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Nonlinear System Identification by
the Haar Multiresolution Analysis

Miroslaw Pawlak,Member, IEEE, and Zygmunt Hasiewicz

Abstract—The paper deals with the problem of reconstruc-
tion of nonlinearities in a certain class of nonlinear systems of
composite structure from their input–output observations when
prior information about the system is poor, thus excluding the
standard parametric approach to the problem. The multireso-
lution idea, being the fundamental concept of modern wavelet
theory, is adopted, and the Haar multiresolution analysis in
particular is applied to construct nonparametric identification
techniques of nonlinear characteristics. The pointwise conver-
gence properties of the proposed identification algorithms are
established. Conditions for the convergence are given; and for
nonlinearities satisfying a local Lipschitz condition, the rate of
convergence is evaluated. With applications in mind, the problem
of data-driven selection of the optimum resolution degree in the
identification procedure, essential for the multiresolution analysis,
is considered as well. The theory is verified in the computer
simulations.

Index Terms—Composite nonlinear systems, convergence anal-
ysis, Haar multiresolution, multiresolution analysis, nonlinear
system identification, nonparametric regression, wavelets.

I. INTRODUCTION

A LARGE class of physical systems in practice are nonlin-
ear or reveal nonlinear behavior if they are considered

over a broad operating range. Hence the commonly used
linearity assumption can be regarded as a first-order approx-
imation to the observed process. System identification is the
problem of complete determination of a system description
(mathematical model) from an analysis of its input and output
data. A large class of techniques exists for identification of
linear models; see, e.g., [32], [34], [44] for an extensive
discussion of this subject. Much less attention has been paid to
nonlinear system identification, mostly because their analysis
is generally harder and because the range of nonlinear model
structures and behaviors is much broader than the range of
linear model structures and behaviors. There is no universal
approach to identification of nonlinear systems, and existing
solutions depend strongly on a prior knowledge of the system
structure; see [2]–[5], [21], [31], [33] for some techniques for
nonlinear system identification. In general, the causal nonlinear
(discrete time) system transforms the input data
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into the output signal at the time . This transformation
can be approximated in various ways, and an early approach
relies on Volterra and Wiener expansions, see [5], [33], [42]
and the references cited therein. These representations lead,
however, to very complicated identification algorithms since
multidimensional Volterra/Wiener kernels must be evaluated,
often requiring an extremely large input–output data set. An
alternative strategy is based on the assumption that the system
structure is to some extent known. This yields the concept
of block-oriented models, i.e., models consisting of linear
dynamic subsystems and static nonlinear elements connected
together in a certain composite structure. Signals intercon-
necting the subsystems are not accessible for measurement,
making the identification problem not reducible to the standard
situations, i.e., identification of linear dynamic systems and
recovering memoryless nonlinearities. Such composite models
have found numerous applications in such different and distant
areas as biology, communication systems, chemical engineer-
ing, psychology and sociology; see [2], [3], [5], [10], [25], [33]
and the references cited therein for some specific case studies.
A class of cascade/parallel models is a popular type of block-
oriented structures, i.e., when linear dynamic subsystems are in
a tandem/parallel connection with a static element. Examples
of such models include cascade Hammerstein, Wiener and
sandwich structures and their parallel counterparts [2]–[5],
[12], [14], [21], [25], [31], [33]. The popularity of these
connections stems not only from their relative simplicity
(allowing us to design a constructive identification algorithms)
but surprisingly from their ability to approximate closely more
general systems which are not necessarily of this form. This
is particularly the case if one allows in the cascade/parallel
models a general class of nonlinear characteristics not being
able to be parameterized and smooth, e.g., not being just a
polynomial of a finite order. We refer to [2], [3], [5], [10],
[21], [25], and [31] for parametric identification techniques
of the cascade/parallel block-oriented models with polynomial
nonlinearities. The parametric restriction is often too rigid, i.e.,
if one chooses a parametric family of models that is not of
appropriate form, then there is a danger of reaching incorrect
conclusions in the system identification. In [14], and then [12],
[15]–[20], [28], [29], [36], and [37], the nonparametric ap-
proach to identification of the cascade/parallel block-oriented
models has been proposed. The aim of the nonparametric
method is to relax assumptions on the form of an underlying
nonlinear characteristic, and to let the training data decide
which characteristic fits them best. These approaches are
powerful in exploring fine details in nonlinear characteristics.
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In this paper we consider the nonparametric approach to
the identification of a broad class of nonlinear composite
models which includes most previously defined connections.
We are mostly interested in recovering a nonlinearity which is
embedded in a block oriented structure containing dynamic
linear subsystems and other “nuisance” nonlinearities. We
illustrate our class by giving specific examples including the
aforementioned popular cascade/parallel models. Our approach
is based on regression analysis and we propose the identifi-
cation algorithms originating from the area of nonparametric
regression techniques; we refer to [7], [9], [11], [13], [23],
[24], [35], [38], [40], [41], [43], [45], and [48] for the
theory and applications of nonparametric curve estimation.
The proposed identification algorithm is convergent for a
large class of nonlinear characteristics and under very mild
conditions on the system dynamics. The algorithm is based on
the theory of orthogonal bases originating from multiresolution
and wavelet approximations of square integrable functions.
This theory provides elegant techniques for representing the
levels of details of the approximated function. Multireso-
lution and wavelet theory has recently found applications
in a remarkable diversity of disciplines such as, e.g., data
compression, image analysis, signal processing, numerical
analysis and statistics, see [1], [6], [8], [30], [39], [46], and [47]
for a full account of the theory and applications of this subject.
Little attention, however, has been paid to the application of
the multiresolution and wavelet methodology to system theory
and to system identification in particular; see [26] for some
preliminary studies into this direction.

