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Abstract. The paper presents a basic description and examples of the use of so called descriptive 
functions, allowing analysing the influence of inherent and indispensable components of all mechatronic 
systems mechanical subsystems - so called hard nonlinearities. These parts "causing" - in addition to the 
centrifugal and Coriolis generalized forces- the nonlinearity of the system, can be analysed by the above-
mentioned method from the point of view of their origin and the estimation of the basic parameters of their 
frequent consequences -  so-called limit cycles. After a short introduction, which introduces and explains 
describing functions using the example of a nonlinear system taken from the literature, some of the so-
called hard nonlinear subsystems (such as the mechanical chain of robots) are shown to be used. The paper 
is the first part of a more extensive description analysis of nonlinear systems concept using these functions 
in order to enable analysis and prediction of limit cycles.

1 Introduction 

Inherent and inseparable part of the symptomatic 
subsystems of mechatronic systems (mechanical 
subsystem, subsystem of actuators, sensory subsystem) - 
including robotic systems – they are the specific 
nonlinearities occurring in their mechanical and 
regulatory subsystems. These specific, so-called hard 

nonlinearities, exemplified by non-viscous friction, 
saturation, backlash, hysteresis, etc., are often the cause 
of unwanted behaviour of the system, but in some cases 
they are used as a tool for introducing specific desired 
system properties.  
Is known that powerful tool for analysing and designing 
linear control systems is frequency analysis. It is based 
on the description of a linear system using complex 
function, frequency response, instead of differential 
equations. However, this tool cannot be directly applied 
to a non-linear system because the frequency response 
cannot be defined for a non-linear system. However, for 
some nonlinear systems, an extended version of the 
frequency response called describing functions method

can be used for the approximate analysis and prediction 
of non-linear behaviour. 

Although it is only an approximate method, it takes 
the necessary feature from the frequency response 
method, and the lack of other systematic tools for 
analysing nonlinear systems, makes it an indispensable 
component of a package for practical engineers. The 
main use of this method is to predict the limiting cycles 

of nonlinear systems. But the method has a number of 
other applications such as sub-harmonic prediction, jump 
phenomenon and non-linear system response to 
sinusoidal input. 

2 Describing functions basics and 
principle

We begin by introducing an analysis of describing 
functions using a simple example modified from [Hsu, J. 
C. and Meyer, A. U., Modern Control Principles and 
Applications, McGraw-Hill (1968)]: 

Consider the classical Van der Pol equation 

( ) 0xx1xx 2 =+⋅−⋅α+ &&&                    (1) 

where α  is a positive constant. 
Let's study it using a technique that will lead us to a 

describing functions concept. Especially to determine if 
there is a limit cycle for this system, and if so, give us 
the possibility to calculate the amplitude and frequency 
of the limit cycle (pretending we do not know the phase 
portrait). 

Let's first assume the existence of a limit cycle with 
an undetermined amplitude and frequency and then 
determine if the system can actually have such a 
solution2.  

First, let us present the dynamics of the selected 
system by block diagram scheme shown in Fig. 1.  

Because it is valid 
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the equation can be drawn as follows: 
                                                           
2

This is similar to the method of the assumed form of the solution function in the theory 
of ordinary differential equations, where we assume that the solution is of a certain shape, fit it 
into the differential equation and then determine the coefficients of this solution 
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Fig. 1.  The feedback interpretation of Van der Pol's oscillator. 

We see that the feedback loop in this figure contains a 
linear and nonlinear block where the linear block, 
however unstable, has the characteristics of the low pass 
filter (see Fig. 2). 

Suppose now that there is a limit cycle in the system 
and the oscillating signal is shaped as 

( ) ( )tsinAtx ⋅ω⋅=

with A as the amplitude of the limit cycle and ω  as its 
frequencies.  

