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We study the nonlinear growth of structure in nonlocal gravity models with the aid of N-body simulation and

the spherical collapse and halo models. We focus on a model in which the inverse-squared of the d’Alembertian

operator acts on the Ricci scalar in the action. For fixed cosmological parameters, this model differs from

ΛCDM by having a lower late-time expansion rate and an enhanced and time-dependent gravitational strength

(∼ 6% larger today). Compared to ΛCDM today, in the nonlocal model, massive haloes are slightly more

abundant (by ∼ 10% at M ∼ 1014M⊙/h) and concentrated (≈ 8% enhancement over a range of mass scales),

but their linear bias remains almost unchanged. We find that the Sheth-Tormen formalism describes the mass

function and halo bias very well, with little need for recalibration of free parameters. The fitting of the halo

concentrations is however essential to ensure the good performance of the halo model on small scales. For

k & 1h/Mpc, the amplitude of the nonlinear matter and velocity divergence power spectra exhibits a modest

enhancement of ∼ 12% to 15%, compared to ΛCDM today. This suggests that this model might only be

distinguishable from ΛCDM by future observational missions. We point out that the absence of a screening

mechanism may lead to tensions with Solar System tests due to local time variations of the gravitational strength,

although this is subject to assumptions about the local time evolution of background averaged quantities.

I. INTRODUCTION

It has been almost a century since Einstein proposed his the-

ory of General Relativity (GR) which is still considered one

of the main pillars of modern physics. The outstanding suc-

cess of GR comes mostly from its ability to pass a number of

stringent tests of gravity performed in the Solar System [1].

When applied on cosmological scales, however, GR seems to

lose some of its appeal as it requires the presence of some un-

known form of dark energy in order to explain the observed

accelerated expansion of the Universe. The simplest candi-

date for dark energy is a cosmological constant, Λ, but the

value of Λ required to explain the observations lacks theoreti-

cal support. This has provided motivation for the proposal of

alternative gravity models which attempt to reproduce cosmic

acceleration without postulating the existence of dark energy.

Furthermore, the fact that the laws of gravity have never been

tested directly on scales larger than the Solar System justi-

fies the exploration of such modifications to GR on cosmo-

logical scales. By understanding better the various types of

observational signatures that different modified gravity mod-

els can leave on cosmological observables, one can improve

the chance of identifying any departures from GR, or alterna-

tively, extend the model’s observational success into a whole

new regime. Currently, the study of modified gravity models

is one of the most active areas of research in both theoretical

and observational cosmology [2–5].

Here, we focus on a class of model that has attracted much

attention recently, which is known as nonlocal gravity [6]. In

these models, the modifications to gravity arise via the addi-

tion of nonlocal terms (i.e. which depend on more than one

point in spacetime) to the Einstein field equations. These

∗ Electronic address: a.m.r.barreira@durham.ac.uk

terms typically involve the inverse of the d’Alembertian op-

erator, �−1, acting on curvature tensors. To ensure causality,

such terms must be defined with the aid of retarded Green

functions (or propagators). However, it is well known that

such retarded operators cannot be derived from standard ac-

tion variational principles (see e.g. Sec. 2 of Ref. [6] for a dis-

cussion). One way around this is to specify the model in terms

of its equations of motion and not in terms of its action. One

may still consider a nonlocal action to derive a set of causal

equations of motion, so long as in the end one replaces, by

hand, all of the resulting operators by their retarded versions.

Both of these approaches, however, imply that nonlocal mod-

els of gravity must be taken as purely phenomenological and

should not be interpreted as fundamental theories. In gen-

eral, one assumes that there is an unknown fundamental (lo-

cal) quantum field theory of gravity, and the nonlocal model

represents only an effective way of capturing the physics of

the fundamental theory in some appropriate limit.

It was in the above spirit that Ref. [7] proposed a popular

nonlocal model of gravity capable of explaining cosmic ac-

celeration. In this model, which has been extensively studied

(see e.g. Refs. [6, 8–17] and references therein), one adds

the term Rf
(

�−1R
)

to the Einstein-Hilbert action, where R
is the Ricci scalar and f is a free function. As described in

Ref. [6], the function f can be constructed in such a way that

it takes on different values on the cosmological background

and inside gravitationally bound systems. In particular, at the

background level, f can be tuned to reproduce ΛCDM-like

expansion histories, but inside regions like the Solar System,

one can assume that f vanishes, thus recovering GR com-

pletely. This model, however, seems to run into tension with

data sensitive to the growth rate of structure on large scales

[16, 17].

More recently, nonlocal terms have also been used to con-

struct theories of massive gravity. An example of this is ob-

tained by adding directly to the Einstein field equations a term
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like m2
(

gµν�
−1R

)T
[18–21], where m is a mass scale and T

means the extraction of the transverse part (see also Refs. [22–

25] for models in which �−1 acts on the Einstein and Ricci

tensors). This model has no ΛCDM limit for the background

evolution, but it can still match the current background expan-

sion and growth rate of structure data with a similar goodness-

of-fit [21]. Furthermore, Ref. [20] has investigated spheri-

cally symmetric static solutions in this model, concluding that

it does not suffer from instabilities that usually plague the-

ories of massive gravity. A similar model was proposed by

Ref. [26], which is characterized by a term ∝ m2R�−2R
in the action (see Eq. (1)). Reference [27] showed that this

model can reproduce current type Ia Supernovae (SNIa) data,

although it also has no ΛCDM limit for the background ex-

pansion. The time evolution of linear matter density fluctua-

tions in this model also differs from that in ΛCDM, but the

work of Ref. [27] suggests that the differences between these

two models are small enough to be only potentially distin-

guishable by future observational missions.

Here, we extend the previous work done for the model of

Refs. [26, 27] by examining its predictions in the nonlinear

regime of structure formation. We achieve this by running a

set of N-body simulations, which we use to analyse the model

predictions for the nonlinear matter and velocity divergence

power spectra, and also halo properties such as their abun-

dance, bias and concentration. To the best of our knowledge

this is the first time N-body simulations have been used to

study the nonlinear regime of structure formation in nonlocal

gravity cosmologies. N-body simulations are however com-

putationally expensive to run. To overcome this, it is com-

mon to try to devise semi-analytical formulae that, motivated

by simple physical assumptions, aim to reproduce the results

from the simulations with the calibration of free parameters

kept to a minimum. A popular example is given by the Sheth-

Tormen halo mass function [28–30] and its use in the halo

model approach for the nonlinear matter power spectrum [31].

The performance of the halo model is well understood within

ΛCDM, but less so in alternative gravity scenarios. In par-

ticular, the free parameters in these formulae might need sub-

stantial recalibration in models that differ significantly from

ΛCDM (see e.g. Ref. [32]). One of our goals is to assess the

performance of these analytical formulae in nonlocal gravity

models.

This paper is organized as follows. In Sec. II we present the

model and layout the equations relevant for the background

evolution. We also derive the equations of motion for spher-

ically symmetric configurations under the quasi-static and

weak-field approximations. In Sec. III we present the formu-

lae relevant for the calculation of the nonlinear matter power

spectrum in the halo model formalism. In particular, we de-

scribe the Sheth-Tormen expressions for the halo mass func-

tion and bias, and define the Navarro-Frenk-White (NFW)

halo concentration parameter. We also present the equations

relevant for the linear evolution and spherical collapse of mat-

ter overdensities. Our results are presented in Sec. IV, where

we discuss the results from the N-body simulations and com-

pare them with the predictions from the analytical formulae.

We also comment on the role that Solar System tests of gravity

could play in setting the observational viability of this model.

We summarize our findings in Sec. V.

In this paper, we work with the metric signature

(+,−,−,−) and use units in which the speed of light c = 1.

Latin indices run over 1, 2, 3 and Greek indices run over

0, 1, 2, 3. We use κ = 8πG = 1/M2
Pl interchangeably, where

MPl is the reduced Planck mass and G is Newton’s constant.

II. THE R�−2R NONLOCAL GRAVITY MODEL

A. Action and field equations

We consider the nonlocal gravity model of Refs. [26, 27],

whose action is given by

A =
1

2κ

∫

dx4√−g

[

R− m2

6
R�−2R− Lm

]

, (1)

where g is the determinant of the metric gµν , Lm is the La-

grangian density of the matter fluid, R is the Ricci scalar and

� = ∇µ∇µ is the d’Alembertian operator. To facilitate the

derivation of the field equations, and to solve them afterwards,

it is convenient to introduce two auxiliary scalar fields defined

as

U = −�−1R, (2)

S = −�−1U = �−2R. (3)

The solutions to Eqs. (2) and (3) can be obtained by evaluating

the integrals

U ≡ −�−1R (4)

= Uhom(x)−
∫

d4y
√

−g(y)G(x, y)R(y),

S ≡ −�−1U (5)

= Shom(x)−
∫

d4y
√

−g(y)G(x, y)U(y),

where Uhom and Shom are any solutions of the homogeneous

equations �U = 0 and �S = 0, respectively, and G(x, y)
is any Green function of �. The choice of the homogeneous

solutions and of the Green function specify the meaning of the

operator �−1. To ensure causality, one should use the retarded

version of the Green function, i.e., the solutions of U (or S)

should only be affected by the values of R (or U ) that lie in its

past light-cone. The homogeneous solutions can be set to any

value, which is typically zero, without any loss of generality.