In this paper we apply the Haar multiresolution analysis to
the identification of the proposed nonlinear composite systems.
We give conditions for the identification algorithm to be
pointwise convergent and find its optimal rate of convergence.
As a result of these studies, the optimal local choice of the
resolution level is calculated. This optimal value depends on
some unknown characteristics of the system, and therefore the
problem of estimating the resolution level from data is also
addressed. We use the Haar multiresolution basis due to its
simple structure (the scaling and wavelet functions are given
explicitly) and good localization properties. Furthermore, the
basis has a simple discrete structure (its values are quantized
to two levels) and therefore it lends itself to a number
of applications in digital circuits and systems where the
discontinuous characteristics often occur. Nevertheless, it is
worth noting that our considerations can be generalized to
other multiresolution bases.

II. M ULTIRESOLUTION ANALYSIS AND THE HAAR SYSTEM

In this section we give a brief overview of some concepts
of the multiresolution and wavelet theory which are essential
for our paper; see [6], [30], [46], [47] for detailed treatments
of this subject. Let denote the set of all integer numbers.
The essential idea of multiresolution analysis is to decompose
the function space in an
increasing sequence of closed approximating
subspaces of , i.e.,

(2.1)

with a property that the union of ’s is dense in and
their intersection is .

The subspace is identified by the following two prop-
erties:

, for all (2.2)

There exists a function , called a scaling function, such
that the set of functions

(2.3)

is an orthonormal basis in .
Hence, any function from can be approximated (at

resolution ) by its orthogonal projection on

(2.4)

where is the th Fourier coeffi-
cient at resolution .

Plugging the definition of into (2.4), we can rewrite
the formula for in the following integral form:

(2.5)

where the kernel is given by

(2.6)

with

(2.7)

It is clear that due to the multiresolution property (2.1), the
following convergence holds:

(2.8)

The pointwise convergence of to is less trivial,
and we refer to [27] and [47] for some general results into this
direction; see also Lemma 1 in Section VI for the pointwise
convergence of the Haar multiresolution basis.

A number of scaling functions with various properties
has been proposed in the literature, culminating in the seminal
work of Daubechies [6] on compactly supported scaling func-
tions. A quick inspection of the conditions (2.1), (2.2), (2.3)
shows that a scaling function determines the multiresolution
analysis completely. Hence the construction of the scaling
function with some desired properties like smoothness and
compact support is an essential problem in the multiresolution
analysis. By virtue of (2.1), one can observe that and
therefore can be represented at the resolution as follows:

(2.9)

where is the th Fourier coefficient of in the basis
. The formula in (2.9) forms a basis for finding

and it is often referred to as a scaling equation.
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The wavelet analysis characterizes the detail information
hidden between two consecutive resolution levels. The latter is
quantitatively described by the property that

forms an orthonormal basis of the
detail subspace , being the orthogonal complement of
in , i.e., . Consequently we can
decompose as follows .
The wavelet function (often called the mother wavelet) has
a property that is an orthonormal basis in .
Since moreover , then it can be expressed in terms of
the scaling function as follows:

(2.10)

where it can be shown [6] that the Fourier coefficients
can be determined from the formula , where

is defined in (2.9). The latter relationship yields the
concept of the so-called mirror filter.

As a consequence of the aforementioned properties, a func-
tion may be expanded in terms of the wavelet
basis as follows:

(2.11)

This in turn implies that the orthogonal projection [see
(2.4)] of onto has the following alternative representation
in terms of :

(2.12)

In this paper we utilize the multiresolution analysis based
on Haar basis. This is one of the simplest examples of mul-
tiresolution systems and wavelet basis where both the scaling
function and the wavelet function are given explicitly and
they are of compact support. It has been discovered recently
[6] that there are other than Haar basis compactly supported
wavelets which moreover can be chosen arbitrary smooth. As
has already been mentioned, and will be apparent from the
results of our paper, the use of the Haar basis leads to very
intuitive identification algorithms with desired convergence
properties and highly efficient computational features.

The scaling function of the Haar system can be taken as
follows:

(2.13)

where denotes the indicator function of.
Consequently the multiresolution basis function is

given by

(2.14)

and the resolution space is defined as follows

all functions in constant on all

intervals for

Thus the set where is equal is a small interval
of length .

