearly very good, and the small discrepancies are entirely due to the different computational 

conditions used.  
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The bottom portion of Table 1 summarizes the key energetic and structural results for the 

alloys, including their equilibrium lattice constants a0, ground state electronic energies U0, and 

their corresponding deviations from compositionally weighted average (Vegard) values, Δa0 and 

ΔU, respectively. We note that the arbitrary spin-compensated atomic reference states (discussed 

above), contained in the U0 values generated by VASP, cancel in the calculation of ΔU.  

Accordingly, the latter represent the electronic contribution to the formation energies of an Ge1-

ySny alloy relative to its pure Sn and Ge end members. On the basis of the calculated ΔU listed 

here, the 10% and 50% random SnGe alloys are predicted to be metastable by ~19 and ~48 

meV/atom, respectively. Also listed for comparison is the corresponding ΔU value ~29 

meV/atom for the symmetric zinc-blende configuration of the Ge0.5Sn0.5 alloy, which is found 

here to possess a slightly lower electronic energy than the corresponding random alloy (e.g., less 

metastable). To more quantitatively describe the thermodynamic stability of the alloys we 

 U0 
(eV/atom)

ΔU 
(eV/atom) 

ΔG 
(eV/atom) 

 
a0 (Å) 

 
Δa0 (Å) 

      
α-Sn -4.5008 

-4.5016(a) 
 

-- --       6.4574  
      6.4557(a) 
      6.4894 
 

-- 

α-Ge -5.1969 
-5.1980(a) 

-- --       5.6250  
      5.6261(a) 
      5.6575 
 

-- 

xSn+(1-x)Ge  (x=0.5) -4.8489 -- --       6.0412             -- 
xSn+(1-x)Ge  (x=0.1) -5.1273 -- --       5.7082 

 
-- 

      
α-Ge0.9Sn0.1 (RAND) -5.1079 +0.0194 +0.0110       5.7127 0.0045 
α-Ge0.5Sn0.5 (RAND) -4.8009 +0.0480 +0.0301       6.0529 0.0117 
α-Ge0.5Sn0.5 (ZB) -4.8197 +0.0292 +0.0292       6.0522 0.0110 
      
Table 1: Summary of energetic and structural results for the Ge1-ySny super cell calculations. Experimental 
values are shown in bold font, and those from our prior study (Ref. 5) using 64-atom cell representations 
for α-Ge and α-Sn are indicated by a superscript (a). The free-energy estimates ΔG are obtained by 
combining the molar mixing enthalpy and an ideal mixing formula for mixing entropy at T=300K.  



 9

calculated the alloy Gibbs free energy G=H-TS.  For simplicity we ignore the vibrational 

contributions to the free energy (assumed to be small in comparison to ΔU ) and approximate the 

alloy enthalpy of mixing ΔH by ΔUSnGe
MIX ( y) ≈ ΔESnGe( y) = ESnGe( y) − yESn − (1− y)EGe

. For the 

corresponding entropy contribution to the free energy we assume an ideal mixing formula, 

TSSnGe
MIX (y) = −kBT y ln y + (1− y)ln(1− y)[ ] , which yields 8.40 meV/atom and 17.92 meV/atom for the 

10% and 50% random alloys, respectively. With these approximations the Gibbs free energy ΔG 

of the random and ordered systems are predicted to be nearly identical, differing by only a few 

meV/atom near ambient conditions, while at higher temperatures the mixing entropy is expected 

to favor the random alloy. 

