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Abstract To suppress the nonlinearity of an excited Van der Pol–Duffing oscillator (VdPD), time-delayed
position and velocity are used throughout this study. The time delay is supplemental to prevent the nonlinear
vibration of the considered system. The topic of this work is extremely current because technologies with a time
delay have been the subject of several studies in the latest days. The classical homotopy perturbation method
(HPM) is utilized to extract an approximate systematic explanation for the system at hand. Furthermore, a
modification of the HPM reveals a more accurate approximate solution. This accuracy is tested through a
comparison with the numerical solution. The practical approximate analytical methodology makes the work
possible to qualitatively evaluate the results. The time histories of the obtained solutions are drawn for various
values of the natural frequency and the timedelayparameters.Discussionof the results is presented in light of the
plotted curves. On the other hand, the multiple scale procedure examines the organized nonlinear prototypical
approach. The influence of the diverse regulatory restrictions on the organization’s vibration performances is
explored. Two important cases of resonance, the sub-harmonic and super-harmonic, are examined according to
the cubic nonlinearity. The modulation equations achieved for these cases are examined graphically according
to the impact of the used parameters.

Keywords Perturbation methods · Nonlinear vibrations · Position-velocity controller · Time-delay ·
Stability charts · Parametric resonance

List of symbol

y Displacement from the equilibrium position
t Proper time
. The derivative with regard to t is denoted by a dot
ω Source of normal frequency of the organization
μ Damping coefficient
λ Third-order nonlinear duffing coefficient, λ > 0, λ < 0 are hardening and softening spring, respectively
F Amplitude of the forcing
� Frequency of the forcing
α Coefficient of displacement time-delay
β Coefficient of velocity time-delay
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A Initial amplitude parameter
τ Time-decay control parameter
δ, ρ Small artificial parameters

1 Introduction

Numerous physical phenomena are modeled by nonlinear systems of ordinary or partial differential equations.
To examine these systems, it is significant to find out explanations describing the travelling wave phenomenon.
On the other hand, the solution of the oscillator equations has received a lot of attention since they are
essential in practical mathematics, physics, and engineering demonstrations. The VdPD was reflected as
one of the most significant phenomena. The VdPD was used to explain physical, engineering, and even
biological complications. This kind of oscillator is a generality of the classic van der Pol oscillator (VdP).
Generally, the numerical solution approximationwasmore complicated than the analytical solution approach to
certain problems. The methods of variational iteration [1], HPM [2], Hamiltonian [3], Lindstedt–Poincaré [4],
variational [5], parametric expansion [6], max–min methodology [7], iterative harmonic balance [8], and the
differential transforms [9] are some of the powerful approaches in analyzing nonlinear oscillator problems that
have been performed in the previous works. Using the Melnikov method, Awrejcewicz [10] studied horseshoe
chaos in VdPD driven by different periodic forces. Motsa and Sibanda [11] analyzed the linearized method
to treat the classical VdPD. By reorganizing the principal equation as a nonlinear eigenvalue problem, they
attained correct standards for amplitude and frequency. The chaotic dynamics of the VdP were presented via
Adelakun et al. [12] using electronic modeling and hardware employment. Their findings were verified by
comparing conformity with the consequences of simulation tools. Khan et al. [13] provided a new approximate
approach to solving VdPD problem. Only two homotopy series components, the Laplace transforms and the
Padé approximates, are used in the proposed system. The vibrational motion of many dynamical models
with different degrees of freedom is examined [14–19]. The controlling systems are analyzed by Lagrange’s
formula to generate the fundamental equations of motion and are solved using the multiple scale approach.
The solvability criteria are investigated by eliminating the secular terms, and the various resonance situations
are examined. The modulation equations are examined numerically to analyze the frequency response curves
and determine the stability and instability areas.

Delay differential equations, whose current state oscillation is reliant on preceding states, can be used to
model the diversity of the technological and medical sciences. The Hopf bifurcation [20] is studied using
the center of manifold theory [21], which is a computationally efficient methodology in the qualitative treat-
ment of delay differential equation bifurcations. Time delay is a vital topic in dynamic vibration controller
performances, where the presence of time delay in the controller round might be the foremost purpose of
the organization’s disappointment via destabilizing the control loop. In current history, differential equations,
incorporating delayed bearing, have gained considerable attention. These equations have proven to be suc-
cessful in the modeling of a wide range of applications in technology and engineering [22, 23]. Saeed et al.
[24] addressed six different time-delayed controllers and their benefits as well as disadvantages in controlling
a parameterized stimulated system of nonlinear fluctuations. Studies that are both quantitative and compu-
tational, however, demonstrated that the cubic-acceleration controller is the best choice. Saeed et al. [25]
developed a time-delayed position-velocity regulator to overpower a nonlinear system vibration. The influence
of specific organizer parameters on the system vibration characteristics was examined. Furthermore, numerical
approximations of the analytical consequences were achieved. For the first time, Saeed et al. [26] investigated
the use of a nonlinear fundamental resonant oscillator to reduce the major parameterized disturbance. The
controlling loop time delay was included in the system under examination. Additionally, the loop delay col-
lection mechanism that either enhances the control representation or destabilizes the network movement has
been thoroughly explained.