It is clear that the kernel function defined in (2.7)
is now given by

(2.15)

Furthermore, the scaling equation in (2.9) takes the form

(2.16)

while the formula for the wavelet function in (2.10) is given by

(2.17)

Hence the wavelet function is given by

(2.18)

and the wavelet system consists of functions
which are nonzero in a small interval of length and as
increases the support of shrinks, i.e., becomes
taller and thinner. Let us also note that in the orthogonal series
literature is usually referred to as the Haar
orthonormal basis in [47].

III. T HE REGRESSIONFUNCTION AND

NONLINEAR COMPOSITE SYSTEMS

Regression analysis is a standard tool used for recovering
some nonlinear relationships of two random processes. Ap-
plied to nonlinear system identification, the analysis makes
it possible to recover the nonlinearities existing in a system
from regression functions of the input and output processes.
Hence let be a sequence of random pairs
representing the input and output signals of a certain dynamical
system. The standard regression function of the process
on is defined as follows:

(3.1)

It is clear that the calculation of the regression function
requires the knowledge of the probability distribution function
of the processes . This is, however, rarely known
in practice and one has to estimate from the input-
output training data . The problem
of estimation of when is a sequence of
independent and identically distributed (iid) random variables
has been extensively studied in the statistical literature [7],
[11], [13], [23], [24], [38], [43], [48]. In this paper it is
assumed that the system is excited by the iid signal ,
whereas being an output of a nonlinear time-invariant
dynamic system is a dependent stationary stochastic process,
which is in contrast to the papers cited above.

Let us now introduce a class of nonlinear composite systems
examined in this paper. The class is characterized by the
general property that the nonlinear characteristic of our interest
can be extracted from the rest of the system.

Hence our general nonlinear model is of the following form
(depicted in Fig. 1):

(3.2)
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Fig. 1. Nonlinear dynamic system.

where is the (input, output) pair, represents the
unknown system nonlinearity, is the correlated system
“noise” process characterizing the history of the system, and

is the measurement noise. The block in Fig. 1
represents an element producing the system noise process

and it is a measurable transformation (see Fig. 2) of
defined as follows:

(3.3)

The following assumptions concerning the model in (3.2)
are used in the paper.

Assumption 1:The inputs form a sequence
of independent and identically distributed random variables
which are independent of . The probability density func-
tion of is unknown and satisfies the following
restrictions:

(A1.1)

(A1.2)

for all and some unknown.
Assumption 2:The system noise process is defined

by (3.3) and depicted in Fig. 2, where is a sequence
of measurable functions and is a sequence of numbers.
Furthermore we assume that

(A2.1)

(A2.2)

for almost all (A2.3)

(A2.4)

Assumption 3:The nonlinear characteristic is a mea-
surable function satisfying the following condition:

(A3.1)

(A3.2)

Assumption 4:The measurement noise is uncorrelated
and such that

Let us elaborate on the role of the above conditions.
The process has an infinite nonlinear moving average
representation and its realization for the case of theth-
order moving average (FIR system) is depicted in Fig. 2
( is the delay operator). The restriction (A1.1) is required
since we use the multiresolution decomposition of

. The condition (A1.2) says that we consider the esti-
mation problem in such points on where the input density
is high, i.e., where is strictly bounded away from
zero. The Assumptions (A2.1) and (A2.2) are necessary for

to be the second order covariance stationary stochastic
process with and

. This along with
Assumptions (A3.1) and 4 makes the output process
well defined, i.e., it is also a second order covariance stationary
stochastic process. It is worth noting that is not strictly
stationary process.

The conditions (A2.3), (A2.4), (A3.2) are related to our
identification procedure for recovering and they will be
discussed later. Let us note only that (A2.3) is meant in the
Lebesque measure sense, i.e., it holds at all points ,
except sets with zero Lebesque measure. In particular, (A2.3)
is true at all points where are continuous.

It is a fundamental fact for our paper to observe that

(3.4)

i.e., the system nonlinearity is just equal to the standard
regression function defined in (3.1). Thus by estimating
the regression in (3.4) we can recover the nonlinearity .

Surprisingly there is a large class of block-oriented nonlinear
models which fall into the description given in (3.2), (3.3).
In the next section we give a number of specific examples
which include both well-known structures as well as some
new models. A detailed discussion of Assumption 2 in all
examples is given.

IV. EXAMPLES OF BLOCK-ORIENTED MODELS

Example 1 (Memoryless System):The simplest situation
represented by (3.2) is the memoryless system, i.e.,

shown in Fig. 3.
It is clear that this is a special case of (3.2) with and

. We refer to [48] for a recent overview of non-
parametric techniques for estimation of memoryless systems.
Wavelet-based techniques for this model are examined in [1].

Example 2 (Cascade System):The second system is dy-
namic and has a cascade structure. It consists of a nonlinear
static element followed by a linear dynamic system with
the impulse response function , see Fig. 4. Such a system
is often referred to as the Hammerstein system.
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Fig. 2. System noisef�ng structure.

Fig. 3. Nonlinear memoryless system.

Fig. 4. Cascade nonlinear system.

