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Abstract

No.nlinear evolution of the m = 1 mode is examined in high-temperature plasmas

where the mode is in the semi-col.lisional or collisJ,onless regime.. Unlike 'the resistive

m = t mode, both the semi-collisional mode, with a very weak resistivity dependence,

and the collisionless mode, driven by finite electron inertia, can be robustly unstable in

today's large tokamaks. And un l,ike the finite-zX'(m _>2) tearing modes, the nonlinear

evolution of which is collisional, both the semi-collisional and collisionless m = 1 modes

- exhibit non linearly enhanced growth rates that far exceed their linear values, thus

making their nonlinear evolution col.iisionless; this accelerated growth of a collisionless

m = 1 rnode may explain the fast sawtc>oth-crashes observed in large tokamaks.

PACS No's: 52.35.Py, 52,30.Jb, 52.55.Fa, .52.35.Dm.
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Because of its relevance to understanding and controlling the sawtooth oscillations in

tokamaks, the m = 1 mode continues to receive a great deal of attention. The nonlinear

evolution of the m = 1 mode was first examined by Rosenbluth et al.,1 in an ideal magne-

tohydrodynamic (5ItID) context,, where it wa,s fourid to saturate with a small arnplit,,lde.

Later. Kadomtsev a offered a heuristic argument about the nonlinear evolution of the resis-

ti\'e rt_,= 1 a,s an expl.anat.ion for the sawtooth oscillations, a More formally, the nonlinear

evolution of the rn = 1 was examined in a resistive MHD context by ttazeltine et ai., 4

\\:aelbroeck, s and Biskamp, 6 elucidating the differences between m = 1, and rn .>_2 tearing

modes, which nonlinearly enter a "Rutherford regime, ''7 Recently, Zakharov s h_s extended

the nonlinear analysis to two.-fluid regime, finding good agreement between his nonlinear

estimates of the sa.wtooth cra,sh times and experimental observations. -_

In this letter, we present nonlinear computational results, using essentially a two-fluid
_

theory based on the four-field model of Hazeltine et al.,9 in which the m = 1, in the high- ---

temperature regime where the mode is either semi-collisional or collisionless, exhibits a novel

behavior: nonlinearly, the growth rate increases dramatically, thus offering an alternative
-

explanation for the la.st sawtooth cra,shes. This computational result does not seem to have

been predicted by any of the analytic t_.onlinear theories ment_ioned above; this behavi,,r of
_r

the m = 1 mode, where the mode growth accelerates, and it is pushed into the collisionless
r

regime, even if 't is not there linearly, also differs from the nonlinear evolution of m > 2 =

semicollisional and collisionless tearing modes, which no.ulinearly slow down and become

collisional.10

The four-field model 9 used in this work, although it is based on a reduced MHD descrip- -5
.=

t ion and lacks some of the geometrical effects of full MttD calculations that are commonplace

now,, is a simplified model of tokamak dynamics that includes finite-Larmor-radius (FLR)

ef[_:cts, diarnagnetic drift, frequencies, and the effect.s of long-rnean-free-path electron dynam.. =

_

2
_



ics. In an earlier work, it wa.s shown to reproduce many of the well-k_mwn dispersion relat, ions

for tile m = 1 mode in collisional, semi-collisional, and collisionless regimes. 11 Omitting the

curvature terms, and including terms due to finite electron inertia in the parallel Ohm's law,

the equations for a. generalized vorticity [I flux function _,, electron, pressure p, and the

parallel ion velocity t,, respectively, can be written in the form

-07 + [¢' U] + VlIJ = _SrV±. lp, V_.¢] , (1)

0p
c_-7+ [0'p]+/3v(,[v+ 2_J]= 0 (a)

Oy 1

07 + _(1 + ,')Vfjp + [¢-&p,t,] =0, (4)

¢ = ¢,._ + _rp, (5)

T_ (6)7-" ,

a _= , #,=_=2 -- _. (7)
[3T/2f_o a a \ mi /

The variables have been normalized as follows: t _ t/rHv , r --+ ria , rl = triprR, where

rtt v = a/uttp , rR = poa2/rlo, and uhv = B_o/ p__o[to,rtfp and r'n are the poloidal Alfv6n

time and the resistive diffusion time, respectively, defined in terms of the minor radius a, a

c]_aracteristic poloida.1 field strength Bw, and resistivity 77o.

