
REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services. Directorate tor Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204. Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) REPQME1995 
3. REPORT TYPE AND OATESCOVERED 

Master s Thesis 
, TITLE AND SUBTITLE 

NONLINEAR TIME SERIES ANALYSIS 

6. AUTHOR(S) 

James A. Stewart, Capt, USAF 

5.  FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Air Force Institute of Technology, WPAFB OH 45433-6583 

B. PERFORMING ORGANIZATION 
REPORT NUMBER 

AFJT/GOA/ENG/95M-01 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

James R. Stright, Capt, USAF, WL/MNGA 
Bldg 13 Ste 206,101W. Eglin Blvd 

Eglin AFB, FL 32542-6810 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) TMs ^^ applies neuRd netwQrk feature selection 

techniques to multivaiiate time series data to improve prediction of a target time series. Two ap- 
proaches to feature selection are used. First, a subset enumeration method is used to determine which 
financial indicators are most useful for aiding in prediction of the S&P 500 futures daily price. The 
candidate indicators evaluated include RSI, Stochastics and several moving averages. Results indicate 
that the Stochastics and RSI indicators result in better prediction results than the moving averages. 
The second approach to feature selection is calculation of individual saliency metrics. A new decision 
boundary based individual saliency metric, and a classifier independent saliency metric are developed 
and tested. Ruck's saliency metric, the decision boundary based saliency metric, and the classifier 
independent saliency metric are compared for a data set consisting of the RSI and Stochastics indica- 
tors as well as delayed closing price values. The decision based metric and the Ruck metric results are 
similar, but the classifier independent metric agrees with neither of the other metrics. The nine most 
salient features, determined by the decision boundary based metric, are used to train a neural network 
and the results are presented and compared to other published results. 

14. SUBJECT TERMS 

Neural Networks, Time Series Prediction, Feature Selection 

17.   SECURITY CLASSIFICATION 

unclassified 
18.   SECURITY CLASSIFICATION 

OF THf, M ssified 
19.   SECURITY CLASSIFICATION 

0F Minified 

15. NUMBER OE,PAGES w 
16. PRICE CODE 

20. LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. 239-18 
298-102 



AFIT/GOA/ENG/95M-01 

NONLINEAR TIME SERIES ANALYSIS 

THESIS 

James A. Stewart 
Captain, USAF 

AFIT/GOA/ENG/95M-01 

-> DTIC 
Jnl PI FTTF ■% 
% MAY 0 4 1995 Tj 

1M50503m 
Approved for public release; distribution unlimited 



REPORT DOCUMENTATION PAGE 
Form Approved 

OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, 
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this 
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave blank) 2
- 

REPQÖE1995 
3. REPORT TYPE  AND DATES COVERED 

Master s Thesis 
TITLE AND SUBTITLE 

NONLINEAR TIME SERIES ANALYSIS 

6. AUTHOR(S) 

James A. Stewart, Capt, USAF 

5. FUNDING NUMBERS 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Air Force Institute of Technology, WPAFB OH 45433-6583 

S.  PERFORMING ORGANIZATION 
REPORT NUMBER 

AFIT/GOA/ENG/95M-01 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

James R. Stright, Capt, USAF, WL/MNGA 
Bldg 13 Ste 206,101W. Eglin Blvd 

Eglin AFB, FL 32542-6810 

10. SPONSORING /MONITORING 
AGENCY REPORT NUMBER 

11. SUPPLEMENTARY NOTES 

12a. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited 

12b. DISTRIBUTION CODE 

13. ABSTRACT (Maximum 200 words) -j^is ^es[s applies neural network feature selection 
techniques to multivariate time series data to improve prediction of a target time series. Two ap- 
proaches to feature selection are used. First, a subset enumeration method is used to determine which 
financial indicators are most useful for aiding in prediction of the S&P 500 futures daily price. The 
candidate indicators evaluated include RSI, Stochastics and several moving averages. Results indicate 
that the Stochastics and RSI indicators result in better prediction results than the moving averages. 
The second approach to feature selection is calculation of individual saliency metrics. A new decision 
boundary based individual saliency metric, and a classifier independent saliency metric are developed 
and tested. Ruck's saliency metric, the decision boundary based saliency metric, and the classifier 
independent saliency metric are compared for a data set consisting of the RSI and Stochastics indica- 
tors as well as delayed closing price values. The decision based metric and the Ruck metric results are 
similar, but the classifier independent metric agrees with neither of the other metrics. The nine most 
salient features, determined by the decision boundary based metric, are used to train a neural network 
and the results are presented and compared to other published results. 

14. SUBJECT TERMS 

Neural Networks, Time Series Prediction, Feature Selection 
15. NUMBER OFJPAGES 

16. PRICE CODE 

17.   SECURITY CLASSIFICATION 

unclassified 
18.   SECURITY CLASSIFICATION 

"unclassified 
19.   SECURITY CLASSIFICATION 

0F Minified 
20. LIMITATION OF ABSTRACT 

UL 

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89) 
Prescribed by ANSI Std. Z39-18 
298-102 



AFIT/GOA/ENG/95M-01 

NONLINEAR TIME SERIES ANALYSIS 

THESIS 

Presented to the Faculty of the School of Engineering 

of the Air Force Institute of Technology 

Air University 

In Partial Fulfillment of the 

Requirements for the Degree of 

Master of Science in Operations Research 

James A. Stewart, B.S A.E. 

Captain, USAF 

March, 1995 

Accesion For 

NTIS    CRA&I 
DTIC    TAB 
Unannounced 
Justification 

By  
Distribution / 

? 
D 

Availability Codes 

Dist 

id 

Avail and/or 
Special 

Approved for public release; distribution unlimited 



The views expressed in this thesis are those of the author and do not reflect the official policy 

or position of the Department of Defense or the U. S. Government. 



Acknowledgements 

For their technical expertise and encouragement, I would like to thank the Friday 

afternoon stock market group. In particular, Dr. Steve Rogers, the founder of the stock 

market group, and my thesis advisor, was a constant source of encouragement and intellectual 

stimulation. He made a somewhat dreary task both enjoyable and educational. Dr. Dennis 

Quinn, also a member of the stock market group, is responsible for turning the writing herein 

into a somewhat intelligible form through his thorough reading of and feedback on this thesis. 

Finally, I would like to thank my wife, Janis who often felt like a single parent during 

this work, and my four children, Amanda, Tristan, Elizabeth and Trevor for putting up with 

my obsession for completing this project, often at their expense. 

James A. Stewart 

in 



Table of Contents 

Page 

Acknowledgements  
in 

List of Figures  

List of Tables  
  IX 

Abstract    x 

I.         Introduction  ■, 

1.1 Background  I 

1.2 Problem Statement  2 

1.3 Summary of Current Knowledge  2 

1.3.1 History  2 

1.3.2 Sante Fe Time Series Competition  4 

1.4 Scope  * 

1.5 Thesis Organization  5 

1.6 Summary  2 

II.        Theory  (- 

2.1 Introduction  g 

2.2 Scope of Review  g 

2.3 State Space Reconstruction  7 

2.3.1 Basic Premise  7 

2.3.2 Local Linear Prediction  9 

2.3.3 Recent Research  U 

2.4 Neural Networks  12 

IV 



Page 

2.4.1 Basic Theory  12 

2.4.2 Time Delay Neural Networks  13 

2.4.3 Recent Research  13 

2.5 Feature Selection  14 

2.5.1 Steppe Approach  15 

2.5.2 Saliency Metrics  16 

2.5.3 Lee and Landgrebe Approach  17 

2.6 Summary  19 

III. Methodology  20 

3.1 Introduction  20 

3.2 Saliency  20 

3.2.1 Lee and Landgrebe for Neural Nets  20 

3.2.2 Lee and Landgrebe without a classifier  29 

3.2.3 Lee and Landgrebe for Regression  32 

3.3 Indicator Feature Subset Enumeration  33 

3.4 Data Preprocessing  34 

3.4.1 Technical Indicators  34 

3.4.2 Detrending and Normalization  37 

3.5 Summary  43 

IV. Results and Discussion  44 

4.1 Introduction  44 

4.2 Comparison of Local-Linear Detrend to Raw Data  45 

4.3 Partial Enumeration  48 

4.4 Individual Saliencies  51 

4.4.1 Ruck Metric  53 

4.4.2 Decision Boundary Based Saliency Metric  55 



Page 

4.4.3 No-Classifier Saliency Metric  55 

4.4.4 Summary and Comparison of Saliency Rankings .... 56 

4.4.5 Discussion      56 

4.5    Summary  59 

V.        Conclusion and Recommendations     61 

5.1 Introduction  61 

5.2 Summary and Discussion of Results  61 

5.3 General Conclusion  62 

5.4 Contributions  62 

Appendix A.           Lee and Landgrebe for Neural Networks  64 

A.l    Introduction  64 

A.2   Discriminant Function     64 

A.3    Mathematica Code  67 

Appendix B.           Annotated LNKmap Example  72 

B.l    Introduction  72 

B.2   File Set Up  72 

B.3    Run Files  73 

B.4   Summary  74 

Bibliography  75 

Vita      78 

VI 



List of Figures 

Figure Page 

1. Comparison of the time series and power spectrum of a Lorenz time series and 

a phase scrambled copy of the same series  3 

2. Schematic depiction of the reconstruction problem  7 

3. Fitting a hyperplane to the nearest neighbors  9 

4. The candidate point b* along with its nearest neighbors (solid dots) in recon- 

structed state space. The open dots are neighbors created by interpolating the 

time series. Using the interpolated series allows points nearer to the candidate 

point to be found. Only one neighbor from each trajectory is chosen  10 

5. Schematic depiction of a perceptron  12 

6. A portion of a decision boundary between point X of class 1 and point Y of 

class 2, and the normal direction at the point where the line connecting X and 

Y crosses the decision boundary  17 

7. Experimental data distribution  26 

8. Network architecture for Gaussian distribution discrimination  27 

9. Experimental data distribution with decision boundary  28 

10. Moving averages of the S&P 500 futures data  35 

11. Wilder's RSI indicator for the S&P 500 futures data  36 

12. Ten day stochastics indicators for the S&P 500 futures data  38 

13. Local linear fit to 8 points  39 

14. Comparison of the trend line and the true price data  40 

15. The residuals after fitting a local linear trend  40 

16. Scatter plot of residuals after linear detrend  45 

17. Comparison of true price, trend only and trend with net for baseline data. . . 46 

18. Baseline for days 900 to 1000  46 

19. Comparison of local linear detrending and no detrending  47 

20. Detail of comparison of local linear detrending and no detrending  48 

Vll 



Figure page 

21. Comparison of true price, trend only and trend with net for best results obtained.   58 

22. Comparison of true price, trend only and trend with net for best results obtained, 

expanded to show detail        58 

Vlll 



List of Tables 

Table Page 

1. Indicator feature subsets  33 

2. The columns of the data matrix      42 

3. The baseline network parameters  44 

4. The effect of detrending  47 

5. Mnemonics for indicator feature subsets  49 

6. Network results after adding one indicator feature subset  49 

7. Moving average results for nine hidden nodes  50 

8. Moving average results for eight hidden nodes  50 

9. Network results after adding two indicator feature subsets  51 

10. Network results after adding three indicator feature subsets  52 

11. The columns of the three indicator data matrix  53 

12. Network results after renormalizing RSI, 10 and 25 day stochastics  54 

13. Ruck saliency results for each run  54 

14. Decision boundary based saliency results for each run  55 

15. No classifier decision boundary based saliency results  56 

16. Comparison of decision boundary based (DB) saliency and Ruck saliency 

averaged over 5 runs, along with no classifier (NC) rankings  57 

IX 



AFIT/GOA/ENG/95M-01 

Abstract 

This thesis applies neural network feature selection techniques to multivariate time series 

data to improve prediction of a target time series. Two approaches to feature selection are used. 

First, a subset enumeration method is used to determine which financial indicators are most 

useful for aiding in prediction of the S&P 500 futures daily price. The candidate indicators 

evaluated include RSI, Stochastics and several moving averages. Results indicate that the 

Stochastics and RSI indicators result in better prediction results than the moving averages. 

The second approach to feature selection is calculation of individual saliency metrics. A 

new decision boundary based individual saliency metric, and a classifier independent saliency 

metric are developed and tested. Ruck's saliency metric, the decision boundary based saliency 

metric, and the classifier independent saliency metric are compared for a data set consisting of 

the RSI and Stochastics indicators as well as delayed closing price values. The decision based 

metric and the Ruck metric results are similar, but the classifier independent metric agrees 

with neither of the other metrics. The nine most salient features, determined by the decision 

boundary based metric, are used to train a neural network and the results are presented and 

compared to other published results. 



NONLINEAR TIME SERIES ANALYSIS 

/. Introduction 

1.1    Background 

Accurately predicting future values of a time series has many benefits. Predicting the 

future position of an aircraft allows more accurate tracking. Accurate prediction of the motion 

of a pilot's head motion in a cockpit environment allows more efficient updating of helmet 

mounted displays [19]. Both aircraft position and head motion are examples of time series that 

are difficult to predict, because they are the result of nonlinear processes. Two contemporary 

prediction methods for nonlinear processes are state space reconstruction and neural networks. 

The state space reconstruction method attempts to reconstruct the nonlinear dynamic 

system which produces the time series. This method is based on the theory of embedology 

and its generalization [8, 29]. Stright explained and applied state space reconstruction to time 

series prediction in his dissertation [29]. Sauer enhanced the basic state space construction 

method and successfully applied it to a nonlinear time series [26]. 

Neural networks are also used to model the nonlinear driving function. Both state space 

reconstruction and neural networks use past samples of the target time series to predict future 

values of the series. Waibel developed his time-delay neural (TDNN) architecture specifi- 

cally for time series applications [34]. Using Waibel's TDNN, Wan successfully predicted a 

nonlinear time series [35, 11, 10]. 