In principle, the model predictions can be obtained by solving

Eqs. (4) and (5). However, it is convenient to use the fields U
and S to cast the nonlocal action of Eq. (1) in the form of a

local scalar-tensor theory [10, 33, 34] as

A=
1

2κ

∫

dx4√−g

[

R− m2

6
RS − ξ1 (�U +R)

−ξ2 (�S + U)− Lm] , (6)
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where ξ1 and ξ2 are Lagrange multipliers. The field equations

can then be written as

Gµν − m2

6
Kµν = κTµν , (7)

�U = −R, (8)

�S = −U, (9)

with

Kµν ≡ 2SGµν − 2∇µ∇νS − 2∇(µS∇ν)U

+

(

2�S +∇αS∇αU − U2

2

)

gµν , (10)

and where Tµν = (2/
√−g) δ (Lm

√−g) /δgµν is the energy-

momentum tensor of the matter fluid. The use of the scalar

fields U and S therefore allows one to obtain the solutions by

solving a set of coupled differential equations, instead of the

more intricate integral equations associated with the inversion

of a differential operator. These two formulations are, how-

ever, not equivalent as explained with detail in many recent

papers (see e.g. Refs.[9, 18, 19, 23, 34–36]): Eqs. (7), (8) and

(9) admit solutions that are not solutions of the original nonlo-

cal problem. For instance, if U∗ is a solution of Eq. (8), then

U∗+Uhom is also a solution for any Uhom, since �Uhom = 0
(the same applies for the field S and Eq. (9)). If one wishes

the differential equations (7), (8) and (9) to describe the non-

local model, then one must solve them with the one and only

choice of initial conditions that is compatible with the choice

of homogeneous solutions in Eqs. (4) and (5). All other ini-

tial conditions lead to spurious solutions and should not be

considered.

B. Background equations

Throughout, we always work with the perturbed

Friedmann-Roberston-Walker (FRW) line element in the

Newtonian gauge,

ds2 = (1 + 2Ψ) dt2 − a(t)2 (1− 2Φ) γijdx
idxj , (11)

where a = 1/(1 + z) is the cosmic scale factor (z is the red-

shift) and the gravitational potentials Φ, Ψ are assumed to be

functions of time and space. γij is the spatial sector of the

metric, which is taken here to be flat.

At the level of the cosmological background (Φ = Ψ = 0),

the two Friedmann equations can be written as

3H2 = κρ̄m + κρ̄de (12)

−2Ḣ − 3H2 = κp̄m + κp̄de, (13)

where we have encapsulated the effects of the nonlocal term

into an effective background "dark energy" density, ρ̄de, and

pressure p̄de, which are given, respectively, by

κρ̄de =
m2

6

[

6S̄H2 + 6H ˙̄S − ˙̄U ˙̄S − Ū2

2

]

, (14)

κp̄de = −m2

6

[

2S̄
(

2Ḣ + 3H2
)

+ ¨̄S (15)

+4H ˙̄S + ˙̄U ˙̄S − Ū2

2

]

.

Additionally, Eqs. (8) and (9) yield

¨̄U + 3H ˙̄U = 6
(

Ḣ + 2H2
)

, (16)

¨̄S + 3H ˙̄S = −Ū . (17)

(18)

In the above equations, a dot denotes a partial derivative w.r.t.

physical time, t, an overbar indicates that we are considering

only the background average and H = ȧ/a is the Hubble

expansion rate.

The background evolution in the R�−2R model has to be

obtained numerically. The differential equations are evolved

starting from deep into the radiation dominated era (z = 106)

with initial conditions for the auxiliary fields Ū = ˙̄U = S̄ =
˙̄S = 0. Note that, in the radiation era, the Ricci scalar van-

ishes (R̄ = 6Ḣ + 12H2 = 0). Hence, from Eqs. (4) and (5)

one sees that these initial conditions are indeed compatible

with the choice Uhom = Shom = 0. The value of the pa-

rameter m is determined by a trial-and-error scheme to yield

the value of ρ̄de0 that makes the Universe spatially flat, i.e.,

ρ̄r0 + ρ̄m0 + ρ̄de0 = ρ̄c0 ≡ 3H2
0/κ, where the subscripts r,

m refer to radiation and matter, respectively, the subscript 0

denotes present-day values, and H0 = 100hkm/s/Mpc is the

present-day Hubble rate.

C. Spherically symmetric nonlinear equations

By assuming that the potentials Φ and Ψ are spherically

symmetric, one can write the (0, 0) and (r, r) components of

Eq. (7), and Eqs. (8) and (9), respectively, as

2

r2
(

r2Φ,r
)

,r −
m2

6

[

6SH2 +
4S

r2
(

r2Φ,r
)

,r −
2

r2
(

r2S,r
)

,r +2S,r Φ,r −S,r U,r −
U2

2

]

= κρ̄mδa2, (19)
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2

r
(Φ,r −Ψ,r )−

m2

6

[

4SḢa2 + 6SH2a2 +
4S

r
(Φ,r −Ψ,r ) + 4S,r Φ,r −2S,r Ψ,r −4

S,r
r

+ 2S,r U,r −
U2

2

]

= 0, (20)

1

r2
(

r2U,r
)

,r +U,r (Ψ,r −Φ,r ) = 2
1

r2
(

r2Ψ,r
)

,r −4
1

r2
(

r2Φ,r
)

,r , (21)

1

r2
(

r2S,r
)

,r +S,r (Ψ,r −Φ,r ) = U, (22)

where ,r denotes a partial derivative w.r.t. the comoving radial

coordinate r. When writing Eqs. (19)-(22), we have already

employed the following simplifying assumptions:

1. We have assumed the so-called quasi-static limit, un-

der which one neglects the time derivatives of perturbed

quantities, e.g., Ṡ = ˙̄S + ˙δS ≈ ˙̄S, where δS is the per-

turbed part of the auxiliary field;

2. We have also employed the so-called weak-field limit,

which accounts for neglecting terms that involve Φ and

Ψ, and their first spatial derivatives, over those that

involve their second spatial derivatives. For example,

(1− 2Φ)Φ,rr ≈ Φ,rr and Φ,r Φ,r ≪ Φ,rr.

The above equations still contain terms with Ψ,r and Φ,r, be-

cause these terms contain the fields U and S, and up to now,

we have not discussed the validity of applying these approxi-

mations to the auxiliary fields. However:

1. Equation (21) tells us that the U field is of the same

order as the scalar potentials, U ∼ Φ,Ψ. Consequently,

the above approximations also hold for U ;

2. Equation (22) tells us that S,rr ∼ Φ,Ψ, which means

we can also neglect all terms containing S, S,r and S,rr.

Under these considerations, the above equations simplify

drastically. In particular, the only equation that remains rel-

evant for the study of the spherical collapse of matter over-

densities is Eq. (19), which can be written as:

1

r2
(

r2Φ,r
)

,r = 4πGeff ρ̄mδa2, (23)

where

Geff = G

[

1− m2S̄

3

]−1

. (24)

Equation (23) is the same as in standard gravity, but with New-

ton’s constant replaced by the time-dependent gravitational

strength, Geff . This time dependence follows directly from

the term 2SGµν in the field equations, Eq. (7), which in turn

follows from the variation of the term ∝ SR in the action

Eq. (6). The fact that Geff depends only on time tells us that

gravity is modified with equal strength everywhere, regard-

less of whether or not one is close to massive bodies or in

high-density regions. This may bring into question the ability

of this model to pass the stringent Solar System tests of grav-

ity [1, 37, 38]. We come back to this discussion in Sec. IV C.

We note also that from Eq. (20), it follows that Φ = Ψ in the

quasi-static and weak-field limits.

FIG. 1. CMB temperature power spectrum of the ΛCDM (black)

and R�−2R (blue) models for the cosmological parameters of Table

I. The data points with errorbars show the power spectrum measured

by the Planck satellite [39, 40].

D. Model parameters

The results presented in this paper are for the cosmological

parameter values listed in Table I. These are the best-fitting

ΛCDM parameters to a dataset that comprises the CMB data

from the Planck satellite (both temperature and lensing) [39–

41], and the BAO data from the 6df [42], SDDS DR7 [43] and

BOSS DR9 [44] galaxy redshift surveys. The parameters were

found by following the steps outlined in Ref. [45], although in

the latter, neutrino masses are also varied in the constraints.

In this paper, however, we treat neutrinos as massless for sim-

plicity.