That is true 

( ) ( )tcosAtx ⋅ω⋅ω⋅=&
Thus, the output of the nonlinear block in Fig. 1 is 

Fig. 2.  Linear part of the Van der Pol's oscillator amplitude 
frequency characteristic for 5.1=α . 
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It can be seen that w contains the 3rd harmonic. 
Because the linear block has low pass filter properties, it 
can reasonably be assumed that the third harmonic is 
sufficiently weakened by the linear block and its effect is 
not apparent. That is, we can approximate w as 

( ) ( )[ ]

( )[ ]tx
dt

d

4

A

tsinA
dt

d

4

A
tcos

4

A
w

2

23

−⋅=

=⋅ω⋅−⋅=⋅ω
ω⋅

−≈
   (2) 

Thus, the nonlinear block in Fig. 1 can be approxi-
mated by the equivalent "quasi-linear" block of Fig. 3.. 

Fig. 3. Quasi linear approximation of the Van der Pol 
oscillator. 

The "transmission function" of the quasi-linear block 
depends on the amplitude of signal A. in contrast to the 
transmission function of a linear system that is 
independent of the size of the input signal. 

In the frequency domain reads    
( )( )x,ANw −ω=

where 

( ) ( )ω⋅⋅=ω i
4

A
,AN

2

                  (3) 

Thus the nonlinear block can be approximated by the 
frequency transfer function ( )ω,AN . Because we 

assume sine oscillation of the system, we get it: 

( ) ( ) ( )

( ) ( )( )x,ANiG
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=⋅ω⋅=⋅ω⋅=

where ( )ω⋅iG  is the frequency transfer function of the 

linear part. This means that for the resulting system 
frequency transmission is valid 
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Note that the characteristic equation of this negative 
feedback system is 
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What are its roots, what are the eigenvalues of this 
linearized system? 
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For 2A = their eigenvalues are is 2,1 ±= . This indica-

tes the limit cycle with amplitude 2 and frequency 1.  
It is interesting to note that neither the amplitude nor 

the frequency depends on the parameter in the equation 
(1). 

In the phase plane, the previous approximate analysis 
means that the limit cycle is, regardless of α size, a 
circle with radius 2. To verify the credibility of this 
result, the Fig. 4. draws limit cycles of the complete 
system for different values α . 

It can be seen that the above-mentioned 
approximation applies only to small α values and the 
inaccuracy increases with the increase in its value. This 
is understandable because the increasing degree of non-
linearity increases with increasing α and the quasi-linear 
approximation is less accurate. 

Using the above analysis, the stability of the limit 
cycle can be studied. 

Fig. 4a. Phase portrait of Van der Pol oscillator for 0=α . 

Obr.4b. Phase portrait of Van der Pol oscillator for 1=α . 

Obr.4c. Phase portrait of Van der Pol oscillator for 4=α . 

Let us assume that the amplitude of the limit cycle A 
is greater than 2. Then, from equation (5) it can be seen 
that the poles of the characteristic equation of the system 
will have a negative real part. This means that the system 
becomes exponentially stable and the signal size is 
reduced.  

What happens when the default state is set to x(0)

less than 2. The approximate system is unstable initially, 
the amplitude of the oscillations increases to amplitude 
2. Then the situation from the previous one occurs. Thus, 
it can be concluded that the limiting cycle is stable with 
amplitude A=2. 

3   Describing functions applications 
possibility 

Let's first discuss briefly on what types of nonlinear 
systems the method is applicable and what type of 
information about the nonlinear system can provide.

3.1. On what types of nonlinear systems the 
method can be used 

Simply put, any system that can be transformed into the 
arrangement of Fig. 5. can be studied using descriptive 
functions. There are at least two important classes of 
systems in this category. 

The first important class is "almost" linear systems. 
By "almost" linear systems we mean systems that 
contain so-called "hard" nonlinearities in the control loop 
but are otherwise linear. These systems arise in the 
design of control law using a linear approach, but its 
implementation includes "hard" nonlinearities such as 
motor torque saturation, actuator (or sensor) backlash 
(dead band), Coulomb friction, or hysteresis in a 
controlled system. 

Fig. 5. Non-linear system. 

An example is the system of Fig. 6. containing hard non-
linearity in the actuator. 

Fig. 6. Control system with one "hard" non-linearity. 
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The regulated system is linear as well as the controller. 
But the actuator contains hard nonlinearity. This system 
can be reconfigured to the form of Fig. 5. with  

( ) ( ) ( ) ( )sGsGsGsG senssysreg ⋅⋅=

An "almost" linear system containing non-linearity in 
a sensor or controlled system can also be reconfigured to 
the shape of Fig.5.. 

