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1.1 Introduction

The perception of color is of paramount importance to humans since they routinely use color features to

sense the environment, recognize objects and convey information. That is why, it is necessary to use color

information for computer vision, because in many practical cases location of scene objects can be obtained

only when color information is considered, [137].

Noise filtering is one of the most important tasks in many image analysis and computer vision appli-

cations. Its goal is the removal of unprofitable information that may corrupt any of the following image

processing steps.

The reduction of noise in digital images without degradation of the underlying image structures has

attracted much interest in the last years, [70, 73, 83, 69, 93, 138, 101]. Recently, increasing attention has

been given to the nonlinear processing of vector valued signals. Many of the techniques used for color

noise reduction are direct implementations of the methods used for gray-scale imaging. The independent

processing of color image channels is however inappropriate and leads to strong artifacts. To overcome this

problem, the standard techniques developed for monochrome images have to be extended in a way which

exploits the correlation among the image channels.

The acquisition or transmission of digital images through sensors or communication channels is often

inferred by mixed impulsive and Gaussian noise. In many applications it is indispensable to remove the

corrupted pixels to facilitate subsequent image processing operations such as edge detection, image seg-

mentation and pattern recognition.

Numerous filtering techniques have been proposed to date for color image processing. Nonlinear filters

applied to color images are required to preserve edges and details and to remove different kinds of noise. Es-

pecially, edge information is very important for human perception. Therefore, its preservation and possibly

enhancement, are very important subjective features of the performance of nonlinear image filters.

1.1.1 Noise in Color Images

Noise introduces random variations into sensor readings, making them different from the real values, and

thus introducing errors and undesirable side effects in subsequent stages of the image processing. Faulty sen-

sors, optic imperfectness, electronics interference, data transmission errors or aging of the storage material

may introduce noise to digital images. In considering the signal-to-noise ratio over practical communication

media, such as microwave or satellite links, there can be degradation in quality, due to low power of the re-

ceived signal. Image quality degradation can be also a result of processing techniques, such as demosaicking

or aperture correction, which introduce various noise-like artifacts.

The noise encountered in digital image processing applications cannot always be described by the com-
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monly assumed Gaussian model. Very often it has to be characterized in terms of impulsive sequences,

which occur in the form of short duration, high energy spikes attaining large amplitudes with probability

higher than predicted by the Gaussian density model. Thus image filters should be robust to impulsive or

generally heavy-tailed noise. In addition, when color images are processed, care must be taken to preserve

image chromaticity, edges and fine image structures.

Impulsive Noise Models

In many practical applications, images are corrupted by noise caused either by faulty image sensors or by

transmission corruption resulting from man-made phenomena such as ignition transients in the vicinity of

the receivers or even natural phenomena such as lightning in the atmosphere.

Transmission noise, also known as salt & pepper noise in gray-scale imaging, is modelled by an im-

pulsive distribution. However, one of the problems encountered in the research on noise effects on image

quality is the lack of commonly accepted multivariate impulsive noise model.

A number of simplified models has been introduced to assist the performance evaluation of the different

color image filters. The impulsive noise model considered in this chapter is as follows, [83, 130, 128]

FI =











































(F1, F2, F3) with probability (1 − p)

(d, F2, F3) with probability p1 · p
(F1, d, F3) with probability p2 · p
(F1, F2, d) with probability p3 · p
(d, d, d)T

with probability p4 · p

, (1.1)

where FI denotes the noisy signal, F = (F1, F2, F3) is the noise-free color vector, and d is the impulse

value, p1 + p2 + p3 + p4 = 1. Impulse d can have either positive or negative values and we assume that

when an impulse is introduced, forcing the pixel value outside the [0, 255] range, clipping is applied to push

the corrupted noise value into the integer range specified by the 8-bit arithmetic.

Mixed Noise

In many practical situations, an image is often corrupted by both additive Gaussian noise due to sensors

(thermal-noise), and impulsive transmission noise introduced by environmental interference or faulty com-

munication channels. An image can therefore be thought of as being corrupted by mixed noise according to

the following model

FM =







F + FG with probability (1 − p) ,

FI otherwise,
(1.2)

where F is the noise-free color signal, the additive noise FG is modelled as zero mean, white Gaussian noise

and FI is the transmission noise modelled as multivariate impulsive noise, [83].
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This chapter is organized as follows. In the second section a short introduction to the adaptive techniques

of noise removal in gray-scale images is presented. In the next section the anisotropic diffusion approach

is described and its relation to the adaptive smoothing presented in Section 2 is discussed. In Section 4 a

brief survey of the noise attenuation techniques applied in color image processing is presented. Section 5

is devoted to the new technique of noise reduction based on the concept of digital paths. In the last section

the effectiveness of the new filtering framework is evaluated, a comparison between the new filter class and

some of the filters presented in Section 4 is provided and the relation of the new filter class to the anisotropic

diffusion presented in Section 3 is shown.

1.2 Adaptive Noise Reduction Filtering

In this section we examine some adaptive techniques used for the reduction of noise in gray-scale images.

Some of the presented concepts can be redefined, so that they can be used to suppress noise in the multidi-

mensional case.
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Figure 1.1: The filtering mask of size 3 × 3 with the pixel F0 in the center a) and the directions between

the central pixel and its neighbors b).

The most frequently used noise reduction transformations are the linear filters, which are based on the

convolution of the image with the filter kernel of constant coefficients. This kind of filtering replaces the

central pixel value F0 from the set of pixels F0, F1, . . . , Fn, (Fig. 1.1), belonging to the filter mask W ,

with the weighted average of the gray-scale values of the central pixel F0 and its n neighbors F1, . . . , Fn,

[38, 62]. The result of the convolution F ∗
0 of the kernel H with the pixels in W is

F ∗
0 =

1

Z

n
∑

k=0

Hk Fk , Z =

n
∑

k=0

Hk . (1.3)

Linear filters are simple and fast, especially when they are separable, but their major drawback is that they

cause blurring of the edges. This effect can be diminished choosing an appropriate adaptive nonlinear filter

kernel, which performs the averaging in a selected neighborhood. The term adaptive means [41, 33], that

the filter kernel coefficients change their values according to the image structure, which is to be smoothed.
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Adaptive smoothing can be seen as a nonliner process, in which noise is removed, while important image

features are being preserved.

Different kinds of edge and structure preserving filter kernels have been proposed in the literature [47,

138, 38]. One of the simplest nonlinear schemes works with a filter kernel of the form Hk = 1−|F0 −Fk|,

F ∗
0 =

1

Z

n
∑

k=0

[1 − |F0 − Fk|] · Fk , Z =

n
∑

k=0

[1 − |F0 − Fk|] , Fk ∈ [0, 1] . (1.4)

This filter takes with greater weighting coefficients those pixels of the neighborhood, whose intensity are

close to the intensity of the central pixel F0, and does not take into consideration the value of F0, when

defined as [96, 132, 52, 131, 61]

F ∗
0 =

1

Z

n
∑

k=1

[1 − |F0 − Fk|] · Fk , Z =
n
∑

k=1

[1 − |F0 − Fk|] , (1.5)

which leads to a more robust filter performance. Similar structure has the gradient inverse weighted operator,

which forms a weighted mean of the pixels belonging to a filter window. Again, the weighting coefficients

depend on the difference of the gray-scale values between the central pixel and its neighbors, [132, 131],

F ∗
0 =

1

Z

n
∑

k=0

Fk

max{γ, |F0 − Fk|}
, Z =

n
∑

k=0

1

max{γ, |F0 − Fk|}
, (in [132] γ = 0.5) . (1.6)

The Lee’s local statistics filter [52, 51, 50], estimates the local mean and variance of the intensities of

pixels belonging to a specified filter window W and assigns to the pixel F0 the value F ∗
0 = F0 + (1−α)F̂ ,

where F̂ is the arithmetic mean of the image pixels belonging to the filter window and α is estimated as

α = max
{

0, (σ2
0 − σ2)/σ2

0

}

, where σ2
0 is the local variance calculated for the samples in the filter window

and σ2 is the variance calculated over the whole image. If σ0 ≫ σ then α ≈ 1 and no changes are

introduced. When σ0 ≪ σ then α ≈ 0 and the central pixel is replaced with the local mean. In this way, the

filter smooths with a local mean when the noise is not very intensive and leaves the pixel value unchanged

when a strong signal activity is detected.

In [92, 91] a powerful adaptive smoothing technique related to the anisotropic diffusion, which will be

discussed in the next section, was proposed. In this approach, the central pixel F0 is replaced by a weighted

sum of all the pixel contained in the filtering mask

F ∗
0 =

1

Z

n
∑

k=0

wk Fk , with wk = exp

{

−|Gk|2
β2

}

, Z =
n
∑

k=0

wk , (1.7)

where |Gk| is the magnitude of the gradient calculated in the local neighborhood of the pixel Fk and β is a

smoothing parameter.

In [102] another efficient adaptive technique was proposed

F ∗
0 =

1

Z

N
∑

k=1

exp

{

−ρ2
k

β2
1

}

exp

{

−|Fk − F0|2
β2

2

}

· Fk , (1.8)
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where ρk denotes the topological distance between the central pixel F0 and the pixels Fk, (k = 1, 2, . . . , N)

of the filtering mask, β1, β2 and N (number of neighbors of F0 in W ) are filter parameters. The concept of

combining the topological distance between pixels with their intensity similarities has been further devel-

oped in the so called bilateral filtering [119, 27, 10], which can be seen as a generalization of the adaptive

smoothing proposed in [67, 92, 91, 102, 112, 39].

Good results of noise reduction can usually be obtained by performing the σ-filtering [50, 54, 138]. This

procedure computes a weighted average over the filter window, but only those pixels, whose gray values

do not deviate too much from the value of the center pixel are permitted into the averaging process. This

procedure computes a weighted mean over the filter window, but only those pixels whose values lie within

κ · σ of the central pixel value are taken into the average. This filter attempts to estimate a new pixel value

with only those neighbors, whose values do not deviate too much from the value of F0

F ∗
0 =

1

Z

∑

k

HkFk, {k : |Fk − F0| ≤ κ σ}, (1.9)

where Z is the normalizing factor, κ is a parameter, (typically κ = 2), σ is the standard deviation of all

pixels belonging to W or the value of the standard deviation estimated from the whole image and Hk values

are filter parameters.

Another adaptive scheme, called k-nearest neighbor filter, suggested in [30], replaces the gray level of

the central pixel F0 by the average of its k neighbors whose intensities are closest to that of F0, (k = 6 and a

window of size 3 × 3 was recommended in [61]). The image noise can be also reduced by applying a filter,

which substitutes the gray-scale value of the central pixel, by a gray tone from the neighborhood, which is

closest to the average of all points in the filter window W , (nearest neighbor filter). In this way F ∗
0 = Fq,

where q = arg {min{ |Fk − F̂ | } }.

Another class of filters divides the filter masks into a set of regions, in which the variance of the pixel

intensities is calculated. The aim of these filters is to find clusters of pixels which are similar to the central

pixel of the filtering mask. Their output is defined as a mean value of the pixel values belonging to the sub-

window in which the variance reaches the minimum. The Kuwahara filter [49, 120, 88], divides the 5 × 5

filtering mask into four sub-windows as depicted in Fig. 1.2 a). In each of the sub-windows, the mean and

the variance is calculated and the output of the filter is the mean value of the pixels from that sub-window,

whose pixels have the smallest variance. This filtering scheme, based on searching for pixel clusters with

similar intensities was further extended by introducing new regions in which the variance was measured

[64, 63, 111], (Fig. 1.2 b, c) and [111], d).

