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Abstract. In this paper we study the propagation of weakly nonlinear surface waves

on a plasma-vacuum interface. In the plasma region we consider the equations of incom-

pressible magnetohydrodynamics, while in vacuum the magnetic and electric fields are

governed by the Maxwell equations. A surface wave propagates along the plasma-vacuum

interface when it is linearly weakly stable.

Following the approach of Ali and Hunter (2003), we measure the amplitude of the

surface wave by the normalized displacement of the interface in a reference frame moving

with the linearized phase velocity of the wave, and obtain that it satisfies an asymptotic

nonlocal, Hamiltonian evolution equation. We show the local-in-time existence of smooth

solutions to the Cauchy problem for the amplitude equation in noncanonical variables,

and we derive a blow up criterion.

1. Introduction. Plasma-vacuum interface problems appear in the mathematical

modeling of plasma confinement by magnetic fields in thermonuclear energy production

(as in Tokamaks; see, e.g., [9]). In this model, the plasma is confined inside a perfectly

conducting rigid wall and isolated from it by a region containing very low density plasma,

which may qualify as a vacuum, due to the effect of strong magnetic fields. In astro-

physics, the plasma-vacuum interface problem can be used for modeling the motion of a

star or the solar corona when magnetic fields are taken into account.

This subject is very popular since the 1950’s–70’s, but most theoretical studies are

devoted to finding stability criteria of equilibrium states. Typical work in this direction

is the famous paper of Bernstein et al. [7], where the plasma-vacuum interface problem

is considered in its classical statement modeling the plasma confined inside a perfectly

conducting rigid wall and isolated from it by a vacuum region.
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Assume that the plasma-vacuum interface is described by Γ(t) = {F (t, x) = 0}, and

that Ω±(t) = {F (t, x) ≷ 0} are the space-time domains occupied by the plasma and the

vacuum respectively. Since F is an unknown, this is a free-boundary problem.

In [7] (see also [9]) the plasma is described by the equations of ideal compressible

magneto-hydrodynamics (MHD),1 whereas in the vacuum region one considers the so-

called pre-Maxwell dynamics

∇×H = 0, divH = 0, (1.1)

∇× E = −
1

c
∂tH, divE = 0, (1.2)

describing the vacuum magnetic field H ∈ R3 and electric field E ∈ R3; c is the speed of

light. That is, in the Maxwell equations one neglects the displacement current (1/c) ∂tE.

From (1.2) the electric field E is a secondary variable that may be computed from the

magnetic field H.

The dependent variables in the plasma region Ω+(t) and in the vacuum region Ω−(t)

(i.e. the solution H of (1.1)) are linked at the free interface by the boundary conditions

dF

dt
= 0, [q] = 0, B ·N = 0, (1.3a)

H ·N = 0 (1.3b)

on Γ(t), where B ∈ R3 denotes the magnetic field in the plasma region, [q] denotes the

jump of the total pressure across the interface, and N = ∇F . The first condition in

(1.3a) (where d
dt denotes the material derivative) means that the interface moves with

the velocity of plasma particles at the boundary.

An important feature of the plasma-vacuum interface problem is that the uniform

Kreiss-Lopatinskii condition [16] is never satisfied. The Kreiss-Lopatinskii condition

may be violated, because there are modes that grow arbitrarily fast, and the interface is

violently unstable as in the Kelvin-Helmholtz instability of a vortex sheet. Alternatively

the Kreiss-Lopatinskii condition may be satisfied in weak form, and the interface is weakly

but not strongly stable. In that case surface waves propagate along the discontinuity

front.

Another important difficulty of the plasma-vacuum problem is that we cannot test the

Kreiss-Lopatinski condition analytically, as for other free-boundary problems in MHD,

so a complete description of the parameter set of violent instability / weak stability is

not known. Moreover, since the number of dimensionless parameters for the constant

coefficients linearized problem is big, a complete numerical test of the Kreiss-Lopatinski

condition seems unrealizable in practice. Thus it becomes important to investigate in a

different way which stability conditions may ensure the weak stability of the problem.

Until recently, there were no well-posedness results for full (nonstationary) plasma-

vacuum models. A basic a priori energy estimate for solutions of the linearized plasma-

vacuum problem was first derived in [23], under the stability condition stating that the

1In this introduction we don’t write explicitly the compressible MHD equations that are not really
needed, as in the sequel we are going to consider the incompressible MHD equations.
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magnetic fields, respectively B and H, on either side of the interface are not collinear,

i.e.

B ×H �= 0 on Γ(t). (1.4)

The existence of solutions to the linearized problem was then proved in [20]. In [19]

similar results are obtained for the plasma-vacuum problem in incompressible MHD.

In [20,23], for technical simplicity the moving interface Γ(t) was assumed to have the

form of a graph F (t, x) = x2 − ϕ(t, x1, x3); i.e. both the plasma and vacuum domains

are unbounded. However, as was noted in the subsequent paper [21], such form of the

domains is not suitable for the original nonlinear free boundary problem because in

that case the vacuum region Ω−(t) is a simply connected domain. Indeed, in a simply

connected domain the homogeneous elliptic problem (1.1), (1.3b) has only the trivial

solution H = 0, and the whole problem is reduced to solving the MHD equations with

a vanishing total pressure q on Γ(t). The technically difficult case of multiply connected

vacuum regions was postponed to a future work.

Instead of this, in [21] the plasma-vacuum system is assumed to be not isolated from

the outside world due to a given surface current on the fixed boundary of the vacuum

region that forces oscillations. In laboratory plasmas this external excitation may be

caused by a system of coils. This model can also be exploited for the analysis of waves in

astrophysical plasmas, e.g., by mimicking the effects of excitation of MHD waves by an

external plasma by means of a localized set of “coils” when the response of the internal

plasma is the main issue (see a more complete discussion in [9]).

Under the above-mentioned stability condition (1.4), in [21] the authors prove the

local-in-time existence of a smooth solution in suitable anisotropic Sobolev spaces to

the nonlinear plasma-vacuum interface problem, with the proof based on the results of

[21] for the linearized problem, and a suitable Nash-Moser-type iteration. The stability

condition B×H �= 0 on Γ(t) is assumed at time t = 0 for the initial data, and it is shown

to persist for small positive time.

As in the classical formulation of the plasma-vacuum problem with the pre-Maxwell

dynamics, the displacement current is neglected and (1.2) is considered a posteriori to

recover the electric field from the magnetic field; the influence of the electric field is

somehow hidden in the model. In order to investigate the influence of the vacuum

electric field on the well-posedness of the problem, in [8, 17], instead of the pre-Maxwell

dynamics, in the vacuum region the authors don’t neglect the displacement current and

consider the complete system of Maxwell equations for the electric and the magnetic

fields.

Indeed, for the relativistic plasma-vacuum problem, Trakhinin [24] has shown the pos-

sible ill-posedness in the presence of a sufficiently strong vacuum electric field. Since rel-

ativistic effects play a rather passive role in the analysis of [24], it is natural to expect the

same for the nonrelativistic problem. In [8,17] the authors show that a sufficiently weak

vacuum electric field, under the same stability condition (1.4), precludes ill-posedness

and gives the well-posedness of the linearized problem.

In this paper we are interested in investigating the well-posedness of the problem

when (1.4) is violated, i.e. when the magnetic fields on either side of the interface are

collinear. For the sake of simplicity we consider the plasma-vacuum interface problem in

License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



714 P. SECCHI

two dimensions, with the coupling of the incompressible MHD equations in the plasma

region and the Maxwell equations in the vacuum region. The solution is close to a

stationary basic state with parallel magnetic fields at the flat interface.

To study the time evolution of the plasma-vacuum interface we follow the approach

of [1] and we show that, in a unidirectional surface wave, the normalized displacement

x2 = ϕ(t, x1) of a weakly stable surface wave along the interface, in a reference frame

moving with the linearized phase velocity of the wave, satisfies the quadratically nonlin-

ear, nonlocal asymptotic equation

ϕt +
1
2H[Φ2]xx +Φϕxx = 0, Φ = H[ϕ] . (1.5)

Here H denotes the Hilbert transform defined by

H[ϕ](x) =
1

π
p.v.

∫ +∞

−∞

ϕ(y)

x− y
dy

and such that

H[eikx] = −i sgn(k) eikx , F [H[ϕ]] = −i sgn(k)F [ϕ],

for F denoting the Fourier transformation. Equation (1.5) coincides with the amplitude

equation for nonlinear Rayleigh waves [10] and current-vortex sheets in incompressible

MHD [1,2]. It is interesting that exactly the same equation appears for the incompressible

plasma-vacuum interface problem, where in the vacuum part the electric and magnetic

fields are ruled by the Maxwell equations. Equation (1.5) also admits the other spatial

form

ϕt + [H,Φ]Φxx +H[Φ2
x] = 0 , (1.6)

where [H,Φ] is the commutator of H with multiplication by Φ; see [13]. This form of

(1.6) shows that there is a cancellation of the second order spatial derivatives appearing

in (1.5).

By adapting the proof of [12] we show the local-in-time existence of smooth solutions

to the Cauchy problem for amplitude equation in noncanonical variables, and we derive

a blow-up criterion. Numerical computations [1, 10] show that solutions of (1.5) form

singularities in which the derivative ϕx blows up, but ϕ appears to remain continuous.

As far as we know, the global existence of appropriate weak solutions is an open question.