The second class of systems are systems containing 
real nonlinear subsystems whose dynamic equations can 
be converted to the structure of Fig. 5. We have seen an 
example of such a system in the introductory example. 

3.2. Describing function applications

For systems as shown in Fig. 5., the limit cycle may 
occur as a result of non-linearity. But linear control 
cannot predict this problem. On the other hand, 
descriptive functions can conveniently be used to detect 
the existence of limit cycles and to determine their 
stability. Regardless of whether they are "hard" or "soft" 
nonlinearities. The use for limiting cycle analysis is due 
to the fact that the shape of the system signal on the 
limiting cycle is commonly approximated by a 
sinusoidal one.  

This can be conveniently explained on the system of 
Fig. 5. Suppose the linear part in Fig. 5. has the 
characteristics of the low pass filter (which is the case 
for many physical systems). If there is a limit cycle in 
the system, then the system signals must be all periodic. 
Because the periodic signal, as input to the linear part in 
Fig. 5., can be decomposed as the sum of many 
harmonic oscillations, and because the linear member, 
due to its low pass filter properties, fuses higher 
frequencies, the output y(t) must in most cases consist of 
the lowest harmonic oscillations. It is therefore 
reasonable to assume that the signals throughout the 
system are essentially sinusoidal, thus allowing the 
technique used in the previous section. 

Limit cycle prediction is very important because limit 
cycles can occur in physical nonlinear systems. 
Sometimes the limit cycle may be desirable. This is the 
case for limit cycles in electronic oscillators. Another 
case is the so-called vibration technique to minimize the 
negative effect of Coulomb's friction in mechanical 
systems. On the other hand, in most control systems, the 
limit cycles are undesirable. This can be for several 
reasons: 

1. The limit cycle is the path to instability, causing 
poor accuracy of regulation. 

2. Constant oscillations associated with the limit 
cycle may cause increased wear or mechanical 
failure in the hardware of the control system. 

3. The limit cycle may also cause other undesirable 
effects such as passenger discomfort during 
autopilot flight. 

In general, although precise knowledge of the shape of 
the limiting cycle curve is not necessary, the knowledge 
of its existence or non-existence, as well as its 
approximate amplitude and frequency, is necessary. The 
method describing functions is applicable for these 

purposes. Knowledge of this kind can also lead to the 
design of compensators in order to avoid limiting cycles. 

3.3. Basic assumptions of describing functions 
using 

Let us consider the non-linear system in the general 
form of Fig. 5. In order to be able to use the basic 
version of the method describing functions, the system 
must meet the following conditions: 

1. There is only one non-linear member. 
2. A non-linear member is time-invariant. 

3. In sinusoidal input ( ) ( )tsintx ⋅ω= , only the 

fundamental harmonic can be considered in the 
output w. 

4. Non-linearity is odd function.  

The first condition means that if there are two or 
more non-linear components in the system, they can 
either be joined to one (such as parallel pairing of two 
nonlinearities) or only one nonlinearity is under 
consideration and the other is neglected. 

The second condition means that we only consider
autonomous non-linear systems. This is sufficient for 
much practical nonlinearity, such as saturation of 
amplifiers, transmission backlash, Coulomb friction 
between surfaces and hysteresis in relay systems. The 
reason for this assumption is that the Nyquist criterion, 
on which the describing function is broadly based, 
requires linear time-invariant systems.  

The third condition is essential for the describing 
function. It represents an approximation because the 
output from the nonlinear element at the sinus input 
usually contains, besides the basic, even higher 
harmonics. The assumption means that higher harmonics 
can be neglected in the analysis in comparison to the 
basics one. In order for this assumption to be fulfilled, it 
is important that the next linear element has the character 
of the low pass. I.e. 

( ) ( ) K,3,2nforinGiG =ω⋅⋅>>ω⋅                                    

This means that higher harmonics in the output of 
nonlinearity will be significantly filtered. Thus, the third 
assumption is often called a filtering hypothesis. 

