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Abstract. We derive an asymptotic equation that describes the propagation of weakly
nonlinear surface waves on a tangential discontinuity in incompressible magnetohydro-
dynamics. The equation is similar to, but simpler than, previously derived asymptotic
equations for weakly nonlinear Rayleigh waves in elasticity, and is identical to a model
equation for nonlinear Rayleigh waves proposed by Hamilton et al. The most interesting
feature of the surface waves is that their nonlinear self-interaction is nonlocal. As a result
of this nonlocal nonlinearity, smooth solutions break down in finite time, and appear to
form cusps.

1. Introduction. Surface wave solutions of hyperbolic systems of partial differential
equations on a half-space are waves that propagate along the boundary of the half-space
and decay exponentially into the interior. Rayleigh waves in elasticity are an important
physical example. Surface waves may also propagate on discontinuities, such as contact
discontinuities or shock waves, in solutions of systems of conservation laws. The purpose
of this paper is to study a prototype problem for nonlinear surface wave propagation on
a discontinuity, namely the propagation of surface waves on a tangential discontinuity in
magnetohydrodynamics (MHD).

In addition to the specific aim of studying MHD surface waves, a general aim of
this work is the analysis of nonlinear boundary value and discontinuity problems for
conservation laws that satisfy a Lopatinski condition, which is necessary for local well-
posedness, but not a uniform Lopatinski condition, which is sufficient for local well-
posedness. As we explain in Sec. 2, the failure of the uniform Lopatinski condition is
typically caused by the presence of surface waves.
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We consider incompressible MHD for simplicity. The corresponding conservation laws
are not hyperbolic, but a similar analysis would apply to the hyperbolic compressible
MHD equations, and to other systems of conservation laws that have surface wave so-
lutions. For example, Benzoni-Gavage [4] observed that exponentially decaying surface
waves can appear on propagating phase boundaries in a van der Waals fluid.

A tangential discontinuity in MHD is a surface across which there are jumps in the
tangential components of the fluid velocity and the magnetic field, and the normal com-
ponent of the magnetic field vanishes. We denote appropriately nondimensionalized fluid
velocities and magnetic fields on either side of the tangential discontinuity by v1*1 and
B±, respectively. A planar tangential discontinuity is linearly stable [13] if

| |v+ - v~|2 < |B+|2 -f |B-|2. (1.1)

For example, if the velocity is continuous, then the tangential discontinuity is stable;
and if the velocity is discontinuous, then the tangential discontinuity is subject to a
Kelvin-Helmholtz instability when the magnetic field is sufficiently small compared with
the jump in the tangential velocity, but a sufficiently large magnetic field stabilizes the
discontinuity.

A surface wave can propagate along the tangential discontinuity when it is linearly
stable. We measure the amplitude of the surface wave by the normalized displacement
</?(:r, t) of the discontinuity in a reference frame moving with the linearized phase velocity
of the wave. Our main result is that the displacement of a weakly nonlinear surface wave
satisfies a "nonlocal Hamilton-Jacobi equation"

<pt + i (H [(H [f])2})xx + H M Vxx = 0, (1.2)
where HI denotes the Hilbert transform. As we discuss below, Hamilton et al. [6] proposed
this equation as a model equation for nonlinear Rayleigh waves, and it is interesting that

exactly their model equation arises for surface waves on a tangential discontinuity in
incompressible MHD.

Equation (1.2) has a different structure from well-known nonlocal evolution equations
for nonlinear dispersive waves, such as the Benjamin-Ono equation, whose potential form
is

<Pt + 2 V2 + ® W\xx = 0- (1-3)
Equation (1.2) is nondispersive and the nonlinear term is a nonlocal function of the
solution ip, whereas (1.3) is dispersive and the linear dispersive term is a nonlocal function
of tp.

We may write (1.2) in the spectral form [1, 6]

/+oo A(fc — I, l)i/)(k — /, t)ip(l, t) dl = 0, (1-4)
-CO

where ip(k,t) is the Fourier transform of the displacement <p(x,t), and the kernel A is
given by

2\k + l\\k\\l\
( ' ) |fc + f| + |]fc| + |J|- ( '5)

In fact, the asymptotic expansion leads directly to the spectral form of the equation.
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Previous studies of nonlinear surface waves on discontinuities include the work of
Artola and Majda [2, 3] for compressible vortex sheets, and the work of Majda and
Rosales [19, 20] for detonation waves. The surface waves in these problems radiate
bulk waves into the interior of the fluid, and thus they differ qualitatively from genuine
surface waves, such as Rayleigh waves, whose energy is localized at the surface and decays
exponentially away from it. We discuss the distinction between these radiative surface
waves and genuine surface waves further in the next section. As far as we know, this work
is the first study of nonlinear, exponentially decaying surface waves on a discontinuity

In the compressible vortex-sheet problem, Artola and Majda [2] showed that the dis-
placement (p(x,t) of the vortex sheet satisfies a local Hamilton-Jacobi equation,

ft + \pl = 0. (1.6)

In this problem, there are three different surface wave modes. Artola and Majda [3] also
derived a nonlocal equation that describes resonant interactions between these modes,
and showed that it leads to a nonlinear instability in the vortex sheet. The origin of this
nonlocality is the resonant interaction of the bulk waves generated by different surface
waves in the interior of the fluid. Here we consider the propagation of a single weakly
nonlinear surface wave, and we do not analyze the interaction between different surface
waves.

In the detonation wave problem, Majda and Rosales [19, 20] obtained a nonlocal
equation for the perturbation <p(x,t) in the location of the detonation wave associated
with a single surface wave,

1 f°°ft + ^fl + cxj ipx(x + (3s)tpxx(x + s) ds = 0. (1.7)

This equation has some similarities with (1.2), but its detailed structure and the qualita-
tive properties of its solutions, such as the nature of their singularities, are not the same.
Moreover, the physical origin of the nonlocality is different: the surface wave radiates
bulk waves into the interior of the fluid, and the resonant interaction of these waves
in the interior of the fluid generates another bulk wave, which propagates back to the
detonation wave and disturbs it [24].