As known, nonlinear equations are required in the majority of real-life and technical applications. These
equations are either functional, differential, integral, or integro-differential. The exact solutions to these equa-
tions are extremely hard to find. As a consequence, the branching of numerical solutions in several ways
becomes critical. Because analytic analyses are more useful in many situations than numerical ones, per-
turbation techniques have evolved in various forms, ranging from the traditional strained parameter to the
modification methods such as those based on several time scales. The fundamental principle of perturbation
techniques is to turn a collection of first-order equations from nonlinear to linear equations. The Poincar-
é–Lindstedt technique was used by He et al. [27] to attain an approximate bounded solution for the hybrid
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Rayleigh VdPD. The estimated solution and the fourth-order Runge–Kutta approach were found to be similar.
In fact, all perturbation methods necessitate the presence of a small parameter in the equation being studied.
Subsequently, the problem becomes relatively constrained in the absence of such a parameter. He [28] went
on to use a new perturbation method, independent of such a small parameter. According to this strategy, a
modest artificial embedding parameter can be placed by δ where δ ∈ [0, 1]. In case δ � 0, the differential
equation of zero order must have an exact solution. In order to attain a valid restricted approximate solution to
the parameterized Duffing equation (DE), Moatimid [29] employed an expanded frequency parameter and a
combination of HPM and Laplace transform. Ghaleb et al. [30] used a similar approach to get a circumscribed
estimated explanation of the cubic-quintic VdPD. Recent works related to the existing manuscript were found
through Refs. [31–33]. In the case of the autonomous system, they also achieved a linearized stability profile
at the equilibrium points. The achieved outcomes are considered to be novel and original, in which the used
strategy is applied to a particular dynamical system.

In accordance with the significance of the aforementioned aspects, the analysis of the VdPD has potential
applications in engineering, physics, communication theory, and biology. It has been discussed in numerous
papers on a variety of topics. Therefore, this paper analyzed the excited VdPD with position and velocity
delays as follows:

ÿ + ω2y − μ(1 − y2)ẏ + λ y3 � F cos�t + α y(t − τ ) + β ẏ(t − τ ), (1)

where all parameters included in Eq. (1) are listed at the beginning of the paper. It must be noted that the time
delay parameter belongs to the interval [−τ, 0).

The numerical solution (NS) of Eq. (1) can be gained utilizing the Runge–Kutta technique of fourth order
(RK4) in the presence of the following data:

μ � −1.1, � � 1.0, β � 0.55, α � 2.5, λ � 2.0,

F � −0.1, τ (� 0.7, 0.4, 0.1), and ω (� 3.252, 11.926).

This solution has been drawn in parts of Fig. 1 according to the various values of the natural frequency ω
and the delayed parameter τ . A closer look at the waves included in portions (a) and (b) of this diagram shows
that these curves are starting at the highest larger amplitude of y-axis when t � 0, and then a decrease of this
amplitude is observed as time goes on. Consequently, the performance of these waves has stable manner since
they have a steady behavior at the end of the considered time interval. Moreover, parts (c) and (d) are plotted
to describe the relationship between the NS and its first derivative for the same considered values of ω and
τ . The sketched curves represent the phase plane diagrams of the obtained results, and they have the form of
oriented spiral curves inward toward a single point, which confirms the stability of the numerical results.

In Eq. (1), the term μ(1 − y2)ẏ is termed as damping (dissipation) term. In the absence of the last term,
Eq. (1) is turned to the DE which has much significance in the background of many nonlinear systems. To
crystallize this work, the remainder of the article is structured as follows: Sect. 2 is depicted to introduce
the analytic solution, based on the HPM of Eq. (1). Additionally, its subsection is produced to present a
modification of HPM to attain a more accurate solution. The previous solutions are numerically confirmed.
The obtained solutions are plotted to reveal the influence of the delayed parameter and the natural frequency of
motion. Moreover, the phase plane diagrams describing the stability are presented and discussed. Section 3 and
its subsections investigate two resonance cases, in addition to the examination of the super- and sub-harmonic
resonance cases. Section 4 presents the results of this work.