The fourth condition means that the graph of the 
nonlinear relation f(x) between the input and the output 
of this member is symmetrical with respect to the origin 
of the coordinate system. This assumption is introduced 
for simplicity, i.e. that Fourier development can neglect 
the DC component. Note that most of the nonlinearities 
occurring in our systems (robot motion system) meet this 
condition. 

Failure to meet the above conditions has been widely 
studied in the literature on the use of general context 
descriptors such as multiple nonlinearities, time-
dependent nonlinearity, or multiple sinusoids. However, 
these conditions relaxation-based methods are usually 
much more complicated than basic versions based on the 
above four conditions. 
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4 Basic definition 

Consider the sinus input of a non-linear element with 
amplitude A and frequency ω. I.e.  

( ) ( )tsinAtx ⋅ω⋅=

as is shown in Fig. 7. 

Fig.7. The non-linear element and its representation by the 
describing component. 

Nonlinear element output is often a periodic but 
generally non-sinusoidal function. Note that this occurs 
whenever the non-linearity f(x) is a uniquely invertible 
function because the output is  

( )[ ] ( )[ ]tsinAf2tsinAf ⋅ω⋅=π+⋅ω⋅ . 

By using the Fourier series, the periodic function 
( )tw can be expanded as 
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where Fourier coefficients are function of A and ω. It is 
valid: 
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As a result of the fourth of the above assumptions, it 
is 0a0 = . Furthermore, the third condition means that 

you only need to consider the basic harmonics ( )tw1 .  

So 
( ) ( ) ( ) ( )

( )ϕ+⋅ω⋅

=⋅ω⋅+⋅ω⋅=≈
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The term (8) means that the basic harmonic 
corresponding to the sinus input is the sinusoidal 
function of the same frequency. Representing in a 
complex variable, it is possible to write this sinus as  

( ) ( ) ( ) ti
11

ti
1 eaibeMtw ⋅ω⋅ϕ+⋅ω⋅ ⋅⋅+=⋅=

Similarly to the frequency response concept of the 
linear system, which is the ratio of sinusoidal output to 
the sinus input in the frequency domain, we define the 

describing function of the nonlinear element as the 

complex ratio of the fundamental harmonic output to 

the sinus input. I.e. 
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,    (9)                         

By describing function which describes a non-linear 
element, this element ˗ for the sinusoidal input -can be 
presented as a linear element with frequency 
transmission. This is shown in Fig.7.. 

The describing function concept therefore can be 
understood as extending of the frequency response term. 
For linear dynamic system the frequency transition 
function is independent of the amplitude of the input 
signal. But describing function of the non-linear element 
differs from the frequency transition function of the 
linear element by being dependent on the amplitude of 
the input signal. Thus, the representation of the non-
linear element of Fig. 7 is sometimes called quasi 

linearization. 

Let us give the following example of continuous 
nonlinearity: We will describe the function of the 
"stiffer" spring. Let the characteristic of the spring be 
given by the function 

3x
2

1
xw ⋅+=

Let the inpute is  
( )tsinA ⋅ω⋅   

Then output is  
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2

1
tsinAtw 33 ⋅ω⋅⋅+⋅ω⋅=

Extend it in the Fourier series. The basic harmonic is  

( ) ( ) ( )tsinbtcosatw 111 ⋅ω⋅+⋅ω⋅=

Determine
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Describing function is  
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 We see that due to the odd behaviour of a function 
describing this nonlinearity, describing function is real 
and it is only a function of the sinusoidal input 
amplitude. 

Generally the describing function depends on the 
frequency and amplitude of the input signal. There are, 
however, several special cases. If the non-linearity is a 

odd function, describing function is real and does not 
depend on the input frequency. Real describing function 

( )ω,AN  is the consequence of 0a1 =  in this case. 
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5 Examples of discontinuous nonlinear-
rities 

Nonlinearities can be divided into continuous and 
discontinuous. Since discontinuous nonlinearities cannot 
be approximated locally by linear functions, they are 
often referred to as "hard" nonlinearities. These "hard" 
nonlinearities often occur in regulatory systems, both in 
small scale and large scale operations. Whether it can be 
considered as nonlinear or linear- when it is operating in 
a small scale of activity- the size of the "hard" 
nonlinearity arbitrates and the also the application of its 
effect on the performance of the system. 