The bra.ckets are d_finedby, [_, u] = _:.v xc × v,u, where (: is a unit vector iv., the

toroidal direction, anti Va. is the 2-D gradient in the plane perpendicular to the magnetic

field. The parallel gradient operator is defined a,s VllJ = OJ/O( + [J, ¢] for any scalar J.

lT]ie parameter _S,in combination with the electron 3, is related to the ion Larmor radius,



as it. can be shown that r.62/3 = (pi/2) 2. Similarly, the ion Larmor ra,dius based on electron

t.emperature, p,, is defined by (p,/2) _ = 6_/3. Both Pi and p, are normalized to the minor

radius. Finally, 6..,is the collisionless skin. depth.

\Vith the finite-electron-inertia terms present, it. turns out to be more convenient to

rewrite the parallel Ohrn's law irt terms of an auxiliary variable \= ¢, 6_J, which gives

,)X 0

0-7+ [¢- &p, x] + S (¢- = + + (s)

Note that we have included a,n electron viscosity term on the right-hand side, which leads

to an effective resistivity of r/.f{_ = 9 + It., and a hyperresistivity of qhyp._ = 1_.6_. Since the

effects of hyperresistivity were examined in an earlier work, _2 we will not consider it further

and keep ;tc << 'q here.

Uaing 9o = m_u_,/2e2n_, where u_, is the electron-ion collision frequency, and defining a

/_, it can be shown that Drake and Lee's sernicollisional regime laresistive layer width, x,_ = r/

corresponds to 6, < z,_ < 6 in the four-field model; the collisionless regime is obviously given

by x,.I < 6s.

The nonlinear increase in the growth rate of the m = 1 mode is observed irt both semi-

collisional regime, where the electron inertia terms in the parallel Ohm's law can be ignored

- (x,:, 2> 6_), and in the collisionless regime where the electron inertia, term dominates over the 1_

collisional effects (.r, ,_ cS,). For brevity, these two regimes will not be examined separately

in this letter. We also let r = Ti/T,= 0, which removes, among others, the ion gyro-viscosity

term on the right-hand side of the vorticit, y equation., Eq. (1); these t.errm_ do not seem to

play a significant role in the stated nonlinear behavior of the mode. For consistency, the

ion-sound terms, which come in through Eq. (4), are retained, although their effect was

sl,own to be unimportant, 11 at least linearly.

: The four-field equations, Eqs, (1)-(4), are solved in a cylindrical geometry, with periodi-

. (:all,,' identified ends. The variables are Fourier-expanded in poloidal and toroidal directions;

.1



pseudo-spectral techniques are used, 14 keeping up to 256 modes. In the radial direction, a

nonuniforn_ grid with over 60.0 grid-points is used. In order to reduce the oscillatory' behavior

of fields near regions with sharp gradients, a third-order upwind-biased differencing is used

for the convective derivatives.

The mo,;t, significant point of this letter is suiranarized in Fig. 1, which shows the time

evolution of the growth rate of the mode, defined as 7 = (1/2)dlog EK/dlogt, where EK is

the total kinetic energy in the system. Some of the important parameters for this run were

_5= 0.107, (5, = 5 x 10-'_, /3 = .5 x 10-a, and r/ = 1.0 x l0 -_, which gave a linear growth

rate of _ = 1 x 10-2, "Fhe dramatic increase in the growth rate of the mode as the island

grows, which is not observed in a purely resistive calculation, is quite evident Fig. 1. The

mode starts linearly in the semi-collisional regime ($, < x, < _) and becomes collisionless

during the fastest part of the reconnection. The collisionless physics, provided by the electron

inert.ia terms in the Ohm's law, however, is not essential to this accelerated growth; the same

behavior is observed in a purely semi-collisional run where we set the collisionless skin depth,

6,, to zero. Internal consistency, of course, requires that the electron inertia terms be kept

f'or modes growing on this rapid time scale, as the classical resistive layer width becomes less

than the collisionless skin depth.