Past samples of a time series are not always the only information available. Often, 

other time series are related in some way to the target time series. The price of a stock, for 

example, is related to the trading volume of that stock. These other helper time series can be 

either derived from the target time series, or totally independent. Stock market indicator data, 

for instance, is almost completely derived from the target price data. Using the Dow Jones 



index to help predict the S&P 500 futures price is an example of a more or less independent 

helper time series. Neither state space reconstruction, nor neural network methods of time 

series prediction incorporate useful information from these other related time series. 

Techniques using multiple time series to predict a target time series require a means of 

determining the relevance or saliency of a particular time series to successful prediction of 

a target time series. Ruck, Priddy and Tarr came up with derivative based saliency metrics 

for neural networks [24, 27]. Steppe used these saliency metrics to implement a backward 

stepwise feature elimination solution to this saliency problem for neural networks [27]. Recent 

work by Lee and Landgrebe suggests a decision boundary based saliency measure [16]. 

1.2 Problem Statement 

This study will investigate using multiple time series derived from a target time series 

to improve prediction of a target nonlinear time series. In addition, the usefulness or saliency 

of various non-target time series in predicting a target time series will be evaluated. 

1.3 Summary of Current Knowledge 

1.3.1 History. Prior to 1920, forecasting consisted of finding a global average, or 

possibly a trend in the data and extrapolating the series. Yule developed autoregressive tech- 

niques in 1927 in order to improve the prediction of the annual number of sun spots [37]. These 

methods were based on linear models driven by noise. The equation for an autoregressive 

moving average (ARMA) model is: 

xt = a • x4_i + b • et, 

where xj = (xt,xt-U ... ,Zt_(d_i)), a = (a1,a2,... ,ad), b = (&i,ö2, • • • ,&„), and et = 

(et, et-i,..., et_(p_i)). Here d is the order of the autoregressive model, and p is the order of 

the moving average model. The driving function et is usually assumed to be noise. 



The linear approach to time series analysis was the prevalent approach until about 1980. 

However, not all time series could be modeled accurately with linear models. In particular, a 

low dimensional nonlinear system without noise produces spectra very similar to a noise driven 

linear model. Put another way, two systems, one linear with noise and the other nonlinear 

without noise can produce the same spectra. A linear model is completely characterized by the 

spectra of the modeled data [36:16]. So two very different time series, coincidentally having 

the same power spectra, would be modeled with the same ARMA model. Figure 1 shows 

two time series, one linear and the other nonlinear with the same power spectra. The phase 

scrambled series in the Figure lacks any coherent nonlinear functionality. Linear models are 

likely to provide the best prediction results for this type of series. The Lorenz time series is 

the result of low dimensional nonlinearity and nonlinear approaches as discussed here should 

be able to provide better prediction results than a linear model. Real time series are seldom 

this easy to classify as linear or nonlinear. 

Power Spectrum of x 
component of a Lorenz 

series 

200 300 

Harmonic 

E < 

S   o.oi 
o 
0. 

Power spectrum of 
scrambled series 

ICO 200 300 

Harmonic 

Figure 1.    Comparison of the time series and power spectrum of a Lorenz time series and a 
phase scrambled copy of the same series. 



Applying ARMA techniques to nonlinear time series often resulted in time series being 

classified as random or stochastic, when a low dimensional nonlinear deterministic model 

could more accurately predict the series. 

Around 1980, the increased availability of powerful computers allowed researchers 

to examine the time series that defied prediction with linear models with methods more 

appropriate for nonlinear processes. State space reconstruction via time delay embedding was 

one new twist in time series prediction. This approach uses ideas from differential topology 

and dynamical systems theory to recognize a time series that is the result of deterministic 

nonlinear governing equations [36:2]. If a time series is the result of some set of nonlinear 

deterministic governing equations, state space reconstruction provides a better understanding 

of the underlying dynamics. 

The other new approach that appeared around 1980 was machine learning. Neural 

networks are an example of this approach. An artificial neural network's ability to "adaptively 

explore a large space of potential models" is particularly appropriate for modeling of nonlinear 

time series [36:3]. 

1.3.2 Sante Fe Time Series Competition. In order to stimulate interest and com- 

munication between nonlinear time series researchers, the Sante Fe Institute sponsored a time 

series competition in 1990. The Institute compiled seven nonlinear time series and requested 

that participants attempt to predict a short extension of the time series. The participants' 

results were compared to the actual continuations of the time series. Two participants, Tim 

Sauer and Eric Wan turned in the best prediction results in the competition [36:8]. Sauer 

used an enhanced state space approach to accurately predict the short term behavior of a low 

dimensional chaotic time series. Wan used neural nets to accurately predict the short term 

behavior of the same time series. 



1.4 Scope 

Multi-layer perceptron networks will be used to predict the daily closing S&P 500 

futures price. Feature saliency techniques will determine which indicator time series are most 

useful in predicting the target financial series. Candidate indicators include RSI, 4, 9 and 

18 day moving averages and 14 and 25 day stochastics. Ruck's saliency metric and a new 

decision boundary based metric will be compared for determination of the most useful set of 

financial indicator data. A partial enumeration by indicator feature subset will also be used to 

determine the usefulness of the indicators for accurate price prediction. 

1.5 Thesis Organization 

The following chapter details the theory behind state space reconstruction and neural 

network methods of time series prediction. Although the bulk of this work is concerned with 

neural-networks, state space reconstruction provides some justification for the use of historical 

time series data for prediction. Details of several saliency methods are provided here also. 

Chapter III describes the implementation of these techniques. The results of the application 

of these techniques to the Standard and Poor's 500 futures data are presented and discussed 

in Chapter IV. Chapter V summarizes the results of this investigation and suggests areas for 

further research. 

1.6 Summary 

Financial time series are representative of nonlinear time series. This thesis investigates 

multivariate extensions to neural network techniques to accurately predict time series of this 

type. The results of this investigation should be applicable to other time series that are the 

result of nonlinear dynamics. 



//. Theory 

2.1    Introduction 

Chapter I was a short overview of nonlinear time series techniques. The goal of this 

chapter is first to continue to motivate the nonlinear time series problem. After a brief 

introduction, this chapter will delve into the underlying theory behind two of the methods 

presented in Chapter I, state space reconstruction and neural networks. The second half of 

this chapter presents background on feature selection techniques. 

A nonlinear time series is characteristic of some nonlinear process. One can classify a 

time series as nonlinear versus linear by assessing the adequacy of a linear model for prediction 

of the series. If linear techniques fail to accurately model a time series, the series is classified 

as nonlinear. Nonlinear time series are typified by financial time series, such as stock market 

prices. 

A second example of a nonlinear time series is the position of an aircraft. Complete 

position specification requires at least three parameters, aircraft altitude, aircraft latitude and 

aircraft longitude. These three parameters sampled in time are a multivariate time series. The 

sponsor for this research, Wright Labs Armaments Division, is keenly interested in improving 

modeling and prediction of aircraft position time series. Improved prediction of time series 

results in more accurate tracking of friendly aircraft and more accurate targeting of non-friendly 

aircraft. 

2.2    Scope of Review 

The history of linear time series analysis reveals that multivariate time series analysis 

techniques are built on a firm univariate foundation. Stated another way, multivariate time 

series analysis methods are extensions of univariate methods [4:401]. The next section 

summarizes the univariate foundation for nonlinear time series analysis. 



The next two sections highlight important aspects of the theory state space reconstruction 

and neural network techniques as applied to time series prediction. 

2.3    State Space Reconstruction 

/ / 

•s(0)           SW 

/ /. 

C/3 

Figure 2. Schematic depiction of the reconstruction problem. 

2.3.1 Basic Premise. State space reconstruction methods assume that some number 

of past samples of a time series, m, is sufficient to completely characterize the current state of 

the underlying process dynamics. Referring to Figure 2, s(0) and s(r) are the true state of the 

dynamical system fT
 at times 0 and r. The notation /'(s(0)) refers to the state at time t later 

than the state s(0). A measurement function h relates the time series to the dynamical system 

by 

x(t) = h(s(t)). 

State space reconstruction attempts to reconstruct the true dynamics given only x(t), the time 

series. Assuming that the past and future of a time series hold information about the state of 

the unobserved dynamical system, this information can be represented by a delay vector 

x(t) = (x(t + rmf),..., x(t), ...,x(t- Tmp)). 



The m-dimensional delay vector includes mf future samples, and mp past samples, as well as 

the current sample x(t). For time series prediction, mf = 0. The separation between samples 

r is the lag time. 

The mapping $ of the states of a d-dimensional dynamical system into m-dimensional 

delay vectors 

*(*) = (HfTmf(s)), • • •, h(s),..., h(f-™»(s))) 

is a delay reconstruction map (Refer to Figure 2). Here m = mp + mf + 1. The notation 

j-rmv implies that the underlying mapping fT
 is inverted and applied mp times, resulting in 

the state that occurred mp iterations before the current state, s. Similarly, fTm
f implies that 

the underlying mapping fT
 is iterated mf times resulting in the state mf iterations after the 

current state s. 

A theorem by Takens provides that $ is an embedding as long as m > 2d + 1 [30]. An 

embedding is a smooth one-to-one mapping with a smooth inverse. The space of reconstructed 

vectors will have smooth dynamics F: 

F*(x) = $o/*o$-1(x) 

if $ is an embedding. Here, o is a composition operator. With reference to Figure 2, the delay 

embedding function Fl
 which maps a point from x(0) to x(t) is a composition of mappings. 

First, the inverse of the mapping from the true dynamical state to the delay embedding state 

($) operates on x(0). The underlying mapping /* operates on this first result, and results in 

a new dynamical state s{r). The delay reconstruction mapping, $ operates on s(r) mapping 

back to delay reconstruction space, x(t). 

These results provide the basis for state space reconstruction. Given m past samples of 

a times series, where m is the embedding dimension of this time series, we can completely 

specify the position of the underlying dynamic system in reconstruction space. This position 

in reconstruction space can be exploited for prediction. 



The final block in Figure 2 labeled OPTIMAL represents some optimal coordinate 

transformation,^, from the delay embedding space. Examples of such transformations include 

principal value decomposition and differentiation. The notion of an optimal transformation is 

highly dependent on the application. An example of a transformation of this type is Sauer's 

use of principal components analysis for the prediction task discussed in the next section. 

Figure 3. Fitting a hyperplane to the nearest neighbors. 

2.3.2 Local Linear Prediction. One method of exploitation of the reconstructed 

state space is local linear prediction. This technique requires an estimate of m, the embedding 

dimension. Methods of estimating m are documented in [12, 15, 32]. Given some candidate 

m-tuple, a search of the past history of the time series for similar m-tuples is conducted. The 

similar m-tuples are the nearest neighbors to the candidate m-tuple. Regression techniques 

are then used to fit a hyperplane to these nearest neighbors (Refer to Figure 3 for m = 3). 

The candidate m-tuple is projected onto this hyperplane, resulting in a prediction for the 

observation following the candidate m-tuple. The method as presented here was published by 

Farmer in [8:846]. Casdagli [5:308] expanded upon the local linear idea with his Deterministic 

versus Stochastic (DVS) algorithm. 

The local linear prediction method has proven highly successful in predicting low 

dimensional nonlinear time series. Sauer was able to successfully predict Lorenz-like chaos 



in lasers using local linear prediction with several embellishments [26] for the Sante Fe Time 

Series Competition. He optimized the basic local linear prediction ideas to increase prediction 

accuracy. 

In order to increase prediction accuracy, Sauer interpolated the time series. A Fourier 

polynomial of degree n, 

n 

Pn(t) = ao + E (ai [C0S(*)F + ßj lsin(t)]
j
) , 

3=1 

was fit to a section of the time series, and the fit polynomial was sampled at equally spaced 

intervals. Details on this type of interpolation can be found in [1:177]. With reference to 

Figure 2 this transforms h before the delay embedding is formed. Figure 4 depicts the effect 

of this upsampling. The lines with arrowheads represent trajectories in reconstruction space. 

In addition, he retained only one nearest neighbor from each nearest trajectory [26:181]. 

Figure 4. The candidate point b* along with its nearest neighbors (solid dots) in reconstructed 
state space. The open dots are neighbors created by interpolating the time series. 
Using the interpolated series allows points nearer to the candidate point to be 
found. Only one neighbor from each trajectory is chosen. 

Sauer used singular value decomposition to determine the nearest neighbor's direction 

of maximum variance. He created a linear model by projecting the nearest neighbors onto this 

10 



direction of maximum variance. The candidate m-tuple is also projected onto this direction of 

maximum variance, and the linear model is evaluated at the point of projection. Sauer assumes 

the other less variant components (smaller eigenvalues) add only noise to the problem [26:184]. 

2.3.3 Recent Research. This section will briefly discuss two current research areas 

in state space reconstruction for prediction of time series. 

Two areas of recent research in state space reconstruction methods are more accurate 

determination of the minimum embedding dimension, m, and surrogate data methods. Typi- 

cally, a dimension estimation algorithm such as [12] is used to estimate m. These dimension 

estimation algorithms generally use the some measure of the number of nearest neighbors of a 

given dimension within a hypercube to calculate a fractal dimension. These methods are not 

foolproof. Theiler provides a good introduction to these dimension estimation methods [32]. 

Matt Kennel suggests a significant improvement to this algorithm, based the elimination 

of false nearest neighbors [ 15,14]. A false nearest neighbor is defined as a point that is near in 

m dimensional Euclidean space, but not near in m + 1 dimensional Euclidean space. The key 

to this method is that true nearest neighbors remain close when the dimension is increased. 

Theiler and others have taken a bootstrap approach to classifying time series as linear 

or nonlinear [33]. The approach here is to generate random data with similar characteristics to 

the target time series. For instance, a random series with the same power spectrum as a target 

series can be generated. Figure 1 is an example of scrambling one component of a Lorenz 

series. Then a statistic such as embedding dimension is calculated on both the target series 

and numerous random or surrogate series. A statistical procedure is applied to determine 

if the target series' statistic is significantly different than the surrogate data statistic. If the 

surrogate and target statistics are not significantly different, the conclusion is that the target 

series is linear with noise, as opposed to nonlinear. These surrogate techniques are useful for 

determining the aptness of nonlinear techniques to a particular series. 