The equilibrium lattice constants a0 of the alloys obtained from our simulation are listed 

in the bottom right hand portion of the table, along with their corresponding deviations from 

compositionally averaged (Vegard) values, Δa0. For both compositions the deviations are 

predicted to be positive, and the nominal bowing parameter, assuming a dependence of the form 

 a0 y( )= a0
Ge 1− y( )+ a0

Sny + θGeSny 1− y( ), (1) 

 is found to be θGeSn = 0.0468 Å, quite close to the value θGeSn = 0.063 Å reported in our earlier 

study on Ge1-ySny
5 as well as in other studies.6,8 We note that the bowing parameter obtained in 

the present study for the perfectly ordered zincblende configuration is θGeSn = 0.0440 Å, which is 

perhaps surprising in view of its radically different bonding topology (e.g., the presence of 

exclusively Sn-Ge bonds).  
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 Equilibrium structures for the calculated alloys are shown in Figure 1, where the Sn 

atoms are represented by grey spheres and the tetrahedral lattice, including the Ge atoms, are 

drawn using faint blue lines for clarity. The supercell parameters aSC and lattice constants 

a=aSC/5 are listed below these figures. The parameter bSC  provided above the structure model 

represents an “intrinsic 

bond length” obtained 

from the macroscopic cell 

dimension ( 3
4 a ). In the 

zinc-blende structure (and 

elemental diamond 

lattices) bSC is precisely 

equal to the unique 

tetrahedral bond length in 

the system. The Ge-Ge, 

Sn-Ge and Sn-Sn bond 

distributions obtained 

from our 1000-atom 

simulations of the 10% 

and 50% Sn alloys are 

plotted in the right panels 

of Figure 1, and exhibit 

nearly Gaussian forms for 

 
Figure 1: Bond distribution analysis of the Sn0.1Ge0.9 (a) and Sn0.5Ge0.5 (b) 
random alloy models. Representative structures for the alloys are shown in the 
left panels with the diamond lattice, including Ge positions, drawn using faint 
blue lines and grey spheres representing the Sn atoms.  Plots on the right show 
the corresponding distributions for GeGe (black), SnGe (blue) and SnSn (red) 
bonds. The number of bonds, and mean bond lengths for each species are 
indicated within the figures. The values <b>BD and <b>SC are the average bond 
lengths obtained from the weighted bond distributions and macroscopic crystal 
dimensions, respectively. 
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all species.  The mean bond length bij listed above each distribution function is calculated by 

dividing the first moment of the distribution by its integrated area (equal to the number of bonds, 

listed as N). Finally, above each plot we list the mean bond length bBD  obtained for each alloy 

from the weighted sum of individual mean bond lengths bij .  For disordered binary alloy 

systems such as Ge1-ySny, characterized by relatively compressible bonds, our simulations 

correctly embody the fundamental deviations of bonds lengths from their natural values as 

deduced from the elemental end members and interpolation between these latter values. 

Variations on the order of 2-4% are typical, as 

illustrated in Table 2, which lists the 

characteristic Ge-Ge, Sn-Ge and Sn-Sn bond 

lengths obtained from our simulations of 

elemental Ge and Sn, and the GeSn alloys.  

 

III. EXPERIMENT 

Ge1-ySny films were grown on (001) Si substrates via reactions of SnD4 with Ge2H6, as 

described elsewhere.21 Rutherford backscattering (RBS) via the RUMP program was used to 

determine the Sn-concentration and film thickness,22 which varied from about 800 nm for the 

lowest Sn concentrations to about 90 nm for y = 0.13.  The calculated areal density is obtained by 

modeling the system as a diamond structured Ge1-ySny alloy.  This approach is found to perfectly 

reproduce the thickness of the layers as measured by XTEM and from ellipsometric 

determinations.  In a typical acquisition of the random spectrum the sample is continuously 

rotated to avoid channeling. Typically 105 counts are collected at a beam energy of 0-2 MeV 

corresponding to 350 channels, which ensure a high signal to noise ratio sufficient for resolving 

 
 Ge-Ge Sn-Ge Sn-Sn 

α-Ge 2.436 -- -- 
Ge0.9Sn0.1 2.449 2.583 2.711 
Ge0.5Sn0.5 2.494 2.628 2.751 

α-Sn -- -- 2.796 
 
Table 2:  Characteristic bond lengths in the Ge1-υSnυ 
alloys and elemental Sn and Ge calculated using 
1000-atom supercells. 
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Sn contents as low as 0.1 %.  This technique is ideally suited for these binary alloys because the 

atomic number of both constituent elements are high and sufficiently distinct to enable a clear 

(unambiguous) separation of their signals. 