The CMB temperature power spectra of the ΛCDM and

R�−2R models for the parameters listed in Table I are shown

in Fig. 1. The R�−2R model predictions were obtained with

a suitably modified version of the CAMB code [46]. The

derivation of the perturbed equations that enter the calcula-

tions in CAMB follows the steps of Ref. [47], to which we

refer the interested reader for details. The results in Fig. 1

shows that the R�−2R model is able to fit the CMB data with

a goodness-of-fit that is similar to that of ΛCDM. In fact,

the R�−2R model is in slightly better agreement with the

data at low-l, which is mostly determined by the Integrated

Sachs-Wolfe (ISW) effect. However, the larger errorbars on

these scales due to cosmic variance do not allow stringent con-

straints to be derived.
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TABLE I. Cosmological parameter values adopted in this paper. Ωr0,

Ωb0, Ωc0, Ωde0, h, ns, and τ are, respectively, the present day frac-

tional energy density of radiation (r), baryons (b), cold dark mat-

ter (c) and dark energy (de), the dimensionless present day Hubble

expansion rate, the primordial scalar spectral index and the optical

depth to reionization. The scalar amplitude at recombination As

refers to a pivot scale k = 0.05Mpc−1. These are the ΛCDM pa-

rameters that best-fit the CMB temperature and lensing data from

the Planck satellite [39–41], and the BAO data from the 6df [42],

SDDS DR7 [43] and BOSS DR9 [44] galaxy redshift surveys. The

parameters were determined by following the strategy outlined in

Ref. [45], although in the latter neutrino masses are also varied in

the constraints. For the purpose of this paper we can assume neu-

trinos to be effectively massless. The R�−2R model parameter m
is derived by the condition to make the Universe spatially flat, i.e. ,

1 = Ωr0 +Ωb0 +Ωc0 +Ωde0(m).

Parameter Planck (temperature+lensing) + BAO

Ωr0h
2 4.28× 10−5

Ωb0h
2 0.02219

Ωc0h
2 0.1177

h 0.6875
ns 0.968
τ 0.0965
log10

[

1010As

]

3.097

Ωde0 0.704
m 0.288

In Sec. IV we shall compare the results of the R�−2R
model with those of standard ΛCDM. In this paper, we are

mostly interested in the phenomenology driven by the mod-

ifications to gravity in the R�−2R model. This is why we

shall use the same cosmological parameters for both models.

A formal exploration of the constraints on the parameter space

in the R�−2R model is beyond the scope of the present paper

(see Ref. [48]).

III. HALO MODEL OF THE NONLINEAR MATTER

POWER SPECTRUM

In this section, we describe the halo model of the nonlinear

matter power spectrum, as well as all of its ingredients. In

particular, we define the halo mass function, linear halo bias

and halo density profiles. We also present the equations that

govern the linear growth and spherical collapse of structures.

A. Halo model

In the halo model approach, one assumes that all matter in

the Universe lies within gravitationally bound structures (see

Ref. [31] for a review). As a result, the two-point correlation

function of the matter field can be decomposed into the con-

tributions from the correlations between elements that lie in

the same halo (the 1-halo term) and in different haloes (the

2-halo term). The power spectrum can also be decomposed in

a similar way, and one can write

Pk = P 1h
k + P 2h

k , (25)

where

P 1h
k =

∫

dM
M

ρ̄2m0

dn(M)

dlnM
|u(k,M)|2,

P 2h
k = I(k)2Pk,lin, (26)

are, respectively, the 1- and 2-halo terms, with

I(k) =

∫

dM
1

ρ̄m0

dn(M)

dlnM
blin(M)|u(k,M)|. (27)

In Eqs.(25)-(27), ρ̄m0 is the present-day background (to-

tal) matter density; Pk,lin is the matter power spectrum ob-

tained using linear theory; k is the comoving wavenumber;

dn(M)/dlnM is the mass function, which describes the co-

moving number density of haloes per differential logarithmic

interval of mass; u(k,M) is the Fourier transform of the den-

sity profile of the haloes truncated at their size and normalized

such that u(k → 0,M) → 1; blin(M) is the linear halo bias

parameter. We model all these quantities in the remainder of

this section, in which we follow the notation of Refs. [32, 49].

B. Halo mass function

We define the halo mass function as

dn(M)

dlnM
dlnM =

ρ̄m0

M
f(S)dS, (28)

where S is the variance of the linear density field filtered on a

comoving length scale R,

S(R) ≡ σ2(R) =
1

2π2

∫

k2Pk,linW̃
2 (k,R) dk. (29)

Here, W̃ (k,R) = 3 (sin(kR)− kRcos(kR)) / (kR)
3

is the

Fourier transform of the filter, which we take as a top-hat in

real space. The total mass enclosed by the filter is given by

M = 4πρ̄m0R
3/3. (30)

In Eq. (28), f(S)dS describes the fraction of the total mass

that resides in haloes whose variances lie within [S, S + dS]
(or equivalently, whose masses lie within [M − dM,M ]) 1.

Here, we use the Sheth-Tormen expression [28–30],

1 Note that the quantities S, R and M can be related to one another via

Eqs. (29) and (30). In this paper, we use these three quantities interchange-

ably when referring to the scale of the haloes.
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f(S) = A

√

q

2π

δc
S3/2

[

1 +

(

qδ2c
S

)−p
]

exp

[

−q
δ2c
2S

]

,

(31)

where A is a normalization constant fixed by the condition
∫

f(S)dS = 1. δc ≡ δc(z) is the critical initial overdensity

for a spherical top-hat to collapse at redshift z, extrapolated to

z = 0 with the ΛCDM linear growth factor. This extrapola-

tion is done purely to ensure that the resulting values of δc can

be more readily compared to values in ΛCDM. Note that for

consistency, Pk,lin in Eq. (29) is also the initial power spec-

trum of the specific model, evolved to z = 0 with the ΛCDM

linear growth factor.

The Press-Schechter mass function [50] is obtained by tak-

ing (q, p) = (1, 0) in Eq. (31). This choice is motivated by

the spherical collapse model. However, Refs. [28–30] showed

that the choice of parameters (q, p) = (0.75, 0.3) (motivated

by the ellipsoidal, instead of spherical collapse) leads to a bet-

ter fit to the mass function measured from N-body simulations

of ΛCDM models (see also Ref. [51]). For alternative models,

such as those with modified gravity, it is not necessarily true

that the standard ST parameters ((q, p) = (0.75, 0.3)) also

provide a good description of the simulation results. For ex-

ample, in Ref. [32], we demonstrated that the ST mass func-

tion can only provide a good fit to the simulation results of

Galileon gravity models [47, 52–54] after a recalibration of

the (q, p) parameters. In Sec. IV D, we shall investigate the

need for a similar recalibration in the R�−2R model.

C. Linear halo bias

The linear halo bias parameter b(M) [55] relates the clus-

tering amplitude of haloes of mass M to that of the total matter

field on large length scales (k ≪ 1h/Mpc),

δhalo(M) = b(M)δmatter, (32)

where δhalo and δmatter are the density contrast of the dis-

tribution of haloes of mass M and of the total matter field,

respectively. On smaller length scales, where the matter over-

densities become larger δmatter & 1, Eq. (32) requires higher

order corrections (see e.g. [56]).

Following the same derivation steps as in Ref. [49], it is

straightforward to show that the ST linear halo bias parameter

can be written as

b(M) = 1 + g(z)

(

qδ2c/S − 1

δc
+

2p/δc
1 + (qδ2c/S)

p

)

, (33)

with g(z) = DΛCDM(z = 0)/DModel(z), where D(z)
is the linear growth factor of a specific model defined as

δmatter(z) = D(z)δmatter(zi)/D(zi).

D. Halo density profiles

We adopt the NFW formula [57] to describe the radial den-

sity profile of dark matter haloes

ρNFW(r) =
ρs

r/rs [1 + r/rs]
2 , (34)

where ρs and rs are often called the characteristic density and

the scale radius of the halo. The mass of the NFW halo, M∆,

is obtained by integrating Eq. (34) up to some radius R∆ (the

meaning of the subscript ∆ will become clear later)

M∆ =

∫ R∆

0

dr4πr2ρNFW(r) (35)

= 4πρs
R3

∆

c3∆

[

ln (1 + c∆)−
c∆

1 + c∆

]

,

where c∆ = R∆/rs is the concentration parameter.

In our simulations, we define the halo mass as

M∆ =
4π

3
∆ρ̄c0R

3
∆, (36)

i.e., M∆ is the mass that lies inside a comoving radius R∆,

within which the mean density is ∆ times the critical density

of the Universe at the present day, ρ̄c0. In this paper, we take

∆ = 200. By combining the two mass definitions of Eqs. (35)

and (36), one gets ρs as a function of c∆:

ρs =
1

3
∆ρ̄c0c

3
∆

[

ln (1 + c∆)−
c∆

1 + c∆

]−1

. (37)

The NFW profile then becomes fully specified by the values

of rs, which are determined by direct fitting to the density

profiles of the haloes from the simulations. Equivalently, and

as is common practice in the literature, one can specify the

concentration-mass relation c∆(M∆), instead of rs(M∆). In

the context of ΛCDM cosmologies, the (mean) concentration-

mass relation is well fitted by a power law function over a

certain mass range [58–61]. The same is true, for instance,

for Galileon gravity models [32], although with very differ-

ent fitting parameters. A proper assessment of the perfor-

mance of the halo model prescription therefore requires us to

fit the concentration-mass relation of the R�−2R simulations

as well. This is done in Sec. IV F. Given the relation c∆(M∆),
then the NFW density profile becomes completely specified

by the halo mass M∆.

Finally, since it is the Fourier transform of the profiles,

u(k,M), and not the profiles themselves, that enter Eqs. (26)

and (27), we simply mention that it is possible to show that
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uNFW(k,M) =

∫ R∆

0

dr4πr2
sinkr

kr

ρNFW(r)

M∆

= 4πρsr
3
s

{

sin (krs)

M
[Si ([1 + c∆] krs)− Si (krs)]

+
cos (krs)

M
[Ci ([1 + c∆] krs)− Ci (krs)]

− sin (c∆krs)

M (1 + c∆) krs

}

, (38)

where Si(x) =
∫ x

0
dtsin(t)/t and Ci(x) = −

∫∞

x
dtcos(t)/t.