2 Methodology of the classical HPM

The controlling equation of motion (1) is a nonlinear equation with a periodic coefficient. In reality, it has
no specific solution. As a result, it will be analyzed by the traditional HPM. He [28] successfully utilized
his perturbation approach to reach a periodic solution for numerous oscillators. However, his method fails
for the damping oscillator problems. In analyzing Eq. (1), it is appropriate to present the subsequent original
equations:

y(0) � A, and ẏ(0) � 0. (2)

The procedure of the HPM is mainly based on the following homotopy equation:

ÿ + ω2y � ρ
(
μ(1 − y2)ẏ − λ y3 + F cos�t + α y(t − τ ) + β ẏ(t − τ )

)
, ρ ∈ [0, 1]. (3)
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Fig. 1 a, b Represent the time histories of the NS when ω � 3.252 and ω � 11.926, respectively. c, d Reveal the phase plane
diagrams of the NS when ω � 3.252 and ω � 11.926, respectively

Along with this approach, the dependent variable may be required in the traditional procedure by way of:

y(t) � y(t, ρ) � y0(t) + ρy1(t) + ρ2y2(t) + · · · . (4)

To yield the solution, one inserts the expansion (4) into the homotopy Eq. (3). It follows that the analytical
exact explanation of the zero-order equation is specified by

y0(t) � A cos ωt. (5)

Accordingly, one finds

y0(t − τ ) � A cos (ω(t − τ )), (6)

ẏ0(t − τ ) � −Aω sin (ω(t − τ )). (7)

The first-order problem of the Homotopy Eq. (3) might be written by way of:

ÿ1 + ω2y1 � μ(1 − y20 )ẏ0 − λ y30 + F cos�t + α y0(t − τ ) + β ẏ0(t − τ ). (8)

With the aid of Eqs. (5)–(8) into Eq. (8), one gets

ÿ1 + ω2y1 � −
(
3

4
λ A3 − A αcosωτ + A β ωsinωτ

)
cosωt

+

(
−A μ ω +

1

4
μ ω A3 + A β ωcosωτ + A αsinωτ

)
sinωt

+ Fcos�t − 1

4
λ A3cos 3ωt +

1

4
μ ω A3sin 3ωt. (9)
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Fig. 2 a Represents the change of the solution y(t) when ω � 3.252 and ω � 11.926, b reveals the phase plane diagram of the
solution y(t) at the same values of ω

The uniformvalid phrase is usually obtained by removing the secular terms. The coefficients of the functions
cos ωt and sin ωt should be ignored at all stages for this goal.

3

4
λ A2 − α cosωτ + β ω sinωτ � 0, (10)

− μ ω +
1

4
μ ω A2 + β ω cosωτ + α sinωτ � 0. (11)

At this stage, the following initial conditions are considered:

y1(0) � 0, and ẏ1(0) � 0. (12)

The bounded solution at the principal step is specified by

y1 � F

ω2 − �2 cos�t +
−32 Fω2 + λ A3(�2 − ω2)

32ω2(�2 − ω2)
cosωt+

3 μ A3

32 ω
sin ωt+

λ A3

32ω2 cos 3ωt−
μ A3

32 ω
sin 3ωt.

(13)

As a result, what follows is the constrained suitable estimation of the fundamental equation provided in
Eq. (1) as:

(14)

y � A cosωt +
F

ω2 − �2 cos�t +
−32 Fω2 + λ A3(�2 − ω2)

32ω2(�2 − ω2)
cosωt

+
3 μ A3

32 ω
sin ωt +

λ A3

32ω2 cos 3ωt − μ A3

32 ω
sin 3ωt.

The time history of the previous solution (14) and the corresponding phase plane, at two different values
of the natural frequency ω, are drawn in Fig. 2a, b, respectively. These parts are graphed according to the
previous data when A � 1.

An examination of Fig. 2a indicates that the behavior of the obtained solution is periodic and the number
of waves increases with the decrease of ω values. Therefore, the wavelength of these waves decreases, while
the amplitudes remain stationary. The phase plane diagrams at the considered values of ω are represented by
the included closed curves of Fig. 2b. These curves indicate that the given solution in Eq. (14) has a stable
behavior and that it is free of chaos.