Asymptotic equations describing the propagation of weakly nonlinear Rayleigh waves
on a half-space were derived in [5, 6, 7, 10, 11, 14, 15, 22, 23, 29], and the references
cited there. Similar equations, in both spectral and spatial forms, for surface waves on
a half-space governed by general first order hyperbolic systems were derived in [9]. The
asymptotic equation for weakly nonlinear Rayleigh waves on a half-space occupied by
an isotropic, hyperelastic solid may be written in the spectral form (1.4) with the kernel
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(see [5, 22], for example)

a\k + l\\k\\l\ a\k + l\\k\\l\
\k + l\ + r\k\ + r\l\ r\k + l\ + \k\ + r\l\

ot\k + Z||fc||l| p\k + l\
r\k + l\ + r\k\ + \l\ r|fc + Z| + |fc| +

p\k + l\\k\\l\ p\k + l\\k\\l\
\k + l\ + r\k\ + |l| \k + Z| + |A:| + r |.

7|* + i||fc||Z|
\k + l\ + \k\ + |Z|

Here, r = ct/ci is the ratio of the solid's transverse and longitudinal wave speeds, Ct and
c; respectively, and a, /?, 7 are real constants. The kernel (1.8) reduces to (1.5) when
a = (3 l== 0, which is what led Hamilton et. al. [6] to propose (1.2) as a model equation
for nonlinear Rayleigh waves.

If the governing equation of a nonlinear wave is Hamiltonian, then we expect that
an asymptotic equation for the wave is also Hamiltonian, provided that we expand with
respect to canonical variables [21]. The Hamiltonian structure of the asymptotic equation
for nonlinear Rayleigh waves was observed in [7], and the Hamiltonian structure of the
asymptotic equations for general Hamiltonian surface waves is discussed in [1]. The
fact that the asymptotic equation is Hamiltonian provides a useful check on the lengthy
algebra required to derive it from the system of MHD equations. It should be possible
to derive the same equation by expansion of an appropriate surface-wave Hamiltonian,
but we do not follow that approach here.

A common theme in nonlinear wave propagation is the formation of finite-time sin-
gularities. Smooth solutions of the local Hamilton-Jacobi equation (1.6) typically break
down in finite time. The resulting singularities correspond to the formation of corners, or
"kinks," in the free surface, as in the case of compressible vortex sheets [2, 3], Solutions
of (1.7) also form corners, something that is interpreted in [19, 20] as the formation of
Mach stems on the detonation wave.

The nonlinear distortion of Rayleigh waves has been studied extensively (see [6], [11],
[22], and the references cited there). Smooth solutions of (1.2), as well as of the cor-
responding equation for nonlinear Rayleigh waves, also appear to break down in finite
time. In Fig. 1, we show a numerical solution of (1.2) with cosine initial data,

ip(x,Q) = cos2ttx, (1.9)

computed using a spectral viscosity method [28]. The solution is similar to, but more
resolved than, the one shown in [6]. We also show in Fig. 1 a plot of

V = ~— J U[v\ipxdx (1-10)

as a function of time. This quantity is conserved for smooth solutions of (1.2). The
conservation of V is associated with the invariance of (1.2) under spatial translations, so
we may interpret V as the momentum of the wave. A singularity forms at f « 0.5, after
which the momentum decreases. The solution appears to remain continuous, but a cusp
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forms where its derivative blows up, unlike solutions of (1.6) and (1.7) whose derivatives
remain essentially bounded.

(f)

1000 2000 3000 4000 5000
k

Fig. 1. A spectral-viscosity solution of (1.2) with the harmonic ini-
tial data (1.9): (a) the solution <p at time t = 1 (the initial data is
dashed); (b) the derivative tpx at time t = 1; (c) the Hilbert trans-
form H[v] of the solution at time t = 1 (the initial data is dashed);
(d) the derivative H[^x] of the Hilbert transform at t — 1; (e) the
momentum V defined in (1.10) as a function of time; (f) the spec-
trum log |t)| at time t = 1, where ip gives the Fourier coefficients
of ip. We use the Fourier modes e2nlkx with |fc| < N, where N =
4096. In the spectral viscosity method, we use a small viscous dis-
sipation with coefficient of viscosity 1 /N, that acts on the Fourier
modes with |fc| > 2V~N.
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In view of the fact that the Hilbert transform of a jump discontinuity contains a
logarithmic singularity, the appearance of cusps is not surprising, but the precise nature
of the singularities, and the extension of smooth solutions by weak solutions after a
singularity forms, is not well understood. Moreover, it is not entirely clear that the
solutions obtained by a vanishing viscosity method are physically appropriate once they
develop a singularity. It is conceivable that, instead, the discontinuity "folds over,"
leading to some kind of multivalued solution for ip. We plan to study these questions
further in later work.

The organization of this paper is as follows. In Sec. 2, we discuss Lopatinski conditions
and their relationship with surface waves. In Sec. 3, we summarize the MHD equations
and the jump conditions across a tangential discontinuity. In Sec. 4, we describe the
small-amplitude, long-time asymptotic solution for weakly nonlinear surface waves. In
Sec. 5, we solve the leading-order perturbation equations for the surface waves. This
gives an eigenvalue problem for the wave velocity, and a solution for the surface wave
that contains an arbitrary wave profile function, which describes the displacement of the
tangential discontinuity carried by the surface wave. In Sec. 6, we solve the second-order
perturbation equations in the interior of the fluid. In Sec. 7, we use this solution in the
second-order jump conditions. The imposition of solvability conditions on the resulting
singular system of equations leads to the asymptotic equation (1.4)-(1.5) for the wave
profile function introduced in Sec. 4. Finally, in Sec. 8, we summarize the results of the
asymptotic expansion.