The system input–output relationship is given by

which clearly can be written in the form of (3.2) with

(4.1)

and

where it has been assumed, without loss of generality, that
.

Hence here all .
Furthermore, one can easily observe that Assumptions 2 and
3 are satisfied if

(4.2)

The latter condition holds for any BIBO stable system with
the impulse response being square summable.

It is also clear from (4.1) that one can only estimate up
to an additive constant, the property which is independent of

Fig. 5. Parallel nonlinear system.

any identification procedure. In order to eliminate the constant,
some prior information on must be incorporated. In
particular, if (which takes place if, e.g.,
is symmetric and is odd), then . Also, if we
know that (which is often the case), then

. In the next section we introduce a consistent
estimate of , and in the light of the aforementioned rela-
tionships between and this also yields a consistent
estimate of the nonlinearity . We refer to [14]–[20], [28],
[29], [36] for various nonparametric identification algorithms
of the Hammerstein system.

Example 3 (Parallel System):As a complement to the pre-
vious example, a system of the parallel structure (depicted in
Fig. 5) is considered here.

The system input–output equation is given by following
formula:

which can be represented in the form (3.2) with (putting
)

Hence and it is clear that
Assumptions 2 and 3 are met if satisfies the conditions
as in Example 2, see (4.2), and
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Fig. 6. Parallel–series nonlinear system.

The above formulas reveal that if , then
, and again a consistent estimate of yields a

convergent identification algorithm for . Nonparametric
identification algorithms for the parallel structures are studied
in [19] and [20].

Example 4 (Parallel-Series System):A combination of the
structures in Examples 2 and 3 leads to another nonlinear
block-oriented system depicted in Fig. 6.

This is an example of the system containing two dynamical
elements , and having the following input–output
description:

being transformable to the representation in (3.2) with

(4.3)

It is worth noting that in this case the process is not
exactly in the form as in Assumption 2, i.e., the convolution
between and . Such a representation is,
however, possible by augmenting the convolution formula
to vector sequences, i.e., by defining , where

and with
we can rewrite

(4.3) as follows:

where is the inner product of vectors and .
It is also clear that Assumptions 2 and 3 are met when

both sequences satisfy the condition in (4.2), and
furthermore must hold.

Example 5: Our final example concerns a system with two
nonlinearities (Fig. 7), where is the one to be estimated
and the other is a “nuisance” nonlinearity (known or
not). Note that if , then the system in Example 2
is recovered.

Fig. 7 reveals that

Fig. 7. Nonlinear system with two nonlinearities.

Fig. 8. Wiener nonlinear system.

which can be rewritten in the form of (3.2) with

where .
The process is in the form as in Assumption 2 with

if
if

if
if

Assumptions 2 and 3 hold if satisfies (4.2), and moreover
must hold. Once again, if

, then for all .
Some other examples of systems being representable in the

form (3.2) can be easily derived. Nevertheless, there are cases
of block-oriented structures which are not straightforwardly
expressed in that form. This includes, e.g., Wiener and sand-
wich systems. The Wiener structure is a tandem composition
(Fig. 8) of linear dynamic system and nonlinear static element,
i.e.,

If the measurement noise is equal to zero and is
invertible, then one can write

(4.4)

where —the inverse
of and . Clearly, (4.4) is in the
form of (3.2) with the role of the input and output signals
exchanged. Such an approach has been used in [12], where the
detail analysis of identification algorithms of based on
classical orthogonal series expansions is given, see also [37]
for an alternative method.



PAWLAK AND HASIEWICZ: NONLINEAR SYSTEM IDENTIFICATION BY THE HAAR MULTIRESOLUTION 951

V. IDENTIFICATION ALGORITHMS

Due to the fundamental property in (3.4), we can treat
as a standard regression function of on . In order
to construct an estimate of the regression function, let us first
observe that

where for every where the Assumption
(A1.2) holds. Owing to Assumption (A1.1), (A3.2) and using
the results of Section II, we can approximate and
at the resolution as follows:

(5.1)

where one can easily observe that

and

Empirical counterparts of and in (5.1) can be
easily constructed first by replacing the expected values in the
formulas for and by their natural estimates

(5.2)

and next by cutting off the number of terms in (5.1) to some
finite value referred to in this paper as a truncation value.
All these things yield the following estimator of at the
resolution based on terms in the expansions (5.1):

(5.3)

where without loss of generality we use the same truncation
value for estimating and .

It is worth noting that are unbiased estimators of
, i.e., . Recalling the

definition of the kernel function [see (2.6)] associated with
the basis , we can rewrite the estimator in the
following form:

(5.4)

where

(5.5)

is the kernel of order at the resolution . Hence
is the truncated version of the kernel

defined in (2.6), i.e., .
Let us also note that the expression in the numerator in (5.3)

[or (5.4)] is an estimator of , whereas the denominator in
these formulas is an estimator of . Hence we shall denote

(5.6)

(5.7)

For the particular case of the Haar multiresolution basis [see
(2.13)–(2.15)], the above equations can be further simplified.
In fact, the kernel has the form

(5.8)

Applying this in (5.4) yields the following simple histogram-
like form for :

(5.9)

where is one of the
intervals where falls in.