The comparison between the obtained approximate solution (AS) in Eq. (14) and the numerical solution
(NS) of the fundamental Eq. (1) is graphedwhenω � 3.252 in portions a–c of Fig. 3 at τ (� 0.7, 0.4, and 0.1),
correspondingly. It is evident that there is no deviation in the AS through the change of the standard values of
the decelerating parameter τ , while the variation of the NS with this parameter is evident through the curves
drawn in the parts of this figure. The deviation between the two solutions is very large. The reason is due to
the fact that Eq. (1) depends on τ , while the AS is independent of τ as seen in Eq. (14).
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Fig. 3 Reveals the comparison between the AS of the Eq. (14) and the NS of the Eq. (1) when ω � 3.252: a at τ � 0.7, b at
τ � 0.4, and c at τ � 0.1

2.1 Modification of the HPM

The aforementioned solutions in the presence of the damping and time delay fail to correspond to the numerical
solutions. Accordingly, a modification of homotopy has become necessary. One can be suppressed over time.
This is the topic of the present article. To investigate the implications of the delay parameter, we can re-analyze
the homotopy Eq. (3) using the new expansion instead of the expansion (4). Consequently, we believe that y
(t, ρ) can be extended to El-Dib [34].

y(t, ρ) � e−ρτ t{y0(t) + ρ y1(t) + ρ2y2(t) + · · ·}. (15)

To originate the solution, one inserts the expansion (14) into the homotopy Eq. (3). It follows that the
analytic exact solution of the zero-order equation is specified by

y0(t) � A cosωt. (16)

The first-order problem of the homotopy Eq. (3) may be written as:

ÿ1 + ω2y1 � τ t ω2 y0 + (μ + 2τ)ẏ0 + τ t ÿ0 + α y0(t − τ) + β ẏ0(t − τ) + λ y30 − μ ẏ0y
2
0 + Fcos�t .

(17)

With the aid of Eq. (16) into Eq. (17), one gets

ÿ1 + ω2y1 �
(

−3

4
λ A3 + A α cosωτ − A β ω sinωτ

)
cosωt

+

(
1

4
μ ω A3 − A μ ω − 2Aτω + A β ω cosωτ + A α sinωτ

)
sinωt

+ F cos�t − 1

4
λ A3 cos 3ωt +

1

4
μ ω A3 sin 3ωt. (18)

The uniformvalid phrase is usually obtained by removing the secular terms. The coefficients of the functions
cos(ωt ) and sin(ωt ) should be ignored at all stages for this goal.

3

4
λ A2 − α cos ωτ + β ω sin ωτ � 0, (19)
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Fig. 4 a Shows the variation of the solution y for different values of τ when ω � 3.252. b Describes the phase plane maps of y
at the similar standards of τ and ω

− μ ω +
1

4
μ ω A2 − 2τω + β ωcosωτ + αsinωτ � 0. (20)

At this end, the first order periodic solution is specified by

y1 � F

ω2 − �2 cos�t +
−32 Fω2 + λ A3(�2 − ω2)

32ω2(�2 − ω2)
cos ωt

+
3 μ A3

32 ω
sin ωt +

λ A3

32ω2 cos 3ωt − μ A3

32 ω
sin 3ωt. (21)

Consequently, the estimated periodic solution of the fundamental equation of motion mentioned in Eq. (1)
may be formulated as follows:

y � e−τ t
[
A cos ωt +

−32 Fω2 + λ A3(�2 − ω2)

32ω2(�2 − ω2)
cos ωt +

3 μ A3

32 ω
sin ωt

+
F

ω2 − �2 cos�t +
λ A3

32ω2 cos 3ωt − μ A3

32 ω
sin 3ωt

]
. (22)

This solution is plotted in Fig. 4. At diverse standards, values of the delay parameter τ (� 0.7, 0.4, 0.1)
and when ω � 3.252 taking into consideration the above considered data. It is worthy to reference that the
plotted curves in Fig. 4a have the form of decay waves with some stationary nodes, which is completely
consistent with the mathematical configuration of Eq. (22). The decreasing of the waves’ behavior with time
is due to the increase of the value of the deceleration factor τ . The conclusion that may be made here is that
this solution is stable as seen from Fig. 4b, where the phase plane curves point inward toward a single fixed
point. Parts of Fig. 5 are drawn when ω � 11.926 for the same values of τ , in which the oscillations of the
represented waves increase than the corresponding ones in Fig. 5. The reason is due to the respectable effect
of the natural frequency of the motion.