11 



2.4    Neural Networks 

2.4.1 Basic Theory. Artificial neural networks were devised to mimic the response 

of a true biological neuron. The most popular model of a neuron is a perceptron, schematically 

depicted in Figure 5. A perceptron consists of several input sensory nodes fully connected 

to an associative node. The synapses or connections are called weights, and initially set at 

random values uniformly distributed from -1 to 1. The associative nodes produce an output 

when sufficient stimuli arrive. These stimuli are sensed by the input nodes, multiplied by the 

appropriate synapse weights, and summed at the associative nodes. The associative node acts 

on this weighted sum usually with some nonlinear function /(), often a sigmoid, and produces 

an output. The perceptron is able to learn by adjusting the weights so a given stimulus produces 

the desired response [25, 23]. 

Figure 5. Schematic depiction of a perceptron. 

A multilayer perceptron (MLP) is composed of layers of perceptrons. All input nodes are 

connected to all layer one nodes. All layer n nodes are connected to all layer n +1 nodes. Like 

a perceptron, an MLP can be trained to produce a desired output. In fact, an MLP is capable 

of approximating any continuous nonlinear function, given enough nodes, enough layers and 

enough training data [23:87]. This ability to model any nonlinear function is not without an 

associated cost. Training an MLP is more involved than training a simple perceptron. One 

12 



method of setting the weights or training the network is called backpropagation of error. In 

backpropagation, the difference between the desired output of the MLP and the observed 

output is propagated back through the network, and the weights are adjusted to minimize this 

difference [21]. 

A neural network's function modeling capability allows neural networks to approximate 

the underlying nonlinear function of a nonlinear time series. Stright used a generic MLP with 

m inputs of delayed time series values to predict incommensurate sine wave data and Glass- 

Mackey data with some success in 1988 [28:5-1]. 

2.4.2 Time Delay Neural Networks. Waibel modified an MLP to use only temporally 

related information to predict Japanese phonemes in 1989 [34]. He constrained weights on 

his network to remove any non-temporal information from the network. Waibel called his net 

a Time Delay Neural Network (TDNN). 

Wan improved on Waibel's work with his linear filter approach to the temporal con- 

straining [35]. His network is equivalent to Waibel's TDNN, but Wan's Finite Input Response 

(FIR) method is both conceptually simpler and numerically more efficient. The FIR approach 

replaces nodes with FIR Filters, and uses a temporal backpropagation algorithm to train the 

network. 

Using his FIR network, Wan produced the best prediction results on the laser data of 

the Sante Fe competition. Wan's prediction root mean square error (rmse) was one fourth 

of Sauer's state space reconstruction prediction rmse [36:10]. Although Wan's results were 

better than Sauer's, both methods produced short range predictions that essentially duplicated 

the data [36:9]. 

2.4.3 Recent Research. Recent research in time series prediction with neural 

networks has taken a different approach to network architecture than that used by Wan and 

Waibel. Instead of connecting the input layer only to the hidden layer nodes and the hidden 

layer, Holt and others recommend making direct connections from the input layer to the 

13 



output layer, and summing the products of these directly connected inputs and their weights 

with the nonlinear output [13,18]. This architecture, called Direct Linear Feedthrough (DLF), 

enhances the modeling of the linear portion of the mapping from input to output. This approach 

appears, in principle, to be very similar to using a neural network to predict the residuals from 

an autoregressive model. 

2.5   Feature Selection 

Feature selection is the process by which a large set of candidate features is reduced 

to a smaller set. In neural network terms, a feature is an individual data element fed into an 

input node. Typical features for S&P 500 prediction include historic data, and indicators. The 

candidate features for estimation of tomorrow's closing price of the S&P 500 futures market 

might include: 

1. Today's closing price. 

2. Yesterday's closing price. 

3. The closing price two days ago. 

4. The closing price three days ago. 

5. The closing price four days ago. 

6. The closing price five days ago. 

7. Today's 10 day moving average of the closing price. 

8. Yesterday's 10 day moving average of the closing price. 

9. Today's RSI. 

The estimate for tomorrow's closing price may be strongly related to several of these 

features, while others are not related. Feature selection techniques are aimed at partitioning 

the feature set into the important or salient features and the unimportant features. 

Feature selection has several benefits. First, it can reduce the amount of data that must 

be recorded. Second, more features usually lead to more parameters that must be estimated. 

In order to have a valid general model, the number of training or sample data points required 

is directly related to the number of input features [9]. In other words, fewer features means 

14 



fewer samples are required to build a model. Finally, if a feature is unimportant for some 

classification or regression task, the network is essentially being fed noise in addition to the 

signal of the important features. Feature selection helps increase the signal to noise ratio that 

the network sees. 

There are several approaches to neural network feature selection. Steppe does an 

excellent job of surveying these techniques [27]. Feature selection techniques falls into one of 

three classes. The first class of techniques involve a search for relevant feature subsets. The 

second class of techniques, saliency metrics, is concerned with ranking the individual features. 

The third class of techniques is concerned with screening irrelevant features. These screening 

techniques are used to determine the partition in the ranked features between the salient and 

non-salient features. One method of screening irrelevant features is including a noise feature 

in the feature set. Feature saliency metrics can then be calculated and all features less salient 

than the noise feature are assumed to be irrelevant. 

2.5.1 Steppe Approach. Searching for relevant feature subsets can be computation- 

ally intractable for feature sets of any size. A complete examination of every possible subset 

requires examining 2
featuTes

 subsets. One method that avoids the intractability associated 

with examining every feature subset is sequential selection. These techniques trade optimality 

for tractability. Stated another way, sequential selection techniques are not guaranteed to find 

the optimum feature subset. Steppe implemented a backward sequential selection algorithm 

for neural networks [27:148]: 

1. Set k = M, where M is the total number of candidate features. 

2. Choose a significance level a for feature elimination. 

3. Estimate the full model with k candidate features. Associated with this full model is 

SSEF for univariate models and TF for multivariate response models. 

4. Set p = k - 1, where p is the number of features in the reduced model. 

15 



5. Estimate all models with p features which do not include any previously eliminated 

features. Associated with each of the k reduced models is SSER for univariate models 

and TR for multivariate response models. 

6. Compute a likelihood ratio test statistic for each of the k models of p features. 

7. Select, as a candidate feature for elimination, the feature which when removed produces 

the model with the lowest likelihood ratio test statistic L. 

8. If L < threshold, eliminate the candidate feature, set k = k - 1 and go to Step 3. 

Otherwise go to Step 9 and do not eliminate the candidate feature. 

9. Stop. 

2.5.2 Saliency Metrics. The second class of feature selection techniques requires 

the computation of saliency metrics. Several saliency metrics have been proposed by Ruck, 

Priddy and Tarr [24, 22, 31]. Steppe demonstrated the equivalence of these metrics [27]. This 

section will briefly explain the Ruck saliency metric for MLP networks. Details of derivation 

and statistical background may be found in [27, 24]. 

The Ruck saliency metric sums the partial derivatives of the neural network output with 

respect to a given input. Assuming, for instance, a two class problem with four inputs, the 

saliency metric for input Xi (in theory) integrates the partial derivative of each network output 

with respect to X\ over the input space. In reality, the integration is approximated with a 

summation over either each input vector or a random sampling of the input vectors. The result 

is a measure of the usefulness of each input feature to determination of the correct output 

class. 

The Ruck saliency metric requires the summation of the partial derivatives of a networks 

outputs with respect to a given input over some approximation of the input space. The Lee and 

Landgrebe method requires calculation of the partial derivatives only at decision boundaries. 

A decision boundary is the locus of points in input space, separating one class from another. 

For a neural network, the decision boundary is the locus of points where the network's outputs 

are equal. A brief explanation of the Lee and Landgrebe approach follows. 

16 



2.5.3 Lee and Landgrebe Approach. The Karhunen-Loeve transformation (KLT), 

also called principal value decomposition, is one technique that can be used for feature 

extraction. The KLT method extracts the eigenvalues and eigenvectors from the full data 

covariance matrix. KLT is optimum for data reconstruction, or stated another way, no linear 

transformation of the original data is superior to the dominant KLT vectors minimizing 

reconstruction error of the data in a mean square sense. While useful for reducing data 

transmission requirements, KLT is not optimal in terms of class discrimination [17:388]. 

Lee and Landgrebe suggest a feature extraction technique based on decision bound- 

aries [17]. Their method is based on the idea that the important information in a classification 

problem is perpendicular to the classification boundary. Figure 6 depicts a portion of a decision 

boundary. A feature is discriminantly informative if moving in the direction of the feature 

would have affected the classification of at least one observation [16:434]. If a feature has no 

effect on the classification of any of the observations, the feature is discriminantly redundant. 

To affect classification, a feature must have a component perpendicular to a decision boundary. 

Decision Boundary 

Figure 6. A portion of a decision boundary between point X of class 1 and point Y of class 
2, and the normal direction at the point where the line connecting X and Y crosses 
the decision boundary. 

Instead of manipulating a data covariance matrix, Lee and Landgrebe create an effective 

decision boundary feature matrix (EDBFM) [17:392]. The EDBFM is the outer product of 

the normals of all the effective decision boundary points. An effective decision boundary 

point is the point on a line between two observations that are classified differently, where 

the discriminant function value is zero or near zero. The normals are determined by taking 

17 



the gradient of the discriminant function at the effective decision boundary point. The outer 

product produces a dispersion (covariance) matrix of the normals. 

The Lee and Landgrebe procedure for creating the EDBFM, for the 2 class case [16:436] 

is: 

1. Classify the training data. 

2. For each sample correctly classified as class Cj, find the nearest sample correctly 

classified as class c2. Similarly, for each sample correctly classified as class c2, find the 

nearest sample correctly classified as class C\. 

3. Connect the pairs of samples found in Step 2. The line connecting the pair of samples 

must pass through the decision boundary. Find the point along the line that is at the 

decision boundary or within a threshold of the decision boundary. 

4. At each point x$ found in Step 3, estimate the unit normal vector Nj by Nj = V/I(XJ), 

where h(x) is the discriminant function, and the gradient is taken with respect to the 

inputs and normalized to unit length. 

5. Estimate the decision boundary feature matrix using the normal vectors found in Step 

4. 

6. Select the eigenvectors of the decision boundary feature matrix as new feature vectors 

according to the magnitude of the corresponding eigenvalues. 

The Lee and Landgrebe procedure is similar to KLT in its use of orthogonal decomposi- 

tion. Whereas KLT provides the best decomposition for reconstruction of the data, the decision 

boundary technique provides the best decomposition for reconstruction of the decision bound- 

ary [17:393]. The eigenvalues of the EDBFM provide a measure the total projection of the 

normal vectors on the individual eigenvectors. This information, along with the eigenvector 

directions can be used to rank the input features based on their contribution to the eigenvalues. 

18 



2.6   Summary 

Multivariate nonlinear prediction depends on good univariate nonlinear prediction meth- 

ods. This review has detailed two successful approaches to univariate nonlinear prediction. 

The two approaches, state space reconstruction and time delay neural networks are the corner- 

stones of nonlinear time series prediction. The next chapter describes extensions to the decision 

boundary based techniques as well as the application of neural net prediction techniques and 

saliency metrics to the S&P 500 and the indicator data. 

19 



III. Methodology 

3.1 Introduction 

The last chapter presented the background behind nonlinear prediction techniques and 

outlined several methods of determining feature saliency. This chapter picks up where the 

saliency material from Chapter II left off. First, the Lee and Landgrebe decision boundary 

techniques are extended for an artificial neural classifier and for use without a classifier. Then, 

a decision boundary based saliency metric is derived and compared to previous saliency 

metrics. 

Section 3 presents the rationale for an indicator feature subset enumeration approach to 

be used in Chapter IV. The last section discusses the preprocessing of the S&P 500 futures 

price data. First, formulae and justification for candidate indicators are provided. The chapter 

closes with a discussion of the detrending and normalization applied to the data to make it 

compatible with a neural network. 

3.2 Saliency 

3.2.1 Lee and Landgrebe for Neural Nets. Lee and Landgrebe provide a method 

for decision boundary based feature extraction using a Gaussian classifier in [17], and using 

Parzen density estimation in [16]. This section extends their methods to neural network based 

classification. 

Feature extraction is not feature selection, but it can be argued that in order for a feature 

to be salient, it must contribute to the dominant extracted features. A saliency metric for the 

original features based on the extracted features will be discussed. 

3.2.1.1 Neural Network. The decision boundary feature extraction procedure 

for neural networks follows the Lee and Landgrebe procedure as discussed in Chapter II. The 

steps are repeated here for reference. 

1. Classify the training data. 

20 



2. For each sample correctly classified as class Ci, find the nearest sample correctly 

classified as class c2. Similarly, for each sample correctly classified as class c2,find the 

nearest sample correctly classified as class ci. 

3. Connect the pairs of samples found in Step 2. The line connecting the pair of samples 

must pass through the decision boundary. Find the point along the line that is at the 

decision boundary or within a threshold of the decision boundary. 

4. At each point x* found in Step 3, estimate the unit normal vector N,- by Nt- = V/ife), 

where h(x) is the discriminant function, and the gradient is taken with respect to the 

inputs and normalized to unit length. 

5. Estimate the decision boundary feature matrix using the normal vectors found in Step 

4. 

6. Select the eigenvectors of the decision boundary feature matrix as new feature vectors 

according to the magnitude of the corresponding eigenvalues. 

This section details determination of the decision boundary points, and calculation of 

the gradients at these points. 

3.2.1.2 Decision Boundary. After training a network and obtaining accept- 

able results, the weights are extracted from the net and a discriminant function is created. In 

general, for a neural net with a single hidden layer, the output vector is: 

y = f0(w2-{f,(Wl.{x;l});l}), 

where f (a) applies the node function to each element of a and results in a vector. The hidden 

node function, fÄ, and the output node function, f0 need not be the same. The semicolon is 

a concatenation operator; {x; 1} appends a 1 to the end of the x vector. w1 is the matrix of 

weights connecting the inputs to the hidden nodes. The wx matrix has number of inputs +1 

columns and number of hidden nodes rows. w2 is the matrix of weights connecting the hidden 

21 



layer to the output nodes. W2 has number of hidden nodes +1 columns and number of output 

nodes rows. 