This approach is in some way similar to the technique we propose in Section 1.5, in which the filters

based on digital path are introduced. In the new approach, instead of looking for sub-windows with similar

pixels, we investigate digital paths linking the central pixel with pixels belonging to the filter window.
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Another class of adaptive algorithms is based on the rank transformations, defined using an ordering

operator, which goal is the transformation of the set of pixels lying in a given filtering window W into a

monotonically increasing sequence {F0, F1, . . . , Fn)} → {F(0), F(1), . . . , F(n)}, with the property: F(k) ≤
F(k+1), k = 0, . . . , n − 1. In this way the rank operator is defined on the ordered values from the set

{F(0), . . . , F(n)} and has the form

F ∗
0 =

1

Z

n
∑

k=0

̺(k)F(k) , Z =

n
∑

k=0

̺(k) , (1.10)

where ̺k are nonzero weighting (ranking) coefficients. Taking appropriate ranking coefficients allows the

definition of a variety of useful operators. The sequence

• {1, 1, . . . , 1} corresponds to the moving average operator,

• {0, . . . , 0, ̺m = 1, 0, . . . , 0}, m = (1 + n)/2, generates the median, (for even number of neighbors n),

• {0, . . . , 0, ̺m−α = 1 = . . . = ̺m = . . . = ̺m+α = 1, 0, . . . , 0} , 0 ≤ α ≤ m defines the α-trimmed

mean, which is a compromise between the median (α = 0) and the moving average (α = m),

• {̺0 = 1, 0, . . . , 0, ̺n} determines the so called mid-range filter.

The standard median exploits the rank-order information (order statistics) to eliminate impulsive noise.

This filter substitutes the corrupted pixel with the middle-position element (median) of the ordered input

samples. Since its introduction, it has been extensively studied and extended to the weighted median and its

special case center weighted median filter.

The median filter is one of the most commonly used nonlinear filters. It has the ability of attenuating

strong impulse noise, while preserving image edges. Its major drawback however, is that it wipes out

structures, which are of the size of the filter window and this effect causes that the texture of a filtered image

is strongly distorted. Another drawback of the standard median, is that it inevitably alters the details of the

image not distorted by the noise process, since the standard median cannot distinguish between the corrupted

and original pixels, and whether a pixel is corrupted or not, it is replaced by the local median within a filtering

window. Therefore a trade-off between the suppression of noise and preservation of fine image details and

edges has to be found. This can be accomplished in different ways, their goals is however always to diminish

the filtering effect in image regions not affected by the noise process, [7, 6, 8, 11, 28, 2, 1, 48, 98, 4, 22].
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Figure 1.2: Different subwindow structures used in

the filtering framework proposed in [49, 64] a), [64,

63] b, c) and in [111], d).

a)

b)

c)

d)

Figure 1.3: Illustrations of the the development of

the anisotropic diffusion process. The central part

of the images shows the result obtained after 300

iterations. Left and right parts show the evolution

of the column 25 and 325 of the 350 × 350 color

LENA image distorted by mixed impulsive and Gaus-

sian noise, a) isotropic diffusion process (1.12), b)

PMAD with c1, (1.14), c) regularized AD of Catté

[24, 25], d) new filter DPAF introduced in 1.5.
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1.3 Anisotropic Diffusion

A powerful filtering technique, called anistropic diffusion (AD), has been introduced by Perona and Ma-

lik, (P-M), [68, 67] in order to selectively enhance image contrast and reduce noise using a modified heat

diffusion equation and the concepts of scale space, [136].

The main concept of anisotropic diffusion is based on the modification of the isotropic diffusion equation

(1.12), with the aim to inhibit the smoothing across image edges. This modification is done by introducing

a conductivity function that encourages intra-region smoothing over inter-region smoothing.

Since the introduction of the P-M method, a wide variety of techniques have been elaborated including

multi-scale approaches, extensions to vector valued imaging [95, 37], multigrid methods [3], mathematical

morphology inspired techniques and many others, [17, 60, 37, 121, 139, 34, 43, 44, 99].

Diffusion is a transport process that tends to level out concentration differences and in this way it leads

to equalization of the spatial concentration differences. The elementary law of diffusion states that flux

density ℑ is directed against the gradient of concentration F in a given medium ℑ = −c∇F , where c is the

diffusion coefficient. If we use the continuity equation

∂F

∂t
+ ∇ℑ = 0 , we obtain

∂F

∂t
= ∇ [c∇F ] . (1.11)

If F (x, y, t) denotes a real valued function representing the digital image, the equation of linear and isotropic

diffusion is

∂F (x, y, t)

∂t
= c

[

∂2F (x, y, t)

∂ x2
+

∂2F (x, y, t)

∂ y2

]

, (1.12)

where x, y are the image coordinates, t denotes time, c is the conductivity coefficient.

Perona and Malik suggested that conductivity coefficient c should be dependent on the image structure

and therefore they proposed the following partial derivative equation (PDE)

∂F (x, y, t)

∂t
= ∇ [c(x, y, t)∇F (x, y, t)] . (1.13)

The conductivity coefficient c(x, y, t) is a monotonically decreasing function of the image gradient mag-

nitude and usually contains a free parameter K, which determines the amount of smoothing introduced

by the nonlinear diffusion process. Different functions of c(x, y, t) have been suggested in the literature

[18, 3, 89, 94, 5, 26, 90]. The most popular are those introduced in [67]

c1 = exp

(

−|∇F (x, y, t)|2
2K2

)

, c2 =

(

1 +
|∇F (x, y, t)|2

2K2

)−1

. (1.14)

The conductivity function c(x, y, t) is time and space-varying, it is chosen to be large in homogeneous

regions to encourage smoothing and small at edges to preserve image structures.
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The discrete version of Eq. (1.13) is

F t+1
0 = F t

0 + λ
n
∑

k=0

ct
k

[

F t
k − F t

0

]

, for stability λ ≤ λ0 =
1

n
, (1.15)

where t denotes discrete time, (iteration number), ct
k are the diffusion coefficients in n directions, (Fig. 1.1

b), F t
0 denotes the central pixel of the filtering window at time t, F t

k are its neighbors and λ0 is the largest

value of λ, which guarantees the stability of the diffusion process.

It is quite easy to notice [10], that this equation is quite similar to the adaptive smoothing scheme

proposed in [92, 91] and [87]. The Eq. (1.7) formulated in an iterative way

F t+1
0 =

n
∑

k=0

wkF
t
k

/

n
∑

k=0

wk , (1.16)

can be written as

F t+1
0 = F t

0 +

n
∑

k=0

wkF
t
k − F t

0

n
∑

k=0

wk

n
∑

k=0

wk

= F t
0 +

n
∑

k=0

wk(F
t
k − F t

0)

n
∑

k=0

wk

= F t
0 +

n
∑

k=0

w∗
k(F

t
k − F t

0) , (1.17)

where w∗
k are the normalized weighting coefficients. In this way, every adaptive smoothing scheme based

on the averaging with weighting coefficients can be seen as a special realization of the general nonlinear

diffusion scheme.

The equation of anisotropic diffusion, (1.15) can be written as

F t+1
0 = F t

0

[

1 − λ

n
∑

k=0

ct
k

]

+ λ

n
∑

k=0

ct
kF

t
k, λ ≤ λ0 =

1

n
. (1.18)

If we set [1 − λ
∑n

k=1 ct
k] = 0, then we can switch off to some extent the influence of the central pixel F0

in the iteration process. This requires however that in each iteration step the λ values has to be a variable,

dependent on time and image structure, equal to λt = [
∑n

k=0 ct
k]

−1. The effect of diminishing the influence

of the central pixel can be however achieved in a more natural way. Introducing the normalized conductivity

coefficients Ct
k

Ct
k =

ct
k

n
∑

k=0

ct
k

,
n
∑

k=0

Ct
k = 1 , (1.19)

Eq. (1.18) takes the form

F t+1
0 = F t

0 (1 − λ∗) + λ∗
n
∑

k=0

Ct
k F t

k , λ∗ = λ

n
∑

k=0

ct
k, λ∗ ∈ [0, 1] , (1.20)

which has the nice property, that for λ∗ = 0 no filtering takes place: F t+1
0 = F t

0 and for λ∗ = 1, the central

pixel is not taken into the weighted average and the anisotropic smoothing scheme reduces to a nonlinear,

weighted average of the neighbors of F0

F t+1
0 =

n
∑

k=1

Ct
k F t

k . (1.21)
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In this way the central pixel is being replaced by a weighted average of its neighbors and the weights

correspond to the similarity measure of the central pixel and its neighbors.

This scheme is very similar to the iterative approach proposed by Wang [132], (1.6), who recommended

a gradient-inverse weighted noise smoothing algorithm

F t+1
0 = c0F

t
0 +

n
∑

k=0

ckF
t
k with ck =

max{γ, |Fk − F0)|
n
∑

k=0

max{γ, |Fk − F0|)}
, (1.22)

and is also quite similar to the approach of Lee [50] and to the algorithm of Smith [102], Eq. (1.8)

F t+1
0 =

1

Z

n
∑

k=1

ck · F t
k , ck = exp

{

−ρ2
k

β2
1

}

exp

{

−|Fk − F0|2
β2

2

}

, k = 1, . . . , n . (1.23)

which corresponds to the case of λ∗ = 1 in Eq. (1.20). The robustness of this scheme is achieved by rejecting

the central pixel value of the filter mask when calculating the filter output. This scheme is especially efficient

when the image is corrupted by heavy impulsive noise process.

Setting λ∗ = 1 in (1.20) is similar to taking the largest possible value of λ in (1.18), λ0 = 1/n which

ensures the stability of the anisotropic diffusion process, [89]. The good performance of an anisotropic

diffusion scheme with λ∗ = 1 is confirmed by Fig. 1.4, which depicts the dependence of the efficiency of

the P-M approach using the c1 conductivity function on the K and λ parameters for the gray scale LENA

image distorted by Gaussian noise of different intensity. In this Figure, it is clearly visible that the best filter

performance in terms of PSNR is achieved for λ close to λ0 = 1/8, (3 × 3 mask), especially in the case of

images distorted by Gaussian noise process of high σ. Such a setting of λ enables the diminishing of the

influence of the central pixel, which ensures the suppression of the outliers injected by the noise process.

One of the major drawbacks of the anisotropic approach is that the optimal values of the parameters K

and λ are unknown. Although K can be calculated using some a priori knowledge or can be estimated using

some heuristic rules, the algorithm is very slow and needs many iterations to achieve the desired solution

and also some stopping criterion is needed to finish the iteration process, before the image converges to the

trivial solution, (the average value of the image pixels), [139, 133].

Another disadvantage of the Perona-Malik approach is that this algorithm is not able to cope with im-

pulsive noise and as a result the noisy images goes through the diffusion process without perceptible im-

provement. The only way to force the diffusion to smooth out the impulsive noise is to increase the K value

in (1.14), which results however in a higher blurring.

In order to improve the efficiency of the original scheme a regularized version was proposed, in which

the conductance coefficient is a function of the gradient convolved with the Gaussian linear filter, [24, 25]

∂F (x, y, t)

∂t
= div [c̃(x, y, t)∇F (x, y, t)] , (1.24)
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where c̃(x, y, t) = f(|∇Gσ∗F (x, y, t)|), G denotes the Gaussian kernel with standard deviation σ, ∗ denotes

the convolution and f is a decreasing function. The advantage of this formulation is that it is mathematically

well posed in contrary to the P-M scheme. However, the drawback of this approach is that the image

discontinuities tend to be blurred and the whole scheme leads to a higher computational complexity of the

anisotropic diffusion process.

Another solution to the impulsive noise problem is the introduction of robust conductivity functions.

In [18] robust statistic norms were chosen to design the anisotropic diffusion process. However, these

conductivity functions do not help increase the efficiency of the filtering in case of strong Gaussian or

impulsive noise.

a) b) c)

d) e) f)

Figure 1.4: Dependence of the efficiency of the P-M scheme in terms of PSNR using the c1 conductivity

function on the λ and K parameters, (1.14, 1.15). The test gray scale image LENA contaminated with

Gaussian noise of: a) σ = 10, b) σ = 20, c) σ = 30 are shown and below the respective plots of the noise

reduction efficiency in terms of PSNR, after 3 iterations are presented, ( d- f).