Note that u(k → 0,M) → 1, as required by its normalization.

E. Linear growth factor and spherical collapse dynamics

In order to use the ST formulae for the mass function and

linear halo bias one still needs to specify and solve the equa-

tions that determine the threshold density δc and the evolution

of the linear overdensities. For scales well within the horizon,

the linear (small) density contrast δlin is governed by

δ̈lin + 2Hδ̇lin − 4πGeff(a)ρ̄mδlin = 0, (39)

or equivalently, by changing the time variable to N = lna, by

D′′ +

(

E′

E
+ 2

)

D′ − 3

2

Geff(a)

G

Ωm0e
−3N

E2
= 0, (40)

where we have used that δlin(a) = D(a)δlin(ai)/D(ai) and a

prime denotes a derivative w.r.t. N . The initial conditions are

set up at zi = 300 using the known matter dominated solution

D(ai) = D′(ai) = ai. The R�−2R model changes the way

structure grows on large scales compared to ΛCDM via its

modifications to E(a) ≡ H(a)/H0 and Geff/G.

We have defined δc(z) as the linearly extrapolated value

(using the ΛCDM linear growth factor) of the initial overden-

sity of a spherical region for it to collapse at a given redshift,

z. To determine δc, we consider the evolution equation of

the physical radius ζ = a(t)r of the spherical halo at time t,
which satisfies the Euler equation

ζ̈

ζ
−
(

Ḣ +H2
)

= −Φ,ζ
ζ

= −Geff(a)

G

H2
0Ωm0δa

−3

2
,(41)

where the last equality follows from integrating Eq. (23) over
∫

r2dr. Changing the time variable to N and defining y(t) =
ζ(t)/ (aR), Eq. (41) becomes

y′′ +

(

E′

E
+ 2

)

y′

+
Geff(a)

G

Ωm0e
−3N

2E2

(

y−3 − 1
)

y = 0, (42)

TABLE II. Summary of the three models we simulate in this pa-

per. All models share the cosmological parameters of Table I.

The QCDM model has the same expansion history as the R�−2R
model, but with GR as the theory of gravity (cf. Sec. IV A).

Model H(a) Geff/G

"Full" R�−2R H(a)R�−2R Eq. (24)

QCDM H(a)R�−2R 1
ΛCDM H(a)ΛCDM 1

where we have used δ = y−3 − 1, which follows from

mass conservation 2. The initial conditions are set up as

y(ai) = 1−δlin,i/3 and y′(ai) = δlin,i/3 (here, δlin,i is the lin-

ear density contrast at the initial time). The value of δc is then

determined by finding the value of the initial density δlin,i that

leads to collapse (y = 0, δ → ∞) at redshift z, evolving this

afterwards until today using the ΛCDM linear growth factor.

As we have noted above, in the R�−2R model, the modi-

fications to gravity are time dependent only. In other words,

the value of Geff is the same on large and on small scales.

This is different, for instance, from the case of Galileon grav-

ity. In the latter, the nonlinearities of the Vainshtein screen-

ing mechanism suppress the effective gravitational strength

felt by a test particle that lies within a certain radius (known

as Vainshtein radius) from a matter source. In Eq. (42), this

would be simply taken into account by replacing Geff(a) with

Geff(a, δ = y−3 − 1) [49]. The picture becomes more com-

plicated in the case of modified gravity models which em-

ploy chameleon-type screening mechanisms [62, 63]. In these

models, Geff also depends on the size (or mass) of the halo

and on the gravitational potentials in the environment where

the halo forms. This requires a generalization of the spherical

collapse formalism for these models, which has been devel-

oped by Ref. [64].

IV. RESULTS

A. N-body simulations summary

Our simulations were performed with a modified version of

the publicly available RAMSES N-body code [65]. RAMSES

is an Adaptive Mesh Refinement (AMR) code, which solves

the Poisson equation on a grid that refines itself when the ef-

fective number of particles within a given grid cell exceeds a

user-specified threshold, Nth. Our modifications to the code

consist of (i) changing the routines that compute the back-

ground expansion rate to interpolate the R�−2R model ex-

pansion rate from a pre-computed table generated elsewhere;

(ii) re-scaling the total force felt by the particles in the simu-

2 Explicitly, one has ρ̄ma3R3 = (1 + δ) ρ̄mζ3 ⇒ δ = (aR/ζ)3 − 1 =
y−3 − 1.
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lation by Geff(a)/G, whose values are also interpolated from

a table generated beforehand.

In the following sections we show the N-body simulation

results obtained for three models. We simulate the "full"

R�−2R model of action Eq. (1), whose expansion history

and Geff/G are given by Eqs. (12) and (24), respectively.

We also simulate a standard ΛCDM model and a model with

the same expansion history as the R�−2R model, but with

Geff/G = 1. We call the latter model QCDM, and compar-

ing its results to ΛCDM allows us to pinpoint the impact of the

modified H(a) alone on the growth of structure. The specific

impact of the modified Geff can then be measured by com-

paring the results from the "full" R�−2R model simulations

with those from QCDM. Table II summarizes the models we

consider in this paper.

We simulate all models on a cubic box of size L =
200 Mpc/h with Np = 5123 dark matter particles. We take

Nth = 8 as the grid refinement criterion. The initial con-

ditions are set up at z = 49, using the ΛCDM linear mat-

ter power spectrum with the parameters of Table I. For each

model, we simulate five realizations of the initial conditions

(generated using different random seeds), which we use to

construct errorbars for the simulation results by determining

the variance across the realizations.

Finally, we simply note that the modifications to RAMSES

needed to simulate the R�−2R model are trivial compared to

those that are necessary to simulate models such as f(R) [66–

71], Symmetron [72, 73] or Galileons [74–79]. In these, be-

cause of the screening mechanisms (which introduce density

and scale dependencies of the total force), additional solvers

are needed for the (nonlinear) equations of the extra scalar

degrees of freedom. In the ECOSMOG code [66] (also based

on RAMSES), these equations are solved via Gauss-Seidel re-

laxations on the AMR grid, which makes the simulations sig-

nificantly more time consuming. We note also that recently,

Ref. [80] has proposed a new and faster scheme to simulate

screened modified gravity in the mildly non-linear regime.

This scheme uses the linear theory result, but combines it with

a screening factor computed analytically assuming spherical

symmetry, which helps speed up the calculations without sac-

rificing the accuracy on mildly nonlinear scales too much.

B. Linear growth and δc curves

Before discussing the results from the simulations, it is in-

structive to look at the model predictions for the linear growth

rate of structure and for the time dependence of the critical

density δc(z).
From top to bottom, Fig. 2 shows the time evolution of the

fractional difference of the expansion rate relative to ΛCDM,

H/HΛCDM − 1, the effective gravitational strength Geff/G
and the fractional difference of the squared linear density con-

trast relative to ΛCDM, (δ/δΛCDM)
2− 1. The expansion rate

in the R�−2R model is lower than in ΛCDM for a & 0.1.

This reduces the amount of Hubble friction and therefore

boosts the linear growth rate. The gravitational strength in the

R�−2R model starts growing after a & 0.2, being approx-

FIG. 2. The upper panel shows the evolution of the expansion rate,

plotted as the fractional difference w.r.t. the ΛCDM (black) result,

H(a)/HΛCDM − 1 as a function of the expansion factor, a. H(a) is

the same for the R�−2R (blue) and QCDM (red) models. The mid-

dle panel shows the evolution of the effective gravitational strength,

Geff/G. This is unity in the ΛCDM and QCDM models at all times.

The lower panel shows the evolution of the squared linear density

contrast, δ2, plotted as the fractional difference w.r.t. the ΛCDM
prediction.

TABLE III. Values of the critical initial overdensity for the collapse

of a spherical top-hat to occur at a = 0.6, a = 0.8, a = 1.0, ex-

trapolated to a = 1.0 with the ΛCDM linear growth factor. This

extrapolation is done to allow the resulting values of δc to be more

easily compared to values in ΛCDM.

Model a = 0.6 a = 0.8 a = 1.0
δc δc δc

R�−2R 2.316 1.859 1.622
QCDM 2.320 1.866 1.632
ΛCDM 2.362 1.913 1.678

imately 6% larger than in GR at the present day. This also

boosts the linear growth of structure, but has a smaller im-

pact compared to the effect of the lower expansion rate. This

is seen by noting that the differences between QCDM and

ΛCDM in the bottom panel are larger than the differences be-

tween QCDM and the R�−2R model.

Figure 3 shows the time dependence of δc. In the top panel,

all models exhibit the standard result that δc decreases with

time, i.e., the initial overdensity of the spherical top-hat should

be smaller, if the collapse is to occur at later times. Compared

to ΛCDM, at late times (a & 0.3), the QCDM and R�−2R
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FIG. 3. The upper panel shows the time evolution of the critical

initial density for a spherical top-hat halo to collapse at scale factor

a (linearly extrapolated to the present-day using the ΛCDM linear

growth factor), for the ΛCDM (black), QCDM (red) and R�−2R
(blue) models. The lower panel shows the fractional difference w.r.t.