The output vector is used to create a discriminant function. For a two class problem 

with two output nodes, a common discriminant function is 

Ky) = -ln^, 
2/2 

where yx is the first output. 

The line connecting two points, xi, and x2 classified differently, is parameterized 

x(i) = at + xi, 

where 

a = x2 - xi. 

At some point on this line, x(i), the discriminant function is at or near zero. A numeric 

root finding method such as the secant method can be used to solve for the root, t0. x(t0) is 

the decision boundary point. 

Once the decision boundary points are determined, the next step is to calculate the 

gradient of the discriminant function at the decision boundary points with respect to the 

inputs. 

3.2.1.3 Gradient. Calculating the gradient of the discriminant function is 

just an extended application of the chain rule. For a two class problem with n inputs, start 

with: 

KY) = -in^, (i) 
2/2 

y = f0(w2 • {f,(Wl • {x; 1});1}). (2) 

22 



Assuming the the network has two outputs, 

y = 

The gradient of the discriminant is 

2/1 

VÄ(y) = 

dh(y) 
dxi 

dh(y) 

dX2 

dh(y) 

dxn 

(3) 

Since all the partials will be calculated in a similar manner, ^p- will be demonstrated here. 

In order to determine 

9xi 

dh(y) _ l_d]h _ 
1
 

d
Vi 

dxx        y2 dxx     yl dxx 

we need Vy. Taking the gradient of equation 2, 

(4) 

Vy = V(f0(w2-{f,(w1-{x; 1});1})), (5) 

and using the chain rule, 

Vy = I0 • f» • w2 • I,+1 • {f^({x; 1}); 0} • w1; (6) 

where z is the output from the hidden layer, 

z = {fh(w1-{x; 1});1}. (7) 

The gradient Vy is a number of outputs by number of inputs matrix. For the two output 

case, the first column contains the partials with respect to first input. These partials can be 

23 



substituted into Equation 4, and the rest of the components of Vh{y) can be calculated in the 

same manner. 

This matrix derivation agrees with previous derivations of the individual partials [27:62], 

and can be easily programmed in a matrix algebra package such as Mathematica or Matlab. 

Appendix A includes a Mathematica example. 

The only remaining step of the Lee and Landgrebe procedure is to calculate the effective 

decision boundary feature matrix (EDBFM). The gradients at each decision boundary point 

are normalized to unit length. The outer product of the matrix of these normals {number of 

decision boundary points by number of features) with itself results in a positive definite matrix 

{number of features by number of features). The eigenvalue analysis of this matrix described 

in Chapter II results in a ranked list of discriminantly informative directions in feature space. 

3.2.1.4 Saliency. Metrics for determining the saliency of features using 

neural nets generally involve integration of the partial derivatives of the discriminant function 

over the data space. Since an input feature is only salient if it has components parallel to the 

significant eigenvectors of the EDBFM, summing the loadings of each input vector over the 

eigenvectors and weighting by the eigenvalues of that vector should provide an input feature 

saliency metric that agrees with the other methods. 

3.2.1.5 Example. A simple two dimensional two class example will illus- 

trate the decision boundary procedure as applied to neural networks. Two sets of normally 

distributed data are generated with parameters: 

Mi 

Mo 

1 
,£i = 

"l .5 

2 .5 1 

2 
,s2 = 

"1 .5' 

1 .5 1_ 

24 



Here Mi is the centroid or mean location of the class 1 data and Ex is the covariance 

matrix of the class 1 data. The data are depicted in Figure 7. The optimal decision boundary 

between two Gaussian distributions with the same covariance matrix can be determined using 

Fisher's discriminant function [6:364]: 

y = b-x, (8) 

where, the class is determined by the sign of y, and 

b = S-1 (X! - X-2) (9) 

and x is the candidate input vector. The symbol S usually represents a pooled covariance 

matrix, but in the two dimensional example, S = £x = £2. The means, Xi and x2 are the 

class distribution means, Mx and M2 respectively. Substituting the parameters, and solving 

for b, 

(10) b = 
1.0   0.5 

—i 

( 1 2.0 
)- 

-2.0 

0.5   1.0 
\ 

2 1.0 
) 

2.0 

Substituting back into I Equation 8 w regC t 

y - -2xi +2:r2. (11) 

Recalling that the decision boundary occurs where y = 0, the equation for the decision 

boundary is 

x\=x-i- (12) 

These calculations assume that the actual data have sample covariances and means 

equivalent to the generating parameters. The sample statistics are approximately the same as 

the generating parameters. 

A neural neural network with 2 inputs, 4 hidden layer nodes and 2 outputs is trained 

on the data. Figure 8 displays the network architecture. The weights are extracted from this 

25 



+ 

-1 - 

-2 - 

Class 1    O   Class 2 

o + 

% 
+^%>V^V   °o 

°o 

+ + 

. + 
+>*t.^MC4^l foe 

+ o 
o 

O©      O® O   "     o 
o °ono 
o    a.°    o o 

CD 

-1 

Figure 7. Experimental data distribution. 

26 



network and the decision boundary methodology is applied. Details on the calculations using 

Mathematica can be found in Appendix A. 

yi     y2 

t  t 

t 
1 

V t   t 
x,           x2           1 

Figure 8. Network architecture for Gaussian distribution discrimination. 

Figure 9 shows the neural network decision boundary. The network closely approxi- 

mates the optimum decision boundary. 

The eigenvalues (A) and the eigenvectors (</>) extracted from the EDBFM are: 

Ai   =   0.9996, 

0.668 
<t>i   = 

-0.744 
•>2   = 

0.0004, 

-0.744 

-0.668 

<t>\ is the only discriminantly informative direction since Ai >> A2. These values agree with 

Lee and Landgrebe's results for a Gaussian classifier [17:395]. 

The saliency of each input can be calculated by summing the weighted squares of the 

appropriate eigenvector component. The eigenvalues are the weights. With each input of the 

27 



o - 

-1 - 

-2 

I I 
+   Class 1    O   Class 2 
A    Net Dec. Boundary 

+ * +    +. 

-1 

Figure 9. Experimental data distribution with decision boundary. 

28 



form: 

x1 

Xf = 

X2 

the saliency metric for the input i, ji, is 

7* = £ $> V (13> 

<5^j is element« of eigenvector j. The summation is over the number of eigenpairs. Eigenpair 

with small eigenvalues will contribute very little and can be ignored. Returning to the example, 

the calculated saliency metrics are 

7i    =   0.4463, 

72   =   0.5535. 

The inputs are approximately equally salient. Both inputs contribute to the discriminant 

function, so neither can be deleted without significantly affecting classification accuracy. 

The next subsection is an attempt to apply the basic concepts of decision boundary 

analysis without using a classifier of any type. 

3.2.2 Lee and Landgrebe without a classifier. Lee and Landgrebe's feature extrac- 

tion procedure depends on the determination of a decision boundary location between two 

points from different classes. A simple extension of this idea is to assume that some form 

of decision boundary will correctly separate the labeled data into correct classes. Previously, 

the decision boundary was determined using a classifier. Here a perfect decision boundary is 

assumed. 

Instead of explicitly calculating the gradient at some decision boundary point, the line 

that connects two close points from different classes is used as an approximation to the decision 

boundary. As in the previous case, these pseudo-normal vectors are normalized to unit length. 

The two close points from different classes are chosen in the same manner as in the previous 

29 



example, except that all are assumed correctly classified. The EDBFM is created based on the 

directions between these points, and the eigenvalues are calculated. 

This method was initially applied to the same Gaussian data as in the previous section, 

with parameters: 

Mi = 

M2 = 

1 

2 

2 

1 

,Si 

s,= 

1 .5 

.5 1 

1 .5" 

.5 1 

The resulting eigenpairs are: 

Ai   = 

d>i   = 

0.555, 

0.619 

-0.785 

A2 0.445, 

-0.785 

-0.619 

These results are not very promising since the optimum classification boundary is one dimen- 

sional, and these results suggest a two dimensional decision boundary. The eigenvectors are 

however, approximately correct. 

Referring back to Figure 9, it is apparent that a large number of class 1 data are in the 

midst of the class 2 data, and vice-versa. The outer product of the normals creates a dispersion 

matrix of the pseudo-normals, with each pseudo-normal being weighted the same. A means 

of weighting the more clearly separated points might provide a better characterization of the 

implicit decision boundary. Any reference here to separated points is intended to mean points 

in separate classes. Building the EDBFM from the un-normalized pseudo-normal vectors is 

one means of weighting the more clearly separated points. This method should decrease the 

effect of the overlapping areas of the distributions. Unfortunately, using the un-normalized 

vectors will have no impact on the associated nearest neighbor problem. In the simple two 

Gaussian example, the points in the overlapping area, especially the worst outliers in the 

30 



overlap area will have a large number of nearest neighbors, since they are the nearest neighbor 

to many and perhaps most of the opposite class. Many of the pseudo-normals associated 

with these extreme outliers will be pointing in a non-discriminative direction. A method for 

removing these outliers (without using a classification mechanism) is unclear at this point. 

The results after removing the normalization are: 

Ai   =   0.701, 

0.726 
n   — 

-0.687 

A2   = 

,   fa   = 

0.299, 

-0.687 

-0.726 

Some improvement is seen here. Although Ai does not dominate A2, it is significantly larger. 

The eigenvectors are still reasonable. 

Intuitively, if the Gaussians are moved further apart, there would be fewer fringe class 1 

points mixed in with class 2 and vice versa. A data set was created with the same covariances 

but with means: 

Mi = 

The results after normalizing the pseudo-normal lengths are: 

1 
,M2 = 

3 

2 0 

Ai   =   0.731, 

0.726 
4>i 

-0.687 

A2   =   0.269, 

-0.687 
,     <f>2 

-0.726 

Since there are fewer fringe points, the normalization of the pseudo-normals does not totally 

degrade the results. Performing the same experiment without normalization : 

Ai    =   0.830, 

0.748 

-0.663 

A2 

,     <t>2 

0.170, 

-0.663 

-0.748 

31 



The non-normalized pseudo-normal results are again superior. 

Although the non-classifier results are not as clearly one-dimensional as the classifier 

results, the non-classifier approach can provide a classifier independent initial cut at the 

important features that can be extracted from the data. With the same saliency metric as 

defined previously, these results can also provide initial saliency results. Some of the ability 

to discriminate between the important eigenvectors, and indirectly, the important features, is 

lost, but the possible savings provided by extracting features before classification counter this 

loss. Further research is required to find a mechanism to reduce the impact of outliers in the 

midst of the other class. Possible mechanisms might involve some use of the distribution of 

pseudo-normal lengths or use of the relative numbers of nearest neighbors to each point of a 

class. 

3.2.3 Lee and Landgrebe for Regression. In order to use the Lee and Landgrebe 

technique for feature extraction in the time series prediction task, the technique must be 

modified for regression. Regression, also called function mapping, is the task of predicting a 

value as opposed to predicting a class in classification. Unfortunately the notion of a decision 

boundary in the regression case is unclear. Instead of a boundary between two classes, 

regression produces a contour map of values over the input space. Some level contour on 

this contour map must be chosen as a decision boundary of sorts. The value of the contour 

chosen here is zero. This choice is motivated by the importance of trend in the stock market. 

If the target data are price first differences, the null or zero contour line defines the boundary 

between the up and down trend of the market. Even if the data are not first differences, with 

any detrending method the zero contour marks the difference between reducing the prediction 

error and increasing the prediction error. If the target data are not detrended, the choice of 

zero is not appropriate, since a zero output may not even occur. 

32 



Indicator Number of associated features 

RSI 1 
4-day Moving Average 2 
9-day Moving Average 2 
18-day Moving Average 2 

10-day Stochastics 4 
25-day Stochastics 4 

Table 1. Indicator feature subsets. 

3.3    Indicator Feature Subset Enumeration 

In many applications subsets of the input features are assumed to be relevant. Steppe's 

algorithm selects individual features for removal from the candidate data set [27]. Often 

domain knowledge leads one to assume that a certain subset of features may be relevant to 

the problem. In the financial markets, technical analysts rely on indicators to predict future 

prices. Technical market analysts often use more than the daily value of an indicator; they 

may take the indicators' trend into account as well. In fact, the two previous values of an 

indicator may be relevant to the price prediction. These two indicator value features represent 

a logical subset of the input features. If an indicator is not useful to a neural network the entire 

associated subset can be dropped. 

The advantage of using predetermined subsets of features is that it can reduce the 

intractability associated with analysis of all subsets, since the number of subsets that must be 

evaluated for complete enumeration is 2
k
 where k is the number of discrete entities, either 

features or, in this case, feature subsets. For the S&P 500 task there are 21 individual features. 

Some of these features are members of indicator subsets. We can reduce k from 21 to 6 by 

enumerating based on indicator subsets. This results in a reduction from 2,097,152 subsets to 

64 subsets. 

The indicator feature subsets and the associated number of elements are shown in Table 

1. These indicators are defined in the next section. 

33 



3.4   Data Preprocessing 

This section addresses the preprocessing applied to the S&P 500 futures data prior to 

prediction. An explanation of candidate technical market indicators is followed by a discussion 

of the specific detrending and normalization techniques employed in this research. 

3.4.1    Technical Indicators. Many stock market indicators exist.   The popular 

literature in this area [2, 7] seems to suggests a strong reliance on trend indicators such as 

moving averages and overbought/oversold indicators such as Wilder's RSI and Stochastics. 

Overbought/oversold indicators try to characterize the momentum of the the market. The 

basic idea is that an oversold market should soon experience a price rise, and an overbought 

market is expected to experience a decrease in price. Each of these indicators is dependent on 

some time parameter. The goal here is to investigate prediction of the S&P 500 daily closing 

price. Discussions with traders resulted in the selection of the 14 day RSI, 4, 9 and 18 day 

moving averages and 10 and 25 day stochastics as candidate indicators. 