B. Smolka, K.N. Plataniotis, A.N. Venetsanopoulos, Nonlinear Techniques for Color Image Processing 13

1.3.1 Anisotropic Diffusion Applied to Color Images

Let F(x, y, t) = [Fr(x, y, t), Fg(x, y, t), Fb(x, y, t)] denote a color image pixel at position (x, y), where

Fr(x, y, t), Fg(x, y, t), Fb(x, y, t) are the red, green and blue channel respectively. The PDE equation (1.13)

can be written for the multichannel case as

∂F(x, y, t)

∂t
= ∇ [c(x, y, t)∇F(x, y, t)] , F(x, y) =













Fr(x, y)

Fg(x, y)

Fb(x, y)













,
∂F(x, y)

∂t
=













∂Fr(x,y)
∂t

∂Fg(x,y)
∂t

∂Fb(x,y)
∂t













, (1.25)

where c(x, y, t) = f(‖G‖) is a conductivity function, which couples the three color image channels, [37,

134, 23, 53, 86]. The conductivity function is the same for all the image channels and is a function of the

local gradient vector G(x, y)












∂Fr(x,y,t)
∂t

∂Fg(x,y,t)
∂t

∂Fb(x,y,t)
∂t













=













∇ [c(x, y, t)∇Fr(x, y, t)]

∇ [c(x, y, t)∇Fg(x, y, t)]

∇ [c(x, y, t)∇Fb(x, y, t)]













,G(x, y)=







∂F(x,y)
∂x

∂F(x,y)
∂y






=







∂Fr(x,y)
∂x

,
∂Fg(x,y)

∂x
, ∂Fb(x,y)

∂x
,

∂Fr(x,y)
∂y

,
∂Fg(x,y)

∂y
, ∂Fb(x,y)

∂y
,






.

(1.26)

Estimating the local multichannel image gradient is one of the most important tasks, when designing an

anisotropic diffusion scheme. Many of the approaches devised for color images are based on the vector

gradient norm introduced by Di Zenzo [31]. Local variations of the color image ‖dF‖2 are expressed as

‖dF‖2 =









dx

dy









T 







g11 g12

g21 g22

















dx

dy









, (1.27)

where































g11 =
(

∂Fr(x,y)
∂x

)2
+
(

∂Fg(x,y)
∂x

)2
+
(

∂Fb(x,y)
∂x

)2

g22 =
(

∂Fr(x,y)
∂y

)2
+
(

∂Fg(x,y)
∂y

)2
+
(

∂Fb(x,y)
∂y

)2

g12 =
(

∂Fr(x,y)
∂x

)(

∂Fr(x,y)
∂y

)

+
(

∂Fg(x,y)
∂x

)(

∂Fg(x,y)
∂y

)

+
(

∂Fb(x,y)
∂x

)(

∂Fb(x,y)
∂y

)

, (1.28)

The eigenvalues of the matrix [gi,j ], i = 1, 2

λ+ =
g11 + g22 +

√

(g11 − g22)2 + 4g2
12

2
, λ− =

g11 + g22 −
√

(g11 − g22)2 + 4g2
12

2
, (1.29)

are the extremum of ‖dF‖2 and the orthogonal eigenvectors determine the corresponding variation directions

η and ξ

η =
1

2
arctan

2g12

g11 − g22
, ξ = η +

π

2
. (1.30)

Based on the eigenvalues, different gradient norms leading to various PDE schemes can be developed,

[126, 127, 95, 94, 99, 19].
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1.4 Noise Reduction Filters for Color Image Processing

Several nonlinear techniques for color image processing have been proposed over the years. Among them

are linear processing methods, whose mathematical simplicity and the existence of a unifying theory make

their design and implementation easy. However, not all filtering problems can be efficiently solved using

linear techniques. For example, conventional linear techniques cannot cope with nonlinearities of the image

formation model and fail to preserve edges and image details.

To this end, nonlinear color image processing techniques are introduced. Nonlinear techniques, to some

extent, are able to suppress non-Gaussian noise and preserve important image elements, such as edges,

corners and fine details, and eliminate degradations occurring during image formation and transmission

through noisy channels.

1.4.1 Order-statistics Filters

One of the most popular families of nonlinear filters for impulsive noise removal are order-statistics filters,

[129, 124, 73, 72, 75, 55, 65]. These filters utilize algebraic ordering of a windowed set of data to compute

the output signal.

The early approaches to color image processing usually comprised extensions of the scalar filters to

color images. Ordering of scalar data, such as the values of pixels in gray-scale images is well defined and it

was extensively studied, [73]. However, the concept of input ordering, initially applied to scalar quantities is

not easily extended to multichannel data, since there is no universal way to define ordering in vector spaces.

A number of different ways to order multivariate data has been proposed. These techniques are generally

classified into [12, 84, 65, 117]

• marginal ordering (M-ordering), where the multivariate samples are ordered along each dimension inde-

pendently,

• reduced or aggregated ordering (R-ordering), where each multivariate observation is reduced to a scalar

value according to a distance metric,

• partial ordering (P-ordering), where the input data are partitioned into smaller groups which are then or-

dered,

• conditional ordering (C-ordering), where multivariate samples are ordered conditional on one of its

marginal sets of observations.

R-ordering filters

Let F(x) be a multichannel image and let W be a window of finite size n+1, (filter length). The noisy

image vectors inside the filtering window W will be denoted as Fj , j = 0, 1, ..., n . If the distance between
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two vectors Fi,Fj is denoted as ρ(Fi,Fj), then the scalar quantity

Ri =

n
∑

j=0

ρ(Fi,Fj), (1.31)

is the aggregated distance associated with the noisy vector Fi inside the processing window. Assuming a

reduced ordering of the Ri ’s: R(0) ≤ R(1) ≤ . . . ≤ R(τ) ≤ . . . ,≤ R(n), implies the same ordering of

the corresponding vectors Fi : F(0);F(1); . . . ;F(τ); . . . ;F(n) . Nonlinear ranked type multichannel filters

define the vector F(0) as the output of the filtering operation. This selection is due to the fact that vectors that

diverge greatly from the data population usually appear in higher indexed locations in the ordered sequence

[71, 40].

Vector Median Filter (VMF)

The best known member of the family of the ranked type multichannel filters is the so called Vector Median

Filter, (VMF) [9, 128, 13, 15, 36, 105, 107, 109, 130, 135]. The definition of the multichannel median is a

direct extension of the ordinary scalar median definition with the L1 or L2 norm utilized to order vectors

according to their relative magnitude differences [9]. The output of the VMF is the pixel F∗ ∈ W for which

the following condition is satisfied

n
∑

j=0

ρ(F∗,Fj) ≤
n
∑

j=0

ρ(Fi,Fj), i = 0, . . . , n . (1.32)

It has been observed through experimentation that the Vector Median Filter (VMF) discards impulses and

preserves edges and details in the image [9]. However, its performance in the suppression of additive white

Gaussian noise, which is frequently encountered in image processing, is inferior to that of the Arithmetic

Mean Filter (AMF). If a color image is corrupted by both additive Gaussian noise and impulsive noise, an

effective filtering scheme should make an appropriate compromise between the Arithmetic Mean Filter and

the Vector Median Filter.

Extended Vector Median Filter (EVMF)

The VMF concept may be combined with linear filtering when the vector median is inadequate for filtering

out noise, (such as in the case of additive Gaussian noise). The filter based on this idea, so-called Extended

Vector Median Filter (EVMF) has been presented in [9]. If the output of the Arithmetic Mean Filter, (AMF)

is denoted as FAMF then

F
∗ =











FAMF if
n
∑

j=0
||FAMF − Fj || <

n
∑

j=0
||FV MF − Fj ||

FV MF otherwise

, (1.33)
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α-trimmed Vector Median Filter (VMFα)

In this filter, the 1 + α samples closest to the vector median are selected as inputs to an average type of

filter, (see page 7). The output of the α -trimmed VMF can be defined as follows [130, 84]

F
∗ =

α
∑

i=0

1

1 + α
F(i) , (1.34)

The trimming operation guarantees good performance in the presence of long tailed or impulsive noise and

helps in the preservation of sharp edges. On the other hand, the averaging operation causes the filter to

perform well in the presence of short tailed noise.

Crossing Level Median Mean Filter (CLMMF)

On the basis of the vector ordering another efficient technique combining the idea of the VMF and the AMF

can be proposed. Let wi be a weight associated with ith element of the ordered vectors F(0);F(1); . . . ;F(n),

then the filter output is declared as F
∗
0 =

∑n
i=0 w(i) · F(i). One of the simplest possibilities of weight

selection is

w(i) =











1 − n√
(n+1)(n+1+γ)

for i = 0

1√
(n+1)(n+1+γ)

for i = 1, . . . , n ,
(1.35)

where γ is the filter parameter. For γ → ∞ we obtain the standard vector median filter, and for γ = 0 this

filter reduces to the arithmetic mean (AMF).

Weighted Vector Median Filter (WVMF)

In [135, 130, 4] the vector median concept has been generalized and the so-called Weighted Vector Median

Filter has been proposed. Using the weighted vector median approach, the filter output is the vector F
∗, for

which the following condition holds

n
∑

j=0

wj ρ(F∗,Fj) ≤
n
∑

j=0

wj ρ(Fi,Fj), i = 0, . . . , n . (1.36)

Basic vector directional filter (BVDF)

Within the framework of ranked type nonlinear filters, the orientation difference between color vectors can

also be used to remove vectors with atypical directions. The Basic Vector Directional Filter, (BVDF) is

a ranked order filter, similar to the VMF, which uses the angle between two color vectors as the distance

criterion. This criterion is defined using the scalar measure

Ai =

n
∑

j=0

α(Fi,Fj), with α(Fi,Fj) = cos−1

(

Fi · Fj

|Fi| |Fj |

)

. (1.37)
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As in the case of vector median filter, the ordering of the Ai ’s implies the same ordering of the correspond-

ing vectors Fi . The BVDF outputs the vector F(0) that minimizes the sum of angles with all the other

vectors within the processing window. Since the BVDF uses only information about vector directions, it

cannot remove achromatic noisy pixels.

Generalized Vector Directional Filter (GVDF)

To overcome the deficiencies of the BVDF, the Generalized Vector Directional Filter (GVDF) was intro-

duced, [122]. The GVDF generalizes BVDF in the sense that its output is a superset of the single BVDF

output. The first vector in the ordered sequence constitutes the output of the Basic Vector Directional Filter,

whereas the first τ vectors constitute the output of the Generalized Vector Directional Filter, (GVDF)

BV DF{F0,F1, . . . ,Fn} = F0 , GV DF{F0,F1, . . . ,Fn} = {F0,F1, . . . ,Fτ}, 1 ≤ τ ≤ n . (1.38)

The output of GVDF is subsequently passed through an additional filter in order to produce a single output

vector. In this step the designer can only consider the magnitudes of the vectors F0,F1, . . . ,Fτ since they

have approximately the same direction in the vector space. As a result the GVDF separates the processing of

color vectors into directional processing and then magnitude processing, (the vector’s direction signifies its

chromaticity, while its magnitude is a measure of its brightness). The resulting cascade of filters is usually

complex and the implementations may be slow since they operate in two steps, [57, 58].

Directional Distance Filter (DDF)

To overcome the deficiencies of the directional filters, another method called Directional - Distance Filter

(DDF) was proposed [42]. DDF constitutes a combination of VMF and BVDF and is derived by simultane-

ous minimization of their defining functions. Specifically, in the case of the DDF the accumulated distance

inside the processing window is defined as

Bi =





n
∑

j=0

α (Fi,Fj)





ς 



n
∑

j=0

ρ (Fi,Fj)





1−ς

, (1.39)

where α (Fi,Fj) is the directional (angular) distance defined in (1.37) and distance ρ (Fi,Fj) could be

calculated using Minkowski Lp norm. The parameter ς regulates the influence of angle and distance com-

ponents. As for any other ranked-order filter, an ordering of the Bi ’s implies the same ordering of the

corresponding vectors Fi . Thus, DDF defines the F(0) vector as its output: FDDF = F0. For ς = 0 we

obtain the VMF and for ς = 1 the BVDF. The DDF is defined for ς = 0.5 and its usefulness stems from the

fact that it combines both the criteria used in BVDF and VMF, [122, 56].
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Hybrid Directional Filter (HDF)

Another efficient rank-ordered operation called Hybrid Directional Filter HDF was proposed in [36]. This

filter operates on the direction and magnitude of the color vectors independently and then combines them to

produce a final output. This hybrid filter, which can be viewed as a nonlinear combination of the VMF and

BVDF filters, produces an output according to the following rule

F
∗ =







FV MF if FV MF = FBV DF

||FV MF ||
||FBV DF || FBV DF otherwise

, (1.40)

where FBV DF is the output of the BVDF filter, FV MF is the output of the VMF and || · || denotes the

vector norm.