The paper is organized as follows. In Section 2 we formulate the plasma-vacuum prob-

lem for incompressible MHD equations in the plasma region, Maxwell equations in the

vacuum region and suitable jump conditions on the free interface. In Section 3 we intro-

duce the asymptotic expansion for small-amplitude, long-time weakly nonlinear surface

waves. In Section 4 we solve the equations for the first order term of the asymptotic

expansion. This first order solution depends on an arbitrary wave profile function. In

Section 5 we solve the second order perturbation equations. When the second order

solution of the interior equations is substituted in the second order jump conditions, one

gets a linear system whose resolution is obtained under solvability conditions leading to

the amplitude equation (1.5). The arbitrary wave profile function of Section 4 is then

determined as the solution of this amplitude equation. The results of Sections 3–5 are

summarized in Theorem 5.1. In Section 6 we prove the local in time existence of a smooth
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solution of an initial value problem for a noncanonical form of (1.5) (see Theorem 6.1)

and derive a blow-up criterion; see Lemma 6.2.

2. The plasma-vacuum interface problem. We consider the equations of incom-

pressible magneto-hydrodynamics (MHD), i.e. the equations governing the motion of

a perfectly conducting inviscid incompressible plasma. In the case of a homogeneous

plasma (the density ρ ≡ const > 0), the equations in a dimensionless form read:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂tv +∇ · (v ⊗ v −B⊗B) +∇q = 0 ,

∂tB−∇× (v ×B) = 0 ,

div v = 0 , divB = 0 ,

(2.1)

where v denotes the plasma velocity, B is the magnetic field (in Alfvén velocity units),

q = p+ |B|2/2 is the total pressure, p being the pressure.

For smooth solutions, system (2.1) can be written in equivalent form as a symmetric

system:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

∂tv + (v · ∇)v − (B · ∇)B+∇q = 0 ,

∂tB+ (v · ∇)B− (B · ∇)v = 0 ,

div v = 0 .

(2.2)

In addition the magnetic field must satisfy the constraint

divB = 0 ,

which is preserved by the evolution in time if it is satisfied by the initial data.

Let Ω+(t) and Ω−(t) be space-time domains occupied by the plasma and the vacuum

respectively, separated by an interface Γ(t). That is, in the domain Ω+(t) we consider

system (2.2) governing the motion of the plasma, and in the domain Ω−(t) we have the

Maxwell system
{

ν∂tH+∇× E = 0 ,

ν∂tE−∇× H = 0 ,
(2.3)

describing the vacuum magnetic and electric fields H,E ∈ R3. Here, the equations are

written in nondimensional form through a suitable scaling (see Mandrik–Trakhinin [17]),

and ν = v̄
c , where v̄ is the velocity of a uniform flow and c is the speed of light in a

vacuum. If we choose v̄ to be the speed of sound in a vacuum, we have that ν is a small,

even though fixed parameter. System (2.3) is supplemented by the divergence constraints

divH = divE = 0

on the initial data. The plasma variables are connected with the vacuum magnetic and

electric fields on the interface Γ(t) through the relations [7, 9]

σ = v ·N, [q] = 0, B ·N = H ·N = 0, N ×E = ν(v ·N)H on Γ(t), (2.4)

where σ denotes the velocity of propagation of the interface Γ(t), N is a normal vector

and [q] = q|Γ − 1
2 |H|2|Γ + 1

2 |E|2|Γ is the jump of the total pressure across the interface.

We consider the case of two space dimensions and write

v = (v1, v2)
T , B = (B1, B2)

T .
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In the (three-dimensional) Maxwell equations (2.3) we assume that

H = (H1, H2, 0)
T

and that there is no dependence of H on the third space variable x3. It follows from

(2.3) that E takes the form

E = (0, 0, E)T ,

and the Maxwell equations reduce to
⎧

⎪

⎪

⎨

⎪

⎪

⎩

ν∂tH1 + ∂2E = 0 ,

ν∂tH2 − ∂1E = 0 ,

ν∂tE − ∂1H2 + ∂2H1 = 0 ,

(2.5)

under the constraint

∂1H1 + ∂2H2 = 0

on the initial data. From now on we write

H = (H1, H2)
T ,

hoping that this small abuse of notation will create no confusion for the reader.

Let us assume that the moving interface Γ(t) takes the form

Γ(t)
.
= {(x1, x2) ∈ R

2 , x2 = ζ(x1, t)} ,

where t ∈ [0, T ]. Then we have Ω±(t) = {x2 ≷ ζ(x1, t)}. With our parametrization of

Γ(t), the boundary conditions (2.4) at the interface reduce to

∂tζ = v ·N , q = 1
2

(

H2
1 +H2

2 − E2
)

,

B ·N = 0 , H ·N = 0 , E − ν∂tζH1 = 0 on Γ(t) ,

(2.6)

where N = (−∂1ζ, 1).

A stationary solution of (2.2), (2.5), (2.6) with interface located at {x2 = 0} is given

by the constant states

v0 = (v01 , 0)
T , B0 = (B0

1 , 0)
T ,

H0 = (H0
1 , 0)

T , E0 = 0, q0 =
1

2
(H0

1 )
2.

We will consider the propagation of surface waves that are localized near the interface.

The corresponding solutions must satisfy the decay conditions

lim
x2→+∞

(v,B, q) = U0 .
= (v01 , 0, B

0
1 , 0, q

0) ,

lim
x2→−∞

(H, E) = V 0 .
= (H0

1 , 0, 0) .

(2.7)
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3. The asymptotic expansion. As in [1] we suppose that the perturbed interface

has a slope of the order ε, where ε is a small parameter. With respect to dimensionless

variables in which the wavelength of the perturbation and the velocity of the surface wave

are of the order one, the time scale for quadratically nonlinear effects to significantly alter

the wave profile is of the order ε−1. We therefore introduce a “slow” time variable τ = εt.

We also introduce a spatial variable θ = x1 − λt in a reference frame moving with the

surface wave. Here, λ is the linearized phase velocity of the wave, which we will determine

as part of the solution.

We write the perturbed location of the interface as

x2 = εϕ(θ, τ ; ε),

and define a new independent variable,

η = x2 − εϕ(θ, τ ; ε),

so that the perturbed interface is located at η = 0. We look for an asymptotic expansion

of the solution U = (v,B, q)T , V = (H, E)T and ϕ as ε → 0 of the form

U(θ, η, τ ; ε) = U0 + εU (1)(θ, η, τ ) + ε2U (2)(θ, η, τ ) +O(ε3), η > 0,

V (θ, η, τ ; ε) = V 0 + εV (1)(θ, η, τ ) + ε2V (2)(θ, η, τ ) +O(ε3), η < 0,

ϕ(θ, τ ; ε) = ϕ(1)(θ, τ ) + εϕ(2)(θ, τ ) +O(ε2).

(3.1)

We expand the partial derivatives with respect to the original time and space variables

as
∂t = −λ∂θ + ε(∂τ + λϕθ∂η)− ε2ϕτ∂η,

∂x1
= ∂θ − εϕθ∂η,

∂x2
= ∂η.

We substitute these expansions in (2.2), (2.5), Taylor expand the result with respect to

ε and equate coefficients of ε1 and ε2 to zero. In the interior the asymptotic solution

satisfies at the first order:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(λ− v01)∂θv
(1) +B0

1∂θB
(1) −

(

∂θ

∂η

)

q(1) = 0 ,

(λ− v01)∂θB
(1) +B0

1∂θv
(1) = 0 ,

∂θv
(1)
1 + ∂ηv

(1)
2 = 0 , for η > 0,

(3.2)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

νλ∂θH
(1)
1 − ∂ηE

(1) = 0 ,

νλ∂θH
(1)
2 + ∂θE

(1) = 0 ,

νλ∂θE
(1) + ∂θH

(1)
2 − ∂ηH

(1)
1 = 0 , for η < 0.

(3.3)

We expand the jump conditions in (2.6), with ζ = εϕ, and equate coefficients of ε1 and

ε2 to zero. We find that the solutions satisfy at the first order the jump conditions
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(λ− v01)∂θϕ
(1) + v

(1)
2 = 0 ,

B0
1∂θϕ

(1) −B
(1)
2 = 0 , H0

1∂θϕ
(1) −H

(1)
2 = 0 ,

q(1) = H0
1H

(1)
1 , E(1) + νλH0

1∂θϕ
(1) = 0 , for η = 0.