In addition to thickness and composition the degree of crystallinity and epitaxial 

alignment of the films is also gauged by RBS analysis using the ratio of the aligned versus 

random peak heights (χmin). In our samples it decreases from 10% at the interface to 5 % at the 

surface, indicating a reduction in dislocation density across the thickness of the film. The 5 % 

value approaches the limit χmin ~ 3% observed in a perfect Si crystal, suggesting that most of the 

defects accommodating the lattice mismatch between film and substrate are confined at the 

interface. This is consistent with high-resolution transmission electron microscopy XTEM 

pictures showing essentially defect-free films. The concentration of residual threading defects 

and the mosaic spread of the crystal are improved by performing a few—typically three—rapid-

thermal annealing (RTA) cycles of 2-30 s each at temperatures between 600 °C and 750 °C. This 

post-growth processing reduces the FWHM of the (004) rocking curve in high-resolution X-ray 

diffraction measurements (HR-XRD).   

 The HR-XRD measurements of the lattice constant were carried out at room temperature 

using a PANalytical-diffractometer. The in-plane—a—and perpendicular—c—tetragonal lattice 

parameters of 56 Ge1-ySny samples and 14 reference Ge films on Si were determined from 

measurements of the (004) 2θ/ω peaks and reciprocal space maps (RSM) of the (224) reflection. 

The pure Ge films had a range of thicknesses comparable to those of the Ge1-ySny alloys and 

were grown using the method described in Ref. 23. The samples were first aligned to the Si(004) 

reflection and the position of the Ge1-ySny (004) peak was measured. From the Ge1-ySny (004) 

peak position the c-lattice parameter and a possible lattice tilt was calculated. In all cases the tilt 



 13

was found negligible. After that the sample was aligned to the corresponding Si (224) reflection 

and the Ge1-ySny (224) reflection was measured.  The in-plane and out-of-plane lattice parameters 

were determined from the 224 peak maxima. For a subset of the samples we measured the four 

 
224( ), 

 
224( ),

 
224( ), and 

 
224( )reflections to confirm the tetragonal nature of the distortion and 

establish a limit for the inherent error of the method. All of the c lattice parameters determined 

from (224) reflections were found to match match the value obtained from the (004) reflections 

to within 0.0004 Å.   The relaxed cubic lattice constant a0 was computed from the measured a 

and c parameters using  

 

 a0 =
c +

2C12

C11

a

1+
2C12

C11

, (2) 

where C11 and C22 are cubic elastic constants in the contracted index notation. The elastic 

constant ratio is taken as 

 
  

C12

C11

= 0.3738 + 0.1676y − 0.0296y2  (3) 

The independent term in Eq. (3) is the value of C12/C11 in pure Ge as reported by McSkimin.24 

The compositional dependence of C12/C11 was obtained from a quadratic interpolation of the ab 

initio theoretical calculations in Ref. 25. 
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 For the pure Ge films on Si the use of Eqs. (2) and (3) gives a0 = 5.6571±0.0004 Å. This 

is in very good agreement with the value a0 = 5.6574 Å quoted in Ref. 26 as the average of all 

data for pure Ge compiled from 1922 to 1968. For the samples for which the four (224) were 

measured, the relaxed lattice parameters a0 were found to be nearly identical, with typical 

standard deviations of ~0.0001 Å.  In Fig. 2 we show the a, c, and a0 values for the Ge1-ySny 

samples. The calculated value of a0 for the alloys is in principle affected by the accuracy of the 

compositional dependence of the elastic constant ratio in Eq. (3), for which there is no 

experimental corroboration. However, we notice that the exact value of C12/C11 is not as critical 

as in the Si1-xGex experiments reported in Ref. 14, because the strain levels in our samples are 

about one order of magnitude lower, and therefore the uncertainties in the compositional 

dependence of the elastic constant ratio have a substantially reduced impact on the final a0 value. 