1.4.2 Fuzzy Adaptive Filters

The performance of the different nonlinear filters based on order statistics depends heavily on the problem

under consideration. The types of noise which are present in an image affect considerablu the filter perfor-

mance. To overcome difficulties associated with the uncertainty associated with the data, adaptive designs

based on local statistics have been introduced [80, 79, 16, 32, 77, 78]. Such filters, utilize data-dependent

coefficients to adapt to local image characteristics. The weights of the adaptive filters are determined by

fuzzy transformations based on features from local data. The general form of the fuzzy adaptive filters is

given as a nonlinear transformation of a weighted average of the input vectors inside the processing window

F
∗ = f

(

n
∑

i=0

w∗
i Fi

)

= f

(

n
∑

i=0

wiFi

/

n
∑

i=0

wi

)

, (1.41)

where f(·) is a nonlinear function that operates over the weighted average of the input set. The relationship

between the pixel under consideration and each pixel in the window should be reflected in the decision for

the filters weights. In the adaptive design, the weights provide the degree to which an input vector contributes

to the output of the filter. They are determined adaptively using fuzzy transformations of a distance criterion

at each image position.

In this framework the weights are determined by fuzzy transformations based on features from local

data. The fuzzy module extracts information without any a-priori knowledge about noise characteristics.

The weighting coefficients are transformations of the distance between the vector under consideration, (cen-

ter of the processing window W ) and all other vector samples inside the processing window W . This

transformation can be considered to be a membership function with respect to a specific window compo-

nent. The adaptive algorithm evaluates a membership function based on a given vector signal and then uses

the membership values to calculate the filter output. Adaptive fuzzy algorithms utilize features extracted
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from local data, here in the form of a sum of distances, as inputs to the fuzzy weights. In this case, the

distance functions are not used to order input vectors. Instead they provide selected features in reduced

space; features used as inputs for the fuzzy membership function.

Several candidate functions, such as triangular, trapezoidal, piecewise linear or Gaussian-like functions

can be used as a membership function. If the distance criterion described by (1.37) is used as a distance

measure, a sigmoidal membership function can be selected, [76, 83]

wi = β (1 + exp {Ai})−r , (1.42)

where Ai is a cumulative distance from (1.37), while β and r are parameters to be determined. The r

value is used to adjust weighting effect of the membership function and β is a weight scale threshold. If

the Minkowski Lp metric is used as the distance function, the fuzzy membership function with exponential

form gives good results

wi = exp

(

−R r
i

β

)

, (1.43)

where Ri is a cumulative distance associated with ith vector in the processing window W using generalized

Minkowski norm, r is a positive constant and β is a distance threshold.

Within the general Fuzzy Adaptive Filter framework, numerous filters may be constructed by changing

the form of the nonlinear function f(·), as well as the way the fuzzy weights are calculated. The choice of

these two parameters determines the filter characteristics.

Fuzzy Weighted Average Filter

The first class of filters derived from the general nonlinear fuzzy algorithm is the so called Fuzzy Weighted

Average Filters (FWAF). In this case, the output of the filter is a fuzzy weighted sum of the input set. The

form of the filter is given as

F
∗
0 =

1

Z

n
∑

i=0

wi Fi , Z =
n
∑

i=0

wi . (1.44)

This filter provides a vector-valued signal which is not included in the original set of inputs. The weighted

average form of the filter provides a compromise between a nonlinear order statistics filter and an adaptive

filter with data dependent coefficients. Depending on the form of the distance criterion and the corresponding

fuzzy transformation, different fuzzy filters can be designed. If the distance criterion selected is the sum of

vector angles, the Fuzzy Vector Directional Filter (FVDF) is obtained. If an L1 norm is used as the distance

criterion, a fuzzy generalization of the Vector Median Filter (VMF) is constructed.
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Maximum Fuzzy Vector Directional Filters

Another possible choice of the nonlinear function f(·) is the maximum selector. In this case, the output

of the nonlinear function is the input vector that corresponds to the maximum fuzzy weight. Using the

maximum selector concept, the output of the filter is a part of the original input set. The form of this filter is

F
∗
0 = Fi with i = arg max wi, i = 0, . . . , n . (1.45)

In other words, as an output the input vector associated with the maximum fuzzy weight is selected. It must

be emphasized that through the fuzzy membership function, the maximum fuzzy weight corresponds to the

minimum distance. If the vector angle criterion is used to calculate distances, the fuzzy filter delivers the

same output as the BVDF [76, 83]. If the L1 or L2 is adopted as distance criterion, the filter provides the

same output as the VMF. Utilizing the appropriate distance function, different filters can be obtained. Thus,

filters such as VMF or BVDF can be seen as special cases of this specific class of fuzzy filters.

Fuzzy Ordered Vector Directional Filters

In many cases it is favorable not use all the inputs inside the operational window to produce the final output

of the nonlinear filter. Instead, only a part of the vector-valued input signals can be used. The input vectors

are ordered according to their respective fuzzy membership strengths. The form of the fuzzy ordered vector

directional filter is given as

F
∗ =

1

Z

τ
∑

i=0

w(i)F(i) , Z =

τ
∑

i=0

w(i) , (1.46)

where w(i) represents the ith ordered fuzzy membership function and w(τ) ≤ w(τ−1) ≤ ... ≤ w(0), with

w(0) being the fuzzy coefficient with the largest membership strength.

The above form of the filter constitutes a fuzzy generalization of the α-trimmed filters, (1.34), [73].

Through the fuzzy transformation, the weights to be sorted are scalar values. In this way the nonlinear or-

dering process does not introduce any significant computational burden. Depending on the distance criterion

and the associate fuzzy chosen by the designer, a number of different α-trimmed filters can be obtained.

The fuzzy transformations of (1.42) and (1.43) are not the only way in which the adaptive weights of

can be constructed. In addition to fuzzy membership functions, other design concepts can be utilized for the

task. One of such designs is the nearest neighbor rule [82], in which the value of the weight wi in (1.41) is

calculated according to the following formula

wi =
D(n) − D(i)

D(n) − D(0)
, (1.47)

where D(n) is the maximum distance in the filtering window, measured using an appropriate distance

criterion, and D(0) is the minimum distance, which is associated with the center-most vector inside the
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window. As in the case of the fuzzy membership function, the value of the weight in (1.47) expresses the

degree to which the vector Fi is close to the center-most vector, and far away from the worst value, the outer

rank.

In [82] an adaptive vector processing filter named Adaptive Nearest Neighbour Filter, (ANNF) was

devised utilizing the general framework of (1.41). The weights in ANNF were calculated by using the

formula of (1.47) with the angular distance as a measure of dissimilarity between the color vectors.

It is evident that the outcome of such an adaptive vector processing filter depends on the choice of

the distance criterion selected as a measure of dissimilarity among vectors. As before, the Lp norm or

the angular distance (sum of angles) between the color vectors can be used to remove vector signals with

atypical directions. However, both these distance metrics utilize only part of the information carried by the

color image vectors. As in the case of DDF, it is anticipated that an adaptive vector processing filter based

on an ordering criterion, which utilizes both vector features, namely magnitude and direction, will provide

a robust solution whenever the noise characteristics are unknown.

In [81] a distance measure for the noisy vectors was introduced

Ji =
n
∑

j=0

[1 − S(Fi,Fj)], with S(Fi,Fj) =

(

Fi · Fj

|Fi||Fj |

)(

1 − | ‖Fi‖ − ‖Fj‖ |
max (‖Fi‖, ‖Fj‖)

)

. (1.48)

As can be seen, the similarity measure of (1.48) takes into consideration both the direction and the magnitude

of the vector inputs. The first part of the measure S is equivalent to the angular distance (vector angle

criterion) and the second part is related to the normalized difference in magnitude. Thus, if the two vectors

under consideration have the same length, the second part of S(Fi,Fj) equals to one and only the directional

information is used in (1.48). On the other hand, if the vectors under consideration have the same direction

in the vector space (collinear vectors), the first part of S(Fi,Fj), (directional information) equals to one and

the similarity measure of (1.48) is based only on the magnitude of the difference part.

Utilizing this similarity measure, an adaptive vector processing filter based on the general framework of

(1.41) and the weighting formula of (1.48) was devised in [81]. The so called Adaptive Nearest Neighbour

Multichannel Filter (ANNMF) belongs to the adaptive vector processing filter family defined through (1.41).

However, ANNMF combines the weighting formula of (1.47) with the new distance measure of (1.48) to

evaluate its weights.

1.4.3 Nonparametric Adaptive Multichannel Filter

Consider the following model for the color image degradation process.

Fj = Xj + Gj , (1.49)
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where Xj is a three-dimensional uncorrupted image vector, Fj is the corresponding noisy vector to be

filtered and Gj is an additive noise vector. In our analysis, it is assumed that the color image vectors are

unknown and that the noise vectors are uncorrelated at the different image locations and signal independent.

Let us denote with Φ(F) the minimum variance estimator of the color vector X, given the noisy mea-

surement vector F. The expected square error of the filter, when the image vectors are corrupted by additive

noise as in (1.49), can be written as

V =

∫ ∫

[X − Φ(F)][X − Φ(F)]T f(X|F)f(F) dX dF , (1.50)

V =

∫ ∞

−∞

[∫ ∞

−∞
[X − Φ(F)][X − Φ(F)]T f(X|F) dX

]

f(F) dF , (1.51)

where zT denotes the transpose of z . Since Φ(F) does not enter into the outer integral and f(F) is

always positive, it is sufficient for the optimal minimum variance estimator to minimize the expected value

of the estimation cost (conditional Bayesian risk), given the observation F. Thus, it is sufficient to minimize

the quantity

VBR =

∫ ∞

−∞
[X − Φ(F)][X − Φ(F)]T f(X|F) dX . (1.52)

The minimum variance estimator, which minimizes the above cost is then known to be

Φ(F)MV =

∫ ∞

−∞
X f(X|F) dX =

∫ ∞

−∞

Xf(X,F)

f(F)
dX , (1.53)

with

f(F) =

∫ ∞

−∞
f(X,F)f(X) dX . (1.54)

If the densities in (1.52) are known and a training record of the sample pairs (X,F) is available, the

minimum variance estimator can be derived. Unfortunately, in a realistic image processing scenarios, no

a-priori knowledge about the noise process or the image itself is available. Thus, a nonparametric estimator

must be utilized to approximate the probability density functions (PDF) in (1.52).

Let us assume a window of finite length n centered around a noisy vector y. Through this window, a

set of multivariate noisy samples W = (F0,F1, ...,Fn) becomes available. Based on the samples from the

filtering window W, an adaptive, data dependent multivariate kernel estimator can be devised to approximate

the densities in (1.52). The form of the adaptive kernel estimator selected, is as follows

f̂(X,F) =
1

N

n
∑

i=0

1

h L
i

K

(

F − Fi

hi

)

, N = n + 1 , (1.55)

where Fi is the ith training vector, with i = 0, 1, ..., n , L = 3 is the dimensionality of the measurement

space and hi is the data dependent smoothing parameter which regulates the shape of the kernel. The
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variable kernel density estimator exhibits local smoothing, which depends both on the point at which the

density is evaluated and and also on the information on the local neighborhood in W.

The hi can be any function of the sample size N = n+1, [35]. The bandwidths hi (smoothing factors)

can be defined as a function of the aggregated distance between the local observation under consideration

and all the other vectors inside the W window. Thus,

hi = N− k
L Ai = N− k

L

n
∑

k=0

‖Fi − Fk‖ , (1.56)

where k is a design parameter. The choice of the kernel function in (1.55) is not nearly as important as the

bandwidth, (smoothing factor). For the applications, the multivariate extension of the exponential kernel

K(z) = exp(−|z|) or the Gaussian kernel K(z) = exp(−|zT
z|/2) can be selected [35].