2. Lopatinski conditions. We consider an initial-boundary value problem for a
linear, constant coefficient hyperbolic system of PDEs in a two-dimensional half-space,

ut + Aux + Buy = 0 y > 0, (2-1)
Cu = 0 y = 0, (2.2)
u = uq t = 0. (2-3)

Here, u{x, y, t) e Mm, A, B are m x m matrices, and C is a p x m matrix, where p is the
number of boundary conditions.

A basic question concerning the half-space problem (2.1)-(2.3) is what boundary con-
ditions lead to well-posed problems. The well-posedness theory for linear, hyperbolic,
half-space problems was developed by Kreiss [12] and Sakamoto [25, 26]; see [8, 18, 27] for
surveys and additional references. This theory is rather subtle, and we will not discuss
it in detail; here we only want to explain some of its main features to put our work in an
appropriate context.

In order to study the well-posedness of (2.1)—(2.3), we look for Fourier mode solutions
of (2.1) of the form

u(x,y,t) =ei^t+^+vy)r where r G C~, £ G R, 77 € C+. (2.4)

These modes grow in time, oscillate tangent to the boundary, and decay in depth.1 For
given (r, £) E C~ x R, one finds that r £ E{t, £), where is a linear subspace of

^For simplicity, we assume that there are no generalized eigenvalues for 77 that lead to additional
polynomial factors in y.
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Rm. This subspace consists of the boundary values of solutions of (2.1) that are linear
combinations of the Fourier modes (2.4). It can be shown that the size of the boundary-
matrix C restricted to E(t, £) does not depend on (r, £) £ C- x R, and that a necessary
condition for well-posedness is that this matrix is square (meaning that dimZ?(r, £) = p).

The Lopatinski condition for (2.1)—(2.3) states that

det C|£(T£) / 0 for all (r,£) £ C~ x R. (2-5)

If this condition does not hold, then there is a nontrivial solution of the PDE (2.1) and
the boundary condition (2.2) that grows in time. Since the problem is scale invariant, we
may rescale this solution to obtain solutions that grow arbitrarily quickly in time, and,
as a result, the problem is ill-posed with respect to any Sobolev norm. Thus, (2.5) is a
necessary condition for well-posedness.

The uniform Lopatinski condition for (2.1)-(2.3) states that there exists a constant
7 > 0 such that

< 7 for all (r,£) e C~ x R with |r|2 + |£|2 = 1. (2.6)

This uniform condition is stronger than (2.5). In particular, it rules out the possibility
of surface waves, which occur when

det C\E(rQ = 0 for some (r, £) £ R x R. (2.7)

If (2.7) holds, then (2.6) cannot hold because the matrix norm in (2.6) tends to infinity
as Imr ^ 0".

A harmonic surface wave is a superposition of the Fourier modes (2.4) with r, £ el.
We distinguish between genuine surface waves, in which 77 £ C+ for every term in the
superposition, and radiating surface waves in which at least one rj £ R. The genuine
surface wave solutions decay exponentially away from the surface, whereas the radiating
surface wave solutions do not decay and are coupled with bulk waves in the interior of
the half-space.

The simplest example of this distinction is for the wave equation,

^xx "b ^yy •

Modes with "subsonic" velocity M < 1 along the boundary y = 0,

u(x, y, t) = eK*-Mt)-Vi-M*y^

decay away from the boundary, whereas modes with "supersonic" velocity M > 1,

U(x,y,t) = eH*-Mt±y/M*-ly)t

oscillate away from the boundary. A simple example of a boundary condition for the wave
equation that leads to radiating surface waves is discussed in [18, 19, 27]. A Rayleigh
wave in linear elasticity is a superposition of longitudinal and transverse waves that
satisfies stress-free boundary conditions. The Rayleigh wave speed is smaller than both
the longitudinal and transverse wave speeds; hence the wave decays exponentially away
from the surface.

The case of a subsonic surface wave, whose interior structure is determined by solving
an elliptic equation, is fundamentally different from that of a supersonic wave, whose
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interior structure is determined by solving a hyperbolic equation. The ellipticity of the
equations for the structure of a subsonic surface wave is related physically to the fact
that, in a reference frame moving with the surface wave, a perturbation at one point of
the surface can generate bulk waves that influence every other point of the surface. The
appearance of the nonlocal Hilbert transform in (1.2) is directly related to the ellipticity
of the interior equations for the surface wave structure, since the Hilbert transform maps
the normal derivative of the boundary values of solution of Laplace's equation in a half-
space to its tangential derivative. Of course, more complicated phenomena may arise,
especially in anisotropic systems; for example, we may have transonic surface waves that
are subsonic with respect to some bulk waves, and supersonic with respect to others.

The well-posedness theory for half-space problems was extended to free-boundary
problems for a discontinuity by Majda [16]. He related the discontinuity problem to
a half-space problem by adding a new variable that describes the displacement of the
discontinuity, and making a change of independent variables that "flattens" the discon-
tinuity. The result is a system of hyperbolic PDEs that is coupled with an equation for
the displacement of the discontinuity. Majda formulated analogs of the Lopatinski and
uniform Lopatinski conditions for discontinuity problems, and proved [17] a short-time,
nonlinear existence and stability result for Lax shocks in solutions of hyperbolic conser-
vation laws that satisfy the uniform Lopatinski condition (see [18] and [27] for further
discussion).