The data set provided includes daily pricing information for the S&P 500 futures. Each 

line of the data set contained data from one trading day. For each trading day the data includes 

seven items. The first field of the daily data is a date stamp, indicating the trading day. The 

second field contains the opening price for the day.The third field is the highest price the 

commodity attained during the trading day. The fourth field holds the commodity's lowest 

daily price. The fifth field is the closing price of the day. The last two fields contain volume 

and open interest information. The next section explains how each candidate indicator is 

calculated from the data set. 

3.4.1.1 Moving Averages. A moving average is simply an average of a fixed 

number of past samples. Assuming we have ten days of data, the ten day moving average of 

the closing price for the tenth day is simply the sum of the ten days closing price divided by ten. 

Figure 10 shows the moving average results for the candidate data set. One trading technique 

generates buy or sell signals based on the crossing of the quicker moving average (4 day) over 

the longer moving average (9 day). The general idea here is to buy into the commodity when 

34 



CD 
o 

the short trend crosses the long trend from below, and sell when the shorter average crosses 

the long trend from above. Other techniques use the direction a trend is moving to generate 

buy and sell signals. In order to calculate a trend, two data points are required. Based on this 

information, in order to predict Wednesday's price, a minimum of Monday's and Tuesday's 

moving average information is required. Each moving average feature we evaluate contains 

information for the two days prior to the prediction day. 

440 

430 - 

420 - 

410 - 

400 - 

390 - 

380 - 

800 850 900 950 1000 

day 

Figure 10. Moving averages of the S&P 500 futures data. 

3.4.1.2    Wilder's RSI. RSI provides an indication of the overbought or 

oversold nature of a market. The formula for RSI is [3]: 

RSI = 100 - 
100 

1 + RS' 

35 



where, 

RS 
ups 

downs 

ups is the average of the increases in the close price in the past N days, and downs is the 

average of the decreases in the close price in the last iV days. N is the time period associated 

with the indicator; for a 14 day RSI, N — 14. 

A typical RSI trading technique is to assume the market is oversold when the RSI value 

exceeds 70, and assume the market is overbought when the indicator drops below 30 [3]. In 

order to predict what is to happen tomorrow, only the current day's RSI value is required. The 

candidate data set retains only the 14 day RSI value for the day prior to the prediction day. 

Figure 11 shows the 14 day RSI indicator value for the S&P 500 data set. 

440 

^5- 

1000 

Figure 11. Wilder's RSI indicator for the S&P 500 futures data. 

36 



3.4.1.3 Stochastics. The stochastics indicator provides a measure of the 

position of a closing price within a time interval. The assumption is that during trending 

markets, prices tend to close near the range boundaries, while for nontrending markets prices 

tend to close near the middle of the range [3]. A stochastic indicator for a day is a pair of 

numbers, %K and %D. In order to compute %K and %D a raw stochastic value must be 

calculated. The formula for the raw value is: 

close — low(N) 
rawvalue = 100 x 

high(n) — low(N)' 

where high(N) is the highest price in the last N days, and low(N) is the lowest price in 

the last N days. %K is a three day moving average of the raw value, and %D is a three day 

moving average of %K. 

The stochastic indicators can be used to provide divergence information, or as over- 

bought/oversold indicators. When the slow stochastics value's ( %D) trend diverges with the 

current price trend, some analysts suggest this is a warning of a potential peak or trough. 

Stochastics can also be used in the same manner as RSI; when the indicators exceed 75 or 80 

the market is said to be overbought, and when the indicator values are less than 20 to 25 the 

market is said to be oversold. Several of these indications are apparent in Figure 12. Since 

the stochastic trend information appears to be important, the stochastic indicators for the two 

days prior to the prediction day are retained as candidate data features. 

3.4.2 Detrending and Normalization. This section describes the detrending and 

normalization methods used in this analysis. Time series forecasting techniques usually 

assume that the target time series is mean stationary [20:381-384]. This implies that no global 

trend is affecting the time series. Stock market data generally does not follow this assumption. 

Trended data can be detrended, but it is unclear how various detrending methods affect any 

hidden determinism in the series. Garza examined several detrending schemes in his attempts 

to predict the S&P 500 [11]. 

37 



1000 

Figure 12. Ten day stochastics indicators for the S&P 500 futures data. 

38 



One method of detrending is fitting a slope and intercept to the data in a local fashion. 

Figure 13 shows nine time series points with a slope and intercept least squares fit to the first 

eight. A value for the ninth point can be estimated from this fit. The eight point window is 

then moved forward and a value for the tenth point can be estimated. This procedure continues 

until local linear estimates for the entire data set are calculated. The residuals, produced by 

subtracting the estimates from the true value at each point, will be stationary. Figure 14 shows 

the trend line and the true price for a subset of the S&P futures data. Figure 15 shows the 

residuals for the same subset of data. The stationarity of the residuals is apparent from the 

figure. 

 1 1 1 1 B 

w 
<D 
O 
'C 
OH 

340 

335 

330 

325 

320 

315 

310 

305 1- 

residual      — 

2 4 6 8 10 

Day 

Figure 13. Local linear fit to 8 points. 

In order to employ a neural network for either a classification or a regression task, the 

training data require some manipulation. Usually, both the input features and the target output 

(in the regression case) need to be reduced to a range compatible with the neural network. 

The input features need to have their range limited so that the values input to the 

nonlinearities in the hidden layer are not in the tails of the sigmoid. The uniform random 

initial weight distribution will help to ensure this, but reducing the range of the input feature 

values to a range between -1 and 1 also aids in this process. 

39 



V3- 

O 

440 t-       1       ! 1 i i 

430 

420 

— 
/ y\ 

410 

400 

•/ 

• 1 

• ^^ 

- 

390 
V              ^7 • 

- 

380 
1           1           1 1 1 1 

900 920 940 960 

Day 
980 1000 

Figure 14. Comparison of the trend line and the true price data. 

v* 

cd 
3 

Figure 15. The residuals after fitting a local linear trend. 

40 



When using a neural network for regression or function mapping, the target output range 

must be reduced to a range compatible with the output sigmoid. For a symmetric sigmoid, 

usually a hyperbolic tangent function, the output should be between -1 and 1. These ranges 

are the asymptotic ranges of the sigmoids. This means that the sigmoids only reach the limits 

when the input to the sigmoid is infinite in either the positive or negative direction. In order 

to avoid forcing the sigmoid to its asymptotic value the target range is reduced even further. 

In this research the target range was reduced to an approximate range between -0.7 to 0.7. 

The actual data set creation procedure was lengthy. First the indicators, as listed in 

Table 1 and defined in the previous section, were calculated. The stochastics indicators were 

divided by 100 for range normalization. The moving average indicators and the RSI indicator 

were range normalized to the range .1 to .8 by the equation: 

.7(x - Min(x)) 
xnorm =       v          \ '     + .1, (14) 

Max(x) - Mm(x) 

where Max(x) and Min(x) are the maximum and minimum of the training portion of the 

indicator feature. The training set size used was 800, and the test set used was the next 300 

points. To calculate a normalized RSI value, for instance,the maximum and minimum of the 

first 800 data points are used. The eight stochastics data vectors, and the time series data 

vectors were then appended to the normalized moving average and RSI data vectors. 

The resulting data set consists of an 1100 by 23 matrix. Table 2 lists the matrix columns. 

The notation t, t-1, t-2 refers to the target day, and one and two days prior respectively. Another 

data set with normalized raw price data was also created to determine the benefit of detrending. 

Column 21 is the price we are trying to predict with the other 20 input features. Any feature 

subsets to be evaluated were extracted from this master data matrix using Awk (see Appendix 

B). 

41 



Column Indicator Day 

1 RSI (t-1) 

2 4-day Moving Average (t-2) 

3 4-day Moving Average (t-1) 

4 9-day Moving Average (t-2) 

5 9-day Moving Average (t-1) 

6 18-day Moving Average (t-2) 

7 18-day Moving Average (t-1) 

9 10-day %K (t-2) 

9 10-day %K (t-1) 

10 10-day %D (t-2) 

11 10-day %D (t-D 
12 25-day %K (t-2) 
13 25-day %K (t-D 
14 25-day %D (t-2) 
15 25-day %D (t-D 
16 Close Price (t-5) 
17 Close Price (t-4) 
18 Close Price (t-3) 
19 Close Price (t-2) 

20 Close Price (t-D 
21 Close Price (t) 

Table 2. The columns of the data matrix 

42 



3.5    Summary 

This chapter had two goals, (1) to explain contributions to Lee and Landgrebe's work, 

and (2) to present the data preparation and methodology for the experiments conducted on the 

stock market data. Lee and Landgrebe's basic procedure was applied to an artificial neural 

network classifier, and a simple example was used to explain the technique. A saliency metric 

based on the contribution of the input features to the discriminantly informative direction was 

developed. The Lee and Landgrebe technique, and the saliency metric were then modified 

for feature extraction without a classifier. Finally a brief justification for using the Lee and 

Landgrebe technique for regression is presented. 

The second part of this chapter explained the data preprocessing applied to the S&P 

500 data. First, definitions and brief explanations of candidate indicators are provided. Then 

detrending to create a stationary data series is discussed. A new local linear detrend method 

is explained, and the normalization of the input and output data is discussed. 

The next chapter presents the results of the application of these techniques to the S&P 

500 data set. 

43 



IV. Results and Discussion 

4.1    Introduction 

Chapter III covered the development of saliency tools, and the data preprocessing of 

the S&P 500 data set. This chapter presents the results of the application of these tools. First 

the local-linear detrend forecasting results are compared with results for a data set that is not 

detrended. The next section takes a basic enumeration approach to determining which of the 

indicators is most useful for improving neural network prediction. The final section presents 

saliency results from a Ruck type saliency metric and the proposed metric based on decision 

boundaries. 

Just getting a neural network to learn is not always a simple task. The approach applied 

here was to start with too many middle nodes and reduce the number of middle nodes until 

the test set error was reasonably close to the training set error. This approach was chosen to 

allow determination of the other network parameters, step size and momentum, with a network 

that was certain to have the capability to model the complexity of the data. Comparisons of 

symmetric versus logistic output sigmoids were made and two methods of presentation were 

attempted. This preliminary analysis was performed on only the close price values and the 

target values (rows 16 to 21 of Table 2 ) to provide a baseline set of prediction results. The 

final architecture and parameters are presented in Table 3. 

Parameter Value or Type 

Number of hidden nodes 10 
Type of output sigmoid Symmetric 

Stepsize (?y) 0.01 
Momentum (a) 0.8 

Number of epochs 12000 
Presentation Random 

Table 3. The baseline network parameters. 

44 



4.2    Comparison of Local-Linear Detrend to Raw Data 

In order to compare results of various runs a metric is required. The neural net software 

provides root mean square error (rmse), so this was chosen. The best results obtained on the 

local linear detrended baseline data set resulted in an rmse of 0.132 for the 800 point training 

set and 0.142 for the 300 point test set. In this case, the net is predicting the difference between 

the local linear detrend and the actual value. These residuals appear to be randomly distributed 

about zero. The rmse of the residuals without any attempt at modeling is 0.176 for the training 

set and 0.162 for the testing set. The neural network is able to find some determinism in what 

appears in Figure 16 to be random data. The impact of this reduction in rmse is evident in 

Figures 17 and 18 where the original data, the trendline and the results of training the network 

are depicted. 

V9- 

D 

U.b h              I               I               I    '          I       •       I     - 

0.4 —                                                                                 - 

0.2 —  :      ■ •" ■   .         .     '   ■         '    ■ ■ . •'.. .•    ••'•■• ■•.'■■"        "         ■    — 

0.0 

'••.'\;-,'- , ;•.    "i.   ■.'■!■.• '■.■."..*•. — ■.■" •■■'    ■'.•  •    *:".■'.,•   ■.■"' .'•  "'■    '.  .-'.■•• 
■ ./•. .   •.•'.'■.' ■ !»•.'<*. •Jj.v V   »'■.■   .'.*'' -   ■■'■   ■■ v.-'•".■■■ • ■■■.•<■■■■"■■■-■■•-•■■■.• 

■■■:■-. ';■ V.-%si^S;-rf.■••/:■...■"- '-. .-A*.-...• *:•    '^- V-VVA;.;-'.-:;--::.'., .;. i 

0.2 —                                '        '         ■""'•...'*      .'•"•■■.•   ■       .'— 

1            1            I.I            1 

200 400 600 800 1000 

Day 

Figure 16. Scatter plot of residuals after linear detrend. 

To enable comparison of the detrend results to the non-detrended results, the actual 

raw rmse is used. The raw rmse is the root mean square error of the retrended denormalized 

network results, in the detrended case. In the non-detrend case the raw rmse is the root mean 

square error of the denormalized network results. The network used to fit the non-detrended 

data differed from the baseline network in that it was trained for only 2000 epochs.  The 

45 



V5- 

4) 

440 

420 

400 

380 

800 850 900 

Close 
Local Linear trend 
Local Linear trend + Neural 

I 
950 

Day 

1000 1050 1100 

<& 

O 

Figure 17. Comparison of true price, trend only and trend with net for baseline data. 

440 - 

420 

400 

380 

1 1               1               1 1                        1 

- 

•t 

r Xv**A          A/\ 

A            #i 
.         /I         • it 

T\-/I   • -v 

f \                               t    1                                                    *   1 
• \ •9F\*y \                    1 A* r* \^    \                        3 

•Yj   \         if 

*. V'V 

mW          \            £%■■ • Close 
Local Linear trend 

- Local Linear trend + Neural 

1 1                        I                        l 1                           1 
900 920 940 960 980 1000 

Day 

Figure 18. Baseline for days 900 to 1000. 