It is an important fact to observe that (5.9) is well defined
as long as

(5.10)

Hence the truncation value must be sufficiently large and
(5.10) gives the lower bound for . It is worth noting that one
can use yielding, due to (2.6) and (2.7), the following
counterpart of (5.4):

(5.11)

where for the Haar multiresolution basis [see (2.15)] we have

It is clear that if for a given satisfies (5.10) the estimators
and are equivalent. Hence throughout the paper, without

loss of generality, we will examine the estimator.
Due to (5.10) it is plain that the truncation point has to

merely grow sufficiently fast with in order to assure consis-
tency. On the other hand, the resolution levelplays a much
more important role in both asymptotic and finite sample size
performance of the estimators. For the convergence property,
i.e., that

as

in probability for almost all



952 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 45, NO. 9, SEPTEMBER 1998

it is shown that the resolution level must be chosen as a
function of the sample size, i.e., in such a way
that

(5.12)

and

(5.13)

as .
Roughly speaking, the condition in (5.12) controls the bias

of whereas (5.13) appears as a leading term in the
variance of .

Furthermore, under some mild smoothness conditions on
and , we will demonstrate that an optimal value of
exists (realizing the bias-variance tradeoff), and it is of

order . Note that this and (5.10) lead to the following
bound on the truncation value :

(5.14)

The identification algorithm in (5.3) is in the form of the
orthogonal series method for estimating the regression function

. In [13] an estimate of such a form based on classical
orthogonal polynomials has been studied for independent pairs

. This technique has been extended to some block-
oriented models in [17], [20], [28], [36]. In particular, it has
been proved that the convergence holds if is differentiable
at which is consistent with the well-known [47] fact that
there are examples of continuous functions whose orthogonal
series diverge. On the contrary, the wavelet expansions con-
verge for all continuous functions, and consequently they can
be applied to a broader class of nonlinear characteristics.

VI. CONVERGENCE ANALYSIS

In this section we give a detailed analysis of the convergence
properties of our identification algorithms. In particular, the
sufficient conditions for the pointwise convergence of the
estimators to the unknown nonlinearity are given. The con-
vergence properties hold for all input densities and all
measurable nonlinearities which satisfy Assumptions 1
and (A3.2). No continuity conditions for the characteristic
are required. We should stress again that the latter property
is not shared by estimates employing the usual classical
orthogonal systems [13], [17], [20], [28], [36].

In order to establish the convergence results, we need the
following preliminary results concerning the kernel function
in (5.8).

Lemma 1: Let be a measurable function for which
. If the truncation value satisfies (5.10),

then

as for almost every

The proof of this result is given in the Appendix. The
convergence in Lemma 1 holds in particular in each point

where is continuous. It is also clear that an analo-
gous result is true for the nontruncated kernel

.
Lemma 2: Under the conditions of Lemma 1 we have

as for almost every

This result is proved in the Appendix. Lemma 2 holds also
for the kernel .

We are now in a position to prove the convergence result
for the estimator defined in (5.2)–(5.4), or (5.9). Let

for the number sequences denote the
fact that .

Theorem 1: Let Assumptions 1–4 of Section III be satisfied.
If (5.10), (5.12), and (5.13) hold then

as in probability

for almost every and in particular at every where
and are continuous.

Proof of Theorem 1:Let us recall that ,
where are defined in (5.6) and (5.7). It suffices
to show that and converge (in probability) to
and , respectively.

Let us first consider by noting that [see (5.6)]
and [see (3.2)]

(6.1)

where is the system noise and is the measurement noise.
By this we have

(6.2)

Assumption 4 and (6.1) imply that

(6.3)

where .
Owing to Lemmas 1 and 2 and Assumption (A3.1) we have

as

for almost every .
Due to the same reasons

as

for almost every .
Note also that Assumptions (A2.1) and (A2.2) imply
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Hence the term in (6.2) is of order

as (6.4)

for almost every , where

Let us now turn our attention to the term in (6.2). By
virtue of (6.2) and Assumption 4 we can rewrite the covariance
in as follows:

(6.5)

From Assumption 1 and the fact that for the random
variable is independent of , we can easily conclude that

.
Using the definition of (see Assumption 2) and the fact

that we can obtain

By virtue of Lemma 1 we have

for almost every .
Regarding the term in (6.5) we can obtain for

It is clear that . Concerning the term
let us observe that since and , therefore

, and
consequently .

Let us finally consider the term .
Clearly,

The covariance in the second term is equal to zero, while for
the first one it is given by

for almost every .
Hence,

for almost every .
All these considerations yield the following asymptotic

expression for in (6.2):

(6.6)

for almost every , where

Recalling the fact (Cesaro summation formula) that if
then, has a finite limit as

, and applying Assumptions (A2.3) and (A2.4) we find
that (6.6) is of order . Hence, we have established that

for almost every .
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All these considerations show that

as (6.7)

for almost every , where is defined in (6.4).
Concerning the bias term for let us observe that

which due to Lemma 1 converges to , for
almost every . Hence we have proved that

as in probability

for almost every provided that (5.12) and (5.13) hold.
Regarding

let us observe that

as

for almost every .
Furthermore,

(6.8)

for almost every .
Thus,

as in probability

for almost every .
The proof of Theorem 1 is thus complete.