In fact, the bowing parameter for the compositional dependence of a0 (see below) remains 

virtually unchanged if we ignore 

the compositional dependent 

terms in Eq. (3) and simply use 

the pure Ge value from 

McSkimin.24   

 
 
Figure 2:  Experimental lattice constants a (parallel to growth plane) 
and c (perpendicular to the growth plane) obtained from room-
temperature HR-XRD RSM measurements of Ge1-ySny films on Si. 
The relaxed cubic lattice constant a0 is calculated from these values 
using Eqs. (2) and (3). The solid line is a fit with Eq. (1). Notice that 
the residual strain is tensile  (a > c) for low Sn-concentrations, and 
becomes compressive (a < c) for high Sn-concentrations. 
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It is apparent from Fig. 2 that for low Sn concentrations a > c, whereas for high Sn 

concentrations a < c. This indicates a gradual transformation of the nature of the in-plane strain 

   εP = a − a0( ) a0 from tensile at low Sn-concentrations to compressive at the highest Sn 

concentrations, as shown in Fig. 3.  

If the films are perfectly relaxed during growth, we would expect the residual strain at 

room temperature to be tensile due to the smaller thermal expansion coefficient of the Si 

substrate relative to the Ge1-ySny film. This is in fact the approach used to obtain tensile-strained 

Ge films on Si.27 The presence of compressive strain indicates an incomplete strain relaxation 

while the sample is growing. While the higher Sn concentration may by itself inhibit the 

generation of the required misfit dislocations, the most likely reason for the incomplete strain 

relaxation is the lower growth temperatures used to deposit films with high Sn concentrations. 

These lower temperatures also reduce the growth rate, which leads to a monotonic decrease in 

film thickness as a function of the Sn concentration. Thus we cannot rule out the possibility that 

the degree of strain relaxation during 

growth depends not only on the growth 

temperature but also on film thickness. 

Interestingly, our post-growth annealings 

increase the tensile strain only 

marginally, as seen in Fig. 3, even though 

the annealing temperatures are much 

higher than the film growth temperatures. 

At even higher annealing temperatures 

one expects the samples to relax and 

Figure 3:  In-plain strain 
   
εP = a − a0( ) a0 computed from the 

data in Fig. 2 for all Ge1-ySny samples. The color code 
indicates the after-growth rapid thermal anneal (RTA) 
temperatures for the different samples. Black circles 
correspond to samples measured as-grown without any RTA 
treatment. The line is a linear fit to the strain. 
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develop tensile strain upon cooling to room temperature, regardless of the growth temperature. 

The threshold annealing temperature for this behavior seems to be close to 725 °C for pure Ge 

films, but this limit is difficult to explore in Ge1-ySny alloys because the Sn concentration may 

change at the highest temperature annealings. 

The simplest way to show that the data in Fig. 2 deviate from Vegard’s law is to fit the a0 

values to a linear function of composition. This fits gives a0(0) = 5.6571±0.0004 Å, in perfect 

agreement with the directly measured Ge lattice constant, but a0(1) = 6.428±0.010 Å for α-Sn, 

which is substantially below the experimental value a0 = 6.4894 Å at 300K.28 This clearly 

indicates a negative deviation from Vegard’s law. The disagreement with the earlier finding of a 

positive deviation can be traced back to the fact that the measured c-parameter increases faster 

than a0 as a function of Sn-concentration, as seen in Fig. 2, due to the monotonic change in the 

residual strain from tensile to compressive. The solid line in Fig. 2 shows a fit with Eq. (1). Since 

the compositional range of the data is limited, a fit that uses a0
Ge , a0

Sn , and θGeSn as adjustable 

parameters gives a negative value for θGeSn, as expected, but an unphysical value for a0
Sn . We thus 