Given (1.52)-(1.55), the non-parametric estimator can be defined as

Φ(F)NP =

∫ ∞

−∞

Xf̂(X,F)

f̂(F)
dX =

n
∑

i=0

Xi









(N−1)h−L
i K

(

F−yi

hi

)

n
∑

i=0
(N−1)h−L

i K
(

F−Fi

hi

)









(1.57)

Φ(F)NP =

n
∑

l=0

Xi









h−L
i K

(

F−Fi

hi

)

n
∑

i=0
h−L

i K
(

F−Fi

hi

)









=

n
∑

i=0

w∗
i Xi (1.58)

where w∗
i is a weighting function defined in the interval [0,1].

To obtain the required estimate we must assume that, in the absence of noise, discrete sample vectors

Xi are available. This is not a severe restriction, since in many cases such samples may be obtained by

a calibration procedure in a controlled environment, perhaps at a very high signal-to-noise ratio. In a real

time image processing application however, that is not the case. Therefore, alternative suboptimal solutions

are introduced. In a first approach, we substitute the vectors Xi in (1.57) with their noisy measurements.

The resulting Adaptive Nonparametric Multichannel Filter (ANMF) is solely based on the available noisy

vectors and the form of the minimum variance estimator. Thus, the form of the ANMF is

Φ1(F)ANMF =

n
∑

i=0

Fi









h−L
i K

(

F−Fi

hi

)

n
∑

i=0
h−L

i K
(

F−Fi

hi

)









. (1.59)

A different form of the adaptive nonparametric estimator can be obtained if a reference vector is used

instead of the actual noisy measurement. The ideal reference vector is of course the actual value of the

multidimensional signal in the specific location under consideration. However, since the X0 vector is not

available, a robust estimate, usually evaluated in a small subset of the input vector set, is utilized instead.

Usually the vector median X
V M is the preferable choice, since it smooths out impulsive noise and preserves
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to some extent the edges. The median based Adaptive Nonparametric Multichannel Filter has then the

following form

Φ2(F)ANMF =

n
∑

i=0

X
V M
i









h−L
i K

(

F−Fi

hi

)

n
∑

i=0
h−L

i K
(

F−Fl

hl

)









. (1.60)

This filter can be viewed as a double-window, two stage estimator. First the original image is filtered by

a multichannel median filter in a small processing window in order to reject possible outliers and then an

adaptive nonlinear filter with data dependent coefficients defined in (1.57) is utilized to provide the final

filtered output.

1.5 Digital Paths Approach to Color Image Filtering

In this section a novel approach to color image filtering is proposed. Instead of using a fixed window, the

new method exploits connections between image pixels using the concept of digital paths. According to the

proposed methodology, image pixels are grouped together, forming paths that reveal the underlying struc-

tural dynamics of the image, (see Figs. 1.5, 1.6). Depending on the design principles and the computational

constraints, the new filter framework allows the paths to be considered on the entire image or to be restricted

to a predefined search area, [108, 104]. The new approach focuses on the latter case.

To facilitate comparisons with existing ranked type operations and to illustrate the computational effi-

ciency of the proposed framework, the path searching area is allowed to match the window W used by the

ranked type filters. However, instead of the indiscriminately use of the window pixels, an approach advo-

cated by the majority of existing multichannel filters, the proposed here framework allows for the formation

of a number of digital path models, which in turn are used to determine the coefficients of a weighted average

type of filtering operation.

The new filter class based on digital paths and connection cost can be seen as a powerful generalization

of the multichannel anisotropic diffusion presented in Section 1.3 and an extension of the fuzzy adaptive

filters described in 1.4.2. The filters discussed there are shown in this Section to be a special case of the new

filtering scheme, when a digital path is degenerated to a step of length 1.

The path connection costs evaluated over all possible digital paths, are used to derive fuzzy membership

functions that quantify the similarity between vectorial inputs. The proposed filtering structure is then using

the function outputs to appropriately weight input contributions in order to determine the filtering result. The

proposed filtering schemes parallelize the familiar structure of the adaptive multichannel filter introduced in

[74] and they can successfully eliminate Gaussian, impulsive as well as mixed-type noise. However, thanks

to the introduction of the digital paths in its supporting element, the new filters not only preserve edges and

fine image details, but can also act as an image sharpening operators.
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1.5.1 Connection Cost Defined Over Digital Paths

In order to perform operations based on the distances we first need to precisely define the notion of a

topological distance. The concept of a topological distance between image points is of extreme importance

in many applications based on the distance transformation, which is one of the fundamental operations of

mathematical morphology, [20, 21, 100, 85].

Let B be a nonempty set. We can measure distances between points in B, which amounts to defining

a real valued function on the Cartesian product B × B of B with itself. Let the function ρ : B × B → R

be called a distance if it is positive definite: ρ(x, y) ≥ 0, with ρ(x, y) = 0, when x = y and symmetric:

ρ(x, y) = ρ(y, x), for all x, y ∈ B×B. A distance is called a metric if additionally it satisfies the triangle

inequality [46]: ρ(x, z) ≤ ρ(x, y) + ρ(y, z), for all x, y, z ∈ B×B.

In digital image processing three basic distance functions are usually applied. If p = (p1, p2) and

q = (q1, q2) denote two image points (p, q ∈ Z2) then we define the City-Block Distance: ρ4(p, q) =

|p1 − q1|+ |p2 − q2|, Chessboard Distance: ρ8(p, q) = max{|p1 − q1|, |p2 − q2|} and Euclidean Distance:

ρE(p, q) =
[

(p1 − q1)
2 + (p2 − q2)

2
] 1

2 . Using the city-block and chessboard distances we are able to define

the two basic types of neighborhoods, 4-neighborhood N4(x) = {y : ρ4(x, y) = 1} and 8-neighborhood

N8(x) = {y : ρ8(x, y) = 1}.

Let ω ∈ {4, 8}. Two points p, q ∈ Z2 are said to be in Nω-neighborhood relation, (denoted as ∼), or

to be Nω-adjacent if q ∈ Nω(p) or equivalently p ∈ Nω(q). This Nω-adjacency relation defines a graph

structure on the image domain, called Nω-adjacency graph. On the graph, a finite Nω-path can be defined

as a sequence of points (p0, p1, . . . , pη) such that for i ∈ {1, 2, . . . , η} the point pi−1 is Nω adjacent to pi.

A path is called simple if i 6= j implies that pi 6= pj . This is a very important property of a path, as it means

that a path does not intersect itself or in other words it is self-avoiding, [59, 113].

Figure 1.5: Illustration of the concept of digital paths and connection cost. The pixels a, b, c, d are

connected with the central pixel along paths whose connection costs are minimal.
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Figure 1.6: In the DPAF and DPAL filters, the weights are assigned to the pixels surrounding the central

pixel and are determined in different ways. In the DPAF approach (a), the weights in (1.74) are calculated

exploring all digital paths starting from the central pixel and crossing its nearest neighbors, then a weighted

average of the nearest neighbors of the central pixel is calculated, (1.75). In the DPAL approach, the weights

are obtained by exploring all digital paths leading from the central pixel to the pixels contained in the filtering

window (b) and then a weighted average of all pixels from that window is calculated, (1.81).

Using the distances between neighboring points, which are called prime distances [114], we are able to

define a distance between any two image points by following all admissible paths linking those points and

then taking the minimum of the total length over all possible paths, which is the sum of the prime distances

between the nodes of the paths. In this way, the distance between two image points is the length of the path

for which the sum of the prime distances between the path nodes is minimal. For the city-block distance

the admissible paths consist of horizontal and vertical moves only, whereas for the chessboard distance also

the diagonal moves are allowed. The prime distances for the two kinds of neighborhood are declared in this

work to be equal to 1.

Let us now introduce the definition of a geodesic distance. Let us assume, that R
2 is the Euclidean

space, S is a planar subset of R
2 and x, y are points belonging to set S. A path from x to y is a continuous

mapping Π: [a, b] → S, such that Π(a) = x and Π(b) = y. The point x is considered as the starting point,

while y is the ending point on the path Π, [21].

An increasing polygonal line P on the path Π is any polygonal line such that P = {Π(λi)}η
i=0, a =

λ0 <, . . . , < λη = b. The length of the polygonal line P is considered to be the total sum of its constitutive

line segments L(P ) =
∑η

i=1 ρ(Π(λi−1),Π(λi)), where ρ(x, y) is the distance between the points x and y,

when a specific metric is adopted. A path Π from x to y is called rectifiable, if and only if L(P ), where P
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is an increasing polygonal line, is bounded. Its upper bound is called the length of the path Π.

The geodesic distance ρS(x, y) between points x and y is the lower bound of the length of all paths

leading from x to y which are totally included in S. If such paths do not exist, then the value of the

geodesic distance is set to ∞. In general ρS(x, y) ≥ ρ(x, y). However, if the set S is convex, meaning that

there are no points on the line between x and y that are not members of S, the geodesic distance verifies

ρS(x, y) = ρ(x, y).

The notion of a path can be extended to a lattice, which is a set of discrete points on the plane, in our

case the spatial locations of the image pixels. Let a digital lattice H = (F,N ) be defined by F, which is the

set of all points of the plane, (pixels of a color image) and a neighborhood relation N between the lattice

points [97].

A digital path P = {pi}η
i=0 defined on the lattice H is a sequence of neighboring points (pi−1, pi) ∈ N .

The length L(P ) of the digital path P {pi}η
i=0 is simply

∑η
i=1 ρH(pi−1, pi), where ρH denotes the distance

between two neighboring points of the lattice H and the geodesic distance between p0 and pη is the minimal

length of L(P ).

Constraining the paths to be totally included in a predefined set W yields the digital geodesic distance

ρW . In this work Nω-neighborhood system (ω = 4 or ω = 8) is considered, with a topological distance of

1 assigned to any neighboring points and the set W is the supporting window of appropriate size. All paths

considered in this chapter are included in the filtering window W , (Fig. 1.7).
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Figure 1.7: Digital paths of a) length 2 and b) length 3, connecting two neighboring points within a

predefined window W of size 3 × 3, when the 8-neighborhood system is applied.

Let us now adopt the following notation, which will help us define the distance functions defined over

geodesic paths. The starting point of a path will be denoted as p0 = (x0, y0). Its neighbors will be denoted

as p1 = (xu1
, yv1

), which means that the neighbors are the second points of all digital paths originating

at p0. Then the third point of a digital path starting at p0 will be p2 = (xu2
, yv2

) and so on, till the path
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reaches in η steps the ending point pη = (xuη , yvη). In this way the sequences xu1
, . . . , xuη and yv1

, . . . , yvη

uniquely define the digital path starting at x0, y0 and ending at xuη , yvη . The set of all possible digital paths

contained in W joining two points x, y ∈ W will be denoted as ΨW (x, y).

Two pixels x and y will be called connected, (hereafter denoted as x ⇔ y), if there exists a digital path

PW (x, y) contained in the set W starting from x and ending at y. If two pixels p0 and pη are connected by a

digital path PW,η {p0, p1, . . . , pη} of length η then let ΛW,η{p0, p1, . . . , pη} be a measure of the connection

cost defined over the digital path linking the starting point p0 and ending point pη, (f is a nonnegative scalar

function of η vector variables)

ΛW,η {p0, . . . , pη} = f {F (p0) , . . . ,F (pη)} = f
{

F (x0, y0) ,F (xu1
, yv1

) , . . . ,F
(

xuη , yvη

)}

. (1.61)

The connection cost over the digital path ΛW,η can be seen as a measure of dissimilarity between color

image pixels at points p0, p1, . . ., pη forming a specific path linking p0 and pη, [118, 29, 85]. If a path

joining two distinct points x, y, such that F(x) = F(y) consists of the pixels of the same channel values,

then the connection cost should be zero, otherwise ΛW,η > 0.

Let us now define a generalized connection cost function, based on the Distance Transform on the

Curved Space (DTOCS), [85, 118] introduced by Toivanen for the gray scale images. For two given points

pi = (xui
, yvi

) and pi−1 = (xui−1
, yvi−1

), i = 1, 2, . . . , η, which are in neighborhood relation, let the

generalized distance between the two points be called connection cost defined on the hybrid spatial-color

space discussed in [45, 110]: ΛW,1{pi−1, pi} = ||F(pi)−F(pi−1)||+ ξ · ρW (pi, pi−1), where ξ establishes

a proper weighting in the hybrid spatial-color space. The connection cost of a whole digital path p0, p1, . . .,

pη will be then

ΛW,η {p0, p1, . . . , pη} =

η
∑

i=1

[

‖F (pi) − F (pi−1)‖ + ξ · ρW (pi, pi−1)
]

. (1.62)

As we will work with small filtering window, we will focus on the color space only, by setting ξ = 0.