46 



Detrending test set rmse 

Local Linear 4.73 
None 6.75 

Table 4. The effect of detrending. 

training error appeared to have stabilized at this point. The raw rmse results are presented 

in Table 4. Figures 19 and 20 show the first two hundred points of the test set with both the 

detrended and fit results and the non-detrended and fit results. It is not apparent from this 

figure which is better. The non-detrended results seem to be biased low after the data take the 

step on day 958. This could be the result of not detrending. However, the range normalization 

for the non-detrended data was based on the first 800 points, so the output sigmoid is being 

forced closer to the asymptote. The maximum target value is 0.921. Based on the rmse results 

the rest of this work uses only the local linear detrended data. 

w 

440 fp 

430 

420 - 

410 - 

400 

390 -' 

380 - 

T "=n 

800 

Net, No Detrend 
— Net, Local Linear Trend    — 

•   close 

I 
850 900 950 

Day 

1000 1050 1100 

Figure 19. Comparison of local linear detrending and no detrending. 

47 



440 

430 

420 - 

410 - 

400 

390 

380 - 

t- 1                           1 i 1                                "t 

/        \ /\*n \ /i                       A/l 

•      \      /                \      * 

•/ /                  ***           **•*  *•■*■*•.             ,„    ,.•* *%     " — /                                                 **•".   /"   ****       \    *— 

/\                 v\ */••■ 

"<*•*                      *•■■•* 

A        *i '   \   ,'f~\'''/y\ M         •   J 

•'■   \     l" \y"^'   -\ *~Ä l\    • / "\\ J"'••■*.'y"    \\ 
AJ 1    // 'v?             H / \* / 

_   'f'~\J *                   • s*4 .jpw   Net, No Detrend 
*V*      /*Xf 

*V**      /  Net, Local Linear Trend    — 

SY 
^*       0* •   close 

1 I                i 1 1                           1 
900 920 940 960 980 1000 

Day 

Figure 20. Detail of comparison of local linear detrending and no detrending. 

4.3    Partial Enumeration 

Even with just 6 candidate feature subsets, 64 computer runs are required for complete 

enumeration of all possible combinations of feature subsets. In addition, for each additional 

random seed (for the initial weights) evaluated, 64 more runs are added. The approach taken 

here is to enumerate the indicator subsets choosing one, two and possibly three indicator 

subsets. When additional features are added the net parameters are no longer optimum. 

Retuning for each feature subset is avoided here to ensure reported rmse results are due to the 

feature subsets and not the net tuning. If overparameterization, indicated by a large test set 

rmse relative to the training set rmse occurs, hidden nodes may be removed on a case by case 

basis. Similarly, if the net fails to learn, hidden nodes may be added, again on a case by case 

basis. Table 5 displays the mnemonics to be used for each indicator subset. Table 6 shows the 

results of evaluating the baseline data set augmented with each indicator subset. 

An initial tentative conclusion about the usefulness of the moving average data to the 

neural net data can be drawn. For each moving average testing result the rmse exceeds the 

48 



Mnemonic Indicator Number of associated features 

r RSI 1 

m4 4-day Moving Average 2 

m9 9-day Moving Average 2 

ml8 18-day Moving Average 2 

slO 10-day Stochastics 4 

s25 25-day Stochastics 4 

Table 5. Mnemonics for indicator feature subsets. 

Feature Subset Seed 1 raise Seed 2 raise 

Train Test Train Test 

r 0.127 0.129 0.129 0.135 

m4 0.123 0.436 0.165 0.523 

m9 0.125 0.346 0.164 0.376 

ml8 0.128 0.208 0.162 0.213 

slO 0.124 0.140 0.123 0.130 

s25 0.124 0.129 0.124 0.125 

Table 6. Network results after adding one indicator feature subset. 

detrended residuals raise (0.162). Over parameterization may explain this result. If an input 

provides no independent information, yet increases the number of weights or parameters in 

a neural net, the network is more likely to memorize the training set. This argument seems 

reasonable for the 4-day moving average, since the network has all the information it needs 

to create its own 4 day moving average. Unfortunately its not so reasonable for the 9 and 18 

day moving averages. 

To gain more insight into this over parameterization issue the moving averages were 

evaluated with a reduced number of hidden nodes. Recall that the baseline number of hidden 

nodes is ten. Networks with eight and nine hidden nodes were trained and the results are 

presented in Tables 7, and 8. Little improvement is seen with the 4-day and 9-day moving 

averages, but the 18-day moving averages perform significantly better with reduced hidden 

nodes. 

49 



Feature Subset Seed 1 rmse Seed 2 rmse 
Train Test Train Test 

m4 0.123 0.458 0.124 0.488 
m9 0.125 0.379 0.124 0.150 
ml8 0.126 0.158 0.129 0.137 

Table 7. Moving average results for nine hidden nodes. 

Feature Subset Seed 1 rmse Seed 2 rmse 
Train Test Train Test 

m4 0.130 0.474 0.126 0.490 
m9 0.130 0.327 0.127 0.208 

ml8 0.132 0.158 0.131 0.135 

Table 8. Moving average results for eight hidden nodes. 

The next step in this enumeration procedure is to choose pairwise indicator feature 

subsets. Table 9 presents the results of these calculation. Very few of the test results are 

better than the detrended residual rmse (0.162). In fact only three of the pairwise subsets are 

superior to this value. The combinations of RSI and each of the stochastics indicators and 

the combination of the two stochastics indicators do relatively well, again suggesting that the 

moving averages add very little. 

As the testing errors are increasing, the networks should be retuned. Retuning now 

involves optimizing 15 networks. Instead of attempting to tune each net, one more step in the 

enumeration process is taken, evaluating the indicator feature subsets three at a time. In this 

case only four of the test results show improvement over the residuals themselves. The first 

of these is RSI with 4 and 9 day moving averages. The second is RSI, with 18 day moving 

averages and 10 day stochastics. The third is RSI with 10 and 25 day stochastics. This is the 

only test case where both random seeds provided results better than the residuals. The final 

successful case is 10 day stochastics with 4 and 9 day moving averages. 

At this point proceeding further with enumeration technique without retuning would be 

useless, so the experiment was terminated. 

50 



Feature Subset Seed 1 rmse Seed 2 rmse 
Train Test Train Test 

r, m4 0.122 0.487 0.117 0.542 
r,m9 0.124 0.190 0.120 0.517 
r,ml8 0.122 0.462 0.120 0.475 
r, slO 0.120 0.138 0.128 0.140 
r, s25 0.122 0.127 0.131 0.147 

m4, m9 0.122 0.394 0.120 0.430 
m4, ml8 0.122 0.474 0.121 0.487 
m4, slO 0.116 0.442 0.164 0.376 
m4, s25 0.117 0.307 0.116 0.442 
m9, ml8 0.124 0.274 0.124 0.321 
m9, slO 0.116 0.448 0.115 0.421 
m9, s25 0.117 0.363 0.118 0.345 
ml8, slO 0.116 0.356 0.112 0.456 
ml8, s25 0.118 0.256 0.117 0.391 
slO,s25 0.118 0.135 0.119 0.140 

Table 9. Network results after adding two indicator feature subsets. 

In summary, the enumeration approach without retuning has suggested that some of the 

indicator feature subsets are apparently more useful to the neural net than others. The single 

and pairwise indicator experiments suggest that RSI, and the two stochastics indicators are 

most useful. The three indicator experiments suggest that moving averages may be slightly 

useful, but the most consistent results are obtained with the RSI and stochastics indicators. 

The next section applies individual saliency methods to the indicators. 

4.4   Individual Saliencies 

The enumeration approach of the previous section allows determination of the impact 

of indicator feature subsets on the neural network's ability to model the data. In this section 

individual input features are compared. The ten day stochastics indicator feature subset, for 

instance, encompasses four individual input features. The candidate data set for this saliency 

analysis is chosen from the three indicator experiments in the Partial Enumeration section. 

The three indicators RSI, 10 and 25 day stochastics as well as the 5 previous days close price 

51 



Feature Subset Seed 1 rmse Seed 2 rmse 

Train Test Train Test 

r, m4, m9 0.117 0.515 0.119 0.521 

r, m4, ml8 0.120 0.507 0.123 0.446 

r, m4, slO 0.117 0.151 0.116 0.391 
r, m4, s25 0.119 0.185 0.112 0.446 

r, m9, ml8 0.123 0.508 0.130 0.477 

r, m9, slO 0.114 0.266 0.119 0.193 

r, m9, s25 0.117 0.332 0.113 0.438 
r, ml8, slO 0.118 0.154 0.117 0.432 

r, ml8, s25 0.116 0.343 0.114 0.399 
r, slO, s25 0.126 0.155 0.116 0.151 

m4, m9, ml 8 0.121 0.407 0.121 0.215 
m4, m9, slO 0.114 0.360 0.117 0.153 

m4, m9, s25 0.118 0.262 0.121 0.177 

m4, ml8, slO 0.117 0.377 0.117 0.265 

m4, ml8, s25 0.115 0.365 0.123 0.171 

m4, slO, s25 0.119 0.349 0.114 0.422 
m9, ml8, slO 0.120 0.282 0.113 0.342 
m9, ml8, s25 0.118 0.257 0.122 0.170 
m9, slO, s25 0.116 0.334 0.114 0.408 
ml8, slO, s25 0.115 0.383 0.112 0.400 

Table 10. Network results after adding three indicator feature subsets. 

52 



Column Indicator Day 

1 RSI (t-1) 
2 10-day %K (t-2) 
3 10-day %K (t-1) 
4 10-day %D (t-2) 
5 10-day %D (t-1) 
6 25-day %K (t-2) 
7 25-day %K (t-1) 
8 25-day %D (t-2) 
9 25-day %D (t-1) 
10 Close Price (t-5) 
11 Close Price (t-4) 
12 Close Price (t-3) 
13 Close Price (t-2) 
14 Close Price (t-1) 
15 Close Price (t) 

Table 11. The columns of the three indicator data matrix 

seemed to provide the most consistent results in the three indicator enumeration results. This 

indicator feature set results in a data set with 14 input features and 1 output feature. The 

features and their columns are displayed in Table 11. 

The accuracy of any derivative based saliency depends on the range of the input feature. 

As both the decision boundary based metric and Ruck's metric depend on the partial derivatives 

of the output with respect to the input, it is important that the input features have consistent 

ranges to ensure a fair comparison of the partial derivatives. With this in mind, the input 

features were renormalized to have a range of one. This presented a problem for the close 

price data (columns 10 through 14) since one significant outlier caused considerable skewing of 

the data. Two possible solutions are (1) to use a mean, standard deviation based normalization 

or (2) to ignore the one outlier. The latter solution was chosen here. The results of five runs 

of the renormalized data, with each run having a different seed are shown in Table 12. 

4.4.1 Ruck Metric. The first individual saliency metric evaluated is the Ruck metric, 

or the sum of the partial derivatives of each input feature over the input space. The results for 

53 



Run Train Test 

1 0.119 0.153 

2 0.118 0.142 

3 0.115 0.164 

4 0.120 0.154 

5 0.143 0.170 

Table 12. Network results after renormalizing RSI, 10 and 25 day stochastics. 

Feature Ruck Saliency Metric 

Runl Run 2 Run 3 Run 4 Run 5 

1 0.484056 0.540412 0.617555 0.342015 0.344853 

2 0.541894 0.412844 0.558808 0.522800 0.421346 

3 0.827932 0.857118 0.389490 0.894576 0.544237 

4 0.960617 0.510921 0.495022 0.587752 0.581671 

5 0.652345 0.542558 0.539575 0.814176 0.680770 

6 0.512810 0.341850 0.517583 0.360040 0.342596 

7 0.487779 0.590069 0.214170 0.514803 0.254195 

8 0.577659 0.563539 0.810572 0.271782 0.315668 

9 0.859564 0.602370 0.534907 0.439418 0.216937 

10 0.366554 0.472997 0.401336 0.355781 0.347492 

11 0.334688 0.311575 0.326111 0.325615 0.356960 

12 0.342520 0.365239 0.485877 0.348681 0.271373 

13 0.341517 0.319410 0.405947 0.322356 0.346950 

14 1.000000 1.000000 1.000000 1.000000 1.000000 

Table 13. Ruck saliency results for each run. 

each run are shown in Table 13. The Ruck metric finds feature 14, the previous days closing 

price (after detrending and normalization) to be the most salient in all the runs. Comparing 

saliencies for the best run, Run 1, with the worst, Run 6 provides insight into which indicators 

seem to be responsible for producing the good results. In the best case, Run 1, the 10-day 

%K value is only slightly less salient than the previous day closing price. The saliencies for 

Run 5 rank this indicator as fourth. The 25-day %D is third in saliency for Run 2 and last in 

saliency for Run 5. Further analysis along these lines seems to show that Run 2 makes more 

use of the previous day stochastics indicators than Run 5. 

54 



Feature Decision Boundary based Saliency Metric 

Runl Run 2 Run 3 Run 4 Run 5 

1 0.049543 0.051400 0.149099 0.031521 0.049107 
2 0.101837 0.060858 0.118985 0.059351 0.076839 
3 1.000000 0.875852 0.168805 1.000000 1.000000 
4 0.287553 0.208087 0.170760 0.291298 0.170151 
5 0.113617 0.134965 0.140198 0.170240 0.290087 
6 0.064311 0.121978 0.130076 0.046619 0.149710 
7 0.103994 0.136429 0.015819 0.061524 0.023240 
8 0.199970 0.272866 0.381245 0.014450 0.105731 
9 0.231607 0.141965 0.154730 0.072351 0.048042 
10 0.044744 0.087374 0.108044 0.038351 0.054698 
11 0.052575 0.022241 0.040724 0.129154 0.181723 
12 0.053872 0.045879 0.133302 0.062130 0.043966 
13 0.106134 0.090228 0.082366 0.095699 0.155992 
14 0.712340 1.000000 1.000000 0.951859 0.838163 

Table 14. Decision boundary based saliency results for each run. 

4.4.2 Decision Boundary Based Saliency Metric. The decision boundary based 

saliency metric results are in Table 14. Some differences from the Ruck metric are immediately 

apparent. First, only two of the five result in the previous day close price being most salient. 

For the other three runs, feature 3, the 10-day %K value for the previous day, is the most 

salient. 