Parts of Fig. 6 are calculated when ω � 11.926 at τ (� 0.7, 0.4, and 0.1) in addition to the above
considered data to reveal the comparison between the modified approximate solution (MAS) of Eq. (22) and
the numerical solution (NS) of the original Eq. (1). According to the plotted curves in these parts, one can see
high consistency between the obtained solutions when τ (� 0.7, and 0.4) as drawn in Fig. 6a, b, respectively,
whereas the deviation between them becomes clear when the delaying parameter decreases seen in Fig. 6c.
Overall, the MAS (22) is in good harmony with the NS than the AS given in Eq. (14) which reveals the
significance of the modification procedure.

3 Mathematical analysis and solution for resonance cases

In the reality, excitation frequency occurs in groups. A resonance happens when the frequencies of external
loads precisely or substantially match the frequency response of a system, and the oscillations that result have
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Fig. 5 a Expresses the deviation of the solution y for distinct values of τ whenω � 11.926. b Describes the phase plane diagrams
of y at the similar standards τ and ω

Fig. 6 Reveals the comparison between the MAS of Eq. (22) and the NS of Eq. (1) when ω � 11.926: a at τ � 0.7, b at τ � 0.4,
and c at τ � 0.1

just a large amplitude. In potential implementations, it has both positive and negative influences. Resonating, a
technology used to inhibit the oscillation of a framework during excitations, is one of the beneficial implications
of resonance. The excitations cause destruction of bridges and airplanes owing to the effects of resonance.

3.1 Case 3.1: Primary Resonance (� ∼� ω)

The mechanism could respond substantially to large vibrational frequencies with low excitation in the funda-
mental resonance state [25, 26]. Therefore, the homotopy equation of the situation at hand could be expressed
by way of:

H (y, ρ) � L(y) + ρN (y), ρ ∈ [0, 1], (23)

where L(y) and N (y) are the linear and nonlinear parts of the given differential equation, respectively. ρ is
defined as the embedded artificial homotopy parameter. From Eq. (1), they are defined as:

L(y) � ÿ + ω2y, (24)
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N (y) � −μẏ(1 − y2) − λy3 − Fcos(�t) − αy(t − τ ) − β ẏ(t − τ ). (25)

Consequently, the homotopy equation may be constructed as:

H (y, ρ) � ÿ + ω2y − ρ
(
μẏ(1 − y2) + λy3 + Fcos(�t) + αy(t − τ ) + β ẏ(t − τ )

)
. (26)

Deprived of any loss of generalization, a two timescale expansion can be reflected. Characteristically, the
displacement can be extended as:

y(t, ρ) � y0(T0, T1) + ρy1(T0, T1) + O(ρ2), (27)

y(t − τ, ρ) � y0(T0 − τ, T1 − ρτ ) + ρy1(T0 − τ, T1 − ρτ ) + O(ρ2), (28)

where T0 � t, and T1 � ρt . It follows that the time derivatives d
dt and d2

dt2
can be written through the

timescales T0 and T1 as:

d

dt
� D0 + ρD1,

d2

dt2
� D2

0 + 2ρD0D1, Dj � ∂

∂Tj
, j � 0, 1. (29)

Replacing Eqs. (27)–(29) into Eq. (24), then equating coefficients of the similar exponents of ρ, we obtain

ρ0 : D2
0 y0 + ω2y0 � 0, (30)

ρ1 : D2
0 y1 + ω2y1 � −2D0D1y0 + μ(D0y0 − y20D0y0) + λy30 + αy0(T0 − τ, T1 − ρτ )

+ β D0y0(T0 − τ, T1 − ρτ1) + Fcos(�T0)
. (31)

The solution of Eq. (30) can be formulated as:

y0(T0, T1) � A(T1)e
iωT0 + c.c., (32)

where c.c. signifies the complex conjugate of the previous duration.
Substituting Eq. (32) into Eq. (31), we attain

D2
0 y1 + ω2y1 �

(
−2iωD1A + iμωA − iμωA2A + 3λA2A + αAe−iωτ + iωβAe−iωτ +

F

2
eiσT1

)
eiωT0

+ A3e3iωT0 (λ − iμω) + c.c (33)

To attain a uniform effective expansion, the secular terms must be cancelled. The cancellation of these
terms needs an elimination of the coefficients of the functions e±iωT0 . Consequently, we obtain the following
solvability requirement:

−2iωD1A + A(iμω + αe−iωτ + iωβe−iωτ ) + A2A(3λ − iμω) +
F

2
eiσT1 � 0. (34)

Substantially, the solution of Eq. (33) may be formulated as:

y1(T0, T1) � 1

8ω2 A
3e3iωT0(iμω − λ) + c.c. (35)

