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Abstract

Nonlinear evolution of the ' = 1 mode is examined in high-temperature plasmas
where the mode is in the semi-collisional or collisionless regime. Unlike the resistive
m = 1 mode, both the semi-collisional mode, with a very weak resistivity dependence,
and the collisionless mode, driven by finite electron inertia, can be robustly unstable in
today’s large tokamaks. And unlike the finite-A’(m > 2) tearing modes, the nonlinear
evolution of which is collisional, both the semi-collisional and collisionless m = 1 modes
exhibit nonlinearly enhanced growth rates that far exceed their linear values, thus
making their nonlinear evolution collisionless; this accelerated growth of a collisionless

m = 1 mode may explain the fast sawtooth-crashes observed in large tokamaks.

PACS No'’s: 52.35.Py, 52.30.Jb, 52.55.Fa, 52.35.Dm.
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Because of its relevance to understanding and controlling the sawtooth oscillations in
tokamaks, the m = 1 mode continues to receive a great deal of attention. The nonlinear
evolution of the m = | mode was first examined by Rosenbluth et al.,! in an ideal magne-
tohydrodynamic (MHD) context, where it was found to saturate with a small amplitude,
Later. Kadomtsev? offered a heuristic argument about the nonlinear evolution of the resis-
tive ;. = 1 as an explanation for the sawtooth oscillations.® More formally, the nonlinear
evolution of the m = 1 was examined in a resistive MHD context by Hazeltine et al.,*
Waelbroeck,” and Biskamp,® elucidating the differences between m = 1, and m > 2 tearing
modes, which nonlinearly enter a “Rutherford regime.”” Recently, Zakharov® has extended
the nonlinear analysis to two-fluid regime, finding good agreement between his nonlinear
estimates of the sawtooth crash times and experimental observations.

In this letter, we present nonlinear computational results, using essentially a two-fluid
theory based on the four-field model of Hazeltine et al.,° in which the m = 1, in the high-
temperature regime where the mode is either semi-collisional or collisionless, exhibits a novel
behavior: nonlinearly, the growth rate increases dramatically, thus offering an alternative
explanation for the fast sawtooth crashes. This computational result does not seem to have
been predicted by any of the analytic nonlinear theories mentioned above; this behavi r of
the m = 1 mode, where the mode growth accelerates, and it is pushed into the collisionless
regime, even if it is not there linearly, also differs from the nonlinear evolution of m > 2
semicollisional and collisionless tearing modes, which nonlinearly slow down and become
collisional.!®

The four-field model® used in this work, although it is based on a reduced MHD descrip-
tion and lacks some of the geometrical effects of full MHD calculations that are commonplace
now, is a simplified model of tokamak dynamics that includes finite-Larmor-radius (FLR)

effects. diamagnetic drift frequencies, and the effects of long-mean-free-path electron dynam-
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ics. In an earlier work, it was shown to reproduce many of the well-known dispersion relations
for the m = 1 mode in collisional, semi-collisional, and collisionless regimes.!' Omitting the
curvature terms, and including terms due to finite electron inertia in the parallel Ohm’s law,
the equations for a generalized vorticity U/, flux function ¢ electron pressure p, and the

parallel ion velocity v, respectively, can be written in the form
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The variables have been normalized as follows: ¢t — t/ry, , r = r/a, n = ryp/Tr, where
Tip = dfupy . TR = faa®/n,, and uy, = Bfm/\/ﬁ:ﬁ:. Thp and rr are the poloidal Alfvén
time and the resistive diffusion time, respectively, defined in terms of the minor radius a, a
characteristic poloidal field strength B,,., and resistivity n,.

The brackets are defined by [6,0/] = (- V,.¢ x VU, where { is a unit vector in the
toroidal direction, and V is the 2-D gradient in the plane perpendicular to the magnetic
field. The parallel gradient operator is defined as VJ = 8J/3 + [J,¢] for any scalar J.