A general theory that encompasses the stability of Lax shocks, contact discontinuities,
and non-Lax shocks in hyperbolic conservation laws, as well as the stability of discontinu-
ities in conservation laws that are not hyperbolic, is lacking. In particular, the nonlinear
evolution of discontinuities that are Lopatinski stable but not uniformly Lopatinski sta-
ble is poorly understood. One aim of this work is to study some of the phenomena that
can arise in this case in the context of a concrete physical system.

3. The MHD equations. In suitably nondimensionalized variables, the incompress-
ible MHD equations are

vt + div (vg)v — B ® B + pi) = 0,

Bt — curl (v x B) = 0, (3.1)
div v = 0.

Here, v is the velocity, B is the magnetic field, and p is the total pressure. In addition,
the magnetic field must satisfy the constraint

div B = 0,

which is preserved by the evolution in time if it is satisfied by the initial data.
We consider the case of two space dimensions, and write

x = {u,v)T, B = (F, G)T, u= (u,v,F:G,p)T. (3.2)

The MHD equations (3.1) may be written as a system of conservation laws of the form

h(u)t + /(u)x +5(u)y = 0, (3.3)
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where

/ u \
v

h( u) = F
G

/(u) =

/ u2 - F2 + p \
uv — FG

0
uG — vF

\ u !

f(u) =

/ uv- FG \
v2 — G2 + p

vF — uG
0

V V )\ 0 /
The jump conditions for (3.3) across a discontinuity located at y = C{x,t) are

Ct [Mu)] + Cx [/(u)] = [g(u)], (3.4)

where [•] denotes the jump across the discontinuity. In addition, the divergence free
constraint,

Fx + Gy = 0,
implies that the magnetic field must satisfy

(AF] = [G\.
We consider wave propagation through an unperturbed state

u(0) = (u0,v0,F0,G0,P0)t

that consists of a stationary tangential discontinuity located at y = 0. Thus, we have

(0) = / u(0) if V < 0.
U(°H- if y > 0,

VT ' =

where u'0^ = (uj, Fq , G^,p^)T are constant states. The jump conditions (3.4)
imply that

[s(u(0))] = 0, (3.5)
where

[5(u(°))]=ff(u^)-5(u(°)-).

It follows that the normal components of the velocity and magnetic field are continu-
ous across the discontinuity. For a tangential discontinuity, these components are zero,
meaning that

= 0, Gq = 0.
The jump conditions (3.5) are then equivalent to

bo] = o,
so that the total pressure is constant across the discontinuity. We may assume without
loss of generality that p^ = 0, in which case the states on either side of the discontinuity
are given by

u<°* = (h±,0,Fo±,0,0)T. (3.6)
We will consider the propagation of surface waves that are localized near the tangential

discontinuity. The corresponding solutions must satisfy the decay conditions

lim u(x, y, t) = u'0^. (3.7)
y—»±oo
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4. The asymptotic expansion. We suppose that the perturbed tangential discon-
tinuity has a slope of the order e, where e is a small parameter. With respect to dimen-
sionless variables in which the wavelength of the perturbation and the velocity of the
surface wave are of the order one, the time scale for quadratically nonlinear effects to
significantly alter the wave profile is of the order e"1. We therefore introduce a "slow"
time variable r = et. We also introduce a spatial variable 9 = x — \t in a reference frame
moving with the surface wave. Here, A is the linearized phase velocity of the wave, which
we will determine as part of the solution (see (5.14)).

We write the perturbed location of the tangential discontinuity as

y = tzip{0,T\£),

and define a new independent variable

rj = y- £tp{0,T;e),

so that the perturbed discontinuity is located at r] = 0. We look for an asymptotic
expansion of u and if as e —► 0 of the form

u±(6>, 77, r; e) = u(0)± + eu*1*^, rj, r) + e2u(2)±(6>, r/, r) + 0(e3),

<p(6,t;£) = <p{1)(6,t) + £ip{2\6,T) + 0(e2),

where u = u+ in 77 > 0 and u = u~ in r) < 0.
Using the method of multiple scales, we expand the partial derivatives with respect

to the original time and space variables as

dt = -Ade + £(dT + A(fedn) - eViA,

8y = dry

We use these expansions in (3.3), Taylor expand the result with respect to £, and equate
coefficients of e°and e1 to zero. Introducing the matrices

A± = V/( u(0)±), B± = V5(u(0)±), C± = Vh{ u(0)±),

we find that, in the interior, the asymptotic solution satisfies

[A - AC)Ug1) + Su^1' = 0, (4.1)

(A - AC)uf + Buf - - {CuW - <pW(A - AC)uW (4.2)

+ IV2(/ - Ah) ■ (u« u«)* + 1v25 • (u'1), u'1)),! ,

where we drop the zb-superscripts to simplify the notation.
Expanding the jump condition in (3.4), with £ = £ip, and equating coefficients of e

and e2, we find that the solutions of the previous equations satisfy the following jump



NONLINEAR SURFACE WAVES 461

conditions on r/ = 0:

[fiu(1)] - [/(u(0)) - Aft(u(°))] = 0, (4.3)

[Bu'2»] - <42) /(u(0)) - Aft(u<°>) = ipW h{u(°>) (4.4)

+<Pe) (A-AC)u(1) -i VV (u(1),u(1))

In the rest of this paper, we solve equations (4.1)-(4.4).