Multiplying Eq. (34) by ρ, then making ρ go to unity, one gets

−2iω
dA

dt
+ A(iμω + αe−iωτ + iωβe−iωτ ) + A2A(3λ − iμω) +

F

2
eiσ t � 0. (36)

Equation (36) characterizes a first-order nonlinear differential equation with a complex coefficient. Fol-
lowing Nayfeh [35], the formulation of A(t) can be written in a polar procedure like

A(t) � 1

2
a(t)eiβ(t), (37)
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Fig. 7 a, b Represent the time histories of the amplitude a and the phase φ when ω � 3.252 at τ � 0.7 τ � 0.4 and τ � 0.1,
while c shows the aφ plane at the same values of ω and τ

where a(t), and β(t) are twofold physical occupations at the time. They symbolize the vibration amplitude and
the adapted phase-angle of the system, respectively. Inserting Eq. (37) into Eq. (36) and dividing the real and
the imaginary portions, we attain the subsequent amplitude-phase modulation equations:

ȧ � 1

2
μa +

1

2
aβcos ωτ − 1

2ω
aαsin ωτ − 1

8
a3μ +

1

2ω
Fsinφ, (38)

φ̇ � σ +
3

8ω
a2λ +

1

2ω
αcos ωτ +

1

2
βsin ωτ +

1

2ωa
Fcosφ, (39)

where φ̇ � σ t − β.
The solutions of Eqs. (38) and (39) are the amplitude a and the phase β as functions of time t which are

represented graphically in parts (a) and (b) of Figs. 7 and 8 when ω � 3.252 and ω � 11.926, respectively. It
should be mentioned that the numerical solutions of the previous equations are found using the Mathematica
software. The curves of part (c), on the other hand, represent the projection of the above modulation equations
in the plane aφ. These figures are drawn when the time delay parameter τ varies as mentioned above as far as
the preceding data is concerned. According to the drawn curves in Fig. 7a, b, one can see that the amplitude
and phase increase to a certain value, and then they have a steady manner which reflects the stability of the
considered system. On the other hand, the curves of Fig. 7c indicate that the motion is steady, where one can
obtain orientated spiral curves toward one point over time. The same conclusion can also be used to apply to
the curves of Fig. 8 except for the plotted curves in Fig. 8a which decrease till certain values and then have a
steady behavior. The deviation between the graphs (7) and (8) is due to the change of the ω value.

At the stationary situation of vibrations, we obtain ȧ � φ̇ � 0. Consequently, Eqs. (38) and (39) are then
developed

−Fsinφ � aω

(
μ + βcos ωτ − 1

ω
αsin ωτ − 1

4
a2μ

)
, (40)

−Fcosφ � aω

(
2σ +

3

4ω
a2λ +

1

ω
αcos ωτ + βsin ωτ

)
. (41)
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Fig. 8 a, b Represent the time histories of the amplitude a and the phase φ when ω � 11.926 at τ � 0.7 τ � 0.4 and τ � 0.1,
while c shows the aφ plane at the same values of ω and τ

The combination of Eqs. (40) and (41) yields

F2 � ω2a2
[(

μ + βcos ωτ − 1

ω
αsin ωτ − 1

4
a2μ

)2

+

(
2σ +

3

4ω
a2λ +

1

ω
αcos ωτ + βsin ωτ

)2
]

. (42)

In the structure of stability, the vibration amplitude a will be graphed against some restrictions of the
organization by Matlab software, and these figures will be demonstrated later in the following section. Addi-
tionally, the linearized stability can be scrutinized about the equilibrium points. Subsequently, we can accept
a stationary situation formation as:

a � a10 + a11 , φ � φ10 + φ11 ⇒ ȧ � ȧ11, φ̇ � φ̇11. (43)

Substituting Eq. (43) into Eqs. (38) and (39), through increasing for minor fluctuation a11 and φ11, and
maintaining the linear terms merely, the following matrix is generated as a result of this procedure

⎛

⎝ ȧ11

φ̇11

⎞

⎠ �
⎛

⎝
1
2μ + 1

2βcosωτ − 1
2ωαsinωτ − 3

8a
2μ F

2ωcosφ10

6
8ωaλ − f

2ωa210
cos φ10 − F

2ωa10
sin φ10

⎞

⎠

⎛

⎝a11

φ11

⎞

⎠. (44)

Grounded on the previous square matrix (Jacobin matrix), the stability structure of Eq. (44) may be
calculated via examining the Jacobin matrix eigenvalues.