Similarly to the gray-scale case, we will call the minimal connection cost ΓW,η(x, y) of a path of length

η linking two points x, y ∈ W , the η-geodesic between x and y: ΓW,η (x, y) = min
{

Λ (γ) , γ ∈ ΨW,η
}

.

In this way the η-geodesic is defined as the path of length η, which gives the minimal connection cost

between two points linked by a digital path. If we take the minimum of the connection costs generated by

all possible paths joining two points x and y ∈ W , then we obtain the generalized multichannel geodesic

distance between these points: ΓW (x, y) = min
η

{

ΓW,η (x, y)
}

= min
{

Λ (π) , π ∈ PW,η (x, y) , η ∈ N
}

.

ΓW (x, y) defines the multidimensional distance transform, which is a generalization of DTOCS, [118].

In general, two distinct pixel’s locations on the image lattice can be connected by many paths. Moreover,

the number of possible geodesic paths of certain length η connecting two distinct points depends on their

locations, length of the path and the neighborhood system used, (Fig. 1.7).
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1.5.2 General Filter Framework

In this work, fuzzy filtering structure proposed in [80, 76, 79] will be used. The general form of the fuzzy

adaptive filters presented here is defined as a weighted average of input vectors inside W

F
∗
0 =

n
∑

i=0

w∗
i Fi =

n
∑

i=0
wiFi

n
∑

i=0
wi

. (1.63)

The relationship between the pixel under consideration F0 and each pixel in the window should be reflected

in the decision how to define the filter weights. In our case, the weights will be determined using the

similarity functions calculated over digital paths included in the processing window W .

On the basis of the connection cost function concept, it is possible to define different classes of similarity

functions. Choosing a specific form of a similarity function yields different filters of specific properties,

which can be applied for a wide range of low-level vision tasks.

1.5.3 Digital Paths Approach Filter Class

Let us now define a similarity function, analogous to a membership function used in fuzzy systems, between

two pixels connected through all possible digital paths leading from x to y

wW,η (x, y) =

ω
∑

m=1

f
{

ΛW,η
m (x, y)

}

, (1.64)

where ω is the number of all paths connecting x and y, ΛW,η
m (x, y) is a dissimilarity value along a specific

path m from the set of all ω possible paths leading from x to y and f(·) is a smooth function of ΛW,η
m . By

definition wW,η (x, y) returns a value evaluated over all possible routes linking the starting point x with the

endpoint y. The smooth function f : (0; ∞) → R should satisfy following conditions: f is a decreasing

in (0; ∞) , f is convex in (0; ∞) , f (0) = 1, f (χ) → 0, when χ → ∞ . Several functions satisfying the

above conditions have been proposed in the literature [83, 103, 74, 53, 106]. However, for the impulsive

noise removal good results are obtained using the exponential form of the function f , [14]. Therefore,

wW,η (x, y) =
ω
∑

m=1

exp
[

−β · ΛW,η
m (x, y)

]

, (1.65)

where β is the filter design parameter.

For η = 1 and a square (3 × 3) window W , the similarity function w is defined according to (1.62) as

wW,1 (x, y) = exp {−β||F(x) − F(y)||}, and then if F(x) = F(y), ΛW,n(x, y) = 0, w(x, y) = 1, and for

||F(x) − F(y)|| → ∞ then w → 0, [76].

Figure 1.8 illustrates the calculation of the similarity function between two points connected by two

geodesic paths of length η = 2. In this case, the cost functions related to paths P1 and P2 are

ΛW,2
1 (x, y) = d1

1 + d2
1, ΛW,2

2 (x, y) = d1
2 + d2

2, (1.66)
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where d1
1 and d2

1 are connection costs between neighboring points on the path P1 defined according to (1.62),

while d1
2, d2

2 are connection costs defined on path P2. The total similarity value can be expressed as
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Figure 1.8: Digital paths of length n = 2 connecting points F0 and F3.

wW,2 = exp
(

−β · ΛW,2
1

)

+ exp
(

−β · ΛW,2
2

)

. (1.67)

A normalized form of the similarity function is defined as

w∗(x, y) =
wW,n(x, y)
∑

z⇔x

wW,η(x, z)
, (1.68)

where y ⇔ x denotes all points y connected by digital paths with x contained in W .

Assuming that the pixel Fx is the pixel under consideration, with Fy representing the pixel included in

the supporting element W , which is connected to Fx via a digital path, the filter output F∗
x is given as

F
∗
x =

∑

y⇔x

w∗(x, y) · Fy , w∗(x, y) =
wW,η(x, y)
∑

z⇔x

wW,η(x, z)
. (1.69)

As can be easily noticed, F
∗
x is the weighted average of all points F

∗
y connected by digital paths with the

pixel F∗
x. The pixel Fy is the ending point of a path leading from x and therefore this filter structure is called

DPA Last (DPAL), as y is the last point on the path, (see Fig. 1.6 b).

Another possible filtering scheme takes into account the similarity between the starting point x = p0

and point y = p1 crossed by a digital path connecting pixel p0 and its neighbor p1 with all possible points

pη ∈ W which can be reached in η steps from p0, (Digital Path Approach First, DPAF).

The aim of taking into account the points p2, . . ., pη when calculating the filter output is to explore not

only the direct neighborhood of p0 but also to use the information on the local image structure. This can be

done by acquiring the information on the local image features investigating the connection costs of digital

paths originating at p0, passing p1 and then visiting successive points, till the path reaches length η. In this

case the new similarity function takes the form

wW,η (x, y) = wW,η (p0, p1) =
∑

{p∗
2
,p∗

3
,...,p∗η}

f
(

ΛW,η
{

p0, p1, p
∗
2, p

∗
3, . . . , p

∗
η

})

, (1.70)
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where {p0, p1, p
∗
2, . . . , p

∗
η} denotes all paths originating at x = p0 crossing y = p1 end ending at p∗η, which

are totally included in W , f(·) is a smooth function of ΛW,η.

If the exponential function is used, then the similarity function takes the form

wW,η (x, y) = wW,η (p0, p1) =
∑

{p∗
2
,p∗

3
,...,p∗η}

exp
[

−β · ΛW,η
{

p0, p1, p
∗
2, . . . , p

∗
η

}]

, (1.71)

where β is the smoothing parameter. A normalized form of the similarity function can be defined as follows

w∗ (x, y) = w∗ (p0, p1) =

∑

{p∗
2
,p∗

3
,...,p∗η}

exp
[

−β · ΛW,η
{

p0, p1, p
∗
2 . . . , p∗η

}]

∑

{p∗
1
,p∗

2
...,p∗η}

exp
[

−β · ΛW,η
{

p0, p∗1, p
∗
2 . . . , p∗η

}] , (1.72)

where {p0, p1, p
∗
2, . . . , p

∗
η} denotes a path joining x = p0 and pη, crossing y = p1, whereas

{

p0, p
∗
1, p

∗
2, . . . , p

∗
η

}

do not necessarily cross y = p1 when joining p0 and pη.

Assuming that the pixel Fx at the position x = p0 is the pixel under consideration, with Fy representing

the pixel at y = p1, the filter output F∗
x is given as

F
∗
x = F

∗
p0

=
∑

y⇔x

w∗ (x, y) · Fy =
∑

y∼x

w∗ (x, y) · Fy =
∑

p∗
1
∼p0

w∗ (p0, p
∗
1) · Fp∗

1
, (1.73)

and combining this with (1.72) gives

F
∗
x = F

∗
p0

=
∑

p∗
1
∼p0

∑

{p∗
2
,p∗

3
,...,p∗η}

exp
[

−β · ΛW,η
{

p0, p
∗
1, p

∗
2, . . . , p

∗
η

}]

∑

{p∗
1
,p∗

2
,...,p∗η}

exp
[

−β · ΛW,η
{

p0, p∗1, p
∗
2 . . . , p∗η

}] · Fp∗
1

=
∑

p∗
1
∼p0

w∗ (p0, p
∗
1) · Fp∗

1
.

(1.74)

Using the notation from Sections 1.3, 1.2 and Eq. (1.20) we can formulate Eq. (1.74) as

F
∗
0 =

n
∑

k=1

w∗
k Fk , (1.75)

where w∗
k, the normalized weighting coefficients, play the role of the generalized conductivity coefficients

from Section 1.3 and Fk are the neighbors of F0, which is the central pixel in the filter mask W .

The general form of the anisotropic diffusion scheme based on the digital paths, can be written as

F
∗
0 = (1 − λ∗)F∗

0 + λ∗
n
∑

k=1

w∗
kFk , (1.76)

or using the iterative notation, as

F
t+1
0 = (1 − λ∗)Ft

0 + λ∗
n
∑

k=1

w∗
kF

t
k . (1.77)

Using the relation λ∗ = λ
n
∑

k=0

ck, (1.20) it is possible to obtain the classical form of the anisotropic diffusion

scheme defined by Eq. (1.15).
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Figure 1.9 shows the dependence of PSNR on the λ∗ and K values for color LENA image contaminated

by impulsive and mixed noise for the classic multichannel anisotropic diffusion scheme (AD) and the new

DPAF filter defined by Eq. (1.75). Especially interesting is the behavior of the plots as a function of λ∗.

As can be seen, for images contaminated by a noise process of high intensity, the maximum of PSNR is

obtained for λ∗ very close to 1, which means that it is favorable to omit the central pixel while calculating

the weighted average in Eq. (1.20) and also in (1.75). This was already noticed in the scheme of Smith,

[102], (Eq. 1.8), who did not take the central pixel into the averaging process, which is equivalent to setting

λ∗ = 1. That is why we set λ∗ = 1 in Eq. (1.75) to define the new DPAF filter, (1.74), (1.75).

The superiority of this approach over the classic scheme is clearly seen in Fig. 1.9, where especially for

highly corrupted images, the difference in terms of PSNR is quite significant, (see also Tab. 1.4 and 1.5).

In a similar way the DPAL filter can be defined as

F
∗
x = F

∗
p0

=

∑

{p∗
1
,p∗

2
,p∗

3
,...,p∗η}

exp
[

−β · ΛW,η
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(

p0, p
∗
η

)

· Fp∗η , (1.78)

which can be written as

F
∗
0 =

N
∑

k=1

w∗
kFk , (1.79)

where N denotes the number of pixels surrounding F0 in the filtering window. Analogously to (1.76), we

can introduce the general form of DPAL defined by (1.78)

F
∗
0 = (1 − λ∗)F∗

0 + λ∗
N
∑

k=1

w∗
kFk , (1.80)

and its iterative version

F
t+1
0 = (1 − λ∗)Ft

0 + λ∗
N
∑

k=1

w∗
kF

t
k , (1.81)

where w∗
k are the normalized weighting coefficients from (1.78).

The concept of the DPAF and DPAL filters is presented in Fig. 1.6. The weights assigned to the pixels

surrounding the central pixel F0 are determined in different ways. In the DPAF approach, the weights in

(1.74) are calculated exploring all digital paths starting from the central pixel and crossing its neighbors,

(Fig. 1.6 a) and then a weighted average of the nearest neighbors of the central pixel is calculated, (1.75).

In the DPAL approach, the weights are obtained by exploring all digital paths leading from the central

pixel to any of the pixel in the filtering window, (Fig. 1.6 b) and then a weighted average of all pixels

contained in that window is calculated, (1.81).

Although, both schemes work on supporting windows of the same size, determined by the number of

steps η and the kind of neighborhood relation ∼, the DPAL has more powerful smoothing properties, as it



B. Smolka, K.N. Plataniotis, A.N. Venetsanopoulos, Nonlinear Techniques for Color Image Processing 33

involves all the N pixels from the filtering window into the averaging process, whereas the DPAF determines

the weighted output using only its nearest neighbors. The efficiency of the new class of filters DPAF and

DPAL is evaluated and compared with some of the standard filtering techniques in Section 1.6.