The parameter &, in combination with the electron 4, is related to the ion Larmor radius,




as it can be shown that 7623 = (p;/2)%. Similarly, the ion Larmor radius based on electron
temperature, p,, is defined by (p,/2)* = 6*3. Both p; and p, are normalized to the minor
radius. Finally, 8, is the collisionless skin depth.

With the finite-electron-inertia terms present, it turns out to be more convenient to

rewrite the parallel Ohm's law in terms of an auxiliary variable \ = ¢ — 62J, which gives
%% +[¢p—ébrp. X]+ ;% (¢ —6rp) =8V p+nJ + . ViX. (8)

Note that we have included an electron viscosity term on the right-hand side, which leads
to an effective resistivity of Teec = 1 + jte, and a hyperresistivity of fpyper = pe6?. Since the
effects of hyperresistivity were examined in an earlier work,'? we will not consider it further
and keep p, < n here.

Using no = mev.;/2e’n,, where v,; is the electron-ion collision frequency, and defining a
resistive layer width, z2 = n/w, it can be shown that Drake and Lee’s semicollisional regime'’
corresponds to &, < r, < 6 in the four-field model; the collisionless regime is obviously given
by oy < 4.

The nonlinear increase in the growth rate of the m =1 mode is cbrerved in both semi-
collisional regime, where the electron inertia terms in the parallel Qhrn’s law can be ignored
(ry, > &), and in the collisionless regime where the electron inertia term dominates over the
collisional effects (r, < 8,). For brevity, these two regimes will not be examined separately
in this letter. We also let r = T;/T, = 0, which removes, among others, the ion gyro-viscosity
term on the right-hand side of the vorticity equation, Eq. (1); these terms do not seem to
play a significant role in the stated nonlinear behavior of the mode. For consistency, the
ion-sound terms, which come in through Eq. (4), are retained, although their effect was
sliown to be unimportant.!! at least linearly.

The four-field equations, Eqgs. (1)-(4), are solved in a cylindrical geometry, with periodi-

cally identified ends. The variables are Fourier-expanded in poloidal and toroidal directions;




pseudo-spectral techniques are used,!* keeping up to 256 modes. In the radial direction, a
nonuniform grid with over 600 grid-points is used. In order to reduce the oscillatory behavior
of fields near regions with sharp gradients, a third-order upwind-biased differencing is used
for the convective derivatives.

The mo=t significant poi-nt‘ of this letter is summarized in Fig. 1, which shows the time
evolution of the growth rate of the mode, defined as v = (1/2)dlog Ex /dlogt, where E is
the total kinetic energy in the system. Some of the important parameters for this run were
6 =0.107, 8, =5 x 107%, B = 5 x 1073, and n = 1.0 x 107%, which gave a linear growth
rate of ¥ = 1 x 1072, The dramatic increase in the growth rate of the mode as the island
grows, which is not observed in a purely resistive calculation, is quite evident Fig. 1. The
mode starts linearly in the semi-collisional regime (8, < z, < §) and becomes collisionless
during the fastest part of the reconnection. The collisionless physics, provided by the electron
inertia terms in the Ohm’s law, however, is not essential to this accelerated growth; the same
behavior is observed in a purely semi-collisional run where we set the collisionless skin depth,
b,, to zero. Internal consistency, of course, requires that the electron inertia terms be kept
for modes growing on this rapid time scale, as the classical resistive layer width becomes less
than the collisionless skin depth.