∣
∣∣∣
n1 − λ n2
n3 n4 − λ

∣
∣∣∣ � 0, (45)
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Fig. 9 a, b Explore the time histories of the amplitude a1 and the state δ when ω � 3.252 at τ � 0.7 , 0.4, and 0.1, while
c illustrates the a1δ plane at the same values of ω and τ

where

n1 � 1

2
μ +

1

2
βcos ωτ − 1

2ω
αsin ωτ − 3

8
a2μ, (46)

n2 � −a

(
σ +

3

8ω
a2λ +

1

2ω
αcos ωτ +

1

2
βsin ωτ

)
, (47)

n3 � 3

4ω
aλ +

1

a

(
σ +

3

8ω
a2λ +

1

2ω
αcos ωτ +

1

2
βsin ωτ

)
, (48)

n4 � 1

2
μ +

1

2
βcos ωτ − 1

2ω
αsin ωτ − 1

8
a2μ. (49)

It follows the following characteristic

λ2 − (n1 + n4)λ + n1n4 − n2n3 � 0. (50)

Accordingly, the stability criteria can be expressed as:

n1 + n4 < 0, and n1n4 − n2n3 > 0. (51)

3.2 Case 3.2: Secondary resonance

In order to scrutinize the organization vibrations at secondary resonance situations, the homotopy scheme
specified by Eqs. (23) and (24) must be adapted as was given by Nayfeh [35]:

L(y) � ÿ + ω2y − Fcos �t, (52)

N (y) � −μẏ(1 − y2) − λy3 − αy(t − τ ) − β ẏ(t − τ ). (53)
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Fig. 10 a, b Explore the time histories of the amplitude a1 and the state δ when ω � 11.926 at τ � 0.7, 0.4, and 0.1, while
c illustrates the a1δ plane at the same values of ω and τ

Adhering to the similar process as outlined in the preceding section, we find

y0(T0, T1) � A(T1)e
iωT0 + A(T1)e

−iωT0 + η(ei�T0 + e−i�T0 ). (54)

where η � F
2(ω2−�2)

. It follows that the fundamental equation of first-order can be formulated as

(D2
0 + ω2)y1 � (−2iωD1A)e

iωT0 + μ{AiωeiωT0 + ηi�ei�T0 − A3iωe3iωT0 − η3i�e3i�T0

− η3i�ei�T0 − 2i AAη�ei�T0 − e2iωT0 (2A2iωηei�T0 + ηi�A2ei�T0

+ 2ηiωA2e−i�T0 − iη�A2e−i�T0 ) − eiωT0 (Aiωη2e2i�T0 + 2iη2�Ae2i�T0

+ 2η2iωA + iωA2A + η2iωAe−2i�T0 − 2iη2�Ae−2i�T0 )} + λ{A3e3iωT0

+ η3e3i�T0 + 6AAηei�T0 + 3η3ei�T0 + e2iωT0 + (3A2ηei�T0 + 3A2ηe−i�T0 )

+ eiωT0 (3Aη2e2i�T0 + 3A2A + 6Aη2 + 3Aη2e−2i�T0 )} + α(Aeiω(T0−τ )

+ ηei�(T0−τ )) + β(iωAeiω(T0−τ ) + i�ηei�(T0−τ )) + c.c. (55)

Subsequently, owing to the cubic nonlinearity, the secondary resonance situations can be categorized as:

1. Case: � � 1
3ω deals with the super-harmonic resonance,

2. Case: � � 3ω concerns the sub-harmonic resonance.

3.2.1 Super-harmonic resonance situation
(
� � 1

3ω
)

In order to examine the dynamical nature of the reflected scheme in the super-harmonic resonance circumstance,
we might introduce the detuning parameter σ1 to describe the closeness of � to 1

3ω as follows:

� � 1

3
(ω + ρσ1). (56)
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Fig. 11 a, b Explore the time histories of the amplitude a2 and the phase γ when ω � 3.252 at τ � 0.7, τ � 0.4, and τ � 0.1,
while c illustrates the a2γ plane at the same values of ω and τ.