The computational complexity of the DPA filters depends on the path length η and the number of paths,

which can be constructed in the supporting window W of size (k × k). It is not hard to see that for large

k, which may be required in certain applications, the computational complexity of the filters makes them

inapplicable. To decrease the computational burden, another filter structure is introduced. In the Fast Digital

Paths Approach (FDPA), the size of the supporting window W is set to (3 × 3) independently of the digital

paths length η.

It is possible to construct both the fast DPAF and fast DPAL filters, however their properties are quite

similar and therefore only the filtering approach based on DPAL, (denoted as FDPA) will be investigated.

Using the FDPA formulation a number of interesting properties of the proposed filtering structure can be

observed. For example, let us assume that parameter β used in (1.65), is very small, β → 0. Then the

weights in (1.69) reduce to w∗ (x, y) = ω (x, y) /Ω, where ω (x, y) is the number of digital paths of length

η connecting points x and y, and Ω denotes the number of all possible digital paths starting from x, which

are totally included in W .

The examination of the convolution masks obtained in this way, reveals their similarity to the masks

obtained through Gaussian kernels. Therefore, the FDPA can be viewed as a non-linear generalization of

the Gaussian kernel based schemes, which are widely used in many image processing tasks.

The parameter β in (1.65, 1.71) regulates the smoothness of the similarity function. Since the filtering

structure of (1.63) is a regression estimator, which enables a smooth interpolation among the observed,

noise-corrupted image vectors, the parameter β provides the required balance between smoothing and detail

preservation. Therefore, it is not surprising that the best results are obtained when the smoothing operators

F
∗ in (1.69) and (1.73) are applied in an iterative way. Starting with a low value of β enables the smoothing

of the image noise components. At each iteration step the parameter β can be increased, following a scheme

similar to that used in simulated annealing applications. In particular, β can be increased exponentially:

β(κ) = β(κ−1) ·α, κ ∈ N, where κ is the iteration number and α is a design parameter. The increasing of

the β parameter causes that after a few iterations no further changes are introduced to the image, as for high

β the filter output is that pixel, which lies on the geodesic digital path in the color space. The influence of α

on the performance of the DPAL and FDPA filters is shown in Fig. 1.11. The value of α is not critical for

the efficiency of the new filter class, and taking α from the interval [1, 2] guarantees fast filter convergence

and good filtering results.
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1.5.4 Computational Complexity and Fast Filter Design

Apart from the numerical behavior of any proposed algorithm, its computational complexity is a realistic

measure of its practicality and usefulness, since it determines the required computing power and processing,

(execution) time. A general framework to evaluate the computational requirements of image filtering algo-

rithms based on fixed processing window is given in [13] and [84]. The requirement of this approach is that

the filter window W is symmetric (k × k) and contains k2 vector samples of dimension L. In most image

processing applications a value k = 3 is considered, while for color RGB images L = 3.

The computational complexity of a specific filter is given in terms of the total execution time needed for

a complete filtering cycle. The total time is calculated as: TIME =
∑

wOPER · OPER , where OPER

is the number of particular operations required for a complete cycle, and wOPER is the relative weight of

this operation. In the following analysis the following operations are used: ADDS (additions), MULTS

(multiplications), DIV S (divisions), SQRTS (square roots), COMPS (comparisons), ARCCOS (arc

cosines) and EXPS (exponents). Mostly wADDS is assumed to be 1, while other wOPER values depend

on the computing platform. The determination of the weights of different operations is beyond the scope of

this work.

Since the structure of the new filters is not based on fixed window, the methodology presented in [13]

and [84] cannot be directly applied to evaluate the new filter class complexity. The computational burden of

the proposed filters depends mostly on the number of possible digital paths, which in turn depends on the

path length. For a given path of length η, the number of simple paths Ω can be easily computed. Table 1.1

depicts the number of possible paths corresponding to the DPA and FDPA filters, [115, 116, 106, 104].

Table 1.1: Number of possible simple digital paths Ω in dependence on path length η.

n 1 2 3 4

DPA 8 56 368 2336

FDPA 8 24 56 69

The complexity of the DPA and FDPA filters can be determined as follows, [115, 116]



B. Smolka, K.N. Plataniotis, A.N. Venetsanopoulos, Nonlinear Techniques for Color Image Processing 35

1. Filtering of 1 pixel requires computation of all weights w∗ (see point 2), L(Ω − 1) additions and

L · Ω multiplications.

2. Computation of all weights w∗ requires computation of all similarity functions wW,η (see point 3),

Ω divisions and (Ω − 1) additions.

3. Computation of all similarity functions wW,η requires Ω computations of distance ΛW,η
m (see point

4), (Ω − 1) additions, Ω multiplications and Ω computations of an exponent.

4. Computation of one distance ΛW,η
m along path m requires n computations of Euclidean distance

(if the L2 metric is used) and (η − 1) additions.

5. Computation of one particular Euclidean distance requires L multiplications, 2L additions and 1

square root.

Thus the total number of operations needed to implement the filters is

(2ηLΩ + Ωp + LΩ − L − 2) · ADDS + (Ω + LΩ + 2η) · MULTS + +Ω · DIV S + Ωη · SQRTS + Ω · EXPS . (1.82)

Using the framework of [13] and assuming that the size of the processing window is (k × k), the computa-

tional complexity for the VMF, BVDF and DDF can be evaluated, (Tab.1.2).

It should be emphasized at this point that the computational complexity analysis of the new filter was

based on straightforward application of the described algorithms without any consideration of a particular

implementation. However, it is possible to significantly reduce the computational complexity of the pro-

posed filters. To illustrate this, the FDPA filter is considered. The analysis of the filtering structure reveals

that the L2 distance should be evaluated η times for each path of length η. If the total number of paths in the

supporting window is Ω, the number of L2 norm evaluations is (Ω · η). However, most of these calculations

are unnecessary, since values already computed for other paths can be used. For example in a (3 × 3) win-

dow there are only 20 possible distances to be calculated. These values can be computed and stored in order

to be used to determine the path related weights for a neighboring pixel. Furthermore, other techniques used

to improve the performance of the VMF presented in [13] can be applied in the DPA or FDPA filter design.

Table 1.2 summarizes the total number of operation for different filter, with DPAη denoting the basic

DPA filter of length η, FDPAη denoting straightforward application of FDPA algorithms and FDPA∗
η the

optimized version of FDPA. As can be seen the fast implementation of the proposed filter is computationally

more attractive than the VMF and it significantly outperforms filters based on angular distances.
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Table 1.2: Number of elementary operations for a complete processing cycle.

FILTER ADDS MULTS DIVS SQRTS EXPS COMPS ARCCOS TOTAL

DPA2 947 228 56 112 56 — — 1399

DPA3 8827 1478 368 1104 368 — — 12145

FDPA2 403 100 24 48 24 — — 599

FDPA3 1139 230 56 168 56 — — 1649

FDPA∗

2 169 22 24 9 24 — — 248

FDPA∗

3 721 24 56 9 56 — — 866

VMF3×3 186 63 — 21 — 8 — 278

VMF5×5 855 330 — 110 — 24 — 1319

BVDF3×3 375 210 21 21 — 8 21 656

BVDF5×5 1970 1100 110 110 — 24 110 3424

DDF3×3 540 282 21 42 — 8 21 914

DDF5×5 2785 1455 110 220 — 24 110 4704

Table 1.3: Filters taken for comparison with the proposed noise reduction techniques.

Notation METHOD REF.

AMF Arithmetic Mean Filter [83]

VMF Vector Median Filter [9]

BVDF Basic Vector Directional Filter [125, 123]

GVDF Generalized Vector Directional Filter [122]

DDF Directional-Distance Filter [42]

HDF Hybrid Directional Filter [36]

AHDF Adaptive Hybrid Directional Filter [36]

FVDF Fuzzy Vector Directional Filter [76]

ANNF Adaptive Nearest Neighbor Filter [81, 82]

ANP-E Adaptive Non Parametric (Exponential) Filter [80, 83]

ANP-G Adaptive Non Parametric (Gaussian) Filter [80, 83]

ANP-D Adaptive Non Parametric (Directional) Filter [80, 83]

VBAMMF Vector Bayesian Adaptive Median/Mean Filter [80, 83]

AD Perona-Malik Anisotropic Diffusion Filter with c1 [68, 67]

GD-PDE Geometric Diffusion PDE [126]
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a) b)

c) d)

e) f)

Figure 1.9: Dependence of the efficiency of the P-M anisotropic diffusion filter and the DPAF on the λ∗

parameter: a) color image LENA contaminated with impulsive noise, (p = 0.12, p1 = p2 = p3 = 0.3), b)

test image corrupted by mixed noise, (σ = 30, p = 0.12, p1 = p2 = p3 = 0.3), c) and d) results obtained

with the P-M anisotropic diffusion filter, e) and f) results obtained with the DPAF , (η = 2). As expected

the maximum of PSNR is achieved for λ∗ close to 1.
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a)

b)

c)

d)

Figure 1.10: a) Test image SQUARE, b) SQUARE

image corrupted by impulsive noise, (green chan-

nel), c) test image PYRAMID, d) PYRAMID image

corrupted by mixed impulsive and Gaussian noise,

(green channel).

Figure 1.11: Efficiency of the a) DPAL and b) FDPA

in terms of NCD and their dependence on α and β for

LENA image corrupted by impulsive (p = 0.12, p1 =

p2 = p3 = 0.3) and Gaussian noise (σ = 30), (n =

2, third iteration).
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1.6 Efficiency of the New Filter Class

In this section the performance of the new filter class is evaluated comparing the results with some of the

noise reduction techniques listed in Tab. 1.3 using synthetic and natural color images corrupted by Gaussian

and mixed Gaussian and impulsive noise.

1.6.1 Simulations Performed on Artificial Images

The use of nonlinear filters in color image processing is motivated primarily by the good performance of the

filters near edges and other sharp signal transitions. Edges are basic images features which carry valuable

information, useful in image analysis and object classification. Therefore, any nonlinear noise reduction

operator is required to preserve edges and smooth out noise without altering sharp signal transitions.

In this section some examples of the efficiency of the new filter class are presented in order to illustrate

its excellent noise reduction properties. To quantitatively evaluate the behavior of the proposed algorithms,

two color synthetic images were prepared. To examine the performance of the new filters in case of an

artificial step edge, a three-channel image called SQUARE of size (60 × 60) containing a square of size

(30×30) was generated, (Fig. 1.10 a). Further, for the evaluation of the filter performance in case of a ramp

edge, a synthetic test image called PYRAMID was constructed. The three-channel image of size (90 × 90)

contains a top-cut pyramid, which is used to simulate a ”ramp-edge” scenario, (Fig. 1.10 c).

The test image SQUARE was corrupted by multivariate impulsive noise following the model given by

Eq. (1.1.1) in Section 1.1 with the degree of contamination p = 0.1 and p1 = p2 = p3 = 0.25, (Fig. 1.10 b).

The test image PYRAMID was corrupted by mixed impulsive noise with p = 0.1 and p1 = p2 = p3 = 0.25

and σ = 20, (Fig. 1.10 d).

The new techniques based on the Digital Paths Approach (DPAF, DPAL), and the Fast Digital Paths

Approach (FDPA) algorithms were compared in terms of objective quality criteria with the Vector Median

Filter (VMF), with the Arithmetic Mean Filter (AMF), with the classic Perona-Malik anisotropic diffusion

(AD) and other filtering techniques listed in Tab. 1.3.
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a) b)

c) d)

e) f)

Figure 1.12: Three-dimensional representation of the results of noise attenuation in the green channel of the

SQUARE image corrupted by impulsive noise, using the standard and new techniques: a) AMF, b) VMF, c)

AD, d) FDPA, e) DPAL and e) DPAF, (five iterations, η = 2).
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a) b)

c) d)

e) f)

Figure 1.13: Three-dimensional representation of the results of noise attenuation in the the green channel

of the PYRAMID image corrupted by mixed Gaussian and impulsive noise using the standard and new

techniques: a) AMF, b) VMF, c) AD, d) FDPA, e) DPAL and e) DPAF, (five iterations, η = 2).
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Table 1.4: Comparison of the efficiency of the

new algorithms with different techniques, (Tab. 1.3)

using the LENA standard color image corrupted by

Gaussian noise of σ = 30.

