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Abstract – A new method for estimating the highest significant
order of nonlinearity of Volterra type systems is presented. The
method is based on the use of multisine signals and the possibility
of testing the system at three different amplitudes. The perform-
ance of the proposed method is demonstrated in simulation and it
is shown that it is possible to estimate the highest order of nonlin-
earity of Volterra type systems very accurately. The method can be
used to provide essential prior knowledge about the nonlinearity
and thus aid the accurate representation of the system under test.
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I. INTRODUCTION

The Volterra functional series representation constitutes a
useful way of representing a nonlinear system since it can be
seen as a natural extension of linear system theory. The
Volterra kernels have a direct physical significance and can
often be given physical interpretation, or be related to the
system’s constituent elements [1]. Efficient methods for
measuring these Volterra kernels have been previously de-
veloped, for example [2-5], and the success of these methods
depends on the assumption that the highest significant order
of nonlinearity of the system under test is known. In [6] prac-
tical algorithms for determining the highest significant order
of nonlinear systems were presented. These algorithms are
based on a number of measurements equal to 2n to determine
if the nth-order nonlinear term is significant or not for a given
signal amplitude. The number of measurements thus in-
creases with the order of nonlinearity and can become unrea-
sonably large for a higher order nonlinearity. In this paper a
simple frequency-domain method is developed to estimate
the highest significant order of nonlinearity based on only
three tests at different amplitudes. The proposed technique is
based on the use of multisine signals and the ability to test the
system at three different amplitudes. A complete analysis of
the technique is presented followed by computer simulations
and an experimental illustration on a practical system.

II. PROBLEM FORMULATION

II. 1. Volterra series

An analytic response function can be represented by an infi-
nite series called the Volterra series. This is a generalisation
of the impulse response function of linear systems and is
composed of the convolution integral
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and a static nonlinearity represented by a Taylor series.
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The Volterra series is then given by
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which represents a sum of outputs of parallel sub-systems
called Volterra functionals illustrated graphically in the
schematic diagram in Figure 1.

Nonlinear system identification based on the Volterra repre-
sentation requires the measurement of the kernels

),....,( 21 nnh τττ . Several approaches exist in the literature for

the estimation of these parameters, the most common based
on the extension of correlation methods for linear systems



and the use of white Gaussian signals. The complexity of this
model depends on the highest significant order of nonlinear-
ity n, which is dependent on the dynamic range of the input
signal. For example, for small signal amplitudes higher-order
responses can be neglected and only the lower-order re-
sponses are considered as dominant. For sufficiently large
amplitudes however, the contribution of the responses gener-
ated by higher-order nonlinearities is more significant and
they should be taken into account. It is thus necessary to de-
termine the highest significant order of nonlinearity relative
to the range of input signal amplitudes that will be applied to
the system. The implications to the accuracy of the estimation
of the Volterra Kernels is also a major factor for the correct
estimation of the highest significant order of nonlinearity as
pointed out in [7]. If the order estimate is too small, the re-
sulting Volterra kernels will be highly inaccurate. On the
other hand if the order is overestimated an excessive number
of measurements will be required which will make the whole
process time-consuming.
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Figure 1. Graphical representation of the Volterra series.

II.2. Narmax Models

The Nonlinear AutoRegressive Moving Average with eX-
ogenous inputs (NARMAX) approach was introduced by
Leontaritis and Billings [8, 9] and Chen and Billings [10] as a
means of describing the input-output relationship of a nonlin-
ear system. The model represents the extension of the well-
known ARMAX model to the nonlinear case, and is defined
as
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where F is a nonlinear function; )(ky , )(ku and )(ke repre-

sent the output, input and noise signals respectively; and yn ,

un , and en are their associate maximum lags. The

NARMAX representation constitutes a powerful tool for
nonlinear modelling and it includes a family of other nonlin-
ear representations such as block-structured models and

Volterra series [11]. The most involved task in NARMAX
modelling is to select the appropriate regressors (i.e. model
terms) to build the model structure. The number of candidate
regressors l for a given order of nonlinearity n is given by
equation (5), where it can be seen that it increases rapidly
with the increase of the order of nonlinearity and maximum
input, output and noise lags.
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Having in mind that the corresponding number of models

to choose from is given by lM 2= , the assessment of each
possible model is not practical, reinforcing the need to use a
structure selection technique to select the most appropriate
regressors for inclusion in the model. All structure selection
techniques examine a large number of model terms and
utilise certain criteria for their inclusion or removal from the
model. The whole procedure can be considerably simplified
if a priori knowledge is utilised, such as knowledge about the
highest significant order n. This means that the search space
of candidate models can be significantly narrowed, and
structure selection algorithms can be facilitated with greater
confidence, since the possibility of having spurious
components entering into the model structure will be
minimised. Therefore, it is apparent that knowledge of n
provides significant advantages since the identification
procedure can be greatly simplified, the accuracy of the
estimated model can be preserved and thus the estimation
time is reduced. This provided the motivation for the
development of an analytical technique to estimate the
highest significant order of the nonlinearity for Volterra
models. The proposed technique can also be applied in
NARMAX modelling since the Volterra representation
belongs to the NARMAX family.