VII. CONVERGENCE RATES

Theorem 1 establishes the pointwise convergence of our
identification algorithms under very mild conditions on the
input density and the unknown nonlinearity . For
instance, if is the standard normal density, then
(A3.2) is satisfied for any nonlinearity which does not grow
faster than . These conditions are also met if

and . Nevertheless,
in order to get further insight into the behavior of our algo-
rithms let us consider the question of the convergence rate.
This, in particular, will allow us to select the locally optimal
resolution level yielding an asymptotically best rate of
convergence. To this end we need some further local regularity
conditions on and . Hence, suppose that

are bounded and satisfy the local Lipschitz condition
at the point with exponents and
correspondingly, i.e.,

(7.1)

(7.2)

where are some positive constants and
determines a small neighborhood around.

The assumption in (7.1) says that has a fractional
derivative of order at the point . In particular,
if has a bounded ordinary derivative at, then it satisfies
(7.1) with and . Note also that
need not be continuous on. The interpretation of (7.2) is
analogous.

In order to establish the convergence rate, we need first the
following fact (see the Appendix for the proof).

Lemma 3: Let be a certain
estimate of . Then, for

and

imply

By Lemma 3, the identity (11.1) used in the Proof of Lemma
3 (see the Appendix) and Chebyshev’s inequality (see [13] for
similar facts) we can easily establish the following result. In
what follows, we say that in probability for
a sequence of random variables if in
probability as , for all sequences convergent to
zero.

Lemma 4: Let be an estimate of
. Suppose that for some positive and some

point we have

and

then

in probability

and

We are now in a position to give a result concerning the
local rate of convergence of . Let denote the integer
part of and let , where and are Lipschitz
coefficients defined in (7.1) and (7.2), respectively.

Theorem 2: Let all the conditions of Theorem 1 be satisfied.
Let at the point and meet Assumptions (7.1) and
(7.2).

If the resolution level is selected as

and if the truncation point [number of summands in (5.3)]
satisfies

then

in probability (7.3)
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and

(7.4)

Remark 7.1:Thus if the nonlinear characteristic is
more rough than the input density , i.e., , then the
rate is determined by the smoothness of . In particular, if

, then the rate is of order in probability,
or in the mean squared-error sense, where the
resolution level can be selected as

(7.5)

Let us observe that the rate obtained in Theorem 2 is optimal
since it agrees with the best possible rate for nonparametric
regression estimation established in [45].

It is also worth noting that the smoother the functions
and are, the slower the parametersand grow.

Proof of Theorem 2:By recalling that ,
where are defined in (5.6) and (5.7), respectively,
and by using Lemma 3 we have for any and such
that Assumption (A1.2) is satisfied

where .
By this and Chebyshev’s inequality, it suffices to examine

the mean squared errors of and . We have already
shown [see (6.7) and (6.8)] that

(7.6)

where and

(7.7)

Hence, only the bias terms of and must be
considered.

Let us first observe that if and satisfy the
conditions (7.1) and (7.2), then for the function

we have

with and , where
, i.e., is also Lipschitz with

the exponent .
In the Proof of Lemma 1 (see the Appendix) we have

already observed that for we have

for being one of the intervals
where belongs to and .

By this we have

(7.8)

By the analogous considerations we can infer that

(7.9)

Hence (7.6)–(7.9) yield the following:

and

Direct minimization of these expressions with respect to
and Lemma 4 conclude the Proof of Theorem 2.

Remark 7.2:Lemma 4 [see the identity in (11.1)] allows
us to examine the exact local (at given) asymptotic rate
of the mean-squared error for provided that and

satisfy some stronger smoothing conditions than in (7.1)
and (7.2). In fact, let and possess two derivatives,
with the properties that and are continuous at
the point , and and are bounded on . Let
the point belong to the interval , i.e., it
can be represented as for some .
Then using the aforementioned results and borrowing some
rather complicated techniques from [35], we can show after
some algebra that

(7.10)

and

This yields the following exact asymptotic formula for the
mean-squared error of :

(7.11)

The direct minimization of this expression yields the following
formula for the optimal resolution level:

(7.12)

where

(7.13)

Hence (7.12), contrary to (7.5), gives the optimal local [de-
pending on the pointwise properties of and ] value
of the resolution degree. See also Section VIII for further dis-
cussion concerning the choice of the resolution level. Plugging
(7.12) into (7.11) gives the optimal value of the resulting local
error

(7.14)
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It is worth noting that if is the middle point of the
interval , i.e., if , then the bias
in (7.10) is of order and we obtain the faster rate

, where is selected as .
Note that the middle point of corresponds
to the discontinuity point of the wavelet orthonormal function

defined in Section II [see (2.18)].
Remark 7.3:Theorem 2 and Remark 7.2 establish the

pointwise rate of convergence of our estimate for a large
class of nonlinear characteristics and input densities .