(3.4)
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At the second order we obtain
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(λ− v01)∂θv
(2) +B0

1∂θB
(2) −

(

∂θ

∂η

)

q(2) = p1 ,

(λ− v01)∂θB
(2) +B0

1∂θv
(2) = p2 ,

−∂θv
(2)
1 − ∂ηv

(2)
2 = p3 , for η > 0,

(3.5)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

νλ∂θH
(2)
1 − ∂ηE

(2) = p′1 ,

νλ∂θH
(2)
2 + ∂θE

(2) = p′2 ,

νλ∂θE
(2) + ∂θH

(2)
2 − ∂ηH

(2)
1 = p′3 , for η < 0,

(3.6)

and the jump conditions
⎧

⎪

⎪

⎨

⎪

⎪

⎩

(λ− v01)∂θϕ
(2) + v

(2)
2 = r1 ,

B0
1∂θϕ

(2) −B
(2)
2 = r2 , H0

1∂θϕ
(2) −H

(2)
2 = r3 ,

q(2) −H0
1H

(2)
1 = r4 , E(2) + νλH0

1∂θϕ
(2) = r5 , for η = 0,

(3.7)

where we have denoted

p1
.
= (∂τ + λϕ

(1)
θ ∂η)v

(1) + (v
(1)
1 ∂θ + v

(1)
2 ∂η − v01ϕ

(1)
θ ∂η)v

(1)

−(B
(1)
1 ∂θ +B

(1)
2 ∂η −B0

1ϕ
(1)
θ ∂η)B

(1) −

(

ϕ
(1)
θ ∂ηq

(1)

0

)

,

p2
.
= (∂τ + λϕ

(1)
θ ∂η)B

(1) + (v
(1)
1 ∂θ + v

(1)
2 ∂η − v01ϕ

(1)
θ ∂η)B

(1)

−(B
(1)
1 ∂θ +B

(1)
2 ∂η −B0

1ϕ
(1)
θ ∂η)v

(1) , p3
.
= −ϕ

(1)
θ ∂ηv

(1)
1 ,

p′1
.
= ν(∂τ + λϕ

(1)
θ ∂η)H

(1)
1 , p′2

.
= ν(∂τ + λϕ

(1)
θ ∂η)H

(1)
2 + ϕ

(1)
θ ∂ηE

(1) ,

p′3
.
= ν(∂τ + λϕ

(1)
θ ∂η)E

(1) + ϕ
(1)
θ ∂ηH

(1)
2 ,

r1
.
= (∂τ + v

(1)
1 ∂θ)ϕ

(1) , r2
.
= −B

(1)
1 ∂θϕ

(1) ,

r3
.
= −H

(1)
1 ∂θϕ

(1) , r4
.
=

1

2

(

|H(1)|2 − (E(1))2
)

,

r5
.
= −νλH

(1)
1 ∂θϕ

(1) + νH0
1∂τϕ

(1) .

In the rest of the paper we solve equations (3.2)–(3.7).

4. The first order equations. Introducing the Fourier transforms

Û (1)(k, η, τ ) =
1

2π

∫ +∞

−∞

U (1)(θ, η, τ )e−ikθdθ,

V̂ (1)(k, η, τ ) =
1

2π

∫ +∞

−∞

V (1)(θ, η, τ )e−ikθdθ,

ϕ̂(1)(k, τ ) =
1

2π

∫ +∞

−∞

ϕ(1)(θ, τ )e−ikθdθ,
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and Fourier transforming (3.2)–(3.4) with respect to θ, we find the equations
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(λ− v01)ikv̂
(1) + ikB0

1B̂
(1) −

(

ik

∂η

)

q̂(1) = 0 ,

(λ− v01)ikB̂
(1) + ikB0

1 v̂
(1) = 0 ,

ikv̂
(1)
1 + ∂η v̂

(1)
2 = 0 , for η > 0,

(4.1)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

νλikĤ
(1)
1 − ∂ηÊ

(1) = 0 ,

νλikĤ
(1)
2 + ikÊ(1) = 0 ,

νλikÊ(1) + ikĤ
(1)
2 − ∂ηĤ

(1)
1 = 0 , for η < 0,

(4.2)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(λ− v01)ikϕ̂
(1) + v̂

(1)
2 = 0 ,

ikB0
1 ϕ̂

(1) − B̂
(1)
2 = 0 , ikH0

1 ϕ̂
(1) − Ĥ

(1)
2 = 0 ,

q̂(1) = H0
1 Ĥ

(1)
1 , Ê(1) + νλikH0

1 ϕ̂
(1) = 0 , for η = 0.

(4.3)

Let us first consider problem (4.1), which we write in the form2

ikAÛ (1) + B∂ηÛ
(1) = 0, (4.4)

where the real symmetric matrices A,B are defined by

A =

⎛

⎜

⎜

⎜

⎜

⎝

λ− v01 0 B0
1 0 −1

0 λ− v01 0 B0
1 0

B0
1 0 λ− v01 0 0

0 B0
1 0 λ− v01 0

−1 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, B =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 0 0

0 0 0 0 −1

0 0 0 0 0

0 0 0 0 0

0 −1 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

.

As in [1] we compute an eigenvector R from (iA − B)R = 0. After a convenient choice

of normalization, this eigenvector is given explicitly by

R = (λ− v01 , i(λ− v01),−B0
1 ,−iB0

1 , d)
T , where d

.
= (λ− v01)

2 − (B0
1)

2. (4.5)

The general solution of (4.4) is

Û (1)(k, η, τ ) = a(k, τ )e−kηR+ b(k, τ )ekηR ,

where a(k, τ ) and b(k, τ ) are arbitrary complex-valued functions, and the bar denotes a

complex conjugate. The condition (2.7) at infinity implies

lim
η→+∞

Û (1)(k, η, τ ) = 0 ; (4.6)

then we find

Û (1)(k, η, τ ) =

{

a(k, τ )e−kηR, if k > 0 ,

b(k, τ )ekηR, if k < 0 .
(4.7)

Let us consider now problem (4.2) for η < 0. Here we must work differently than

before. From the second equation in (4.2), Ĥ
(1)
2 = −Ê(1)/νλ, and substituting in the

other equations of (4.2) we get

∂2
ηÊ

(1) + k2(ν2λ2 − 1)Ê(1) = 0. (4.8)

2The choice of the symmetric form of equations (2.2), rather than the conservative form (2.1) as in
[1], reflects a different definition of the matrices A,B and partly simplifies the following resolution.
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In order to have

lim
η→−∞

V̂ (1)(k, η, τ ) = 0 (4.9)

(obtained from (2.7)), we need to prescribe in (4.8)

ν|λ| < 1. (4.10)

The general solution of (4.8) is

Ê(1)(k, η, τ ) = α(k, τ )eσ(λ)kη + β(k, τ )e−σ(λ)kη , (4.11)

where α(k, τ ) and β(k, τ ) are arbitrary complex-valued functions and

σ(λ)
.
=

√

1− ν2λ2.

From (4.2), (4.11) the general solutions for the other unknowns are

Ĥ
(1)
1 (k, η, τ ) = σ(λ)

iνλ

{

α(k, τ )eσ(λ)kη − β(k, τ )e−σ(λ)kη
}

,

Ĥ
(1)
2 (k, η, τ ) = − 1

νλ

{

α(k, τ )eσ(λ)kη + β(k, τ )e−σ(λ)kη
}

.
(4.12)

Finally, imposing the condition (4.9) at infinity to (4.11), (4.12) we find that

V̂ (1)(k, η, τ ) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

α(k, τ )eσ(λ)kη

⎛

⎜

⎜

⎝

−iσ(λ)/νλ

−1/νλ

1

⎞

⎟

⎟

⎠

, if k > 0 ,

β(k, τ )e−σ(λ)kη

⎛

⎜

⎜

⎝

iσ(λ)/νλ

−1/νλ

1

⎞

⎟

⎟

⎠

, if k < 0 .

(4.13)

Next, we use the solutions (4.7), (4.13) in the jump conditions (4.3). First we consider

the case k > 0. Under the assumption λ−v01 �= 0 or B0
1 �= 0, the resulting equations may

be written as a linear system for the unknowns (a, α, kϕ̂(1)):
⎛

⎝

1 0 1

0 1 iνλH0
1

d iσ(λ)H0
1/νλ 0

⎞

⎠

⎛

⎝

a

α

kϕ̂(1)

⎞

⎠ = 0. (4.14)

This system has a nontrivial solution if

d = (λ− v01)
2 − (B0

1)
2 = (H0

1 )
2σ(λ). (4.15)

We discuss the possible real roots λ of (4.15) that also satisfy (4.10).

Lemma 4.1. (1) If |B0
1 | > |v01 |+ 1/ν, equation (4.15) does not have any real root.

(2) If |B0
1 | = |v01 | + 1/ν, for all |H0

1 | > 0 and v01 �= 0 there exists one real root

λ = −sgn(v01)/ν. If v
0
1 = 0, then λ = ±1/ν. Thus in any case |λ| = 1/ν.

(3) If |v01 |−1/ν ≤ |B0
1 | < |v01 |+1/ν, for all |H0

1 | > 0 there exist one or two real roots

λ of (4.15) such that |λ| < 1/ν.

(4) If |B0
1 | < |v01 | − 1/ν, there exists H∗ > 0 such that, for all |H0

1 | ≥ H∗, there exist

two real roots λ of (4.15) such that |λ| < 1/ν (coincident roots if |H0
1 | = H∗); if

|H0
1 | < H∗ (4.15) does not have any real root.
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Observe that for all such |λ| < 1/ν, from (4.15) there holds λ �= v01 and λ �= v01 ± B0
1 ,

i.e. d �= 0.

Proof. The roots of (4.15) are given by the points of intersection in the plane λ, y of

the parabola y = (λ − v01)
2 − (B0

1)
2 with the half-ellipse ν2λ2 + y2/(H0

1 )
4 = 1, y ≥ 0.