Inserting Eq. (56) into Eq. (55), we get the solvability circumstance as:

− 2iω
dA

dt
+ A(iμω − 2iμωη2 + 6λη2 + αe−iωτ + iωβe−iωτ )

+ A2A(3λ − iμω) + η3eiσ1T1 (λ − iμ�) � 0. (57)

Following the same procedure as given in the previous section, one can obtain the amplitude-phase mod-
ulating equations as:

ȧ1 � a1μ

2
− 1

8
a31μ − a1η

2μ +
1

2
a1βcos ωτ − 1

2ω
a1αsin ωτ − η3μ�

ω
cosδ +

η3λ

ω
sinδ, (58)

δ̇ � σ1 +
3

8ω
a21λ +

3

ω
η2λ +

1

2ω
αcosωτ +

1

2
βsinωτ +

η3μ�

a1ω
sinδ +

η3λ

a1ω
cosδ. (59)

Based on the previous modulation Eqs. (58) and (59), the amplitude a1(t) and the phase δ(t) can be taken
as the solutions of these equations. These solutions are depicted graphically in portions (a) and (b) of Figs. 9
and 10 at ω � 3.252 and ω � 11.926, respectively. Parts (c) of these figures represent the projection of
the foregoing modulation equations into the plane a1δ. According to the curves presented in parts (a) of these
figures, one can observe that the three curves associated with the change of the decelerated time parameter
τ start from the initial point of a1 and then decrease gradually until they reach the stability behavior at the
end of the time duration. The time history of the phase δ increases with time τ � 0.7 and decreases when
τ � 0.4, and 0.1 as drawn in portions (b) of Figs. 9 and 10. The curves of portions (c) of these diagrams
approach toward one point at the end of time interval, which indicates that the behavior of a1 and δ have a
steady manner. When we compare the curves of Fig. 9 with the corresponding one of Fig. 10, one can find a
higher symmetry of these curves around the horizontal axis of Fig. 10 than Fig. 11. The reason is the good
influence of the frequency’s value on the investigated motion.
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Fig. 12 a, b Explore the time history of the amplitude a2 and the phase γ when ω � 11.926 at τ � 0.7, τ � 0.4, and τ � 0.1,
while c illustrates the a2γ plane at the same values of ω and τ .

3.3 Case (� � 3ω): Sub-harmonic resonance

Toward the examination of the scheme of transversal vibrations at sub-harmonic resonance, we presented the
detuning parameter σ2 to designate the nearness of the exterior excitation frequency � to 3ω as:

� � 3ω + 3ρσ2. (60)

Introducing Eq. (60) into Eq. (55), we obtain the following solvability circumstance:

(61)

−2iω
dA

dt
+ A

(
iμω − 2iμωη2 + 6λη2 + αe−iωτ + iωβe−iωτ

)

+ A2A (3λ − iμω) A
2
e3iσ2T1 (3ηλ +2iμωη − iη�μ) � 0 .

Using the same procedure, the amplitude-phase modulating equations of the reflected organization at sub-
harmonic resonance remain represented by

ȧ2 � a2μ

2
− 1

8
a32μ − a2η

2μ +
1

2
a2βcos ωτ − 1

2ω
a2αsin ωτ

− a22

(
1

2ω
ημ� − ημ

)
cos3γ +

3a22ηλ

2ω
sin3γ, (62)

γ̇ � σ2 +
3a22λ

8ω
+
3η2λ

ω
+
1

2
βsin ωτ +

1

2ω
αcos ωτ

+a2

(
1

2ω
ημ� − ημ

)
sin3γ +

3a2ηλ

2ω
cos3γ.

(63)

The solutions of Eqs. (62) and (63) are drawn in Figs. 11 and 12 to reveal the time histories of a2 and γ
as graphed in parts (a) and (b), respectively. The projection of these equations in the plane a2γ is plotted in
portions (c) of these figures. The above simulation of the previous subsection is satisfied here.
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4 Concluding remarks

The objective of several investigators in nonlinear differential equations is to arrive at theoretical and numerical
solutions. Analyzing an approximate solution could be accomplished in a number of approaches in reality. The
goal of this work is to look at a time-delayed control system for suppressing nonlinear VdPD. In a one-degree-
of-freedom organization, the governed equation of motion can be reduced to an ordinary nonlinear differential
equation. Despite the fact that the elimination of the secular terms produces a fine solution, unfortunately, the
HPM results in a uniform approximate solution, which does not match the numerical solution provided by
RK4 approach. As a result, the damping behavior of the needed solution is treated by a modified HPM. To
validate the latter solution, numerical verification is used to back up the new analytic approximate solution.
The comparison of the several solutions reveals a high level of regularity, confirming the technique’s extreme
accuracy. In addition, the mathematical analysis and solution for resonance cases are derived. These analyses
include both the super-harmonic resonance situation (� ∼� ω/3) and the sub-harmonic resonance circumstance
(� ∼� 3ω). The graphical representations of the analytic approximate solution and the different modulation
equations are presented to illustrate the impact of various restrictions on the inspected motion. It is noted
that the motion is stable and unrestricted of chaos. Since the employed method is applied to the investigated
dynamical system, the results are considered to be new and original.
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