ΛCDM.

models predict lower values for δc. This is as expected since

structure formation is boosted at late times in these models,

and as a result, this needs to be compensated by smaller val-

ues of the initial overdensities for the collapse to occur at the

same epoch as in ΛCDM. Just like in the case of the lin-

ear growth rate, the differences w.r.t. the ΛCDM results are

mainly affected by the lower expansion rate, and not by the

larger values of Geff/G. At earlier times (a . 0.3), all mod-

els have essentially the same expansion rate and gravitational

strength, and as a result, the values of δc are roughly the same.

Table III shows the values of δc at a = 0.60, a = 0.80 and

a = 1.00, for the three models.

C. Interpretation of the constraints from Solar System tests of

gravity

The absence of a screening mechanism in the R�−2R
model may raise concerns about the ability of the model to

satisfy Solar System constraints [1]. For instance, for the pa-

rameters of Table I, the R�−2R model predicts that the rate

of change of the gravitational strength today, Ġeff/G, is

Ġeff

G
= H0

d

dN

(

Geff

G

)

≈ 92× 10−13 yrs−1, (43)

which is at odds with the observational contraint Ġeff/G =
(4± 9) × 10−13 yr−1, obtained from Lunar Laser Ranging

experiments [81]. Hence, it seems that this type of local con-

straints can play a crucial role in determining the observa-

tional viability of the R�−2R model, potentially ruling it out

(see e.g. Refs. [37, 38] for a similar conclusion, but in the

context of other models).

It is interesting to contrast this result with that of the nonlo-

cal model of Ref. [7], which we call here the f(X) model (for

brevity), where f(X) is a free function that appears in the ac-

tion and X = �−1R. The equations of motion of this model

can be schematically written as

Gµν [1 + χ(X)] + ∆Gµν = Tµν , (44)

where ∆Gµν encapsulates all the extra terms that are not pro-

portional to Gµν and the factor χ(X) is given by

χ = f(X) +�−1

[

R
df

dX
(X)

]

. (45)

For the purpose of our discussion, it is sufficient to look only

at the effect of χ in Eq. (44). This rescales the gravitational

strength as

Geff

G
= {1 + χ}−1

, (46)

which is similar to the effect of S in the R�−2R model. There

is, however, one very important difference associated with the

fact that in the case of the f(X) model, one has the freedom

to choose the functional form of the terms that rescale Geff .

To be explicit, we write the argument of f as

X = �−1R = �−1R̄+�−1δR, (47)

where R̄ and δR are, respectively, the background and spa-

tially perturbed part of R. As explained in Ref. [6], the rela-

tive size of R̄ and δR is different in different regimes. At the

background level, �−1δR = 0 and so the operator �−1 acts

only on R̄. On the other hand, within gravitationally bound

objects we have �−1δR > �−1R̄. Now recall that the co-

variant � operator acts with different signs on purely time-

and space-dependent quantities 3. As a result, the sign of X
on the background differs from that within bound systems,

such as galaxies or our Solar System. This can be exploited

to tune the function f in such a way that it vanishes when

the sign of X is that which corresponds to bound systems. In

this way, χ = 0 and one recovers GR completely 4. When

X takes the sign that corresponds to the background, then the

function f is tuned to reproduce a desired expansion history,

typically ΛCDM. In the case of the R�−2R model, S is fixed

3 For instance, in flat four-dimensional Minkowski space we have � =

+ ∂2

∂t2
−

∂2

∂x2 −
∂2

∂y2 −
∂2

∂z2
.

4 In Eq. (44), ∆Gµν also vanishes if χ = 0.
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TABLE IV. Best-fitting Sheth-Tormen (q, p) parameters to the simu-

lation results at a = 0.6, a = 0.8 and a = 1.0. The uncertainty in

the values of q and p is ∆q = 3.5 × 10−3 and ∆p = 1.5 × 10−3,

respectively. These parameters are those that minimize the quan-

tity
∑

i |n
sims(> Mi)/n

ST(> Mi, q, p)− 1|, in which nsims is the

cumulative mass function measured from the simulations and nST

is the analytical result given by the Sheth-Tormen mass function of

Eqs. (28) and (31). Here, the index i runs over the number of bins

used in the simulation results.

Model a = 0.6 a = 0.8 a = 1.0
(q, p) (q, p) (q, p)

Standard (0.750, 0.300) (0.750, 0.300) (0.750, 0.300)

ΛCDM (0.713, 0.323) (0.756, 0.326) (0.756, 0.341)
QCDM (0.727, 0.321) (0.756, 0.331) (0.763, 0.344)
R�−2R (0.720, 0.321) (0.741, 0.326) (0.756, 0.336)

to be S = �−2
(

R̄+ δR
)

and one does not have the freedom

to set it to zero inside bound objects. Consequently, the time-

dependent part of S is always present in Eq. (24), which could

potentially lead to a time-dependent gravitational strength that

is at odds with the current constraints.

For completeness, one should be aware of a caveat. In the

above reasoning, we have always assumed that the line ele-

ment of Eq. (11) is a good description of the geometry of the

Solar System. The question here is whether or not the fac-

tor a(t)2 should be included in the spatial sector of the metric

when describing the Solar System. This is crucial as the pres-

ence of a(t) in Eq. (11) determines if S varies with time or

not. If a(t) is considered, then S varies with time and Geff

is time-varying as well. In this way, the model fails the So-

lar System tests. On the other hand, if one does not consider

a(t) in the metric, then Geff is forcibly constant, and there are

no apparent observational tensions. Such a static analysis was

indeed performed by Refs. [20, 26], where it was shown that

the model can cope well with the local constraints.

This boils down to determining the impact of the global ex-

pansion of the Universe on local scales. It is not clear to us

that if a field is varying on a time-evolving background, then

it should not do so in a small perturbation around that back-

ground. However, we acknowledge this is an open question

to address, and such study is beyond the scope of the present

paper. In what follows, we limit ourselves to assuming that

Eq. (24) holds on all scales, but focus only on the cosmologi-

cal (rather than local) interpretation of the results.

D. Halo mass function

Our results for the cumulative mass function of the ΛCDM
(black), QCDM (red) and R�−2R (blue) models are shown

in Fig. 4 at a = 0.60, a = 0.80 and a = 1.00. The symbols

show the simulation results obtained with the halo catalogues

we built using the Rockstar halo finder [82]. The results

in the figure correspond to catalogues with subhaloes filtered

out. The lines show the ST analytical prediction (Eqs. (28) and

(31)) computed for the fitted (solid lines) and standard (dashed

lines) ST (q, p) parameters of Table IV. The (q, p) parameters

were fitted for all of the epochs shown, using the correspond-

ing values of δc in Table III. From the figure, one notes that al-

though performing the fitting helps to improve the accuracy of

the analytical formulae, overall the use of the standard values

for (q, p) provides a fair estimate of the halo abundances in the

R�−2R model, and of its relative difference w.r.t. ΛCDM.

This is not the case, for instance, in Galileon gravity models,

for which Ref. [32] has found that it is necessary to recalibrate

substantially the values of (q, p) if the ST mass function is to

provide a reasonable estimate of the effects of the modifica-

tions to gravity. In the case of the R�−2R model, the fact that

the standard values of (q, p) = (0.75, 0.30) work reasonably

well means that the modifications in the R�−2R model, rel-

ative to ΛCDM, are mild enough for its effects on the mass

function to be well captured by the differences in δc(z).
At a = 1.00, the mass function of the QCDM model shows

an enhancement at the high-mass end (M & 5× 1012M⊙/h),

and a suppression at the low-mass end (M . 5×1012M⊙/h),

relative to ΛCDM. This is what one expects in hierarchical

models of structure formation if the growth rate of structure

is boosted, as smaller mass objects are assembled more effi-

ciently to form larger structures, leaving fewer of them. The

effects of the enhanced Geff/G maintain this qualitative pic-

ture, but change it quantitatively. More explicitly, the mass

scale below which the mass function drops below that of

ΛCDM is smaller than the mass range probed by our simu-

lations; and the enhancement of the number density of mas-

sive haloes is more pronounced. In particular, compared to

ΛCDM, haloes with masses M ∼ 1014M⊙/h are ∼ 5%
and ∼ 15% more abundant in the QCDM and R�−2R mod-

els, respectively. Figure 4 also shows that the relative differ-

ences w.r.t. ΛCDM do not change appreciably with time after

a ∼ 0.80. At earlier times (a ∼ 0.60), the halo abundances in

the QCDM and R�−2R models approach one another, and

their relative difference to ΛCDM decreases slightly, com-

pared to the result at later times.