Considering all possible cases gives the proof of the lemma. �

We choose λ to be one of the values found in Lemma 4.1 such that |λ| < 1/ν, that is,

satisfying (4.10). The solution of (4.14) is then

a = −kϕ̂(1), α = −νλH0
1 ikϕ̂

(1) if k > 0 . (4.16)

For k < 0 we proceed in a similar way, solving an algebraic system for the unknowns

(b, β, kϕ̂(1)):
⎛

⎝

−1 0 1

0 1 iνλH0
1

d −iσ(λ)H0
1/νλ 0

⎞

⎠

⎛

⎝

b

β

kϕ̂(1)

⎞

⎠ = 0 . (4.17)

This system has a nontrivial solution under the same condition (4.15). The solution of

(4.17) is then

b = kϕ̂(1), β = −νλH0
1 ikϕ̂

(1) if k < 0 . (4.18)

Summarizing these results, we have shown that when λ satisfies (4.15), the solutions of

(4.1)–(4.3), (4.6), (4.9) are given by

Û (1)(k, η, τ ) =

{

−|k|ϕ̂(1)(k, τ )e−kηR, if k > 0 ,

−|k|ϕ̂(1)(k, τ )ekηR, if k < 0 ,
(4.19)

V̂ (1)(k, η, τ ) = H0
1 ϕ̂

(1)(k, τ )eσ(λ)|k|η

⎛

⎝

−σ(λ)|k|

ik

−iνλk

⎞

⎠ . (4.20)

These solutions depend on the unknown function ϕ̂(1)(k, τ ), which describes the profile

of the surface wave. By imposing solvability conditions on the equations for the second

order corrections to this first order solution (4.19), (4.20), we will derive an evolution

equation for the function ϕ̂(1)(k, τ ).

5. The second order equations. Introducing the Fourier transforms

Û (2)(k, η, τ ) =
1

2π

∫ +∞

−∞

U (2)(θ, η, τ )e−ikθdθ,

V̂ (2)(k, η, τ ) =
1

2π

∫ +∞

−∞

V (2)(θ, η, τ )e−ikθdθ,

ϕ̂(2)(k, τ ) =
1

2π

∫ +∞

−∞

ϕ(2)(θ, τ )e−ikθdθ
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and Fourier transforming (3.5)–(3.7) with respect to θ, we find the equations
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(λ− v01)ikv̂
(2) + ikB0

1B̂
(2) −

(

ik

∂η

)

q̂(2) = p̂1 ,

(λ− v01)ikB̂
(2) + ikB0

1 v̂
(2) = p̂2 ,

−ikv̂
(2)
1 − ∂η v̂

(2)
2 = p̂3 , for η > 0 ,

(5.1)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

νλikĤ
(2)
1 − ∂ηÊ

(2) = p̂′1 ,

νλikĤ
(2)
2 + ikÊ(2) = p̂′2 ,

νλikÊ(2) + ikĤ
(2)
2 − ∂ηĤ

(2)
1 = p̂′3 , for η < 0 ,

(5.2)

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(λ− v01)ikϕ̂
(2) + v̂

(2)
2 = r̂1 ,

ikB0
1 ϕ̂

(2) − B̂
(2)
2 = r̂2 , ikH0

1 ϕ̂
(2) − Ĥ

(2)
2 = r̂3 ,

q̂(2) −H0
1 Ĥ

(2)
1 = r̂4 , Ê(2) + iνλkH0

1 ϕ̂
(2) = r̂5 , for η = 0 .

(5.3)

5.1. The second order equations in the plasma region. Let us first consider problem

(5.1), which we write in the form

ikAÛ (2) + B∂ηÛ
(2) = p̂ . (5.4)

From (2.7), the solution of (5.4) must satisfy the decay condition

lim
η→+∞

Û (2)(k, η, τ ) = 0 . (5.5)

In order to solve (5.4), (5.5), as in [1] we introduce a left eigenvector L such that

L · (iA− B) = 0 ,

normalized by

L · BR = L · BR = 1 . (5.6)

It follows from the equations satisfied by L,R that

L · BR = L · BR = 0 . (5.7)

We compute L and obtain

L = −
1

2id(λ− v01)
R .

We also introduce a linear subspace consisting of the vectors S such that

L · BS = L · BS = 0 . (5.8)

This subspace is complementary to the subspace spanned by {R,R}. We look for a

solution of (5.4) in the form

Û (2)(k, η, τ ) = S(k, η, τ ) + a(k, η, τ )R+ b(k, η, τ )R, (5.9)

where S satisfies (5.8). We will solve for the vector-valued function S and the scalar

functions a, b. Substituting (5.9) in (5.4) gives

ikAS+ B∂ηS+ (∂ηa+ ka)BR+ (∂ηb− kb)BR = p̂. (5.10)

Left multiplying (5.10) by L and L and using (5.7), (5.8), we find the equations

∂ηa+ ka = L · p̂ , ∂ηb− kb = L · p̂ ,
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whose solutions are given by

a(k, η, τ ) = e−kη

(

a0(k, τ ) +

∫ η

0

L · p̂(k, η′, τ )ekη
′

dη′
)

, (5.11)

b(k, η, τ ) = ekη
(

b0(k, τ ) +

∫ η

0

L · p̂(k, η′, τ )e−kη′

dη′
)

, (5.12)

where a0(k, τ ), b0(k, τ ) are arbitrary functions of integration, which will be chosen later.

Next, we solve (5.10) for S. From (5.8), vectors S of the above linear subspace have

the form

S = (S1, 0, S3, S4, 0)
T ,

with arbitrary components S1, S3, S4. We introduce vectors Lj , with j = 1, 3, 4, such

that

Lj · BR = Lj · BR = 0, iLj · AS = Sj . (5.13)

They are given explicitly by

L1 =
1

d

(

−i(λ− v01), 0, iB
0
1 , 0, 0

)T
, L3 =

1

d

(

iB0
1 , 0,−i(λ− v01), 0, 0

)T
,

L4 =

(

0, 0, 0,−
i

λ− v01
, 0

)T

.

Left multiplying (5.10) by Lj and using (5.13) give

Sj =
1

k
Lj · p̂, for j = 1, 3, 4 .

Thus the solution for S is given by3

S =

(

1

k
L1 · p̂, 0,

1

k
L3 · p̂,

1

k
L4 · p̂, 0

)T

. (5.14)

We compute the Fourier transform of the right-hand sides of (5.1). For p1 = (p11, p12)

we have

p̂11(k, η, τ ) = −(λ− v01)|k|e
−|k|ηϕ̂(1)

τ (k, τ )

− id

∫ +∞

−∞

|k − ℓ| ℓ (|k − ℓ| − |ℓ|)e−(|k−ℓ|+|ℓ|)ηϕ̂(1)(k − ℓ)ϕ̂(1)(ℓ) dℓ ,

p̂12(k, η, τ ) = i(λ− v01)ke
−|k|ηϕ̂(1)

τ (k, τ )

+ d

∫ +∞

−∞

(k − ℓ) ℓ |ℓ|
(

e−(|k−ℓ|+|ℓ|)η − e−|ℓ|η
)

ϕ̂(1)(k − ℓ)ϕ̂(1)(ℓ) dℓ

− d

∫ +∞

−∞

|k − ℓ| ℓ2e−(|k−ℓ|+|ℓ|)ηϕ̂(1)(k − ℓ)ϕ̂(1)(ℓ) dℓ ,

disregarding in the integrals the dependence on τ , for the sake of simplicity. For p2 =

(p21, p22) and p3 we obtain

p̂21(k, η, τ ) = B0
1 |k|e

−|k|ηϕ̂(1)
τ (k, τ ) ,

3The simpler form of S in (5.14), with respect to (6.16) in [1], seems due to the choice of the symmetric
form of equations (2.2) instead of the conservative form (2.1).
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p̂22(k, η, τ ) = iB0
1ke

−|k|ηϕ̂(1)
τ (k, τ ) ,

p̂3(k, η, τ ) = −i(λ− v01)

∫ +∞

−∞

(k − ℓ) ℓ2e−|ℓ|ηϕ̂(1)(k − ℓ)ϕ̂(1)(ℓ) dℓ .

It follows that

L · p̂(k, η, τ ) = i
(λ− v01)

2 + (B0
1)

2

2d(λ− v01)
(k − |k|)e−|k|ηϕ̂(1)

τ (k, τ )

+
1

2

∫ +∞

−∞

ℓ {|k − ℓ|(|k − ℓ| − |ℓ|) + |k − ℓ|ℓ− (k − ℓ)|ℓ|} e−(|k−ℓ|+|ℓ|)ηϕ̂(1)(k− ℓ)ϕ̂(1)(ℓ)dℓ

+
1

2

∫ +∞

−∞

(k − ℓ) |ℓ|(|ℓ|+ ℓ)e−|ℓ|ηϕ̂(1)(k − ℓ)ϕ̂(1)(ℓ) dℓ , (5.15)

L · p̂(k, η, τ ) = i
(λ− v01)

2 + (B0
1)

2

2d(λ− v01)
(k + |k|)e−|k|ηϕ̂(1)

τ (k, τ )

+
1

2

∫ +∞

−∞

ℓ {−|k − ℓ|(|k − ℓ| − |ℓ|) + |k − ℓ|ℓ− (k − ℓ)|ℓ|} e−(|k−ℓ|+|ℓ|)ηϕ̂(1)(k−ℓ)ϕ̂(1)(ℓ)dℓ

+
1

2

∫ +∞

−∞

(k − ℓ) |ℓ|(ℓ− |ℓ|)e−|ℓ|ηϕ̂(1)(k − ℓ)ϕ̂(1)(ℓ) dℓ , (5.16)

and

L1 · p̂(k, η, τ ) = i
(λ− v01)

2 + (B0
1)

2

d
|k|e−|k|ηϕ̂(1)

τ (k, τ )

−(λ− v01)
∫ +∞

−∞
|k − ℓ| ℓ (|k − ℓ| − |ℓ|)e−(|k−ℓ|+|ℓ|)ηϕ̂(1)(k − ℓ)ϕ̂(1)(ℓ) dℓ ,

L3 · p̂(k, η, τ ) = −
2iB0

1(λ− v01)

d
|k|e−|k|ηϕ̂(1)

τ (k, τ )

+B0
1

∫ +∞

−∞
|k − ℓ| ℓ (|k − ℓ| − |ℓ|)e−(|k−ℓ|+|ℓ|)ηϕ̂(1)(k − ℓ)ϕ̂(1)(ℓ) dℓ ,

L4 · p̂(k, η, τ ) =
B0

1

λ− v01
ke−|k|ηϕ̂(1)

τ (k, τ ) .