Due to the frequent occurrence of "hard" 
nonlinearities, let's briefly discuss the characteristics and 
effects of two important. 

5.1 Describing function of the saturation
If the input of the physical device increases, it is often 
possible to see the following phenomenon. If input is 
small, its magnification leads (often proportionally) to 
increasing output. But when it reaches a certain value, its 
further magnification leads to little or no increase in 
output. The output simply stays close to its maximum 
value. We say the device is saturation in this state. A 
simple example is a transistor and a magnetic amplifier. 
Saturation type of non-linearity is commonly caused by 
limitations in component size, material properties, and 
limitation of available power. In Fig.8 there is a typical 
non-linearity of saturation, where the stronger line 
represents real non-linearity and thinner is its 
idealization - partial linearization. 

Fig. 8. Saturation nonlinearity 

Most actuators show saturation nonlinearity. For 
example, the output torque of the servo motor can not 
grow to infinity and exhibits saturation not only due to 
the properties of the magnetic material. Similarly, the 
torque (pressure) hydraulic servo motor controlled by 
valve is limited by the maximum accessible system fluid 
pressure. 

Saturation may have a complicating effect on the 
properties of the control system. Simply, the occurrence 
of saturation reduces device gain (e.g.of amplifier) when 
the input signal increases. As a result, if the system is 
unstable in its linear part, the divergent behavior can be 
suppressed to permanent oscilations through   signal. On 
the other hand, in a linear stable saturation system, the 

system's response drops because saturation reduces 
effective gain. 

The input-output relationship for saturation non-
linearity is illustrated in Fig. 9 with a and k as the 
determining parameters of non-linearity.  

Fig. 9. Non-linearity of saturation and its input-output 
relationship. 

Because this non-linearity is an odd function, we 
assume that its descriptive function will be real and will 
be only a function of the input amplitude.  

Consider the input 

( ) ( )tsinAtx ⋅ω⋅=

If aA ≤ , then, the input remains all the time in the 
linear region and therefore the output is

( ) ( )tsinAktw ⋅ω⋅⋅= .  

The describing function is  
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Let's think that aA > . The input and output are then 
drawn in Fig.9. Output on interval 〉ππ〈− ,  is  
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where for the angle γ  we obtain 

A
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Due to the oddity of the function w = f (x) is 0a1 = .  

Determine b1. 

Saturated output
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So describing function is  
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Dividing by k we get the so-called normalized 

description function ( )
k

AN . 
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In Fig. 10 its shape is plotted according to the ratio
a

A
. 

Fig.10. Normalized describing function of saturation non-
linearity 

It is possible to see the three properties of this 
describing function: 

1. If the input amplitude is in the linear region, then
( ) kAN = . 

2. As the input amplitude increases, ( )AN decreases. 

3. There is no phase shift. 

The first feature is evident from the above 
mentioned. When signal is low, saturation does not 
occur. The second is also intuitively obvious. Saturation 
reduces the ratio of output to input. The third property is 
also understandable. Said symmetric saturation does not 
cause phase shift in the output. 

As a special case of saturation we can consider the 
saturation with ∞=k , i.e. non-linearity on-off-compa-
rator. Its dependence w = f (x) is in Fig. 11.. 

Fig.11. Non-linearity of comparator type 

Thus, this case corresponds to the limiting case of a 
linear saturation function ∞→→ k;0a , which does 

not exclude that Mka =⋅ . Although b1 can be obtained 
from the (9) by limit, it is easier to calculate it directly. 
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 So, describing function is 
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⋅
π

==

=⋅+⋅==ω
           (12)                           

Normalized   describing function 
( ) )A(f

A

14
M

AN
=⋅

π
=  is on Fig.12.. 

Fig.12. Normalized describing function of on-off non-linearity. 
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5.2 Describing function of backlash and 
hysteresis non-linearity

In systems with mechanical force (torque) transmission, 
the backlash often occurs. This is due to the small 
airspace in the transmission mechanism. In a 
transmission chain consisting of, for example, a gearbox 
with front wheels (with parallel shafts), there is always 
some airspace between a pair of adjacent wheels. It is 
not just a consequence of inaccuracies in production and 
assembly. This is a prerequisite for reasonable transfer 
efficiency. 