E. Halo bias

The linear halo bias predictions for the ΛCDM (black),

QCDM (red) and R�−2R (blue) models are shown in Fig. 5

at a = 0.6, a = 0.8 and a = 1.0. The symbols show the sim-

ulation results, which were obtained by measuring the ratio

b(k,M) =
Phm(k,M)

Pk
, (48)

where Pk is the total matter power spectrum and Phm(k,M)
is the halo-matter cross spectrum for haloes of mass M . These

were measured with the aid of a Delaunay Tessellation field

estimator code [83, 84]. We measure the cross spectrum, in-

stead of the halo-halo power spectrum, to reduce the amount

of shot noise. The linear halo bias parameter is then given by

the large scale limit of b(k,M), i.e., b(M) = b(k ≪ 1,M).
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FIG. 4. The cumulative mass function of dark matter haloes (upper panels) for the ΛCDM (black), QCDM (red) and R�−2R (blue) models,

at three epochs a = 0.6, a = 0.8 a = 1.0, as labelled. The lower panels show the difference w.r.t. the ΛCDM model results. The symbols

show the simulation results, and the errorbars indicate twice the variance across the five realizations of the initial conditions. We have used

the phase-space friends-of-friends Rockstar code [82] to build the halo catalogues (without subhalos) used to compute the halo abundances.

We only show the results for haloes with mass M200 > 100 × Mp ∼ 5 × 1011M⊙/h, where Mp = ρm0L
3/Np is the particle mass in the

simulations. The lines correspond to the ST mass function of Eqs. (28) and (31) obtained using the fitted (solid lines) and the standard (dashed

lines) (q, p) parameters listed in Table IV.

We only consider the halo mass bins for which b(k,M) has

clearly saturated to its asymptotic value on large scales.

The simulation results show that, within the errorbars, the

linear halo bias parameter for the three models is indistin-

guishable at all epochs shown. This shows that the modifi-

cations to gravity in the R�−2R model are not strong enough

to modify substantially the way that dark matter haloes trace

the underlying density field. The ST formula, Eq. (33), repro-

duces the simulations results very well. Note also that there is

little difference between the curves computed using the fitted

(solid lines) and the standard (dashed lines) (q, p) parameters

of Table IV. We conclude the same as in the case of the mass

function that, in the context of the R�−2R model, there is

no clear need to recalibrate the (q, p) parameters in order to

reproduce the bias results from the simulations.

F. Halo concentration

Figure 6 shows the halo concentration-mass relation for the

ΛCDM (black), QCDM (red) and R�−2R (blue) models, at

a = 0.60, a = 0.80 and a = 1.00. The symbols correspond to

the mean values of c200 identified in the same halo catalogues

used in Fig. 4. For all models, and at all epochs and mass

TABLE V. Concentration-mass relation best-fitting (α, β)
parameters in the parametrization log10(c200) = α +
βlog10

(

M200/
[

1012M⊙/h
])

to the simulation results at a = 0.6,

a = 0.8 and a = 1.0. The uncertainty in the values of α and β is

∆α = ∆β = 0.001. These are the parameters that minimize the

quantity
∑

i(c
sims
200 (Mi) − cparam200 (Mi, α, β))

2/(2∆csims
200 (Mi))

2,

where csims
200 (Mi) is the mean halo concentration measured from the

simulations, ∆csims
200 (Mi) is the variance of the mean across the five

realizations and cparam200 (Mi, α, β) is the concentration given by the

parametrization. Here, the index i runs over the number of mass

bins.

Model a = 0.6 a = 0.8 a = 1.0
(α, β) (α, β) (α, β)

ΛCDM (0.729,−0.066) (0.813,−0.084) (0.863,−0.093)
QCDM (0.726,−0.068) (0.814,−0.087) (0.866,−0.100)
R�−2R (0.737,−0.067) (0.834,−0.086) (0.898,−0.095)

scales shown, one sees that the halo concentrations are well

fitted by the power law function (solid lines),

log10(c200) = α+ βlog10
(

M200/
[

1012M⊙/h
])

, (49)
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FIG. 5. Linear halo bias in the ΛCDM (black), QCDM (red) and R�−2R (blue) models, for three epochs a = 0.6, a = 0.8 and a = 1.0,

as labelled. The symbols show the asymptotic value of the halo bias on large scales measured from the simulations as b(M) = Phm(k →
0,M)/P (k), considering only haloes (and not subhaloes) with mass M200 > 100×Mp ∼ 5× 1011M⊙/h, where Mp = ρm0L

3/Np is the

particle mass. Only the mass bins for which the values of Phm(k,M)/P (k) have reached a constant value on large scales are shown. The

errorbars show twice the variance across the five realizations of the initial conditions. The solid and dashed lines show the prediction from the

ST formula, Eq. (33), computed, respectively, with the best-fitting and standard (q, p) parameters listed in Table IV.

FIG. 6. Halo concentration-mass relation in the ΛCDM (black), QCDM (red) and R�−2R (blue) models, for three epochs a = 0.6, a = 0.8
and a = 1.0, as labelled. The symbols show the mean halo concentration in each mass bin, considering only haloes (and not subhaloes) with

mass M200 > 1000 ×Mp ∼ 5 × 1012M⊙/h, where Mp = ρm0L
3/Np is the particle mass. In the a = 0.6 panel, we omit the results from

the two highest mass bins due to their few number of objects. The errorbars show twice the variance of the mass-binned mean concentration

across the five realizations of the initial conditions. The solid lines show the best-fitting power law relations of Table V.

.

with the best-fitting (α, β) parameters given in Table V. In

the R�−2R and QCDM models, one recovers the standard

ΛCDM result that halo concentration grows with time at fixed

mass, and that, at a given epoch, the concentration decreases

with halo mass.

At early times (a . 0.6), all models predict essentially the

same concentration-mass relation. At later times, however,

the halo concentrations in the R�−2R model become increas-

ingly larger compared to ΛCDM. In particular, at a = 1.00,

the halos are ≈ 8% more concentrated in the R�−2R model,

compared to ΛCDM, for the entire mass range probed by

the simulations. This can be attributed to a combination of

two effects. Firstly, the enhanced structure formation in the

R�−2R model may cause the haloes to form at earlier times.

This leads to higher concentrations since the haloes form at

an epoch when the matter density in the Universe was higher.

Secondly, the increasingly larger value of Geff is also ex-

pected to play a role via its effect in the deepening of the

gravitational potentials. In other words, even after the halo

has formed, the fact that gravity keeps getting stronger with

time may also help to enhance the concentration of the haloes

(see also Refs. [85–88]). In the case of the QCDM model,

one finds that the halo concentrations are hardly distinguish-

able (within errorbars) from those in the ΛCDM model, at

all times and for all mass scales. This suggests that the dif-

ferences between the expansion history of the QCDM and
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ΛCDM models (cf. Fig. 2) are not large enough to have an

impact on the formation time of the haloes. Once the haloes

have formed in these two models, one can think as if the clus-

tering inside these haloes decouples from the expansion. As a

result, and since the gravitational strength is the same (cf. Ta-

ble II), one sees no significant differences in the concentration

of the haloes from the QCDM and ΛCDM simulations.

G. Nonlinear matter power spectrum

Figure 7 shows our results for the nonlinear matter power

spectrum. The power spectrum from the simulations was mea-

sured using the POWMES code [89]. The solid (dashed) lines

show the halo model prediction obtained using Eq. (25) with

the fitted (standard) (q, p) parameters of Table IV. The dotted

lines show the predictions obtained using linear theory. Next,

we discuss these results separately for large, intermediate and

small length scales.

Large scales. On scales k . 0.1h/Mpc, the halo model

is dominated by the 2-halo term, which is practically indis-

tinguishable from the linear matter power spectrum. This is

because, in the limit in which k → 0, one has that

I(k) ∼
∫

dM
1

ρ̄m0

dn(M)

dlnM
blin(M) = 1, (50)

where we have used the fact that |u(k → 0,M)| → 1 and

the last equality holds by the definition of the ST mass func-

tion and halo bias [31]. In fact, in the standard halo model

approach, replacing P 2h
k by Pk,lin in Eq. (25) leads to prac-

tically no difference. As a result, the agreement between the

halo model and the simulation results on large (linear) scales

is always guaranteed.

Intermediate scales. On scales 0.1h/Mpc . k . 1h/Mpc,

the halo model underpredicts slightly the power spectrum

measured from the simulations, for all models and at all

epochs shown. This is due to a fundamental limitation of the

halo model on these scales, which follows from some simpli-

fying assumptions about the modelling of halo bias on these

intermediate scales (see e.g. Sec. IV.F of Ref. [32] for a sim-

ple explanation). In fact, the so-called halofit model arises as

an alternative to the halo model that is more accurate on these

intermediate scales [90–92]. Nevertheless, in terms of the rel-

ative difference to ΛCDM, the halo model limitations cancel

to some extent, which leads to a better agreement with the

simulation results. Focusing on a = 1.00, the halo model pre-

dictions for the QCDM model reproduce very well the results

from the simulations. The predictions for the R�−2R model,

although not as accurate as in QCDM, still provide a fair es-

timate of the enhancement of the clustering power relative to

ΛCDM. For example, at k ≈ 1h/Mpc and a = 1.00, the

simulations show an increase of ≈ 11% in the power relative

to ΛCDM, whereas the halo model predicts an enhancement

of ≈ 15%, which is similar. Finally, it is worth mentioning

that the performance of the halo model when ones uses the

standard (q, p) = (0.75, 0.30) values (dashed lines) is com-

parable to the case where one uses the values that best fit the

mass function results (solid lines).