5. The first-order equations. The first-order interior equations (4.1), in r] > 0 and
r] < 0, are

(A± - AC^Ug1^ + J5±u^± = 0. (5.1)

The first-order jump conditions (4.3) are

Bu(1) /(u(0)) - A/i(u(0)) =0. (5.2)

Introducing the Fourier transforms

1 r+oo
U ̂ (k,r),r) = —J u ̂ (e,rj,r)e-ike de,

1 r+oo
ip {k, t) = — J (p(1){0,T)e~lk9 do,

and Fourier transforming (5.1)—(5.2) with respect to 9, we find that

ik(A± - AC±)U(1>± + = 0, (5.3)

|BU(1)] - ikipw f/(u(0)) - A/i(u(0))] = 0. (5.4)

The boundary conditions (3.7) imply that

lim U^1^±(fc,r?, r) = 0. (5.5)
77—>±oo

The general solution of (5.3) is

U^1^t(fc, 77, r) = a±(k, r)e_fc'?R± + b±(k, r)efcT?R±, (5.6)

where a±(k,r) and b±(k,r) are arbitrary complex-valued functions, the bar denotes a
complex conjugate, and the eigenvector R± satisfies

[i (A± - AC±) - B±] R± = 0. (5.7)
After a convenient choice of normalization, this eigenvector is given explicitly by

R± - (c± »c± -Fo^-tf?,^)2 - (F±)2)T, (5.8)

where
= A — Uq. (5.9)



462 GIUSEPPE ALI and JOHN K. HUNTER

Imposing the condition in (5.5) on (5.6), we find that

h it u ^ n
(5.10)Uv»(k,v,T) = b++{k'T\ekv^ iffc<0'

| a+(k, r)e ^R-1-, if k > 0,

U(»-(t,,,r) - "<»•v ' ; 1 b~(k,T)ek,iR , if ifc > 0. (5.11)

Next, we use the solution (5.10)—(5.11) in the jump condition (5.4). First, we consider
the case k > 0. The resulting equations may be written as a system of linear equations
for the unknowns (a+ ,b~ ,ktp^)\

(b+~R,+,-B-R~ ,-i f/(u(0)) - A/i,(u(0))|) ( b" |=0.
v 1 J V fcV(1) /

After some algebra, we find that this system is equivalent to

/ F+F- - c+c- F+F~ - c+c- 0
(c+)2-(F0+)2 -(c-)2 + (F0-)2 0

^o+ F0- F+ - F0-
\ C+ c -u£ + u0 )

= 0. (5.12)

This system has a nontrivial solution if

(c+)2 + (c-)2 = (F+)2 + (F0-)2. (5.13)

Using (5.9) in (5.13) and simplifying the result, we get a quadratic equation for the wave
velocity A,

2A2 - 2 («+ + <) A + (u+)2 + (Wo")2 = (F+f + (F0~)2 . (5.14)

This equation has two distinct real roots for A if

l-(u+-u-)2<(F0+)2 + (F0+)\ (5.15)

This condition is equivalent to the stability condition in (1.1). We assume that (5.15)
holds, and choose A to be one of the roots of (5.14). The solution of (5.12) is then

a+ = —kip(l\ b~ = kip

For k < 0, we proceed in a similar way, solving an algebraic system for the unknowns
(b+ ,a~ ,ktp^):

(JB+R+,-B"R",-i /(u(0))-A/i(u(0)) )
b+
a~ |=0.

kip

As before, this system has a nontrivial solution if A is a root of (5.14). The solution is
given by

b+ = ktp^\ a~ = —kip^.
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Summarizing these results, we have shown that when A satisfies (5.14), the solution
of (5.3)-(5.5) is given by

u <■>-(*,„,t) = "<0•
kip^ \k1r)e ri'R. , if k > 0,

U{1*(k n t) = I kl/>(1)(k>T)ek'7R+> if k < 0,
1 ,V' ' \ -fcV(1)(fc,r)e"fc,?R+, if fe > 0,

where V^1\k,r) is an arbitrary function of integration. We may write this solution in a
more compact form as

U(1)±(fc,7?,r) = T|fc|^(1)(fc,r)e=Flfc|,'ReR± - ik^l\k,r)e^k^ .

Here, ReR^*1 and ImR± denote the real and imaginary parts of R1*1, respectively. Ex-
plicitly, from (5.8), we have

ReR± = (c±,0,-Fo±,0,(c±)2-(Fo±)2)T,

IinR"*1 = (0,^,0, — F^,0)T .

Inverting the Fourier transform, we find that the first-order solution is given by

/+oo U(1)±(fc,7?,r)e^(ifc (5.16)
-OO

= =Fp±(0,??,r)ReR± -ix±(6»,r?,r)ImR±,

where

/-too \k\^\k,T)elkd^k^dk, (5.17)
-OO

/+oo k^\k,r)eike^k^dk. (5.18)
-oo

This solution depends on the arbitrary function (k,r), which describes the profile of
the surface wave. In the next two sections, we derive an evolution equation for this func-
tion by imposing solvability conditions on the equations for the second-order corrections
to this first-order solution.

6. The second-order interior equations. The second-order interior equations
(4.2) are

{A - AC)Ug2) + Buf = p, (6.1)
where

p = -{CuW-<p£\A-\C)uW (6.2)

+ IV2(/ - A ft) • (u(1),u(1))e + ■ („«,} .
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Introducing the Fourier transforms
i r + oo

U(2)(M,r) = — / u<2>(0,7hT)e-ik9d0, (6.3)
^ J — OO

1 +
P(M,t) = 7T P{0,r],T)e~lke do, (6.4)

^ J — oo

and Fourier transforming (6.1) with respect to 9, we get

ifc(A - AC)U(2) + SU[,2) = P. (6.5)

Restoring the ±-superscripts for a moment, we see from (3.7) and (6.3) that the solution
of (6.5) must satisfy the decay condition

lim U'2^±(fc, r], t) = 0. (6.6)
ry—>±oo

In order to solve (6.5), we introduce a left eigenvector L such that

L • [i(4 - AC) — B\ = 0.