perform the fit using a0
Sn = 

6.4894 Å as a fixed parameter, 

and in order to treat both end 

values on equal footing we 

also use a fixed a0
Ge= 5.6571 

Å. We are then left with θGeSn 

as the only adjustable 

parameter, and we obtain θGeSn 

 
Figure 4: Deviation Δa0 from Vegard’s law for the lattice constant of 
Ge1-ySny alloys. The lines correspond to the function θGeSn y(1-y). In the 
case of the solid line, we use θ = -0.066 Å from our a0 fit in Fig. 2. The 
dotted line corresponds to the theoretical value θGeSn = +0.0468 Å. The 
error bars assume an error of ±0.2% in the composition determined by 
RBS.
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= -0.066±0.005 Å. We have verified that the value of θGeSn remains virtually unchanged if we use 

any of the published values for the lattice constant of α-Sn (similarly, if we use a0
Ge  as an 

adjustable parameter we obtain a0
Ge= 5.6573±0.0004 Å and θGeSn = -0.069±0.009 Å). The 

deviation from Vegard’s law Δa0 = a0 y( ) − a0
Ge 1− y( ) − a0

Sny is shown in full detail in Fig. 4.  

IV. DISCUSSION 

The significance of the discrepancy between the theoretical predictions and the new 

measurements for Ge1-ySny is difficult to assess. If we assume that the experimental 

compositional dependence of the deviation from Vegard’s law is quadratic (hardly obvious from 

our data given the noise and the limited compositional range), the difference between predicted 

and actual lattice constant for Ge0.5Sn0.5  would be 0.46%, which is comparable to the error in the 

best DFT-LDA predictions of lattice constants. On the other hand, DFT-LDA calculations seem 

to correctly predict bowing in other semiconductor alloy systems, so the discrepancy in the case 

of Ge1-ySny seems puzzling. Moreover, we note that the predicted lattice constant error for α-Sn 

is less than that for Ge. If we assume a correction factor that depends linearly on the alloy 

composition, this would add an additional small but positive contribution to the bowing, 

increasing the discrepancy with theory. The agreement is better at the lowest Sn concentrations 

(y < 0.02), as seen in Figure 4. This could be fortuitous, given the limited number of data points 

and large error bars, but we have already found that at these same low Sn concentrations the 

bowing parameter for the direct electronic gap E0 appears to be significantly larger than the value 

obtained from samples with y > 0.02.29,30 These observations, taken together, suggest that some 

structural change might take place near y ~ 0.02. S-shaped deviations from Vegard’s law have 

been explained in terms of the contribution from bond-bending forces.31 For sufficiently large 

values of these forces, the bonds are prevented from expanding or compressing following atomic 
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substitutions. However, since such effects are automatically included in ab initio calculations, we 

should have observed some anomaly in the theoretical compositional dependence of both lengths 

if the deviation from Vegard’s law has an oscillating behavior as a function of the Sn 

concentration. A convenient way to study bond lengths in terms of the competition between 

bond-bending and bond-stretching forces is provided by the so-called topological rigidity 

parameter a** (Ref. 32). This parameter measures of the difference between interatomic bond 

lengths and the macroscopic lattice constant – a very relevant and useful figure of merit for the 

comparison of structural properties within a compositional family of alloys. A value of a**= 0 

corresponds to the completely rigid lattice (Vegard limit) in which bond-bending forces 

dominate and bonds lengths take on equal values to match the macroscopic lattice parameter. 

The opposite a**=1 case represents the so-called Pauling limit in which bond stretching forces 

are dominant, so that all bond length species take on their natural values and bond angle 

deviations accommodate the competition between macroscopic dimensions and the local bond-

lengths. For a Ge1-ySny alloy the a** can be deduced by fitting the bond distributions for various 

compositions y in a random alloy to the formulas: 

LGeGe = %L − ya**(LSnSn
0 − LGeGe

0 )  

LSnSn = LGeGe + a**(LSnSn
0 − LGeGe

0 )   (4) 