Let us also consider the most comfortable situation for
our estimation techniques, i.e., when both and
belong to the Haar multiresolution class , i.e., the class (see
Section II) of all piecewise constant functions with possible
jumps at the integer multiple of , where now is a
fixed integer. It is important to observe that this also implies

. It is then clear that both and are
unbiased estimators, i.e., ,
provided that the truncation value satisfies (5.10). This,
however, does not imply that . The latter is due
to the fact that has the ratio form, i.e., .
Nevertheless, arguing, as in Remark 7.2, we can conclude that
if then

Hence the estimator bias is greatly reduced, i.e., we have the
error instead of as in (7.10).

VIII. SELECTING RESOLUTION LEVEL

The discussion in Section VII reveals (see in particular
Remark 7.2) the importance of proper selection of the res-
olution level . The formula given in (7.12) gives an
asymptotically optimal value of . The function
defined in (7.13) depends, however, on some unknown char-
acteristics of the system, i.e., on , and

. Some pilot estimates of these quantities would lead to
a plug-in formula for the resolution level. The input density

can be estimated by the estimator given in (5.7).
This estimator depends, however, also on , and we would
recommend to use the value suggested in Remark 7.1, i.e.,

. With such a value of is
a consistent estimate of . The nonlinear characteristic
derivative could be estimated by

with some appropriately defined, e.g., based on
the discussion in Remark 7.1. Estimation of the variance values

and can be specified experimentally. Although this
procedure could, eventually, be implemented, it does not seem
to be practical and requires too many arbitrary parameters to
choose.

Let us propose an alternative approach based again on the
formulas in (7.12) and (7.13) and some prior knowledge about
the system characteristics.

(a)

(b)

Fig. 9. Nonlinear characteristics: (a) the nonlinearity in (9.1) and (b) the
nonlinearity in (9.4).

Let us assume that the nonlinear characteristic satisfies
for every the following condition:

for some positive , i.e., has a bounded variability. Let
also . It is then clear that

Hence, provided that values are known (which
can be the case in a number of practical situations), we can
choose as

(8.1)

Note that this is a rather pessimistic choice of , i.e., it
is larger than the optimal value minimizing the mean squared
error .

A fully automatic choice of can rely on the cross
validation methodology where is selected as a minimum
of the so-called prediction error
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(a) (b)

(c)

Fig. 10. Error versusn for the nonlinearity in (9.1): (a) memoryless system, (b) cascade system, and (c) parallel system.

where is the version of calculated from all the
data points except theth; see [24] for some alternative cross-
validation methods of choosing smoothing parameters. Hence
the data dependent is selected as

(8.2)

This technique requires a considerable amount of computing
as the estimate has to be formedtimes. Furthermore, the
minimum in (8.2) is taken over all integers. In order to reduce
this computational burden, we propose to minimize
over a certain range of the resolution levels

. As has already been noted (see Remark
7.2), under the most preferable circumstances can be
selected as low as . This can be used as a lower
bound for , i.e.,

As the upper bound for we can use either
or the formula given in (8.1). All these considera-

tions lead to the following choice of :

Hence, the optimal can be found by calculating
from the coarsest scale to the finest one .
Note that the cross-validation choice produces the global value

of , i.e., the value which is independent ofat which
is computed.

IX. SIMULATION EXAMPLES

To evaluate the accuracy of our identification algorithms for
small and moderate sample sizes, we perform some simulation
studies. In all our experiments the input signal is uni-
formly distributed over the interval . The measurement
noise is also uniformly distributed in . The
range of the input signal implies that we can specify the trunca-
tion parameter , see (5.10), as , where is the
resolution level. The efficacy of the identification procedure

[see (5.3), (5.4), and (5.9) for various equivalent forms
of ] is measured by the following criterion:

Error

where the expectation sign is realized in simulations by
averaging over 20 different training samples each of the size.

In the first experiment a nonlinearity [see Fig. 9(a)]

if

if

otherwise
(9.1)
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(a) (b)

(c)

Fig. 11. Error versusm for nonlinearity in (9.1): (a) memoryless system, (b) cascade system, and (c) parallel system.

is used in three different settings, i.e., for the memoryless,
cascade, and parallel models, see Examples 1, 2, 3 in Section
IV, respectively. Since in (9.1) is piecewise constant,
this is an example of the nonlinearity well adapted to the Haar
multiresolution basis.

The cascade and parallel models are described, respectively,
by the following state equations:

(9.2)

(9.3)

It is worth nothing that we have
and therefore and are consistent estimates
of the nonlinearity in the cascade and parallel models,
respectively (see discussion in Section IV).

Fig. 10 depicts theError as a function of the sample size
. It is seen that theError for the memoryless model is the

smallest. Surprisingly theError for the cascade model is about
2–3 times smaller than that of the parallel structure.

The value of the resolution level has been set to 3 in the
all three cases. This is due to the fact that this value minimizes
the Error for a small and moderate number of observations.
In fact, Fig. 11 displays theError versus for
observations. A clear global minimum at is seen.