Small scales. On scales of k & 1h/Mpc, the halo model

predictions are dominated by the 1-halo term, whose agree-

ment with the simulations becomes better than on intermedi-

ate scales, especially at a = 1.00. There are still some visible

discrepancies at a = 0.60, which are similar to those found

in Ref. [32] for Galileon gravity models. These discrepancies

are however likely to be related with some of the assumptions

made in the halo model approach, namely that all matter in the

Universe lies within bound structures, which is not true in the

simulations. However, similarly to what happens on interme-

diate scales, the halo model performs much better when one

looks at the relative difference w.r.t. ΛCDM. The predictions

obtained by using the standard (q, p) parameter values (dashed

lines), although not as accurate as the results obtained by us-

ing the fitted (q, p) values (solid lines), are still able to provide

a good estimate of the effects of the modifications to gravity

in the R�−2R model on the small-scale clustering power.

In the QCDM model, the relative difference w.r.t. ΛCDM
becomes smaller with increasing k. In particular, for k &
10h/Mpc at a = 1.0, the clustering amplitude of these two

models becomes practically indistinguishable. This result can

be understood with the aid of the halo model expression for

the 1-halo term, P 1h
k , (cf. Eq. (26)), which depends on the

halo mass function and concentration-mass relation. Firstly,

one notes that for smaller length scales, the integral in P 1h
k

becomes increasingly dominated by the lower mass end of

the mass function. Consequently, the fact that the mass func-

tion of the QCDM model approaches that of ΛCDM at low

masses (becoming even smaller for M . 5 × 1012M⊙/h at

a = 1.00), helps to explain why the values of ∆Pk/Pk,ΛCDM

decrease for k & 1h/Mpc. Secondly, according to Fig. 6,

the halo concentrations are practically the same in the ΛCDM
and QCDM models. In other words, this means that in-

side small haloes (those relevant for small scales), matter is

almost equally clustered in these two models, which helps

to explain why ∆Pk/Pk,ΛCDM is compatible with zero for

k & 10h/Mpc (Ref. [93] finds similar results for k-mouflage

gravity models).

The same reasoning also holds for the R�−2R model,

which is why one can also note a peak in ∆Pk/Pk,ΛCDM

at k ∼ 1h/Mpc. However, in the case of the R�−2R
model, the mass function is larger at the low-mass end and the

halo concentrations are also higher, compared to QCDM and

ΛCDM. These two facts explain why ∆Pk/Pk,ΛCDM does

not decrease in the R�−2R model, being roughly constant at

a = 1.00 for k & 1h/Mpc. In particular, we have explic-

itly checked that if one computes the halo model predictions

of the R�−2R model, but using the concentration-mass re-

lation of ΛCDM, then one fails to reproduce the values of

∆Pk/Pk,ΛCDM on small scales. This shows that a good per-

formance of the halo model on small scales is subject to a

proper modelling of halo concentration, which can only be

accurately determined in N-body simulations.
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FIG. 7. The nonlinear matter power spectrum (upper panels) in the ΛCDM (black), QCDM (red) and R�−2R (blue) models, at three epochs

a = 0.6, a = 0.8 and a = 1.0, as labelled. The lower panels show the different w.r.t. ΛCDM. The symbols show the simulation results,

where the errorbars show twice the variance across the five realizations of the initial conditions. The solid lines show the halo model prediction

obtained using Eq. (25), with the best-fitting (q, p) parameters listed in Table IV. The dashed lines show the power spectrum when using

the standard ST (q, p) = (0.75, 0.30) parameter values. The dotted lines show the result from linear perturbation theory. These lines are

indistinguishable in the upper panels.

H. Nonlinear velocity divergence power spectrum

Figure 8 shows the nonlinear velocity divergence power

spectrum, Pθθ,5 for the three models of Table II and for

a = 0.60, a = 0.80 and a = 1.00. The computation was

done by first building a Delaunay tessellation using the par-

ticle distribution of the simulations [83, 84], and then inter-

polating the density and velocity information to a fixed grid

to measure the power spectra. The upper panels show that on

scales k . 0.1h/Mpc, the results from the simulations of all

models approach the linear theory prediction, which is given

by

P linear
θθ = a2

(

H

H0

)2

f2P linear
k , (51)

where P linear
k is the linear matter power spectrum and f =

dlnδlin/dlna. On smaller scales, the formation of nonlinear

structures tends to slow down the coherent (curl-free) bulk

5 Here, θ is the Fourier mode of the divergence of the peculiar physical ve-

locity field v, defined as θ(~x) = ∇v(~x)/H0.

flows that exist on larger scales. This leads to an overall sup-

pression of the divergence of the velocity field compared to

the linear theory result for scales k & 0.1h/Mpc, as shown in

the upper panels.

In the lower panels, the simulation results also agree with

the linear theory prediction for k . 0.1h/Mpc. On these

scales, the time evolution of the power spectrum of all models

is scale independent and the relative difference encapsulates

the modifications to the time evolution of P linear
k , H and f ,

in Eq. (51). On smaller scales, the values of ∆P θθ
k /P θθ

k,ΛCDM
decay w.r.t. the linear theory result until approximately k =
1h/Mpc. This suppression follows from the fact that the

formation of nonlinear structures is enhanced in the QCDM
and R�−2R models, relative to ΛCDM (cf. Figs. 4 and 7).

Hence, on these scales, the suppression in the velocity diver-

gence caused by nonlinear structures is stronger in the QCDM
and R�−2R model, compared to ΛCDM. Finally, on scales

k & 2 − 3h/Mpc, the relative difference to ΛCDM grows

back to values comparable to the linear theory prediction. On

these scales, one does not expect haloes to contribute con-

siderably to P θθ
k for two main reasons. First, as haloes viri-

alize, the motion of its particles tends to become more ran-

dom, which helps to reduce the divergence of the velocity

field there. Secondly, and perhaps more importantly, P θθ
k is

computed from a volume-weighted field, and as a result, since
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FIG. 8. The nonlinear peculiar velocity divergence power spectrum (upper panels) in the ΛCDM (black), QCDM (red) and R�−2R (blue)

models, for three epochs a = 0.6, a = 0.8 and a = 1.0, as labelled. The lower panels show the difference w.r.t. ΛCDM. The symbols show

the simulation results, where the errorbars show the variance across the five realizations of the initial conditions. The dashed lines only link

the symbols to help the visualization. The dotted lines in the bottom panels show the prediction of linear perturbation theory.

haloes occupy only a small fraction of the total volume, they

are not expected to contribute significantly to the total velocity

divergence power spectrum. On the other hand, considerable

contributions may arise from higher-volume regions such as

voids, walls or filaments, where coherent matter flows exist.

For instance, matter can flow along the direction of dark mat-

ter filaments, or inside a large wall or void that is expanding

(see e.g. [94–96]). These small scale flows are larger in the

QCDM and R�−2R models at a fixed time, as shown by the

growth of the values of ∆P θθ
k /P θθ

k,ΛCDM on small scales.

On scales k & 2 − 3h/Mpc, one may find it odd that the

QCDM model predicts roughly the same matter power spec-

trum as ΛCDM (cf. Fig. 7), but has a different velocity diver-

gence power spectrum. This has to do with the weight with

which different structures contribute to Pk and P θθ
k . For in-

stance, Pk is computed from a mass-weighted density field,

and hence, it is dominated by the highest density peaks, which

are due to dark matter haloes. In other words, it is very insen-

sitive to the behavior of the clustering of matter in voids, walls

or filaments due to their lower density. On the contrary, P θθ
k ,

which is computed from a volume-weighted field, is forcibly

less sensitive to dark matter haloes due to their low volume

fraction. The values of P θθ
k are then mostly determined by the

velocity field inside voids, walls and filaments. These struc-

tures are typically larger than haloes and therefore they are

more sensitive to the background expansion of the Universe.

Consequently, they are more likely to be affected by modifi-

cations to H(a), compared to haloes which detach from the

overall expansion sooner. This can then explain the differ-

ences in the sizes of the modifications to Pk and P θθ
k on small

scales in the QCDM model, relative to ΛCDM. To test this

we have computed P θθ
k by artificially setting θ(~x) = 0 in re-

gions where the density contrast exceeds δ = 50. This should

roughly exclude the contribution from haloes to the values of

P θθ
k . We have found no visible difference w.r.t. the results of

Fig. 8, which shows that the small scale behavior of the ve-

locity divergence is not affected by what happens inside dark

matter haloes. We have performed the same calculation, but

by setting θ(~x) = 0 whenever δ < 0, to exclude the contri-

bution from voids. We have found that at a = 1, the relative

difference of QCDM to ΛCDM at k ∼ 10h/Mpc drops from

∼ 9% (as in Fig. 8) to ∼ 7%. This seems to suggest that the

dominant effect in the small scale behavior of P θθ
k comes from

walls and/or filaments. The velocity divergence in these struc-

tures is typically large (see e.g. Fig. 2 of Ref. [97]) and they

also occupy a sizeable fraction of the total volume as well.

A more detailed investigation of these results is beyond the

scope of the present paper.