Fig.13. shows a typical situation. The result of the 
dead zone in torque transfer between the teeth is that 
when the driving wheel is rotated, there is a certain path 
on the contact wheel circle, within which the torque is 
not transmitted to the driven wheel. Let the angle of 
rotation of the output wheel corresponding to this path 
be denoted as b. Let the gear ratio be 

1

2

r

r
k =

Fig.13. Non-linearity of gear backlash type 

Thus, the torque is transmitted only when 
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 Thus, while the angular rotation between the 
recalculated driving wheel at the output and the driven 
wheel with different size (gear ratio is k) is less than b, 
the torque between the wheels is not transmitted. 

Fig. 14. Torque transfer dynamic model with backlash between 
teeth 

Based on the dynamic model shown in Fig. 14 and the 
response behaviour of this non-linearity to the sinus 
input ( ) tsinAtx ⋅ω⋅=  (for bkA ⋅> ) shown in 

Fig.15. and Fig.16., can be written                        

Fig. 16.  Input-output context for backlash type non-linearity in 
gearing 
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For 1
A

bk
bkA ≥

⋅
⇒⋅≤  the output is zero. We 

determine the angle γ , i.e. the angle at which the 

backlash influence ends and the output wheel begins to 
move: Is valid 

Fig.15. Time course of variables describing the interaction 
of two wheels with backlash for the sine input 
angle 



9

MATEC Web of Conferences 210, 02021 (2018) https://doi.org/10.1051/matecconf/201821002021

CSCC 2018

1
A

bk2
sinbbA

k

1
sinA

k

1

bbA
k

1
sinA

k

1

−
⋅⋅

=⇒=−⋅+⋅⋅⇒

⇒=















−⋅−−⋅⋅

γγ

γ

Now, unfortunately, w (t) is not odd. Thus neither a1

nor b1 is zero and we have to determine them. The 
calculation is lengthy. 
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The describing function amplitude for backlash is 
shown in Fig. 17. and its phase is in Fig. 18.. 

Fig.17. The describing function amplitude for the tooth 
backlash 

Fig.18. The describing function phase for the tooth backlash 

Here they are some interesting facts: 

1. ( )
k

1
,AN →ω for 0b →

2. ( )ω,AN grows when 
A

bk ⋅
decreases

3. ( ) 0,AN →ω  for
k

A
b →

Phase shift (from 0o to -90o) is due to the effect of a 
given non-linearity. It is the result of the time shift 
caused by the backlash b [rad] on the output side of the 
gear. Higher b leads naturally to greater phase shifting, 
which may cause a stability problem with the feedback 
control system.  

3 Conclusions 

The general mathematical description of the 
mechatronic systems dynamic behavior as artificial 
systems with purposeful motion control, in which one 
part is a subsystem with the motion of interconnected 
bodies with non-zero resting mass, necessarily leads to a 
nonlinear system. 
The primary cause of its nonlinearity is the existence of 
the Coriolis type forces (forces dependent on the product 
of the bonded bodies’ motion speeds). But even if in the 
case of slow movements these elements of the dynamic 
description are neglected in the design of control laws 
(we consider these forces as disturbances), in the real 
systems remain the effects of the so-called hard 
nonlinearities that are part of both mechanical 
subsystems (friction, backlash, hysteresis) and the 
control system (saturation, hysteresis). 
These nonlinearities can cause both desirable and 
undesired phenomena where their most significant 
manifestation is the existence of limit cycles. 
This article describes how to obtain a describing function 
for a non-linear system containing one such non-linear 
element. This will allow us to further analyse the 
existence of limit cycles based on the representation of 
the non-linear element by describing function. 
The basic approach for this prediction is based on the 
application of the extended version of the criteria based 
on Cauchy's lemma from complex analysis (Nyquist 
criterion known from the linear control theory) to the 
equivalent system obtained by a describing function 
application. 
The paper is one part of a more extensive analysis of 
non-linear systems, where the next part is the application 
of descriptive functions−the so-called frequency 

linearization−to the existence and basic parameters of 
the limit cycles analysing. 
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