III. ORDER TEST ALGORITHM

The proposed method is based on Frequency Response
Function (FRF) measurements at three different amplitudes.
The use of periodic signals is essential in this case since
systematic errors arising from FFT leakage problems can be
avoided and the signal-to-noise ratios of the data records can
be improved by averaging over a number of periods [12]. The
use of periodic signals also allows the direct estimation of the
FRF as the ratio of the mean values of the output and input
coefficients, at the discrete test frequencies ωk
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where M is the number of measured periods. The periodic
signal used throughout this study is the multisine signal
which is a sum of an arbitrary ensemble of harmonically re-
lated cosines
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where A is a vector of amplitudes i a vector of harmonic
numbers and ω0 the signal funtamental, Φ a vector of phases
and F the number of cosines in the signal. The relative phases
of the harmonics must be carefully selected in order to
minimise the signal crest functor. The lowest crest factor
achieved to date is by the l∞ method proposed in [13]. An
example of a ten harmonic multisine signal with a
fundamental frequency of 0.05Hz and a harmonic vector i=1,
2, …10, is shown in Figure 2.
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Figure 2. Multisine signal in (a) time domain and (b) frequency
domain.

In order to present the proposed methodology in a clear and
understandable way the algorithm will be derived using a
two-tone consecutive multisine given by

)2cos()cos( 202101 φωφω ++++= tAtAdcu . (8)

This is used to excite a static nonlinear system containing a
single quadratic nonlinearity as shown in Figure 3.

u(t)+a2u(t)2
u(t) y(t)

Figure 3. Static quadratic system.

The output y(t) of the system is given by:
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From the above equation it is clear that the complex ampli-
tudes at the two test frequencies are given by:
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If the system is tested using an input signal K1×u(t) where K1

is a constant then the complex amplitudes at the two output
frequencies will be given by:
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Finally, the system is tested using a signal K1×K2×u(t) where
K2 is another constant. It follows that,
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The corresponding values of the FRFs at the test frequencies
are thus given by:
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The following index can then be calculated
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If the same procedure is followed and r is calculated for a
system with a single 3rd order nonlinearity then the previous
index is given by:
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and if r is calculated for a system with a single 4th order
nonlinearity then the index is given by:
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A general formula relating this index with the maximum or-
der of nonlinearity n can thus be derived as
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and n can be calculated since it is the only unknown. It must
be stressed here that the above equation is strictly valid for
systems with a single nonlinearity. In practice though this is
not usually the case since systems will contain other orders of
nonlinearity as shown by the generalised static nonlinear sys-
tem in Figure 4.

a0+a1u(t)+a2u(t)2+a3u(t)3...anu(t)n
u(t) y(t)

Figure 4. General static nonlinear system.

In this case equation (17) is no strictly valid since the simpli-
fications that occurred in (14) do not take place. The new

formula for the index r is a function of the frequency ampli-
tudes A, and the coefficients an
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From the above equation it can be seen that the dominant
term is the term which corresponds to the highest order of
nonlinearity n. This of course depends on the value of the
coefficient and the choice of K1 and K2. Nevertheless it can
thus be easily seen that equation (18) is a very close ap-
proximation of equation (17) especially for high values of n.
It must be stressed here that the method is not dependent on a
two-tone multisine as the one used to derive equations (9) to
(18). The use of a broadband multisine is recommended since
a two–tone multisine could fail in cases where the input to the
system is shaped by the dynamics of the system before enter-
ing the nonlinear elements as in the Wiener case.

The proposed algorithm is thus summarised as follows:

Step 1: Excite the system under test with a multisine
signal at three amplitudes defined by u(t),
K1×u(t) and K1×K2×u(t).

Step 2: Calculate the FRFs )(1 ωjH , )(2 ωjH and
)(3 ωjH at the three amplitudes using equation

(6).

Step 3: Calculate the index
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Step 4: Obtain an estimate of the maximum order of
nonlinearity using equation (17).

IV. EXPERIMENTAL ILLUSTRATIONS

IV.1. Simulated examples

To illustrate the effectiveness of the proposed algorithm the
simple Hammerstein and Wiener models shown in Figure 5
were excited using a consecutive multisine containing 120
harmonics with a fundamental frequency of 0.05 Hz and peak
amplitude of 10. The linear part of the models is the same as
a linear model identified for the High Pressure (HP) shaft of a
Rolls-Royce gas turbine engine by Evans et al. [14]. The data



records were corrupted by additive Gaussian noise of zero
mean and unit variance.
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Figure 5. (a) Hammerstein model (b) Wiener model.