Further differences between the semicollisional/collisionless mode and its purely resistive
counterpart can be seen also in the geometry of the island and the current sheet that develops
around the separatrix. Figure 2 shows the helical flux contours associated with the nonlinear
run of Fig. 1, at four points during the nonlinear evolution of the island, pointed at with
arrows in Fig. 1. The early nonlinear behavior is similar to that of a purely resistive island;
the reconnection layer is poloidally extended and forms more of a “Y-point”® ¢ than the
classical X-point of an m > 2-island. However, as the island grows further, a well-defined
X-point emerges, widening the outflow region of the reconnection layer. The accelerated

growth (faster reconnection) can be attributed to this change in the geometry of the layer,
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as it is certainly easier to remove the reconnected flux with a “wider nozzle.” Figure 3 shows
the contours of the current density, at the same tinies as the flux contours of Fig. 2. Again
the change in the geometry is clear; the extended current sheet of the ‘Y-layer’ of early times
breaks up and forms an *.X-layer,” clearly following the contours of the island separatrix.
The current sheet that forms at the inner separatrix of the island shrinks and disappears
as reconnection approaches completion; the sheet along the outer separatrix lengthens and
eventually extends all the way around the circle, as predicted by Kadomtsev.?

For comparison, Fig. 4 shows the flux and current contours from a highly nonlinear stage

* and an extended current

of a purely resistive m = 1 island; the presence of two “Y points,’
sheet with a clearly different geometry from those of Fig. 3 are quite evident.

This novel behavior exhibited by the semicollisional/collisionless m = 1 mode can be
traced to the coupling between the electron pressure gradient term in the Ohm’s law, Eq. 2,
and the paralle] divergence of the electron velocity (v + 26J) in Eq. 3; linearly, these terms
give rise to an adiabatic electron response in the long mean-free-path regime. The exact
nonlinear mechanism that gives rise to an increase in the growth rate, however, is not clear
at this point.

For computational economy, in the calculations presented above, rather unrealistic, but
internally consistent, set of parameters were used. In a large tokamak, we typically find:
the “FLR parameter” of the four-field model, § ~ O(1072), the collisionless skin depth,
by ~ O(107%), and the resistivity n < 1078, in normalized units., The m = 1 mode exhibits
the same nonlinear behavior under more realistic conditions; although calculations with exact
experimental parameters are difficult, scaling studies with varying values of §,, 8, etc. are
underway and will be presented in a longer article in the future.

In summary, the nonlinear evolution of the m = 1 mode in high temperature plasmas

is found to be quite different from what is expected from a purely resistive MHD picture.

[n particular, allowing for an adiabatic electron response seems to lead noniinearly to a
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dramatic increase in the growth rate of the mode and in the rate of reconnection. The
current sheet with its characteristic “Y” shape seen in resistive calculations, and also in
the early stages of the nonlinear semicollisional/collisionless modes, quickly develops an “X-
point” geometry. Concomitant with this change in the geometry of the reconnection layer,
the growth rate of the mode increases, resulting in a rapid reconnection of the remaining
flux. Although this process, because of its fast time scale, is collisionless, the collisionless
physics introduced with finite electron inertia terms in the Ohm’s law are not responsible
for this change in the reconnection layer geometry or its rate. The accelerated growth of the
semicollisional/collisionless m = 1 mode may explain the fast sawtooth crash times, although
this conclusion needs further confirmation by scaling studies into more realistic parameter

regimes.
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Figure Captions

. The growth rate as a function of time for an m = 1 mode that starts in the semicolli-

sional regime and exhibits a dramatic increase in its growth rate, becoming collisionless
during its nonlinear evolution. Time and the growth rate are normalized to the poloidal
Alfvén time. The arrows point to approximate points in time where the flux function

and current density contours are shown in subsequent figures.

The contours of the helical flux function at various points during the nonlinear evolution

of the semicollisional m = 1 mode, the growth rate of which is shown in Fig. 1.

The current density contours for the semicollisional m = 1 mode, showing the change
in the geometry of the current sheet from a flat ribbon (Y-layer) to a well-defined

4Y-p0int,.

Flux function and current density contours for a purely resistive m = 1 island, showing
the typical Y-point geometry of the current layer on the separatrix, shown here for

comparison with the semicollisional island of Figs. 3 and 4.
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