We normalize L so that

LBR = LBR = 1. (6.7)

It follows from the equations satisfied by L and R that

L • £?R = L ■ BR = 0. (6.8)

Explicitly, we have

r 1 f.^iFoFo
L-2(c2-i3)

We also introduce a linear subspace consisting of the vectors S such that

L ■ BS = L • BS = 0. (6.9)

This subspace is complementary to the subspace spanned by {R, R}.
We write the solution of (6.5) in the form

U(2^(fc, 77, r) = S(k, 77, t) + a(k, rj, r)R + b(k, 77, r)R, (6.10)

where S satisfies (6.9). We will solve for the vector-valued function S and the scalar-
valued functions a, b. Using (6.10) in (6.5), and rewriting the result with the help of
(5.7), we find that

ik(A — AC)S + BS,) + (av + ka) BR + (bv — kb) BH = P. (6-11)

First, we solve (6.11) for a and b. Left multiplying (6.11) by L and L, and using (6.8)
and (6.9), we find that

av + ka = L P,
bn — kb = L ■ P.
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The solutions of these equations are

a(k,rj,r) = e~kr} ̂ ao(k, t) + J L ■ P(k,rj',r)ekv , (6-12)

b(k, t],t) = ekr> ̂b0(k,T) + J L ■ P(k, rj', T)e~kr> dr/'^j , (6.13)

where ao(k,r), bo(k,r) are arbitrary functions of integration.
Next, we solve (6.11) for S. Introducing a convenient basis of the complementary

space defined by (6.9), we write

/  2\ ^
S=(.s"s!-%'fb(^)s2'0j ■ (lil4>

where the functions si, s2, S3 are the components of S. We let Lj, with j = 1,2,3, be
vectors such that

Lj ■ BTL = Lj ■ BR = 0, iLj ■ (A — AC)S = Sj. (6.15)

They are given explicitly by

i ( 2 cF0 n \T
Li = "5 B2 c'0' r->0,Fo-cuo ,c2 _ F2 A

T - /nnn iF0(c-up) \T
2 ' A(c2-F2)' J '

•c . T

= c2 _ pi 0, ————0, -Fq(c - u0)

Left multiplying (6.11) by Lj, and using (6.15) in the result, we obtain that

ks 1 - is2,, = Li P,

ks2 = L2 • P
. F02 - cu0

ks3 - 1— -s2„ = L3 • P.
F0(c-u0)

The solution of these equations is

iL>p+i<
1,

Sl — 7L1 • P + 7?L2 • Pr,,

s2 = -L2 • P (6.16)
/C

1T p , 1 Fo - CUQ
53 - k fc2 F0(c — u0) '

The solution for S is then given by (6.14) and (6.16).
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To write out explicit expressions for the terms in this solution, it is convenient to
restore the ±-superscripts. Using (5.16) in (6.2), we find after some algebra that

( ±c±p$ T ((Ftf)2 + c±u

-((c±)2-^0±)2) [((p±)2)e±i(X±P±)rl

ic±X$ + i ((c±)2 - (F^)2)

P± = =Fi ((c±)2 - ()2) [{x±P±)e ± i ((X±)2)r '

-^Xr
V TC^V

In order to compute the Fourier transform P* of p , we use the following equations
which follow from (5.17)—(5.18):

1 Z' + OO

— / Xre~^^ = fcV'[1)eT|fc|?7,
J — oo

1 /'+00
— / P±e~iked6 = \k\^T1]e^\

J —oo
i Z' + OO Z' + OO

- / / (fc — Z)/|Z|'i/'(1)(fc — Z)i^(1)(Z)e=Fl'|r' dl,
!?r i-OO i-oo

1 /- + 00 /• + «>

- <Pg Pve~ike d8 = / {k-l)l2^x\k-l)^l\l)e^ dl,
i7r 7-00 ./-OO

/+°° [((^)2),±'(xV)J C-4fc0dfl
J —OO

/+oo (|/c - 2||!| - (jfc - 00 |^(1)(fc - 0V,(1)(0e=F(|fe-'l+|l|)'J dl,
-oo

t lr [(x±^)®±i((x±)2)je_ifcs^

2?r
1

27T

1
27T

/+oo (|fc - Z|i - (fc - 0|i|) lip^\k - 0V(1)(0eT(|fe"'l+|i|)"^-
-oo

Here, we do not show explicitly the dependence of functions on the slow time variable r
to simplify the notation.

We use (6.17) in (6.4), and simplify the result with the help of these equations. Using
the resulting expression for P^1 in (6.12), (6.13) and (6.16), we obtain after some algebra
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that

a± = e

r±ao / \
± / l2if)^\k - 0^(1)(0 - l) dl

ro
± f \{k -l±\k- l\)lipw{k - (e2lr> - 1) dl

J =F°o ^

u± _ „kv fu± _ j gCgo )  / -(fc±|/c|)r; _ i \ / (1) /g i g\
6 \° 2A((c±F - (Ff?) V ( j

± / ZV1^ - ZWu,(0 I e~^ 'v -I) dl
' q= oo

/>±00

i

sf = ±4Ct!" + SS! (6.20)
/*+ooC"T

[ l2ip^\k-l)xp{1\l)(e-ik-l)v-l)
J-poo ^ '

/•ioo -1 >

/ _(fc _ I T \k - l\)hl>W(k - l)tl>{1\l) (e~2[r) - 1) dl

(c*)* + (F±)2 \k\
(c±)2 - (F±)* k

/-t-oo ((fc - Oi - Ifc - l\\l\) ltp(1){k - Z)V(1)(Oe=F(|fc~^l+|i|)77 dZ,
-oo

„±_ (i?0±)2(c±-4) Tlfch -/.(I) (621)
" ~ A((c*)* - (F^)e *' • (6'21)

s± — Tij jo (6 22)
S3 -^(c±)2_(i?±)2 fce ipr (6.22)

r± p+oo

+-T" / ((k-l)l- Ik-imi^Uk-lU^me^-^^dl.
k J-oo

Thus, the Fourier transform (6.3) of the solution of the second-order interior equations
(6.1)-(6.2) is given by (6.10) and (6.14), where the coefficients are given by (6.18)-(6.22).