t:urther differences between the semicollisional/collisionless mode and its purely resistive

counterpart can be seen also in the geometry of the island aa_d the current sheet that develops

around the separatrix. Figure 2 shows the helical flux contours associated with the nonlinear

run of Fig. 1, at four points during the nonlinear evolution of the island, pointed at with

arrows in Fig. 1. The early nonlinear behavior is similar to that of a purely resistive island;

the reconnection layer is poloidally extended and forms more of a "Y-point ''s' 6 than the

classical X-point of an rn > 2-island. However, as the island grows further, a well-defined

.k'-point emerges, widening the outflow region of the reconnection layer. The accelerated

. growt.h (faster reconnection) can be attributed to this change in the geometry of the layer,

5
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as it is certainly easier to remove the reconnected flux with a "wider nozzle." Figure 3 shows

the contours of the current density, at the same times as the flux contours of Fig. '2. Again

the change in the geometry is clear; the extended current sheet of the 'Y-layer' of early times

l:rea.ks up and forms nn "X-layer,"' clearly following the contours of the island separatrix.

The current sheet, that forms at the inner separatrix of the island shrinks and disappears

as reconnection approaches completion; the sheet along the outer separatrix lengthens and

eventually extends all the way around the circle, as predicted by Kadomtsev. 2

For comparison, _'. 1)lg. 4 shows the flux and current contours from a highly nonlinear stage

of a purely resistive m = 1 island; the presence of two " ' "Ypolnts, and an extended current

sheet with a clearly different geometry from those of Pig. 3 are quite evident.

li'his novel behavior exhibited by the semicollisional/collisionless nz = 1 mode can be

traced to the coupling between the electron pressure gradient term in the Ohm's law, Eq. 2,

and the parallel divergence of the electron velocity (v + 25J) in Eq. 3; linearly, these terms

give rise to nn adiabatic electron response in the long mean-free-path regime. The exact

nonlinear mechanism that gives rise to an increase iri the growth rate, however, is not clear

at this poinl,.

For computational economy, in the calculations presented above, rather unrealistic, but ._

internally consistent, set of parameters were used. In a large tokamak, we typically find'

l he "FLR parameter" of the four-field model, 6 ,-, O(10-_), the collisionless skin depth,

c_, ,-_CO(10-a), and the resistivity 77< 10-8, in normalized units. The m = 1 mode exhibits

!he same nonlinear behavior under more realistic conditions; although calculations with exact

experimental parameters are difficult, scaling studies with varying values of _,, 6, etc. are _=

underway and will be presented in a longer article in the fut,ure.

In summary, the nonlinear evolution of the rn = 1 mode in high temperature plasmas

is found to be quite different from what is expected from a purely resistive MHD picture. 7

In particular, allowing for nn adiabatic electron response seems to lead noniinearly to a

6
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dramatic increase in the growth rate of the mode and in the rate of reconnection. The

current sheet with its characteristic "Y" shape seen in resistive calculations, and also in

the early stages of the nonlinear semicollisional/collisionless modes, quickly develops an ".\'-

point" geometry. Concomitant with this change in the geometry of the reconnection layer,

the growth rate of the mode increases, resulting in a rapid reconnection of the remaining

flux. Although this process, because of its fast time scale, is collisionless, the collisionless

physics introduced with finite electron inertia terms in the Ohm's law are not responsible

for this change in the reconnection layer geometry or its rate. The accelerated growth of the

seinicollisionzl/collisionless r_z= 1 mode may explain the fast sawtooth crash times, although

this conclusion needs further confirmation by scaling studies into more realistic parameter

regimes.
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Figure Captions

1. The growth rate as a function of time for an rn = 1 mode that starts in the semicolli-

sional regime and exhibits a dramatic increase in its growth rate, becoming collisionless

during its nonlinear evolution. Time and the growth rate are normalized to the poloidal

Alfvfin time. The arrows point to approximate points in time where the flux function

and current density contours are shown in subsequent figures.

'2. The contours of the helical flux function at various points during the nonlinear evolution

of the semicollisional rn = 1 mode, the growth rate of which is shown in Fig. 1.

3. The current density contours for the semicollisional rn = 1 mode, showing the change
i

in the geometry of the current sheet from a flat ribbon (Y-layer) to a well-defined

X-point.

4. Flux function and current density contours for a purely resistive rn = 1 island, showing

the typical Y-point geometry of the current layer on tile separatrix, shown here for

comparison with the semicollisional island of Figs. 3 and 4.
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