(5.17)

The expressions obtained in (5.15)–(5.17) are to be inserted in (5.11), (5.12), (5.14) to

give a, b,S.

In order to verify the decay condition (5.5) for Û (2)(k, η, τ ), given by (5.9), we first no-

tice that S(k, η, τ ) depends on η only through the exponentials of −|k|η and

−(|k − ℓ|+ |ℓ|)η (see (5.14) and (5.17)), so that

lim
η→+∞

S(k, η, τ ) = 0 .

Thus Û (2)(k, η, τ ) satisfies (5.5) if and only if

lim
η→+∞

a(k, η, τ ) = 0 , (5.18)

lim
η→+∞

b(k, η, τ ) = 0 . (5.19)

From (5.11), (5.12), (5.15), (5.16), condition (5.18) is automatically satisfied if k > 0,

and (5.19) is automatically satisfied if k < 0. It follows that a0 remains undetermined
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for k > 0, and b0 remains undetermined for k < 0. Instead, (5.18), (5.19) may be used

to determine a0 if k < 0, and b0 if k > 0, as functions of ϕ̂(1) through (5.15), (5.16):

a0(k, τ ) = −

∫ +∞

0

L · p̂(k, η′, τ )ekη
′

dη′ = i
(λ− v01)

2 + (B0
1)

2

2d(λ− v01)
ϕ̂(1)
τ (k, τ )

−
1

2

∫ +∞

−∞

ℓ
|k − ℓ|ℓ− (k − ℓ)|ℓ|+ |k − ℓ|(|k − ℓ| − |ℓ|)

|k − ℓ|+ |k|+ |ℓ|
ϕ̂(1)(k − ℓ)ϕ̂(1)(ℓ) dℓ

−
1

2

∫ +∞

−∞

(k − ℓ)|ℓ|(|ℓ|+ ℓ)

|k|+ |ℓ|
ϕ̂(1)(k − ℓ)ϕ̂(1)(ℓ) dℓ , if k < 0 , (5.20)

b0(k, τ ) = −

∫ +∞

0

L · p̂(k, η′, τ )e−kη′

dη′ = −i
(λ− v01)

2 + (B0
1)

2

2d(λ− v01)
ϕ̂(1)
τ (k, τ )

−
1

2

∫ +∞

−∞

ℓ
|k − ℓ|ℓ− (k − ℓ)|ℓ| − |k − ℓ|(|k − ℓ| − |ℓ|)

|k − ℓ|+ |k|+ |ℓ|
ϕ̂(1)(k − ℓ)ϕ̂(1)(ℓ) dℓ

+
1

2

∫ +∞

−∞

(k − ℓ)|ℓ|(|ℓ| − ℓ)

|k|+ |ℓ|
ϕ̂(1)(k − ℓ)ϕ̂(1)(ℓ) dℓ , if k > 0 . (5.21)

5.2. The second order equations in a vacuum. Let us consider problem (5.2) for η < 0.

From the second equation in (5.2), ikĤ
(2)
2 = (p̂′2 − ikÊ(2))/νλ, and substituting in the

other equations of (5.2) we get

∂2
ηÊ

(2) + k2(ν2λ2 − 1)Ê(2) = −P, (5.22)

where

P = νλikp̂′3 − ikp̂′2 + ∂η p̂
′
1 . (5.23)

We solve (5.22) with the decay condition

lim
η→−∞

Ê(2)(k, η, τ ) = 0 (5.24)

(obtained from (2.7)), and (4.10). The general solution of (5.22) is

Ê(1)(k, η, τ ) = α′(k, τ )eσ(λ)kη + β′(k, τ )e−σ(λ)kη

+
1

2|k|σ(λ)

∫ 0

−∞

e−σ(λ)|k||η−ζ|P (k, ζ, τ ) dζ , (5.25)

where α′(k, τ ) and β′(k, τ ) are arbitrary complex-valued functions. From (5.2), (5.25)

the general solutions for the other unknowns are

Ĥ
(1)
1 (k, η, τ ) =

σ(λ)

iνλ
α′(k, τ )eσ(λ)kη −

σ(λ)

iνλ
β′(k, τ )e−σ(λ)kη

+
1

2νλik|k|σ(λ)

{∫ 0

−∞

e−σ(λ)|k||η−ζ|∂ζP (k, ζ, τ ) dζ − e−σ(λ)|kη|P (k, 0, τ )

}

+
1

νλik
p̂′1(k, η, τ ) , (5.26)
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Ĥ
(1)
2 (k, η, τ ) = −

1

νλ
α′(k, τ )eσ(λ)kη −

1

νλ
β′(k, τ )e−σ(λ)kη

−
1

2νλ|k|σ(λ)

∫ 0

−∞

e−σ(λ)|k||η−ζ|P (k, ζ, τ ) dζ +
1

νλik
p̂′2(k, η, τ ) . (5.27)

Imposing the decay condition

lim
η→−∞

V̂ (2)(k, η, τ ) = 0

to (5.25)–(5.27) yields that the solutions of (5.2) are given by

V̂ (2)(k, η, τ ) = α′(k, τ )eσ(λ)kη

⎛

⎜

⎝

σ(λ)
iνλ

− 1
νλ

1

⎞

⎟

⎠

+
1

2|k|σ(λ)

⎛

⎜

⎜

⎜

⎝

1
νλik

{

∫ 0

−∞
e−σ(λ)|k||η−ζ|∂ζP (k, ζ, τ ) dζ − e−σ(λ)|kη|P (k, 0, τ )

}

− 1
νλ

∫ 0

−∞
e−σ(λ)|k||η−ζ|P (k, ζ, τ ) dζ

∫ 0

−∞
e−σ(λ)|k||η−ζ|P (k, ζ, τ ) dζ

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎝

1
νλik p̂

′
1

1
νλik p̂

′
2

0

⎞

⎟

⎠
, if k > 0 , (5.28)

V̂ (2)(k, η, τ ) = β′(k, τ )e−σ(λ)kη

⎛

⎜

⎝

−σ(λ)
iνλ

− 1
νλ

1

⎞

⎟

⎠

+
1

2|k|σ(λ)

⎛

⎜

⎜

⎜

⎝

1
νλik

{

∫ 0

−∞
e−σ(λ)|k||η−ζ|∂ζP (k, ζ, τ ) dζ − e−σ(λ)|kη|P (k, 0, τ )

}

− 1
νλ

∫ 0

−∞
e−σ(λ)|k||η−ζ|P (k, ζ, τ ) dζ

∫ 0

−∞
e−σ(λ)|k||η−ζ|P (k, ζ, τ ) dζ

⎞

⎟

⎟

⎟

⎠

+

⎛

⎜

⎝

1
νλik p̂

′
1

1
νλik p̂

′
2

0

⎞

⎟

⎠
, if k < 0 . (5.29)

Notice that we need to determine the arbitrary functions α′(k, τ ) if k > 0, and β′(k, τ )

if k < 0.
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Substituting (4.20) in the right-hand sides of (5.2) gives

p̂′1(k, η, τ ) = −νσ(λ)H0
1 |k|e

σ(λ)|k|η ϕ̂
(1)
τ (k, τ )

+iνλ(ν2λ2 − 1)H0
1

∫ +∞

−∞

(k − ℓ) ℓ2eσ(λ)|ℓ|ηϕ̂(1)(k − ℓ)ϕ̂(1)(ℓ) dℓ,

p̂′2(k, η, τ ) = iνH0
1ke

σ(λ)|k|η ϕ̂
(1)
τ (k, τ ),

p̂′3(k, η, τ ) = −iν2λH0
1ke

σ(λ)|k|η ϕ̂
(1)
τ (k, τ )

+(ν2λ2 − 1)σ(λ)H0
1

∫ +∞

−∞

(k − ℓ) ℓ|ℓ|eσ(λ)|ℓ|ηϕ̂(1)(k − ℓ)ϕ̂(1)(ℓ) dℓ,

(5.30)

and from here we also obtain

P (k, ζ, τ ) = 2ν3λ2H0
1k

2eσ(λ)|k|ζ ϕ̂(1)
τ (k, τ )

+ iνλ(ν2λ2 − 1)σ(λ)H0
1

∫ +∞

−∞

(k2 − ℓ2) ℓ|ℓ|eσ(λ)|ℓ|ζ ϕ̂(1)(k − ℓ)ϕ̂(1)(ℓ) dℓ, (5.31)

∂ζP (k, ζ, τ ) = 2ν3λ2σ(λ)H0
1k

2|k|eσ(λ)|k|ζ ϕ̂(1)
τ (k, τ )

− iνλ(ν2λ2 − 1)2H0
1

∫ +∞

−∞

(k2 − ℓ2) ℓ3eσ(λ)|ℓ|ζ ϕ̂(1)(k − ℓ)ϕ̂(1)(ℓ) dℓ. (5.32)

Then we substitute (5.30)–(5.32) in (5.28), (5.29).