4.4.3 No-Classifier Saliency Metric. The no-classifier decision boundary approach 

explained in Chapter II was applied to the renormalized training data. The lengths of the 

pseudo-normals were not scaled to unit length for this experiment. The results are shown in 

Table 15. The rankings do not seem to agree with either the Ruck or the decision boundary 

based metric. The probable cause of this poor performance is the overlapped nature of the 

data, and the resulting diffusion of relevant discriminant directions with the directions caused 

by outliers. The section on Lee and Landgrebe without a classifier in Chapter III addressed 

this problem. 

55 



Feature Saliency Rank 

1 0.778308 4 
2 0.503643 8 
3 0.290952 12 
4 0.406354 9 
5 0.547180 7 
6 0.343823 11 
7 0.215898 14 
8 0.273473 13 
9 0.355708 10 
10 1.000000 1 
11 0.849615 3 
12 0.687976 6 
13 0.690607 5 
14 0.859435 2 

Table 15. No classifier decision boundary based saliency results. 

4.4.4 Summary and Comparison of Saliency Rankings. A comparison between the 

average over the five runs of the two metrics for each feature is shown in Table 16. This 

table also shows the average saliency ranking of each feature for each metric, including the 

no-classifier metric. 

4.4.5 Discussion. Both the Ruck and the decision based saliency methods agree 

that the six most salient features are columns 3,4,5, 8, 9 and 14. The features associated with 

these columns are shown in Table 11. After these six features, the two methods diverge in 

their choice of features. Some of these results are expected. For instance, it seems reasonable 

that the previous day's price value is important in predicting the current day's price. The 

absence of any of the other price features from the top six is interesting. The RSI indicator 

seems to have mixed results. The decision boundary based saliency ranks RSI dead last, while 

Ruck's saliency ranks RSI as eighth. The stochastics indicators, and the slow stochastics (%D) 

features in particular, seem to be relevant, while only one fast stochastic (10 day %K) feature 

appears in the top six. 

56 



Feature DB Sal. Ruck Sal. DB Rank Ruck Rank MC Rank 

1 0.066134 0.465778 14 8 4 
2 0.083574 0.491539 10 7 8 
3 0.808931 0.702671 2 2 12 
4 0.225570 0.627196 3 4 9 
5 0.169821 0.645885 5 3 7 
6 0.102539 0.414976 8 9 11 
7 0.068201 0.412203 11 10 14 
8 0.194853 0.507844 4 6 13 
9 0.129739 0.530639 6 5 10 
10 0.066642 0.388832 13 11 1 
11 0.085283 0.330990 9 14 3 
12 0.067829 0.362738 12 12 6 
13 0.106084 0.347236 7 13 5 
14 0.900472 1.000000 1 1 2 

Table 16.    Comparison of decision boundary based (DB) saliency and Ruck saliency averaged 
over 5 runs, along with no classifier (NC) rankings. 

The no-classifier rankings do not agree with either of the other metric rankings. The 

most salient no-classifier feature is ranked eleven and thirteen by the other metrics. 

The ultimate test of these saliency techniques is the prediction improvement they pro- 

vide. A brief attempt was made to determine if the salient features provided better prediction 

results than the full data set. The nine most salient features as determined by the decision 

boundary based metric were used to predict the closing price. Although the improvement in 

rmse was not very large, the net trained quicker, and the test results were actually better than 

the training results, a reasonable result since the test set rmse was smaller than the training 

set rmse. After training for 10000 epochs, the training set rmse was 0.134 and the test set 

rmse was 0.123. These rmse's are not much better than the 25 day stochastics one indicator 

feature subset (train 0.124, test 0.125), however the net trained quicker. Figures 21 and 22 

graphically depict the results. Comparison with the baseline case, Figures 17 and 18, shows 

the importance of the slight improvement in rmse. For example, the fit line for the best results 

appears much less jagged than the baseline case. 

57 



V3- 

O 
Di 

10 F 

1100 

Figure 21. Comparison of true price, trend only and trend with net for best results obtained. 

^5- 10 

3     o 

*   -10 
440 

430 

420 

tS  410 - 

.a 4oo 
eu 

3701= 
900 

+   Close 
  Local Linear Trend 
 Trend + Net fit 

Residuals 

920 940 960 980 1000 

Day 

Figure 22. Comparison of true price, trend only and trend with net for best results obtained, 

expanded to show detail. 

58 



Other S&P 500 futures prediction research, including [ 11,2], use the trend accuracy as a 

fit metric. The trend accuracy is simply the ratio of the number of times the prediction scheme 

predicted the correct movement direction for the data set. With the S&P 500 futures data 

this corresponds to up and down price movements. Using the best results from the nine most 

salient features, the trend calculation accuracy was 52.0%. This is comparable to Azoff's 

result of 53.9% trend accuracy, although he is using other indicator information and more 

sophisticated neural networks [2:116]. Garza managed to average 56.50% accuracy using a 

hybrid method which utilized both a neural network and DVS techniques [11:72]. 

The decision to use a regression approach as opposed to a trend classification approach 

was based on the importance of accurately predicting large movements. If the small price 

changes, between -3.00 and 3.00, are discounted the nine feature saliency results in 59.27% 

accuracy. 

4.5    Summary 

This chapter presents the results of application of neural network saliency techniques 

to the S&P 500 futures data. First a comparison of results obtained with a new local linear 

detrending with non-detrended data set is presented. The results are mixed. Although the 

local linear method is superior in terms of test set rmse, this could be due to the normalization 

of the non-detrended data set. The decision is made to continue with the local linear detrend 

data set. 

Partial enumeration of indicator features subsets is attempted in the second section. The 

results of training a baseline network with one, two and three indicator subsets are provided. 

RSI and stochastics indicators seem to be the most valuable in terms of reduction of test set 

root mean square error. 

The last section presents the results of applying the Ruck and decision boundary based 

individual saliency metrics to 14 individual features including the RSI, 10 day stochastics and 

25 day stochastics subsets. The two metrics seem to agree on the six most salient features. 

59 



This top six feature set is composed of the four %D values, the previous day's price and one 10 

day %K statistic. A brief attempt is made to utilize the saliency metrics to improve prediction. 

The next chapter presents some of the conclusions drawn from these results and presents 

recommendations for further research. 

60 



V. Conclusion and Recommendations 

5.1 Introduction 

The purpose of this research is to examine ways to improve nonlinear time series through 

the use of additional time series. The additional time series considered here are derived from 

the target time series. Three methods for determining the usefulness of the non-target time 

series are applied to S&P 500 futures data and indicators. These methods include partial 

enumeration, Ruck's saliency metric and a decision based saliency metric derived in this 

research. An additional classifier independent saliency metric is designed and evaluated. 

Chapter IV presents the results of the application of the three saliency methods to the S&P 

500 data. This chapter will provide a summary of the results of this research, and draw some 

general conclusions based on these results. A list of contributions to the fields of neural 

network based saliency calculations and S&P 500 futures predictions concludes this chapter. 

5.2 Summary and Discussion of Results 

Partial enumeration of indicator subsets provided a useful notion of which of the indica- 

tor feature subsets are most influential in improving a neural network based prediction model. 

Although no claims of statistical significance can be made using just two runs per subset, a 

general feel for the importance of the indicators is provided. Even with more runs it is not 

clear that statistical significance can be determined. The problem lies in the dependence of the 

network on optimization. One can quote results from a network with ten hidden nodes but the 

question of whether ten hidden nodes is the correct number of hidden nodes for all the subsets 

remains unanswered. Steppe's architecture selection methodology provides one solution to 

this problem [27]. Even the Steppe approach, however, assumes that a net that is optimized 

for the full feature set (in terms of momentum, step size and number of training epochs) will 

be optimal for feature subsets. The impact of tuning or optimizing a network needs to be taken 

into account. 

61 



The Ruck saliency metric was applied primarily to provide a comparison with the 

derived decision boundary metric. The decision boundary based metric provides similar 

results to the Ruck saliency with fewer partial derivative calculations. The attempt to use a 

reduced set of salient features provided good results. Here again, the question of network 

optimization arises. The saliency metric is obtained from the best of the partial enumeration 

runs, which are not optimized. In order to use a smaller set of salient features for classification 

the net must be retuned. Are the good salient subset results due to the quality of the features 

selected, or merely an artifact of the tuning? The only possible indication that the features 

themselves are responsible is the relative change in training versus test error. In particular, 

all training accomplished on the salient features resulted in test set errors that were smaller 

than the training set errors. Increasing the number of hidden nodes by 50% did not affect this 

result. All the baseline and enumeration runs resulted in test set errors ihat were larger than 

the training set error. In the moving average case, even after reducing the number of hidden 

nodes, the test set error was larger than the rmse of the raw target data. This provides some 

indication of the robustness of the salient feature subset model. 

5.3 General Conclusion 

The results of this research indicate that additional time series data can be used to 

increase the predictive capability of a neural network on a nonlinear time series. The feature 

selection techniques evaluated provided a 13.4% reduction in root mean square error. This 

calculation is based on the difference between the baseline S&P 500 at the beginning of 

Chapter IV and the saliency chosen indicator feature subset discussed at the end of Chapter 

IV. 

5.4 Contributions 

In this research decision boundary based feature extraction techniques are extended for 

use in neural networks. Based on these extensions, a new decision boundary based saliency 

metric is defined and compared to previous metrics.  A new classifier independent feature 

62 



extraction/saliency method is defined and explored with mixed success. The potential for 

extracting features without regard to classifier deserves more research. A set of relevant indi- 

cators to the prediction of the S&P 500 futures price is determined. Finally, the importance of 

indicators such as RSI and stochastics over moving average indicators in neural net prediction 

of the financial data was discovered through partial enumeration of indicator subsets. 

63 



Appendix A. Lee and Landgrebe for Neural Networks 

A.l    Introduction 

This appendix demonstrates the use of Mathematica to perform decision boundary anal- 

ysis on a neural network based classifier. Any functions that are not intrinsic to Mathematica 

are included in listings at the end of this appendix. 

A.2    Discriminant Function 

After successfully training a network to classify the data, the weights are extracted from 

the LNKmap .param file. The .param file is a text file, and the weights are easily located. 

The LNKmap weight .param file includes a listing for the weights from the input layer to the 

hidden layer bias, listed as the last number of input nodes weights in the first weight matrix. 

These must be ignored when extracting the weights. The data for this example consisted of 

298 vectors of 3 features and a target. The network had 3 input nodes, 6 hidden nodes and 1 

output node. 

Read the data from the same files used to train and test the neural network. The first 

argument of ReadList is a filename. 

train = ReadList[ 

"Socrates:thesis:Experiments:sinwnoise:sin.train", 
Number,RecordLists->True]; 
test = ReadList[ 

"Socrates:thesis:Experiments:sinwnoise:sin.test", 
Number,RecordLists->True] ; 
output=Join[train,test] ; 
Length[output]} 

298 

Extract the weights from the LNKmap .param file. 

{wl,w2} = {{ 

{0.0992727, 1.03985, -1.86179, 0.0583072}, 

64 



{0.078818, -0.732222, 1.61733, -0.238891], 
{0.0430646, -0.147562, -0.581437, -0.126756}, 
{0.0655318, 0.555042, -1.42235, -0.0519397}, 
{-0.020631, -0.013815, 0.498293, -0.0191677}, 
{0.0994582, -0.823559, 1.69069, -0.188408}}, 
{-2.92588, 2.45208, -0.641258, -1.95943, 

0.532183, 2.6143, 0.20734}}; 

Build the mapping function. These are the hidden and ouput sigmoid functions, respec- 

tively. 

sigmoid[x_] := l/(l+E~-x)//N 
sigmoido[x_] := (2/(1+ E~-x) -1)//N 

This is the feedforward network regression function. 

h[x_]   := 
sigmoido[(w2.Join[sigmoid[wl.Join[x,{1}]],{1}])] 

Assume the decision boundary is where the function crosses zero. Based on this 

assumption, classify the data based on these pseudo-decision boundaries. First, determine 

which of the training data points are classified correctly. This applies the regression function 

h to each of the data points and uses the sign of the results to determine the classification of 

each element. 

calcres = Sign[h/@ T[Drop[T[Take[output,250]],-1]]]; 

The true classification is determined by looking at the sign of the target value from each vector. 

actres = Sign /@ T[Take[output,250]][[4]]; 

concat = T[Join[T[Take[output,250]},{calcres,actres}]]; 

The data vectors classified as negative and actually negative are stored in the negs 

variable. 

negs = Select[concat,(#[[5]]==-l && #[[6]]==-l)&]; 
Length[negs] 
100 

65 



Similary, the data vectors accurately classified as positive are stored in poss. 

poss = Select[concat,(#[[5]]==1 && #[[6]]==1)&] ; 

Length[poss] 

145 

Get rid of the extra stuff needed to determine if the data is classified correctly. 

posr = T[Take[T[poss],3]]; 

negr = T[Take[T[negs],3]]; 

For each posr vector, find the nearest vector of negr. 

nearToWO = FindNearest[posr,negr]; 

For each negr vector, find the nearest posr vector. 

nearToWl = FindNearest[negr,posr]; 

Using the nearest neighbors of opposite sign determined above, use Mathematica's built in 

secant root finding method to find the decision boundary points. 

dbO = intersect[#[[l]],#[[2]],h]& /@ T[{nearToWO,posr}]; 

dbl = intersect[#[[1]],#[[2]] ,h]& /@ T[{nearToWl,negr}]; 

Determine the gradient of the discriminant function at each of the decision boundary points. 

norm = delY[#]& /@ Join[dbO,dbl]; 

Normalize each gradient to unit length. 

norml = #/Sqrt[#.#]& /<? norm; 

Build the effective decision boundary feature matrix. 

sigEDBFM = 

Sum[ 
Outer[Times,norml[[i]],norml[[i]]], 
{i, 1,Length[norml]} ] ; 

sigEDBFM//MatrixForm 

0.0000118256      0.0226168 -0.048844 

0.0226168 43.2556 -93.4161 
-0.048844 -93.4161 201.744 

66 



Calculate the eigenvalues and eigenvectors: 

{evals,evects} = Eigensystem[sigEDBFM/Length[norml]]; 

evals 
-19 

{1., 4.14499 10  , 0.} 
T[evects]//TableForm 

0.000219699  -0.0000319298  -1. 
0.420182    0.90744      0.0000923136 
-0.90744    0.420182      -0.000199363 

Calculate saliencies: 

sal = (T[evects]"2).evals 

-8 
{4.82676 10     ,   0.176553,   0.823447} 

A3     Mathematica Code 

This section lists the code for calculation of the gradients and determination of nearest 

neighbors. 