      LSnGe = 1
2 LGeGe + LSnSn
⎡⎣ ⎤⎦  

where the quantities in ...  brackets represent average bond length values in the alloy, the L0 are 

the natural (unique) bond lengths obtained from the pure phases, and the average bond length is 

defined    
%L = yLSnSn

0 + (1− y)LGeGe
0 . Using the data provided in Figure 1 and Table 2, our 1000-

atom simulations yields a**=0.685 for Ge0.9Sn0.1 and a**=0.693 for Ge0.5Sn0.5. These values are 

remarkably consistent in view of the significant difference in Sn content between the two alloys, 
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and very similar to the corresponding the average value of a**~0.68 obtained in our prior studies 

on 12 GeSn alloy compositions between 0-50% Sn, using 64-atom supercells. It is noteworthy 

that Shen et al.6 also reported a value of a**~0.69 for the Ge1-ySny alloy on the basis of three 

compositions (y = 0.25, 0.50 and 0.75) using a 72-atom supercell setting.  Collectively, the 

forgoing evidence suggests a universal value of a**=0.69 for Ge1-ySny based on DFT-LDA. Thus 

the ratio of bond-bending to bond-stretching forces seems to be independent of the composition, 

which is incompatible with an oscillating dependence of the deviation from Vegard’s law near 

the low-Sn compositional range. Recently we also carried out a comparative topological rigidity 

analysis of the bonding in Si1-ySny alloys15 (also using 64-atom supercells) and obtained a value 

of a**~0.72. Direct experimental measurements of a** are extremely difficult and only available 

for the Si1-xGex alloy, where values of a** in the range of 0.6-0.8 have been reported in the 

literature.11,33-35  

Yet another interpretation of the discrepancy between theory and experiment would 

consist in assuming that the observed deviation from Vegard’s law is caused by the combined 

effects of a positive contribution, as calculated for a perfectly random alloy, plus a negative term 

associated with a non-random atomic distribution and/or defects.  This is suggested by the 

observation that the ratio ηGeSn = 
  
θGeSn a0

Sn − a0
Ge( ), which measures the size of the non-linear 

deviation relative to the lattice mismatch between the parent materials, is ηGeSn = 0.089, whereas 

the equivalent quantity for Si1-xGex alloys is ηSiGe = 0.12. Since we find ηSiGe < ηGeSn for the 

electronic properties,3 the observation that ηSiGe > ηGeSn for the lattice constant could be viewed 

as a qualitative confirmation of the theoretical predictions under an scenario in which the trend 

towards a positive bowing is overcompensated by the second effect.  
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A good measure of the importance of randomness in the predicted alloy lattice constants 

is provided by a comparison of a0 calculated for the random Ge0.5Sn0.5 alloy and for the ordered 

zincblende GeSn compound. The finding that these lattice constants are nearly identical   

suggests that ordering effects do not play a dominant role in this system. On the other hand, we   

notice that the so-called Sn-split vacancies, in which Sn atoms are located at the bond-center site 

between two missing Ge atoms,36 lead to a decrease in lattice parameter. For example, Ventura 

and coworkers find a cubic lattice parameter of 5.77Å for pure Ge, 5.82 Å for a Ge15Sn1 alloy, 

and 5.72 Å for a Ge14Sn1 alloy with a split vacancy.37 The abundance of these defects is related 

to the vacancy concentration,38 which may not be constant as a function of Sn concentration due 

to the different growth temperatures. Based on the Ventura et al. results,37 we estimate that about 

6% of the Sn atoms in the alloy should be in split vacancy locations to explain the difference 

between the observed and predicted lattice parameter for y = 0.06. This is a much higher 

concentration of split vacancies than predicted by these authors, and constitutes a level of non-

substitutionality that likely would have been detected in our XRD or RBS channeling 

experiments. 

V. CONCLUSIONS 

In summary, we have revisited the compositional dependence of the lattice constant in   

Ge1-ySny alloys from a theoretical and experimental perspective. While the theoretical 

calculations confirm the positive deviation from Vegard’s law predicted by earlier work, the 

experimental results indicate a clear negative deviation, in contradiction with earlier data which 

were affected by the residual strain in Ge1-ySny films grown on Si.  Different scenarios have been 

analyzed to explain the discrepancy, but no fully satisfactory explanation can be provided at this 

time.   
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