The function depends on ij only through the exponentials of T\k\v and
(|fc — l\ + \l\) r), so that

lim S±(fc, ?y, r) = 0.
T]—>±00

Thus, the function U'2^ in (6.10) satisfies the decay condition (6.6) if and only if

lim a±(k,r],r) = 0, (6.23)
T]—>±00

lim b±(k, 77, r) = 0. (6-24)
77—>±00

If k < 0, the conditions (6.23) for a and (6.24) for b+ are automatically satisfied,
while the conditions (6.23) for a+ and (6.24) for b~ determine the functions aj and bg ,
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respectively. The result is that

Ac+ + 2(F+)2 '+°°—
p-roc

2A((c+)2 - (F0+)2) ̂  J0 { ,v W
ro i

./-oo 2

f ' +L °° 'v"'(t" w"'")*
+ ro i

/ -(fc - I + \k - Z|)ZV(1)(fc - 0V»(1)(0 di-
J—oo

In a similar way, if k > 0, the conditions (6.23) for a and (6.24) for 6+ determine a0
and 6q , with the result that

_ Ac + 2(F0 )
tin — i

bt = -

r°
ipM + / l2^{1){k-l)ip(1)(l)dl

J —oo
r-too -I

/ «(* ~~' ~ " W(1)(* - 0V'(1)(0di,Jo 2
Ac+ + 2(F0+)2 ^ + f ^k _ ^(1) ^ dl

J — oo

2A((c-)2 - (F0")2)
-j-oo

+

0 2A((c+)2 - (F0+)2)
r+oo 1

+ / -(fci l - \k - l\)h/>W(k - Z)V(1)(0 dl.
Jo 2

After some algebra, we may write the corresponding solutions for a1*1 and b± as

e~kv if k < 0,ao + J_~V0^(k-l)^(l)dl
ia~ekr]ij}^ + flt/>^(k — l)ip^(l) dl if k > 0,

ia+ekr>ip{1] + /0+°° ̂ V(1) (k - l)ip{1](l) dl if k < 0,
-krj if k > 0,4 + O0V'(1)(fc - l)ip^(l) dl

—ia~e~kvipT^ + /0+CX> tlip^ {k — l)ip^ (I) dl if k < 0,

ekv |^6q + f rtoip^ (k — l)ip^ (I) d/j if k > 0,

b+

where

ekri b+ +1)^(1) dl if k < 0,
—ia+e + Q^(i)(k _ ^(i)^ dl if k > q5

(6.25)

(6.26)

(6.27)

(6.28)

= Ac±+2(F0±)2
2A((c±)2-(F0±)2)'

and

Sl{k,l,ri) = [i + (ifc - 0e"l('~fc),?ll le~M,

Slo(k,l,i?) = [l2 (e-C-*)!"! - l)] + [(fc - 1)1 (e:

n'0{k, I, rj) = 12 (e(l~k)M - l) l-^\ + (Jfe - 1)1 (e~21^ - l)

02<M I -
21

I + |/|
21
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Summarizing the results of this section, we have shown that the Fourier transform
(6.3) of the solution of the second-order interior equations (6.1)-(6.2) and (6.6) is given
by (6.10) and (6.14), where the coefficients sf, s^, S3 are given by (6.20)-(6.22), and
the coefficients a±, b± are given by (6.25)-(6.28).

7. The second-order jump conditions. The first-order solution depends on one
unknown function ip^ (k,r), the Fourier transform of the first-order displacement of the
tangential discontinuity. The solution of the second-order interior equations depends,
in addition, on two unknown functions aj(fe,r), bj(k,r). In this section we study the
second-order jump conditions. We show that they reduce to a singular linear system
of algebraic equations for (aj, ^2-®), where ip^2\k,T) is the Fourier transform of the
second-order displacement of the tangential discontinuity. The imposition of solvability
conditions on this system yields the equation for i/^1' that we seek.

The second-order jump condition (4.4) may be written as

Bu<2' -<42) /(u(°>)-AMu(0)) = q, (7.1)

where q is given by

q = <P{r] /i(u(0))] + v™ [(A - AC)u«] - i |v2<? • (u^, u«)

Fourier transforming (7.1) with respect to 6, we obtain

£U(2) -ikipW /(u(0))-A/i(u(0)) = Q, (7.2)

where

i r+oo
Q(/c,?7,t) = — J q {0,r/,T)e~lke de. (7.3)

In order to write out equation (7.2) explicitly, we evaluate at r] = 0 the expressions in
(6.20)-(6.22) and (6.25)-(6.28) for the coefficients appearing in the solution (6.10) and
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(6.14) for Xj(2\k,r], r). This gives

r± r+°°
= ±ia J n.i{k,l)ipw(k-l)ipw(l)dl,

So   (J'^{r\2 fi

st

a =

b~ =

b+

Tia^^+Ff- f 1)^(1) dl,
K k J - oo

{a,Q if k < 0,
ia~ipT^ + k Itp^ (k — l)ip^ (l)dl if k > 0,

f ia+ipT1'> + k /0+°° lip^(k — l)ip^(l) dl if k < 0,
| aj if k > 0,

f — ia~+ k /0+o° ltp^{k — l)ip^(l) dl if k < 0,
| &o if fc > 0,

f £>o if k < 0,
1 —ia+rpi1^+kf^oolip^(k — l)ip^(l)dl if k > 0,

where

a, =

a0 -

(c±)2 + (F0±)2

(c*)2 — (F^)2 '

(^0±)2(c± - Mp )

A((c±)2-(ir±)2)'
,± F±2c Fr0

(c±)2 - (F±)2'
fii(M) = ((k-l)l-\k-l\\l\)l.