The results of the test algorithm for the maximum nonlinear-
ity order for both systems are shown in Table 1 for three dif-
ferent combinations of K1 and K2. It can be seen that the pro-
posed algorithm gives a good indication for the maximum
order of nonlinearity, even though it is clear that the results
obtained for the Wiener model are not as accurate as the re-
sults for the Hammerstein model. This was of course ex-
pected since in the Wiener case the input is filtered by the
linear part of the model before passing through the nonlinear-
ity. The results are more encouraging if a higher-order term,
i.e. the 9th-order term 0.0001y(t)9 is added to the static poly-
nomials of the two models. It can be seen from Table 2 that
even though the coefficient of the 9th-order term is very small
compared to the other coefficients, the algorithm detects the
contribution of this term very well.

Table 1. Maximum Order of Nonlinearity for Hammerstein and Wiener
models (n=5)

Model K1=1.5, K2=1.5 K1=1.5, K2=2 K1=1.5, K2=4

Hammerstein 4.90 4.90 4.91

Wiener 4.80 4.79 4.79

Table 2. Maximum Order of Nonlinearity for Hammerstein and Wiener
models (n=9)

Model K1=1.5, K2=1.5 K1=1.5, K2=2 K1=1.5, K2=4

Hammerstein 9.00 8.99 8.99

Wiener 8.65 8.75 8.81

Systems with different static polynomials were tested and it
was concluded that the algorithm is capable of detecting the
maximum order of nonlinearity of systems like Wiener,
Hammerstein and Wiener-Hammerstein and Volterra series.
It was also observed that the accuracy of the algorithm is im-

proved for high orders of nonlinearity as is clearly suggested
by the result in equation (18). It is also clear that further in-
vestigation is required on the practical issues concerning the
proposed technique such as the optimum selection of the am-
plitude levels K1 and K2.

IV.2. A nonlinear electrical circuit

A nonlinear mechanical resonating system (mass, viscous
damping, nonlinear spring) is simulated with an electrical
circuit. The displacement y(t) is related to the force u(t) by
the following nonlinear, second-order differential equation.
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As Schoukens et al. [15] noted, the actual realized circuit is
not in perfect agreement with (19), since a small quadratic
term was detected in the measurements. It was also noted that
for small excitations the spring becomes almost linear so that
the underlying linear system consists of a second-order reso-
nance system. Two different signals, a consecutive multisine
(fk = kf0, k = 1, 2, 3 …, N, N = 601 and f0 ≈ 0.0298 Hz) and an
odd multisine (fk = kf0, k = 1, 3, 5 …, 2N-1, N = 301 and f0 ≈
0.0298 Hz) where used to test the system at three different
amplitudes. Figure 6 shows the amplitude responses of the
system at three different amplitudes, obtained using the con-
secutive multisine. The existence of nonlinearity in the sys-
tem can be easily visualized as the evolution of the system
dynamics with growing input signal amplitude
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Figure 6. Evolution of system dynamics growing excitation levels:
10,30, 70 mVRMS.

Table 3 shows the results of the proposed algorithm when
applied to the measured data using the two multisines. It can
be seen that the proposed technique gives a good approxima-
tion of the maximum order of nonlinearity in the system even
though it under predicts the exact order. This is to be ex-



pected since nonlinear systems which change dynamics with
input excitation level, belong to the family of the Wiener-like
structures and more specifically those structures where the
input is filtered by the linear part of the model before passing
through the nonlinearity. As previously stated, the accuracy
of the algorithm improves as the order of the nonlinearity
increases. It is clear that in this case the order of the nonlin-
earity is quite low, which affects the accuracy of the algo-
rithm. Nevertheless the proposed algorithm gives a good
indication of the value of the maximum order of nonlinearity.

Table 3. Maximum Order of Nonlinearity for the nonlinear mechanical
resonating system

Consecutive multisine

Excitation levels: 10, 30, 70 mVRMS.

Odd multisine

Excitation levels: 10, 40, 70 mVRMS.

2.31 2.33

V. CONCLUSIONS

A methodology has been presented to estimate the highest
order of nonlinearity of Volterra type systems. The proposed
algorithm is based on the use of multisine signals and the
calculation of the FRFs of the system under test at three am-
plitudes. The use of multisine signals allows the direct esti-
mation of the FRFs, the systematic errors arising from FFT
leakage problems can be avoided and the signal-to-noise
ratios of the data records can be improved by averaging over
a number of periods. The performance of the proposed
algorithm was demostrated in simulation using simple block
structure models which belong to the Volterra series family.
The proposed technique was also illustrated on a nonlinear
mechanical resonating system which is a nonlinear circuit
with a maximum 3rd order nonlinearity. It was shown that the
proposed algorithm provides a good approximation of the
maximum order of nonlinearity in a system. The algorithm is
suitable to be used for systems that belong to the Volterra
series family as well as a large number of NARMAX struc-
tures.

This paper illustrates how frequency-domain techniques and
multisine signals can be used in order to provide essential a
priori knowledge about the nonlinearity in a system and thus
aid the identification procedure.
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