5.3. The second order jump conditions. The first-order solution depends on the un-

known function ϕ̂(1)(k, τ ), which describes the profile of the surface wave, while the

second order solution depends, in addition, on unknown functions a0(k, τ ), b0(k, τ ) and

α′(k, τ ), β′(k, τ ). In this section we study the second order jump conditions. We show

that they reduce to a singular linear system of algebraic equations for (a0, b0, α
′, β′, ϕ̂(2)),

where ϕ̂(2)(k, τ ) is the Fourier transform of the second-order displacement of the inter-

face. Imposing solvability conditions on this system gives the evolution equation for the

function ϕ̂(1)(k, τ ) that we seek.

Let us consider the jump conditions (5.3), where we substitute the second order cor-

rections obtained in the previous sections.

Let us first assume k > 0, recalling that in this case we need to determine a0(k, τ ),

α′(k, τ ) and ϕ̂(2)(k, τ ) (for k > 0). From (5.3), (5.9), (5.11), (5.14), (5.17), (5.28), and

(5.30)–(5.32), evaluated at η = 0, we obtain the linear system

⎛

⎜

⎜

⎜

⎜

⎝

1 0 1

1 0 1

0 1/νλ iH0
1

d iσ(λ)H0
1/νλ 0

0 1 iνλH0
1

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎝

a0
α′

kϕ̂(2)

⎞

⎠ =

⎛

⎜

⎜

⎜

⎜

⎝

r̂′1
r̂′2
r̂′3
r̂′4
r̂′5

⎞

⎟

⎟

⎟

⎟

⎠

, (5.33)
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where we have set

r̂′1 =
1

i(λ− v01)
r̂1 + b0 ,

r̂′2 =
1

iB0
1

(

r̂2 +
B0

1

λ− v01
ϕ̂(1)
τ

)

+ b0 ,

r̂′3 = r̂3 +
H0

1

λ
ϕ̂(1)
τ −

1

2νλ|k|σ(λ)

∫ 0

−∞

eσ(λ)|k|ζP (k, ζ, τ ) dζ ,

r̂′4 = r̂4 − b0d− (H0
1 )

2σ(λ)

λi

k

|k|
ϕ̂(1)
τ

+
H0

1

2iνλσ(λ)

1

k|k|

{
∫ 0

−∞

eσ(λ)|k|ζ∂ζP (k, ζ, τ ) dζ − P (k, 0, τ )

}

+
(H0

1 )
2(ν2λ2 − 1)

k

∫ +∞

−∞

(k − ℓ) ℓ2ϕ̂(1)(k − ℓ)ϕ̂(1)(ℓ) dℓ ,

r̂′5 = r̂5 −
1

2|k|σ(λ)

∫ 0

−∞

eσ(λ)|k|ζP (k, ζ, τ ) dζ ,

with b0 given by (5.21). First of all we see that the first two lines of the matrix in the

left-hand side of (5.33) are equal, and we can verify that r̂′1 = r̂′2. Moreover, the last row

of the matrix in (5.33) equals the third one multiplied by νλ, and actually one verifies

that r̂′5 = νλr̂′3. Thus (5.33) may be reduced to
⎛

⎝

1 0 1

0 1/νλ iH0
1

d iσ(λ)H0
1/νλ 0

⎞

⎠

⎛

⎝

a0
α′

kϕ̂(2)

⎞

⎠ =

⎛

⎝

r̂′1
r̂′3
r̂′4

⎞

⎠ . (5.34)

The determinant of the matrix of this system is zero because of (4.15), i.e. the equation

defining λ. It is easily seen that the rank of this matrix is 2. Then, the linear system

(5.34) is solvable if and only if the rank of the augmented matrix is also equal to 2, and

this is true if the following condition holds:

dr̂′3 + iH0
1 r̂

′
4 − iH0

1dr̂
′
1 = 0 . (5.35)

Developing the terms in (5.35) we get the solvability condition
(

2
λ− v01

d
+

ν2λ

σ(λ)2

)

ϕ̂(1)
τ (k, τ ) + i

∫ +∞

−∞

Λ+(k, ℓ)ϕ̂
(1)(k − ℓ, τ )ϕ̂(1)(ℓ, τ ) dℓ = 0 , k > 0 ,

(5.36)

where we have denoted

Λ+(k, ℓ) = ℓ
|k − ℓ|(|k − ℓ| − |ℓ|) + (k − ℓ)|ℓ| − |k − ℓ|ℓ

|k − ℓ|+ |k|+ |ℓ|
+

(k − ℓ)|ℓ|(|ℓ| − ℓ)

|k|+ |ℓ|

− (k − ℓ)|ℓ|+ σ(λ)
{

− k|ℓ|+
1

2

(

(k + ℓ)ℓ− |k − ℓ||ℓ|
)

}

. (5.37)

Thus, when k > 0, the system (5.34) is solvable if and only if ϕ̂(1) satisfies equation

(5.36), and then the rank of the augmented matrix of the system is equal to 2. Given the

solution ϕ̂(1) of (5.36) we compute Û (1), V̂ (1) from (4.19), (4.20). Thus the leading-order

term of the asymptotic expansion is uniquely determined. From system (5.34) we may

obtain a0, α
′ in terms of an arbitrary second order wave profile ϕ̂(2), and in turn Û (2), V̂ (2)
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from (5.9), (5.11), (5.14), (5.17), (5.28), and (5.30)–(5.32). The wave profile ϕ̂(2) should

be determined by considering higher order terms of the asymptotic expansion; see [18].

The case k < 0 is similar. Now we need to determine b0(k, τ ), β
′(k, τ ) and ϕ̂(2)(k, τ )

(for k < 0). From (5.3), (5.9), (5.12), (5.14), (5.17) and (5.29)–(5.32), evaluated at η = 0,

we obtain the linear system

⎛

⎜

⎜

⎜

⎜

⎝

−1 0 1

−1 0 1

0 1/νλ iH0
1

d −iσ(λ)H0
1/νλ 0

0 1 iνλH0
1

⎞

⎟

⎟

⎟

⎟

⎠

⎛

⎝

b0
β′

kϕ̂(2)

⎞

⎠ =

⎛

⎜

⎜

⎜

⎜

⎝

r̂′′1
r̂′′2
r̂′3
r̂′′4
r̂′5

⎞

⎟

⎟

⎟

⎟

⎠

, (5.38)

where we have set

r̂′′1 =
1

i(λ− v01)
r̂1 − a0 ,

r̂′′2 =
1

iB0
1

(

r̂2 +
B0

1

λ− v01
ϕ̂(1)
τ

)

− a0 ,

r̂′′4 = r̂4 − a0d− (H0
1 )

2σ(λ)

λi

k

|k|
ϕ̂(1)
τ

+
H0

1

2iνλσ(λ)

1

k|k|

{∫ 0

−∞

eσ(λ)|k|ζ∂ζP (k, ζ, τ ) dζ − P (k, 0, τ )

}

+
(H0

1 )
2(ν2λ2 − 1)

k

∫ +∞

−∞

(k − ℓ) ℓ2ϕ̂(1)(k − ℓ)ϕ̂(1)(ℓ) dℓ ,

with a0 given by (5.20). By similar arguments as before we show that the linear system

(5.38) is solvable if and only if

dr̂′3 − iH0
1 r̂

′′
4 − iH0

1dr̂
′′
1 = 0 .

Expanding the terms we get the solvability condition

(

2
λ− v01

d
+

ν2λ

σ(λ)2

)

ϕ̂(1)
τ (k, τ )

+ i

∫ +∞

−∞

Λ−(k, ℓ)ϕ̂
(1)(k − ℓ, τ )ϕ̂(1)(ℓ, τ ) dℓ = 0 , k < 0 , (5.39)

where we have denoted

Λ−(k, ℓ) = ℓ
|k − ℓ|(|k − ℓ| − |ℓ|)− (k − ℓ)|ℓ|+ |k − ℓ|ℓ

|k − ℓ|+ |k|+ |ℓ|
+

(k − ℓ)|ℓ|(|ℓ|+ ℓ)

|k|+ |ℓ|

− (k − ℓ)|ℓ|+ σ(λ)
{

− k|ℓ| −
1

2

(

(k + ℓ)ℓ− |k − ℓ||ℓ|
)

}

. (5.40)

Given the solution ϕ̂(1) of (5.39) we compute Û (1), V̂ (1) from (4.19), (4.20). From system

(5.38) we may get b0, β
′ in terms of an arbitrary second order wave profile ϕ̂(2), and

in turn Û (2), V̂ (2) from (5.9), (5.12), (5.14), (5.17) and (5.29)–(5.32). Also for k < 0

the wave profile ϕ̂(2) should be determined by considering higher order terms of the

asymptotic expansion; see [18].
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5.4. The kernel. The equations (5.36), (5.39) can be written in more compact form as
(

2
λ− v01

d
+

ν2λ

σ(λ)2

)

ϕ̂(1)
τ (k, τ )

+ i

∫ +∞

−∞

Λ0(k, ℓ)ϕ̂
(1)(k − ℓ, τ )ϕ̂(1)(ℓ, τ ) dℓ = 0 , ∀ k �= 0 , (5.41)

with

Λ0(k, ℓ) = Λ01(k, ℓ) + Λ02(k, ℓ),

Λ01(k, ℓ) = sgn(k)
{

ℓ
(k− ℓ)|ℓ| − |k− ℓ|ℓ

|k− ℓ|+ |k|+ |ℓ|
−

(k− ℓ)|ℓ|ℓ

|k|+ |ℓ|
+

σ(λ)

2

(

(k + ℓ)ℓ− |k− ℓ||ℓ|
)

}

,

Λ02(k, ℓ) = ℓ
|k − ℓ|(|k − ℓ| − |ℓ|)

|k − ℓ|+ |k|+ |ℓ|
+

(k − ℓ)ℓ2

|k|+ |ℓ|
− (k − ℓ)|ℓ| − σ(λ)k|ℓ| .