Using (6.10) and (6.14) in (7.2), and simplifying the result with the help of these equa-
tions, we obtain two algebraic systems: the first one is for aj, , and kip^ when k > 0;
and the second one is for ag, bg, and kip^ when k < 0.

First, we consider the case k > 0. Then, equation (7.2) gives

ao
(B+R+,-B-R-,-i[/(u(°))-A/l(uW)]) ( &o ) = Q'>

ktpW

where

Q' = Q-[BS] + a~B~ RT - b+B+R4
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Writing out this system explicitly, and using (5.13) to simplify the result, we obtain that

( i(c+u£ + (F0+)2) i(c u0 + (F0 )2) -i [ul - F02 - Au0] \
(c+)2 - (F0+)2 -(c-)2 + (F0-)2 0

iXF^ iXF0 iX [Fo]
0 0 0

\ ic+ ic~ —i [uq] /

bo |(7.4)

( (Fj+cu)(3\c-2Fj)
2A(c *-F$)

/,(!) \Tt
—iX(c+ + c~) Ai— l)ip^(l) dl

^{X(c++c-)+2(f} + F0))41)
- [°2 ~ Fo] k/-oo^(1)(fc- W(1)(0 dl

'Fo(3Ac-2F„2)| , (1)
2 (c2—F2)

-iX(F+ + Fq) /_+~ A 1rP^(k - i)V(1)(0 dl
0

Ac +21*0^0
2\(c*-F$) _

_ \ f + OO

V't1)
\ —i(c++c ) Aiip^ {k - l)ipw (I) dl

where

Aj = -(3fc|/| - kl — 2l\l\).

The linear system (7.4) is solvable if and only if the rank of its augmented matrix is less
than or equal to 3. To determine this rank, we simplify the equations. We left-multiply
the system by the vector

-l,0,F°+tF° ,0,U+ + UQ -Ac+c- - FqFq

This gives the equation

P+\2 i I z?-\2a++5- _ 3A(c+ + c~) — 2((Fq )2 + (Fq)2) (1)
0+ 0 _ A [c2 — Fq] VT (7.5)

/"TOO

AiV(1)(fc-0^(1)(0^-
-oo

On the other hand, using (5.13) in the second equation of the system (7.4), we find that

4+&0 = i A[c2-F2] $■' (7-6)

r°
-2k / l^\k - l)ip^(l) dl.

J — OO

Combining (7.5) and (7.6), we get the solvability condition

/+oo {2k\l\ - kl - l\l\)tp{1)(k - l)ip(1){l) dl = 0. (7.7)
-ooc2 " Foil
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Then, solving (7.5) or (7.6) for and substituting the result into the remaining two
equations of the system, we find that both equations are equivalent to the equation

ao + kip{2) = -i3^r2_2^ ^ ~ [ Aiip(1){k - l)ipW{l) dl.
^ lC ^oJ J— oo

Thus, when k > 0, the system (7.4) is solvable if and only if ^l\k,r) satisfies Eq. (7.7),
and then the rank of the augmented matrix of the system is equal to 2.

The case k < 0 is similar. The jump condition (7.2) gives the algebraic system

/(u(°>)-AMu(0))]) ^
K = Q",

where

Q" = Q - [BS] + b~B~R" - a+B+R+.
Proceeding as before, we find that, when (5.13) holds, this system (7.2) is solvable if and
only if

/+oo (2fc|Z| + klI l\l\)ipw(k - dl - 0. (7.8)
-OOc2 " F'i

In that case, the system is equivalent to the two equations

b+ + a~ - -:A(C+ + c~) + 2((F°+)2 +
0+0 ~ A [c2 — Fq ] %

r+oo

-2k / lipw(k-l)ipw(l)dl,

where

/-t-oo A2^1\k - l)ip^(l) dl,
-oo

A2 = ^ (3fc|/| + kl — 2l\l\).

Equations (7.7) for k > 0 and (7.8) for k < 0 are the solvability conditions for the
second-order perturbation equations.

8. Summary. We have derived an asymptotic solution that describes the propaga-
tion of a weakly nonlinear, unidirectional surface wave on a tangential MHD discontinuity.
The wave motion is governed by the incompressible MHD equations (3.1), and the states
on either side of the discontinuity are given by (3.2) and (3.6). The linearized phase
velocity A of the surface wave is a root of equation (5.14). The location of the tangential
discontinuity is given by

y = £<^(1)(x — At, et) + 0(e2),
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as e —> 0 with t = 0(£-1). The leading order field components may be expressed in
terms of using the results of the previous sections. The Fourier transform of the
leading order perturbation r) in the location of the discontinuity,

1 f+OG
4>{1\k,T) = — j v{1)(0,T)e-iked6,

satisfies (7.7) in k > 0 and (7.8) in k < 0. These equations may be written in a more
compact form as

/»+oo
/-t-oo A(k — I, /)t/)'1'(fc — I, t)^1^, r) dl, (8.1)

-oo

where

A(k, I) = sgn(fc + I) {2{k + l)\l\ - \k + l\l - l\l\} . (8.2)
The constant <5 is given by

c6 =
F2ro

(c+)2-(F+)2 (c-)2_(Fo-)2'

where is defined in (5.9). We may equivalently replace A in (8.1) by the symmetrized
kernel

A(k,l) = - A{k,l) + A(l,k) .

This symmetrized kernel is identical to the one in (1.5), as may be checked by a consider-
ation of the different possible choices for the signs of k, I, and k + l. Equations (8.1)-(8.2)
are therefore equivalent to (1.4)—(1.5) after an appropriate rescaling.
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