Hence, the optimal partition of the-axis is .
Note that this agrees with the structure of the nonlinearity in
(9.1) which is constant on the intervals of the size 1/8.

In the second experiment, a nonlinearity in (9.2) and (9.3)
not well adapted to the Haar basis has been selected, i.e.,

for
for

(9.4)

and for . Fig. 9(b) displays this nonlinearity.
Fig. 12 depicts theError versus for the cascade and

parallel structures based on observations. Since the
nonlinearity is not well suited for the Haar basis, the larger

is required; the optimal equals 5 (cascade model) and
6 (parallel model). For the memoryless model, that value is
even larger and equals . The overall performance of
is now considerably poorer.

Finally the model discussed in Example 5 of Section IV
has been taken into account, i.e., the model represented by the
following equation:

(9.5)

where is the nuisance nonlinearity and is
defined as in (9.4). Fig. 13 displays theError versus . An
optimal resolution level is equal tofor observations.
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(a)

(b)

Fig. 12. Error versusm for the nonlinearity in (9.4): (a) cascade system
and (b) parallel system.

In the same figure [Fig. 13(b)] we show theError of the
version of (9.5) where the dynamical subsystem is set to zero
(i.e., the value in (9.5) is replaced by). Let us observe
that an optimal is now considerably greater and equals 9.
This reveals that the presence of dynamical subsystems in
composite models to some extent helps in identification, and
it greatly influences the accuracy of identification algorithms
for recovering nonlinear elements.

X. CONCLUDING REMARKS

In this paper we have developed the Haar multiresolution
identification algorithm for recovering nonlinearities in a broad
class of block structured nonlinear systems. The introduced
class of systems includes known cascade and parallel struc-
tures as well as some new connections. Noa priori information
about the nonlinear characteristics and input signal probability
density function is required, making the identification problem
nonparametric. Using the concept of the standard regression
function, the nonparametric Haar multiresolution identification
algorithm is formed and its rigorous convergence properties
are proved. In particular, the best possible local rate of
convergence and optimal selection of the resolution degree
are established. The convergence results hold under very mild
restrictions on the nonlinear characteristic and the input density
function as well as on the system dynamics. Besides these

(a)

(b)

Fig. 13. Error versusm for the system with two nonlinearities.

theoretical properties, our algorithm is very easy and fast to
compute. In fact, observe that to memorize our estimate [see
(5.3)] it suffices to store (for every) numbers
and , where increases much slower than. Indeed,
in Theorem 2 we have shown that is of order ,
where the parametercontrols the smoothness of the nonlinear
characteristic and the input density . The smoother

and are, the smaller the truncation value is.
Alternatively, the version of in (5.9) can be used for
calculations. Here only a simple binning process is required
for determination of .

Some further studies could be carried out by combining the
multiresolution approach with the concept of wavelet basis.
As has already been mentioned (see Section II), the resolution
space can be decomposed as , where

is the wavelet subspace equipped with the orthonormal
set is the wavelet function. A
simple iteration of the decomposition leads to

for any integers and .
Hence a function can be approximated at the

resolution as follows:

(10.1)
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i.e., is the orthogonal projection of onto the
resolution subspace .

The first term in (10.1) represents our initial guess, whereas
the second one adds further layers of information about.
An empirical version of (10.1) (with estimated coefficients

) would be an attractive alternative to our
estimation technique. It is clear that here both (the initial
resolution level) and (the additional number of resolution
layers) should be appropriately specified in order to establish
consistency results. We conjecture that the choice of is
less critical than our —the resolution degree specifying
the estimators studied in this paper. We refer to [22] and the
references cited therein for some results on probability density
estimation techniques employing the representation in (10.1).

In this paper we have used the classical Haar multiresolution
analysis. The Haar basis is very well localized and easily
understood since the supports of the basis functions are dyadic
intervals. Furthermore they are step functions, making them
well adapted to discontinuous characteristics. For continu-
ous characteristics, however, one should use smooth scaling
functions developed by Daubechies [6]. It seems that our
results can be extended to this case as well. Nevertheless,
the smooth scaling functions are rarely given in an explicit
form, and they have to be numerically determined from the
scaling equation (2.9). An interesting situation arises when
one deals with characteristics of the mixed nature being, e.g.,
a piecewise continuous. In such a case, a multiresolution basis
which is a certain combination of the Haar system and smooth
multiresolution functions could be employed.

APPENDIX

Proof of Lemma 1:Let us observe that for and
the kernel defined in (5.8), we have

where is one of the
intervals where falls and denotes the measure of the
set .

A straightforward application of the Lebesque density the-
orem (see [49, pp. 108–109]), gives

as for almost every

The Proof of Lemma 1 is thus complete.
Proof of Lemma 2:Lemma 2 results straightforwardly

from the observation that

and application of Lemma 1.

Proof of Lemma 3:We begin with the following identity:

(11.1)

where .
Thus for and if

and

we have

The Proof of Lemma 3 is complete.
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