The kernel Λ01(k, ℓ) can also be written as

Λ01(k, ℓ) = sgn(k) Λ̃01(k− ℓ, ℓ),

where

Λ̃01(k, ℓ) = ℓ
k|ℓ| − |k|ℓ

|k|+ |k + ℓ|+ |ℓ|
−

kℓ|ℓ|

|k + ℓ|+ |ℓ|
+

σ(λ)

2

(

(k + 2ℓ)ℓ− |kℓ|
)

.

On the other hand, the kernel Λ02(k, ℓ) can also be written as

Λ02(k, ℓ) = sgn(k) Λ̃02(k− ℓ, ℓ),

where

Λ̃02(k, ℓ) = sgn(k + ℓ)
{ |k|ℓ(|k| − |ℓ|)

|k + ℓ|+ |k|+ |ℓ|
+

kℓ2

|k + ℓ|+ |ℓ|
− k|ℓ| − σ(λ)(k + ℓ)|ℓ|

}

.

Moreover, the kernel Λ̃01(k, ℓ) + Λ̃02(k, ℓ) can be equivalently replaced in the integral

equation (5.41) by the symmetrized kernel

Λ̃(k, ℓ) =
1

2

(

Λ̃01(k, ℓ) + Λ̃01(ℓ, k) + Λ̃02(k, ℓ) + Λ̃02(ℓ, k)
)

, (5.42)

because the antisymmetric part of Λ̃01 + Λ̃02 gives a vanishing integral. Thus we can

write (5.41) as
(

2
λ− v01

d
+

ν2λ

σ(λ)2

)

ϕ̂(1)
τ (k, τ )

+ i sgn(k)

∫ +∞

−∞

Λ̃(k− ℓ, ℓ) ϕ̂(1)(k− ℓ, τ ) ϕ̂(1)(ℓ, τ ) dℓ = 0 , ∀ k �= 0 , (5.43)

where the kernel Λ̃ in (5.43) is explicitly given by

Λ̃(k, ℓ) =
1

2

{ (k − ℓ)(|k|ℓ− k|ℓ|)

|k + ℓ|+ |k|+ |ℓ|
−

kℓ|ℓ|

|k + ℓ|+ |l|
−

|k|kℓ

|k + ℓ|+ |k|
+σ(λ)

(

k2+ℓ2+kℓ−|kℓ|
)}

+
1

2
sgn(k + ℓ)

{ (|k| − |ℓ|)(|k|ℓ− k|ℓ|)

|k + ℓ|+ |k|+ |ℓ|
+

kℓ2

|k + ℓ|+ |ℓ|

+
k2ℓ

|k + ℓ|+ |k|
− k|ℓ| − |k|ℓ− σ(λ)(k + ℓ)(|k|+ |ℓ|)

}

. (5.44)
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First of all we verify that the kernel Λ̃ satisfies the following properties:

Λ̃(k, ℓ) = Λ̃(ℓ, k) (symmetry),

Λ̃(k, ℓ) = Λ̃(−k,−ℓ) (reality),

Λ̃(αk, αℓ) = α2Λ̃(k, ℓ) ∀α > 0 (homogeneity).

(5.45)

Considering some particular cases we can considerably simplify Λ̃ as follows:

Λ̃(k, ℓ) =

{

−(1 + σ(λ))kℓ if k > 0, ℓ > 0 ,

(1 + σ(λ))ℓ(k + ℓ) if k + ℓ > 0, ℓ < 0 ,
(5.46)

where the values of Λ̃ in other regions of the (k, ℓ)-plane follow from (5.45), (5.46). Λ̃

can be written in a different way as

Λ̃(k, ℓ) = −(1 + σ(λ))
2|k + ℓ| |k| |ℓ|

|k + ℓ|+ |k|+ |ℓ|
.

After an appropriate rescaling in time, we write (5.43), (5.46) as

ϕ̂(1)
τ (k, τ ) + i sgn(k)

∫ +∞

−∞

Λ(k− ℓ, ℓ) ϕ̂(1)(k− ℓ, τ ) ϕ̂(1)(ℓ, τ ) dℓ = 0 , ∀ k �= 0 ,

(5.47)

with the new kernel Λ defined by

Λ(k, ℓ) =
2|k + ℓ| |k| |ℓ|

|k + ℓ|+ |k|+ |ℓ|
. (5.48)

Equations (5.47), (5.48) are well-known as they coincide with the amplitude equation

for nonlinear Rayleigh waves [10] and describe the propagation of surface waves on a

tangential discontinuity (current-vortex sheet) in incompressible MHD [1]. The spacial

form of (5.47), (5.48) is (see [2, 10])

ϕ
(1)
τ + 1

2H[Φ2]θθ +Φϕ
(1)
θθ = 0, Φ = H[ϕ(1)] ,

where H denotes the Hilbert transform. After renaming of variables it becomes (1.5),

(1.6).

Λ is perhaps the simplest kernel arising for surface waves. It satisfies the properties

Λ(k, ℓ) = Λ(ℓ, k) (symmetry), (5.49a)

Λ(k, ℓ) = Λ(−k,−ℓ) (reality), (5.49b)

Λ(αk, αℓ) = α2Λ(k, ℓ) ∀α > 0 (homogeneity), (5.49c)

Λ(k + ℓ,−ℓ) = Λ(k, ℓ) ∀k, ℓ ∈ R (Hamiltonian). (5.49d)

The value 2 of the scaling exponent in (5.49c) is consistent with the dimensional analysis

in [2] for surface waves. It is shown by Al̀ı et al. [2] that (5.49d) is a sufficient condition

for (5.43), in addition to (5.49a), (5.49b), to admit a Hamiltonian structure; see also

[10, 11]. Other results on equations of the form (5.47) are in the papers [4–6, 13, 14, 18].

The results of Sections 3–5 are summarized in the following theorem.

Theorem 5.1. Assume that v01 , B
0
1 , H

0
1 are as in (3) or (4) of Lemma 4.1, and let λ be

a real root of (4.15). Then the solutions U = (v,B, q)T , V = (H, E)T , ϕ of (2.2), (2.5),

(2.6) admit the asymptotic expansion (3.1), where the first order terms of the expansion
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are defined in (4.19), (4.20), and the second order terms are found from (5.9), (5.11),

(5.12), (5.14), (5.17) and (5.28)–(5.32). The location of the plasma-vacuum interface is

given by

x2 = εϕ(1)(x1 − λt, εt) +O(ε2),

as ε → 0, with t = O(ε−1) and λ the linearized phase velocity of the surface wave. The

Fourier transform of the leading order perturbation ϕ(1)(θ, τ ) satisfies the amplitude

equations (5.47), (5.48).

We wish to stress that for the existence of surface waves propagating on the plasma-

vacuum interface, it is necessary to have a real root λ of (4.15) satisfying (4.10). This is

obtained if the basic state v01 , B
0
1 , H

0
1 is as in (3) or (4) of Lemma 4.1.

6. Noncanonical variables and well-posedness. As in [12] we introduce the non-

canonical dependent variable ψ(θ, τ ) defined by

ψ(θ, τ ) = |∂θ|
1/2ϕ(1)(θ, τ ), ψ̂(k, τ ) = |k|1/2ϕ̂(1)(k, τ ).

Then rewriting equation (5.47) in terms of ψ gives

ψ̂τ (k, τ ) + i k

∫ +∞

−∞

S(k − ℓ, ℓ) ψ̂(k − ℓ, τ ) ψ̂(ℓ, τ ) dℓ = 0 , ∀ k �= 0 , (6.1)

with kernel S given by

S(k, ℓ) =
Λ(k, ℓ)

|kℓ(k + ℓ)|1/2
. (6.2)

We extend the definition of S by setting

S(k, ℓ) = 0 if kℓ = 0 . (6.3)

S obviously satisfies

S(k, ℓ) = S(ℓ, k) (symmetry), (6.4a)

S(k, ℓ) = S(−k,−ℓ) (reality), (6.4b)

S(αk, αℓ) = α1/2S(k, ℓ) ∀α > 0 (homogeneity), (6.4c)

S(k + ℓ,−ℓ) = S(k, ℓ) ∀k, ℓ ∈ R (Hamiltonian). (6.4d)

The corresponding spatial form of (6.1) is

∂τψ + ∂θa(ψ, ψ) = 0 , (6.5)

where the bilinear form a is defined by

â(ψ, φ)(k, τ ) =

∫ +∞

−∞

S(k − ℓ, ℓ) ψ̂(k − ℓ, τ ) φ̂(ℓ, τ ) dℓ. (6.6)

(6.5) has the form of a nonlocal Burgers equation, like (2.8) in [12] or (1.1) in [3].

We consider the initial value problem for the noncanonical equations (6.5), (6.6),

supplemented by an initial condition

ψ(θ, 0) = ψ0(θ). (6.7)
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The well-posedness of (6.5)–(6.7) easily follows by adapting the proof of Hunter [12]

(given for the periodic setting) to our case.