Focusing at a = 1, at k ∼ 10h/Mpc and relative to

ΛCDM, the velocity power spectrum in the R�−2R model

is enhanced by ∼ 12%, and the matter power spectrum by

∼ 15%. On large (linear) scales the same figures are ∼ 12%
and ∼ 7%, respectively. The size of the modifications to

the matter and velocity divergence power spectrum are rather
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similar, but the latter might be easier to measure as they are

typically less sensitive to assumptions about baryonic pro-

cesses such as galaxy bias. As an example, redshift space

distortions (RSD) [98–100] are sensitive to the boost of the

velocity field on large scales, and therefore can be used to

test modified gravity models (see e.g. Refs. [77, 101]). The

work of Refs. [102, 103] illustrated how the velocity distribu-

tion of infalling galaxies around massive clusters can be used

to detect modifications to gravity (see also [104]). More re-

cently, Ref. [105] demonstrated that modified gravity models

can leave particularly strong signatures in the velocity disper-

sion of pairs of galaxies on a broad range of distance scales.

The level of precision of the data from future observational

missions should prove sufficient to disentangle the differences

depicted in Fig. 8. Such a forecast study would involve run-

ning simulations with better resolution and larger box sizes,

and as such, we leave it for future work.

V. SUMMARY

We have studied the nonlinear regime of structure forma-

tion in nonlocal gravity cosmologies using N-body simula-

tions, and also in the context of the semi-analytical ellipsoidal

collapse and halo models. To the best of our knowledge, this

is the first time the nonlinear growth of structure in nonlocal

cosmologies has been studied. In particular, we investigated

the impact that the modifications to gravity in nonlocal mod-

els have on the halo mass function, linear halo bias param-

eters, halo concentrations and on the statistics of the density

and velocity fields of the dark matter.

The action or equations of motion of nonlocal gravity

models are typically characterized by the inverse of the

d’Alembertian operator acting on curvature tensors. Here, we

focused on the model of Refs. [26, 27], in which the standard

Einstein-Hilbert action contains an extra term proportional to

R�−2R (cf. Eq. (1)). The constant of proportionality is fixed

by the dark energy density today, and hence this model con-

tains the same number of free parameters as ΛCDM, although

it has no ΛCDM limit for the background dynamics or gravi-

tational interaction.

Our goal was not to perform a detailed exploration of the

cosmological parameter space in the R�−2R model. Instead,

for the R�−2R model we used the same cosmological pa-

rameters as ΛCDM (cf. Table I). In this way one isolates the

impact of the modifications to gravity from the impact of hav-

ing different cosmological parameter values. Nevertheless,

although a formal exploration of the parameter space in the

R�−2R model is left for future work (see Ref. [48]), the com-

parison presented in Fig. 1 suggests that the model fits the

CMB temperature data as well as ΛCDM. Our main results

can be summarized as follows:

• The expansion rate in the R�−2R model is smaller than

in ΛCDM at late times, and the gravitational strength is en-

hanced by a time-dependent factor (cf. Fig. 2). Both effects

help to boost the linear growth of structure (cf. Fig. 2) and

also speed up the collapse of spherical matter overdensities

(cf. Fig. 3). In particular, at the present day, the amplitude of

the linear matter (velocity divergence) power spectrum is en-

hanced by ≈ 7% (≈ 12%) in the R�−2R model, compared

to ΛCDM. These results are in agreement with Ref. [27]. The

critical density for collapse today, δc(a = 1), is ≈ 3% smaller

in the R�−2R model, relative to ΛCDM (cf Fig. 3). For

these results, the modified expansion history plays the dom-

inant role in driving the differences w.r.t. ΛCDM, compared

to the effect of the enhanced Geff .

• At late times (a > 0.6), the number density of haloes with

masses M & 1012M⊙/h is higher in the R�−2R model,

compared to ΛCDM. The difference becomes more pro-

nounced at the high-mass end of the mass function. In par-

ticular, at a = 1, haloes with mass M ∼ 1014M⊙/h are

≈ 10% more abundant in the R�−2R model than in ΛCDM.

At M = 1012M⊙/h this difference is only ≈ 2%. The ef-

fects of the modified H(a) and Geff on the enhancement of

the high-mass end of the mass function are comparable.

The ST mass function describes well the absolute values of

the halo number densities as well as the relative differences

w.r.t. ΛCDM, for all of the epochs studied (cf. Fig. 4). We

find that the use of the standard (q, p) = (0.75, 0.30) ST pa-

rameter values provides a fair estimate of the modifications to

the mass function in the R�−2R model. However, recalibrat-

ing these parameters to the simulation results helps to improve

the accuracy of the fit (cf. Table IV).

• The linear halo bias parameter in the R�−2R model is

barely distinguishable from that in ΛCDM for all masses and

epochs studied (cf. Fig. 5). In other words, the modifications

to gravity in the R�−2R model play a negligible role in the

way dark matter haloes trace the underlying density field. The

ST halo bias formula provides therefore a good description of

the simulation results. There is also almost no difference be-

tween the semi-analytical predictions for the bias computed

using the best-fitting and standard values for the (q, p) ST pa-

rameters.

• The halo concentration-mass relation is well-fitted by a

power law function (cf. Fig. 6), but with fitting parameters that

differ from those of ΛCDM (see Table V). For a . 0.6, the

concentration of the haloes in the R�−2R model is roughly

the same as in ΛCDM, but it increases with time. In particu-

lar, at a = 1.0 (a = 0.8) and for all masses, haloes are ≈ 8%
(≈ 4%) more concentrated in the R�−2R model, compared

to ΛCDM. This is likely to be mainly due to the enhanced

Geff on small scales, which helps to make the gravitational

potential continuously deeper inside the haloes. On the other

hand, the effects of the modifications to the expansion history

in the R�−2R play a negligible role in changing the concen-

tration of the haloes. This can be explained by the fact that

the modifications to H(a) are small enough not to have a sig-

nificant impact on the formation time of the haloes. Conse-

quently, once the haloes form, they detach from the expansion

of the Universe and no longer "feel" the dynamics of the back-

ground.
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• The modifications to gravity in the R�−2R model lead

only to a modest enhancement of the clustering power. For

instance, at a = 1.0 (a = 0.8) the amplitude of the non-

linear matter power spectrum is never larger than ≈ 15%
(≈ 10%) on all scales (cf. Fig. 7). These differences might

be hard to disentangle using data from galaxy clustering given

the known uncertainties in modelling galaxy bias. On small

scales, k & 1h/Mpc, the differences w.r.t. ΛCDM are com-

pletely determined by the enhanced Geff , and not by the mod-

ifications to H(a).
At a = 1.0, the halo model describes the simulation results

on large (k . 0.1h/Mpc) and small (k & 1h/Mpc) scales

very well. On intermediate scales and also at earlier times,

the performance becomes worse due to known limitations of

the halo model [31, 32]. These follow from a number of ap-

proximations in the derivation of the halo model formalism,

which sacrifice some accuracy in favour of analytical con-

venience. In terms of the relative difference w.r.t. ΛCDM,

these limitations cancel out and the halo model describes the

simulation results reasonably well for all epochs and scales.

Moreover, the performance of the halo model formulae in de-

scribing the simulation results does not depend critically on

the fitting of the (q, p) parameters to the mass function. How-

ever, we have checked that the good performance of the halo

model on small scales is subject to a correct modelling of the

halo-concentration mass relation, which can only be properly

determined via N-body simulation.

• Similarly to the case of the matter power spectrum,

the modifications in the R�−2R model lead only to modest

changes in the amplitude of the nonlinear velocity divergence

power spectrum. In particular, at a = 1.0 (a = 0.8) the en-

hancement relative to ΛCDM is kept below ≈ 12% (≈ 10%)

on all scales. However, measurements of RSD and/or galaxy

infall dynamics are less subject to galaxy bias uncertainties,

and therefore, might stand a better chance of distinguishing

between these two models.

• The R�−2R model possesses no screening mechanism

to suppress the modifications to gravity on small scales. As

a result, Solar System tests of gravity can be used to con-

strain the model. For example, the R�−2R model predicts

that Ġeff/G ≈ 92× 10−13 yrs−1, which is incompatible with

the current bound from Lunar Laser Ranging experiments,

Ġeff/G = (4± 9)×10−13 yr−1 [81]. The local time variation

of Geff follows from the background evolution of the auxiliary

scalar field S, and it seems nontrivial to devise a mechanism

that can suppress it around massive objects or in high-density

regions [37, 38]. In this paper, we focused only on a partic-

ular choice of cosmological parameters. As a result, it might

be possible that certain parameter combinations can be made

compatible with Solar System tests, whilst still being able to

yield viable cosmological solutions. Nevertheless, it seems

clear that these tests should be taken into account in future

constraint studies, as they might have the potential to rule out

these models observationally.

In conclusion, the R�−2R model, although it has no

ΛCDM limit for the dynamics of the background and grav-

itational interaction, exhibits changes of only a few percent

in observables sensitive to the nonlinear growth of structure.

Some of these effects are degenerate with baryonic mecha-

nisms such as AGN feedback or galaxy bias, or even with

massive neutrinos [45, 106–108]. This makes it challenging

to distinguish this model from ΛCDM, but the precision of

upcoming observational missions such as Euclid [109, 110],

DESI [111] or LSST [112] should make this possible. From

an observational point of view, however, future nonlinear stud-

ies are only warranted provided the model is able to fit suc-

cessfully the CMB data from Planck (see Ref. [48]), in a way

that is also compatible with the constraints from Lunar Laser

Ranging experiments. The latter requirement might be hard to

satisfy due to the absence of a screening mechanism.
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