FILTER NMSE RMSE SNR PSNR NCD

[10−3] [dB] [dB] [10−4]

NONE 420.55 29.075 13.762 18.860 250.090

AMF 66.452 11.558 21.775 26.873 95.347

VMF 87.314 13.248 20.589 25.688 117.170

BVDF 279.54 23.705 15.536 20.634 117.400

GVDF 76.713 12.418 21.151 26.250 84.876

DDF 100.50 14.213 19.979 25.077 108.960

HDF 66.584 11.569 21.766 26.865 92.769

AHDF 60.166 10.997 22.206 27.305 91.369

FVDF 57.466 10.748 22.406 27.504 77.111

ANNF 63.341 11.284 21.983 27.082 82.587

ANP-E 60.396 11.018 22.190 27.288 76.896

ANP-G 60.443 11.023 22.187 27.285 76.890

ANP-D 58.389 10.834 22.337 27.435 78.486

AD 41.434 9.126 23.826 28.925 69.482

GD-PDE 34.530 8.296 24.618 29.753 72.100

DPAF 42.873 9.244 23.678 28.813 82.814

DPAL 43.005 9.258 23.665 28.800 77.932

FDPA 44.913 9.462 23.476 28.611 84.918

Table 1.5: Comparison of the new algorithms with

the techniques from (Tab. 1.3) using the LENA color

image corrupted by mixed Gaussian and impulsive

noise, (σ = 30, p = 0.12, p1 = p2 = p3 = 0.25).

FILTER NMSE RMSE SNR PSNR NCD

[10−3] [dB] [dB] [10−4]

NONE 905.93 42.674 10.429 15.528 305.55

AMF 97.444 13.996 20.112 25.211 95.80

VMF 96.464 13.925 20.156 25.255 121.79

BVDF 336.46 26.006 14.731 19.829 123.93

GVDF 91.118 13.534 20.404 25.503 89.277

DDF 110.62 14.912 19.561 24.660 113.39

HDF 74.487 12.236 21.279 26.378 97.596

AHDF 68.563 11.740 21.639 26.738 96.327

FVDF 108.76 14.786 19.635 24.734 111.22

ANNF 75.652 12.332 21.212 26.310 86.836

ANP-E 90.509 13.488 20.433 25.532 97.621

ANP-G 90.523 13.489 20.432 25.531 97.603

ANP-D 74.203 12.213 21.296 26.394 85.026

AD 339.55 26.125 14.691 19.790 113.65

GD-PDE 59.371 10.924 22.264 27.363 77.510

DPAF 50.804 10.106 22.941 28.040 76.076

DPAL 49.999 10.025 23.010 28.109 72.851

FDPA 53.573 10.377 22.711 27.809 78.666
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In the DPAF, DPAL and FDPA filters, the paths of length η = 2 with design parameters set at β = 20

and α = 1.2 were used. The AMF and VMF operated on a filtering window of size (3 × 3). Anisotropic

diffusion filter used in the experiments denoted as AD is a vector implementation of the Perona-Malik

anisotropic diffusion, which utilizes the conductivity function c1 (1.14), [67, 37]. For the AD filter the

parameters which gave the best results in terms of PSNR were used.

It should be pointed out that the parameters used for the FDPA, DPAF and DPAL filters were not optimal

and in majority of cases better results can be obtained for images corrupted by a specific noise process.

However in practical situations the optimal values of the design filter parameters are generally unknown and

therefore the experimental values of these parameters were used.

In case of images corrupted with Gaussian noise the AMF as expected gave better results than the VMF,

especially in the flat homogeneous regions, but it blurred heavily the image edges. Classical P-M anisotropic

diffusion gives good results for images corrupted with Gaussian noise of low intensity, but it requires many

iterations to smooth the image till its performance can be comparable with the new filter class in terms

of objective quality criteria. In case of images distorted by Gaussian noise process with high σ, the PM

approach is not able to suppress the spikes, which leads to a poor overall performance.

The experimentations with images corrupted by mixed Gaussian and impulsive noise revealed as ex-

pected that the AMF filter introduces extensive smoothing into the image and impulses are still visible as

blurred ’bumps’. Anisotropic diffusion with parameters used in the experiments does not blur the image

edges but it leaves impulses almost unchanged, (of course when we increase the threshold parameter K in

(1.14) we can smooth the noise out but then the AD will also destroy the image edges). The VMF efficiently

reduces the noise component but tends to blur the edges and produces color blotches in flat image regions.

The results obtained using the DPAF, DPAL and FDPA filters confirm their excellent properties in case of

images corrupted by both impulsive and Gaussian noise.

The new filtering structure gives excellent results both in flat regions and also at the edges, (see Figs.

1.12, 1.13 and also 1.16). The results obtained with anisotropic diffusion and with filters proposed in this

work are quite similar in case of images corrupted by low intensity Gaussian noise. Both the schemes pro-

vide efficient smoothing in homogeneous image regions and achieve excellent edge preservation. However,

the new filters achieve its goal much faster and work efficiently even when the intensity of the Gaussian

noise is high, (Fig. 1.15). For images corrupted with mixed Gaussian and impulsive noise neither the VMF

nor AMF provide acceptable results. While anisotropic diffusion filter smoothes out only the Gaussian noise

component and AMF introduces blurring, the DPAF, DPAL and FDPA filters performance is excellent. The

new filters remove outliers introduced by impulsive noise, and smooth flat noisy regions leaving the edges

of the objects almost unchanged. The simulations performed on the synthetic images revealed that:

• The VMF performs poorly in the presence of Gaussian noise.
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a) b)

c)

Noise intensity 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Gaussian σ 5 10 15 20 25 30 35 40 45 50 55 60 65 70

Impulsive [%] 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Figure 1.14: Comparison of the efficiency of the standard filters efficiency with the new filter class in terms

of a) PSNR and b) NCD for different amounts of noise, (mixed Gaussian and impulsive noise intensities,

p = 0.01 − 0.12, p1 = p2 = p3 = 0.3), c). EPM denotes a path in which with every step the distance

between the current point and the origin is increasing, (Escaping Particle Model).

• The AMF works well in homogeneous regions with additive Gaussian noise.

• Classical Perona-Malik anisotropic diffusion (AD) scheme performs well in images corrupted by low

intensity Gaussian noise, but fails in the presence of impulsive noise.

• The proposed filtering class is able to suppress Gaussian as well as mixed Gaussian and impulsive

noise in homogeneous regions and also near edges. The obtained results confirm the much better

performance of the new filters when compared to the AMF, VMF and P-M AD scheme.

1.6.2 Filter Performance for Natural Color Images

The noise attenuation properties of different filters were examined using the color test image LENA, which

has been contaminated by Gaussian and mixed Gaussian and impulsive noise in order to compare the new

filters with the filtering techniques listed in Tab. 1.3. The test images were contaminated by additive Gaus-

sian noise of σ = 30 and also by mixed impulsive (p = 0.12, p1 = p2 = p3 = 0.3) and Gaussian noise of

σ = 30. As the results for LENA and PEPPERS are consistent, only the results obtained with LENA image

will be reported.

The Root Mean Squared Error, (RMSE), Signal to Noise Ratio, (SNR), Peak Signal to Noise Ratio,

(PSNR), Normalized Mean Square Error, (NMSE) and the Normalized Color Difference, (NCD) [83] were
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Figure 1.15: Plots of PSNR in subsequent iterations for various filters applied to color LENA image

contaminated with Gaussian, σ = 30) a) and mixed impulsive and Gaussian noise, σ = 30, p = 0.12,

p1 = p2 = p3 = 0.3) b).

used for the analysis. The objective quality measures are defined by the following formulas
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where M , N are the image dimensions, and F l(i, j) and F̂ l(i, j) denote the lth component of the origi-

nal image vector and its estimation at pixel position (i, j) , respectively. The NCD perceptual measure is

evaluated over the uniform L∗u∗v∗ color space. The difference measure NCD is defined as

NCD =

∑N
i=1

∑M
j=1 ∆E

∑N
i=1

∑M
j=1 E∗

, ∆E =
[

(∆L∗)2 + (∆u∗)2 + (∆v∗)2
]

1

2 , E∗ = [(L∗)2 + (u∗)2 + (v∗)2]
1

2 ,

(1.85)

where ∆E is the perceptual color error and E∗ is the norm or magnitude of the uncorrupted original color

image pixel in the L∗u∗v∗ space.

Results obtained using the new filtering techniques are compared with the filtering algorithms from Tab.

1.3 in Tab. 1.4 and Tab. 1.5. For the denoising of both contaminated LENA images with the new filtering

techniques, predefined parameter values were used: path length η = 2, β = 13, α = 1.2. For all evaluated

filters 10 iterations were performed and the best result in terms of PSNR is presented in Tabs. 1.4, 1.5.
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Figure 1.11 depicts the efficiency of the proposed algorithms, (DPAL and FDPA) in terms of NCD

quality measure, as a function of the design parameters α and β. It can be easily noticed that both algorithms

yield comparable results with a flat minimum of NCD, which ensures their robustness to optimal parameter

settings. The parameter α ensures quick convergence of the proposed filters to a stable state and as can be

seen in Fig. 1.11 good results can be obtained for any α in the range [1, 2].

Figure 1.17 presents the efficiency of the DPAL filter applied to a scanned road map. The new filtering

technique was able to remove the raster structure, while image details such as roads, names etc. were

preserved and even enhanced. The VMF gives much worse results, raster texture is still visible and image

details are blurred.

Tables 1.4 and 1.5 indicate that the new filters yields especially good results in case of images corrupted

by mixed Gaussian and impulsive noise. In addition to excellent noise attenuation properties, the new filters

restore the noisy images so that they have well preserved, and even enhanced edges and corners, which make

them interesting for many different computer vision applications, (Fig. 1.16).

The best results for the Gaussian and mixed noise attenuation, for the majority of existing filters were

obtained after many iterations, while for filters based on the digital paths concept the best results were

achieved in the second or third iteration, (see Fig. 1.15).

The comparison of the new filters efficiency with some of the standard filters is presented in Fig. 1.14,

where for different filters, the PSNR and NCD dependence on the amount of mixed impulsive and Gaussian

noise is shown. As the intensity of the noise increases, the quantitative results obtained using the new filters

become significantly better than those obtained by the standard filters, (AMF, VMF, DDF).

The simulations revealed that in the case of both Gaussian and mixed Gaussian and impulsive noise

very good results were obtained using the method GP-PDE, presented in [126, 127], which is based on

the gradient norm described in Section 1.3.1. The visual comparison between the FDPA and the algorithm

GP-PDE [126, 127] is shown in Fig. 1.18.

In conclusion, from the results listed in the Tables and shown in the Figures, it can be easily seen that

the new filters, especially the FDPA filter, provide consistently good results. The DPAF, DPAL and FDPA

filters can be seen as universal filters able to attenuate different types of noise, while preserving image edges

and corners. Simulation results show that the new class of filters yield favorable noise reduction results for

various kinds of color images in comparison with the standard adaptive smoothing algorithms.

The contribution of Rachid Deriche and David Tschumperle who evaluated the GP-PDE algorithm, [126,

127] on a set of noisy images used in this work is gratefully acknowledged.
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a) b)

c) d)

Figure 1.16: Color test images LENA a) and PEPPERS b) with depicted regions of interest c). The chosen

image regions were contaminated by mixed impulsive (p = 0.12, p1 = p2 = p3 = 0.3) and Gaussian noise

of σ = 30, d) and then restored with the DPAF method, e) and VMF, f).
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Figure 1.17: Comparison of efficiency of the vector median with the DPAF: a) test image, (part of a scanned

map), b) VMF, (3 × 3 mask), c) DPAF, (β = 20, α = 1.25, η = 2, 3 iterations).

Figure 1.18: Comparison of the method proposed in [126, 127] with the new approach (DPAF): a) test image

HOUSE contaminated with impulsive noise (p = 0.1), b) GD-PDE [126, 127], c) DPAF, d) test image LENA

contaminated with mixed impulsive and Gaussian noise, e) GD-PDE, f) DPAF.
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