Theorem 6.1. For any ψ0 ∈ Hs(R), s > 2, the initial value problem (6.5)–(6.7) has a

unique local solution

ψ ∈ C(I;Hs(R)) ∩ C1(I;Hs−1(R))

defined on the time interval I = (−τ∗, τ∗), where

τ∗ =
1

Ks‖ψ0‖
1−2/s
L2(R) ‖ψ0‖

2/s
Hs(R)

, (6.8)

for a suitable constant Ks.

The well-posedness result of Theorem 6.1 may be easily recast as a similar result for

(5.47), (5.48).

For the proof we need to introduce the homogeneous space Ḣs(R),

Ḣs(R) =

{

ψ : R → R :

∫ +∞

−∞

|k|2s|ψ̂(k)|2 dk < +∞

}

.

As inner product and norm in Ḣs, we use4

〈ψ, φ〉s =

∫ +∞

−∞

|k|2sψ̂(k)φ̂(−k) dk, ‖ψ‖s =

(∫ +∞

−∞

|k|2s|ψ̂(k)|2dk

)1/2

.

In particular we have

‖ψ‖L2(R) = ‖ψ‖0 =

(∫ +∞

−∞

|ψ̂(k)|2dk

)1/2

.

As a norm of Hs(R) we take

‖ψ‖Hs(R) =

(∫ +∞

−∞

(

1 + |k|2s
)

|ψ̂(k)|2dk

)1/2

.

Proof of Theorem 6.1. We prove an a priori estimate for the solution. The first part

of the proof is as in [12], but we repeat it for the convenience of the reader. Assuming

that we have a sufficiently smooth solution ψ, from (6.5), (6.6) we compute for s ≥ 0,

d

dτ

∫ +∞

−∞

|k|2sψ̂(k)ψ̂(−k) dk

+ 2i

∫∫

R2

k|k|2sS(k − ℓ, ℓ) ψ̂(k − ℓ, τ ) ψ̂(ℓ, τ ) ψ̂(−k, τ ) dℓ dk = 0 . (6.9)

4If φ is real, then φ̂(k) = φ̂(−k).
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By change of variables and the cyclic symmetry of S(k, ℓ) we prove

2i

∫∫

R2

k|k|2sS(k − ℓ, ℓ) ψ̂(k − ℓ, τ ) ψ̂(ℓ, τ ) ψ̂(−k, τ ) dℓ dk

= −2i

∫∫

R2

(k − ℓ)|k − ℓ|2sS(k − ℓ, ℓ) ψ̂(k − ℓ, τ ) ψ̂(ℓ, τ ) ψ̂(−k, τ ) dℓ dk

= −2i

∫∫

R2

ℓ|ℓ|2sS(k − ℓ, ℓ) ψ̂(k − ℓ, τ ) ψ̂(ℓ, τ ) ψ̂(−k, τ ) dℓ dk

=
2i

3

∫∫

R2

(

k|k|2s−(k − ℓ)|k − ℓ|2s − ℓ|ℓ|2s
)

S(k − ℓ, ℓ) ψ̂(k − ℓ, τ ) ψ̂(ℓ, τ ) ψ̂(−k, τ )dℓdk.

(6.10)

From the definition (5.48), (6.2) it follows that

|S(k − ℓ, ℓ)| ≤ min{|k|1/2, |k − ℓ|1/2, |ℓ|1/2}. (6.11)

Assuming s > 0, we may apply the estimate (5.2) in [12]:
∣

∣k|k|2s − (k − ℓ)|k − ℓ|2s − ℓ|ℓ|2s
∣

∣ ≤ Cs (|k|
s|k − ℓ|s|ℓ|+ |k|s|k − ℓ||ℓ|s + |k||k − ℓ|s|ℓ|s) .

(6.12)

From (6.9)–(6.12), applying the appropriate bound on each term, we get

∣

∣

∣

∣

d

dτ

∫ +∞

−∞

|k|2sψ̂(k)φ̂(−k) dk

∣

∣

∣

∣

≤ 2Cs

∫∫

R2

|k|s|k − ℓ|s|ℓ|3/2 |ψ̂(k − ℓ, τ ) ψ̂(ℓ, τ ) ψ̂(−k, τ )| dℓ dk . (6.13)

Using the Cauchy-Schwarz and Young’s inequalities gives
∣

∣

∣

∣

d

dτ
‖ψ‖2s

∣

∣

∣

∣

≤ 2Cs‖|k|
sψ̂‖L2(R) ‖(|k|

s ˆ|ψ|) ∗ (|ℓ|3/2 ˆ|ψ|)‖L2(R) ≤ 2Cs‖ψ‖
2
s ‖|ℓ|

3/2ψ̂‖L1(R).

(6.14)

Applying estimate (A.1) for p = s− 3/2 > 1/2, q = −3/2, yields

‖|ℓ|3/2ψ̂‖L1(R) ≤ C‖ψ‖
1−2/s
0 ‖ψ‖2/ss , (6.15)

and substituting in (6.14) gives
∣

∣

∣

∣

d

dτ
‖ψ‖2s

∣

∣

∣

∣

≤ 2CCs‖ψ‖
1−2/s
0 ‖ψ‖2+2/s

s . (6.16)

If s = 0, the last equality in (6.10) shows that such double integral equals zero. It follows

from (6.9) that

d

dτ

∫ +∞

−∞

ψ̂(k)ψ̂(−k) dk =
d

dτ
‖ψ‖20 = 0 , (6.17)

which gives ‖ψ(t)‖0 = ‖ψ0‖0. Combining with (6.16) and simplifying the equation give
∣

∣

∣

∣

d

dτ
‖ψ‖Hs(R)

∣

∣

∣

∣

≤ CCs‖ψ0‖
1−2/s
0 ‖ψ‖

1+2/s
Hs(R). (6.18)

Using Gronwall’s inequality, we deduce from (6.18) the bound

‖ψ(·, τ )‖Hs(R) ≤ ‖ψ0‖Hs(R)

(

1−
2CCs

s
‖ψ0‖

1−2/s
L2(R) ‖ψ0‖

2/s
Hs(R)|τ |

)−s/2

, (6.19)
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for |τ | < τ∗ where τ∗ is given by (6.8). Given the a priori estimate (6.19), the proof

proceeds by standard arguments; see [15, 22]. �

From the proof of Theorem 6.1 we can also obtain the following blow-up criterion.

Lemma 6.2. Under the assumptions of Theorem 6.1, if ψ ∈ C(0, T ;Hs(R)) with 0 <

T < +∞ is a solution of (6.5) such that
∫ T

0

‖ψ(·, τ )‖
2/s′

s′ dτ < +∞ (6.20)

for some s′ > 2, then ψ is continuable to a solution ψ ∈ C(0, T ′;Hs(R)) with T ′ > T .

Proof. Applying estimate (A.1) for p = s′ − 3/2 > 1/2, q = −3/2, yields

‖|ℓ|3/2ψ̂‖L1(R) ≤ C‖ψ‖
1−2/s′

0 ‖ψ‖
2/s′

s′ ,

and substituting in (6.14) gives
∣

∣

∣

∣

d

dτ
‖ψ‖2s

∣

∣

∣

∣

≤ 2CCs‖ψ‖
1−2/s′

0 ‖ψ‖
2/s′

s′ ‖ψ‖2s.

Combining with (6.17) we readily obtain
∣

∣

∣

∣

d

dτ
‖ψ‖2Hs(R)

∣

∣

∣

∣

≤ CCs‖ψ0‖
1−2/s′

0 ‖ψ‖
2/s′

s′ ‖ψ‖2Hs(R). (6.21)

Applying the Gronwall inequality with (6.20) gives the thesis. �

The thesis of Lemma 6.2 can also be obtained by directly assuming |ℓ|3/2ψ̂ ∈

L1((0, T ) × R), instead of (6.20), as immediately follows from the Gronwall inequal-

ity applied to (6.14). This second blow-up criterion is the analogue of that in [3] for a

homogeneous kernel of order 1/2.

Appendix A.

Lemma A.1. For all p, q ∈ R, q < 1/2 < p, there exists a positive constant Cp,q such

that for all functions ψ ∈ Ḣp+3/2(R) ∩ Ḣq+3/2(R) the following holds:

‖|ℓ|3/2ψ̂‖L1(R) ≤ Cp,q‖ψ‖
p−1/2
p−q

q+3/2‖ψ‖
1/2−q
p−q

p+3/2.
(A.1)

Proof. For L > 0, we compute

‖|ℓ|3/2ψ̂‖L1(R) =

∫

|ℓ|≤L

|ℓ|−q|ℓ|3/2+q|ψ̂(ℓ)| dℓ+

∫

|ℓ|≥L

|ℓ|−p|ℓ|3/2+p|ψ̂(ℓ)| dℓ

≤

(

∫

|ℓ|≤L

|ℓ|−2q dℓ

)1/2 (
∫

|ℓ|≤L

|ℓ|3+2q|ψ̂(ℓ)|2 dℓ

)1/2

+

(

∫

|ℓ|≥L

|ℓ|−2p dℓ

)1/2 (
∫

|ℓ|≥L

|ℓ|3+2p|ψ̂(ℓ)|2 dℓ

)1/2

≤ CqL
1/2−q‖ψ‖q+3/2 + CpL

1/2−p‖ψ‖p+3/2,

where we have used the assumption q < 1/2 < p. Choosing L such that

CqL
1/2−q‖ψ‖q+3/2 = CpL

1/2−p‖ψ‖p+3/2
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gives (A.1). �
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