The derivative of the sigmoid function: 

dsig[x_] := Evaluate[D[sigmoid[x],x]] 

dsigo[x_] := Evaluate[D[sigmoido[x],x]] 

The gradient of the output 

delY[x_] := 
Module[ 
{zh}, 
zh = Join[sigmoid[wl.Join[x,{1}]], {1}] ; 

T[ 
Take[ 

T[ 
dsigo[ w2.zh]*w2. 
Join[ 
dsig[wl.Join[x,{1}]]*wl, 

{Table[0,{j,Length[x]+l]]}] 

67 



Length[x] 

] 
' ]] 

The function which finds the decision boundary point: 

intersect[ptl_,pt2_,f_] := 

Modulef{x,u,v}, 

v = pt2 - ptl; 
x[u_] := u v + ptl; 

x[t] /. FindRoot[f[x[t]], {t,0,l}] 

] 

Find the closest member of the opposite class. This is done by installing a MathLink 

extension. 

Install["find_nearestl"]; 

The template and code for find_nearestl 

: Begin: 

:Function:      find_nearest 

:Pattern:       FindNearest[x_?MatrixQ,y_?MatrixQ] 

:Arguments:      {x,y} 

:ArgumentTypes:   {Manual} 

:ReturnType:     Manual 

:End: 

#include "mathlink.h" 

#include "stdlib.h" 

void fmd_nearest(void)  { 

long     *x_dimensions; 

char     **x_heads; 

long     x_depth; 

double *x_data; 

68 



long  *y_dimensions; 

char  **y_heads; 

long  y_depth; 

double *y_data; 

int   i, j, k; 

double* best; 

double dist; 

double old_dist; 

double t; 

double* tptr; 

double *tdata; 

MLGetDoubleArray(stdlink, &x_data, &x_dimensions, 

&x_heads, &x_depth); 

MLGetDoubleArray(stdlink, &y_data, &y_dimensions, 

&y_heads, &y_depth); 

tdata = 

(double*)malloc(sizeof(double)*x_dimensions[0]*x_dimensions[1]) ; 

if (!tdata) DebugStr("\pmemory allocation failed"); 

/* go thru the entire list determining the closest y vector 

to each x vector. Store only a pointer to the y_vector here, 

will store in an array when done */ 

for(i=0; i<x_dimensions [0]; i++) {/* go thru each x vector */ 

old_dist = 100000000000.; 

for(k = 0; k<y_dimensions [0]; k++) {/*go thru each y vec */ 

dist = 0; 

for(j=0; j<x_dimensions[l]; j++) { 

69 



/* go thru each element */ 

t = x_data[ j + i * x_dimensions[1]] - 

y_data[ j + k * x_dimensions[1]]; 

dist += t*t; 

} /* j loop */ 

if (dist < old_dist) { 

old_dist = dist; 

tptr = &(y_data[ k * x_dimensions [1] ]); 

} /* if V 

} /* k loop */ 

/* store the nearest y vector in the return array */ 

for(j=0; j<x_dimensions[1]; j++) 

tdata[j + i * x_dimensions[1]] = tptr[j]; 

} /* i loop */ 

/* return the array */ 

MLPutDoubleArray(stdlink, tdata, x_dimensions, x_heads, 2) 

/* clean up */ 

free(tdata); 

MLDisownDoubleArray(stdlink, x_data, 

x_dimensions, x_heads, x_depth); 

MLDisownDoubleArray(stdlink, y_data, 

y_dimensions, y_heads, y_depth); 

} 

int main(argc, argv) 

int arge; char* argv[]; 

70 



{ 

return MLMain(arge, argv); 

} 

71 



Appendix B. Annotated LNKmap Example 

B.l    Introduction 

This appendix provides an annotated example of the use of the Unix LNKmap function 

mapping software. This example is taken from the pairwise subset enumeration runs discussed 

in Chapter IV. All of the commands and functions used here are documented either in online 

man files or in the LNKnet User's Guide. The intent here is not to create a reference manual, 

but instead to provide an example and highlight the important details. 

B.2    File Set Up 

After preprocessing the data as discussed in Chapter III and creating the full data matrix, 

Awk can be used to extract the columns of interest for a particular run. For this example the 

RSI and 10 day stochastics subsets will be used to train a network. The Awk program file to 

extract the indicators from the full data matrix is: 

{print $1,$8,$9,$10,$11,$16,$17,$18,$19,$20,$21} 

This extracts the numbered columns from the master data matrix. Assuming this program is 

stored in the file rlO.awk, the program can be executed on the master training and test data 

matrices with: 

awk -frlO master.train >sandp.train 
awk -frlO master.test > sandp.test 

In addition LNKmap requires defaults files sandp.train.defaults and sandp.tesLdefaults. 

For this example the sandp.train.defaults file contains: 

describe -ninputs 10 -noutputs 1 -npatterns 800 -map 

This indicates that there are 800 patterns of 10 features with a single output and that the 

mapping mode is invoked. The test.defaults file differs only in the number of patterns, 300 

instead of 800. 

72 



A directory is created for each run, and the data and defaults files are stored in this 

directory. The directory used for this example is sandplO. 

B.3   Run Files 

The executable file which begins training of the neural network is: 

set loc='pwdv 

(time mlpm \ 

-train -create -pathexp $loc -ferror sandpmlpm.err.train \ 
-fparam sandpmlpm.param\ 
-pathdata /tmp_mnt/home/hawkeye6/95m/jastewar/LNKmap/sandp4 \ 
-finput sandp.train\ 
-fdescribe sandp.train.defaults -nraw 10 \ 
-npatterns 800 -fnorm sandp.norm.none\ 
-cross_valid 0 -fcross_valid sandp.train.cv -seed 1 \ 
-debug 0 -verbose 3\ 
-verror 0 -nodes 10,10,1 -alpha 0.8 -etta 0.01 \ 
-epsilon 0.1 -kappa 0.01\ 
-decay 0 -tolerance 0.001 -hfunction 0\ 
-ofunction 1 -param 3.0 -epochs 12000\ 
-batch 1,1,0 -init_mag 0.1 -random ) \ 
|& nn_tee -h sandpmlpm.log 

echo "current directory:" » sandpmlpm.log 
echo $loc » sandpmlpm.log 

The main program is mlpm. The options are all described in the man pages for classifier, 

mapper or mlp. The -nodes option is the network architecture, in this case, the network will 

have 10 inputs, 10 hidden nodes and 1 output node. The parameters - alpha and - etta are the 

backpropagation momentum and stepsize respectively. The - epochs option determines when 

training stops. In this example, training will cease after 12000 passes through the training 

data have occurred. Tins run file is normally held in a script file and executed by typing the 

file name. When the training file is executed, it echoes the training root means square error 

for each epoch to the screen and a log file. The rmse can be monitored to ensure that learning 

is taking place. 

73 



It is much faster to modify the script file to try different step sizes or a different 

architecture than to use the graphic interface provided by LNKmap. Also, by creating multiple 

directories with data files and scripts set up for different runs, it is possible to use multiple 

workstations simultaneously to accomplish training and testing of different data sets. The 

graphic interface is useful for setting up the initial run and creating the script files, but after 

the files are created modifying the script files is more efficient than using the interface. In 

addition, modification of the script run files can be automated with other Unix tools. 

When training is complete, the weights are frozen and a test run on both the training and 

the test set should be accomplished. The script file for testing is the same as the training script 

above, except the -create and -train options are omitted, as the network parameters are 

read from a parameter file. The -finput option must be changed to reflect either the training 

or the test set and - verror should be set to 1 to create a listing of the network outputs for 

each input. The rmse errors for each set are written to the screen and a log file. 

B.4    Summary 

This appendix has presented an overview of using the LNKmap software to do neural 

network based function mapping. 

74 



Bibliography 

1. Atkinson, Kendall E. An Introduction to Numerical Analysis (second Edition). New 
York: John Wiley and Sons, 1989. 

2. Azoff, E. Michael. Neural Network Time Series Forecasting of Financial Markets. New 
York: John Wiley and Sons, 1994. 

3. Becker, John D. "Value of oscillators in determine price action," Futures (May 1994). 

4. Brockwell, Peter J. and Richard A. Davis.  Time Series: Theory and Methods. New 
York, New York: Springer-Verlag, 1991. 

5. Casdagli, Martin. "Chaos and Deterministic versus Stochastic Non-linear Modelling," 
Journal of the Royal Statistical Society B, 54(2):303-328 (1991). 

6. Dillon, William R. and Matthew Goldstein. Multivariate Analysis, Methods and Appli- 

cations. New York: John Wiley and Sons, 1984. 

7. Etzkorn, Mark. "Getting an indication," Futures (February 1995). 

8. Farmer, J. Doyne and John J. Sidorowich. "Predicting Chaotic Time Series," Physical 

Review Letters, 59(8):845-848 (1987). 

9. Foley, D.H. "Considerations of Sample and Feature Size," IEEE Transactions on Infor- 

mation Theory, iS:618-626 (September 1972). 

10. Garza, R. E., et al. "Neural Estimation and Embedology for Time Series Prediction." 
Proceeeding of the 1995 SPIE Conference on Applications and Science of Artificial 

Neural Networks. 1995. Submitted for publication. 

11. Garza, Robert E. Embedology and Neural Estimation for Time Series Prediction. MS 
thesis, Air Force Institute of Technology, 1994. 

12. Grassberger, Peter and Itamar Procaccia. "Measuring the Strangeness of Strange Attrac- 
tors," Physica D, 9:189-208 (1983). 

13. Haesloop, Dan and Bradley R. Holt. "Neural Networks for Process Identification." 
Proceedings of the International Joint Conference on Neural NetworksIII. 429-434. 
1990. 

14. Kennel, Matthew B. and Henry D. I. Abarbanel, "False Neighbors and False Strands: 
A Reliable Minimum Embedding Dimension Algorithm." unpublished, anonymous ftp 
from Lyapunov.ucsd.edu. 

15. Kennel, Matthew B. and Henry D. I. Abarbanel. "Local False Nearest Neighbors and 
Dynamical Dimensions from Observed Chaotic Data," Physics Review E, 47:3057-3068 
(1993). 

16. Lee, Chulhee and David A. Landgrebe. "Decision Boundary Feature Extraction for 
Nonparametric Classification," IEEE Transactions on Systems, Man and Cybernetics, 
23(2):433-444(1993). 

75 



17. Lee, Chulhee and David A. Landgrebe. "Feature Extraction Based on Decision Bound- 
aries," IEEE Transactions on Pattern Analysis and Machine Intelligence, 75(4): 3 8 8-400 
(1993). 

18. Lee, Samuel E. and Bradley R. Holt. "Regression Analysis of Spectroscopic Process Data 

Using a Combined Architecture of Linear and Nonlinear Artificial Neural Networks." 
Proceedings of the International Joint Conference on Neural NetworksPV. 549-554. 

1992. 

19. Longinow, Nicholas E. "Predicting Pilot Look-Angle With a Radial Basis Function 

Network," IEEE Transactions on Systems, Man and Cybernetics, 24(10): 1511-1518 
(1994). 

20. Makridakis, Spyros, et al. Forecasting: Methods and Applications (second Edition). 

New York: John Wiley and Sons, 1983. 

21. Pao, Yoh-Han. Adaptive Pattern Recognition and Neural Networks. Reading, Mas- 

sachusetts: Addison-Wesley, 1989. 

22. Priddy, K. L., et al. "Bayesian Selection of Important Features for Feedforward Neural 
Networks," Neurocomputing (1992). 

23. Rogers, Steven K. and Mathew Kabrisky. An Introduction to Biological and Artificial 

Neural Networks for Pattern Recognition. Bellingham, Washington: SPJ£ Optical 

Engineering Press, 1991. 

24. Ruck, Dennis, et al. "Feature Selection Using a Multilayer Perceptron," Journal of 

Neural Network Computing, 2(2):40-48 (1990). 

25. Rumelhart, D.E., et al. "Learning Internal Representations by Error Propagation." 
Parallel Distributed Processing: Explorations in the Microstructures of Cognition 1, 

edited by D.E. Rumelhart and J.L. McClelland, MIT Press, 1986. 

26. Sauer, Tim. "Time Series Prediction by Using Delay Coordinate Embedding." Time Se- 

ries Prediction: Forecasting the Future and Understanding the Past edited by Andreas S. 
Weigend and Neil A. Gershenfeld, 175-193, Addison-Wesley, 1994. 

27. Steppe, Jean M. Feature and Model Selection in Feedforward Neural Networks. PhD 
dissertation, Air Force Institute of Technology, 1994. 

28. Stright, James R. A Neural Network Implementation of Chaotic Time Series Prediction. 

MS thesis, Air Force Institute of Technology, 1988. 

29. Stright, James R. Embedded Chaotic Time Series: Applications in Prediction and 

Spatio-Temporal Classification. PhD dissertation, Air Force Institute of Technology, 
1994. 

30. Takens, Floris. "Detecting strange attractors in turbulence." Dynamical Systems and 

Turbulence, Warwick 1980, Lecture Notes in Mathematics 898, edited by D. A. Rand 

andL. S. Young. 366-381. Springer-Verlag, 1981. Printed in Germany. 

76 



31. Tarr, G. L. Multi-Layered Feedforward Neural Networks for Image Segmentation. PhD 
dissertation, Air Force Institute of Technology, 1991. 

32. Theiler, James. "Estimating fractal dimension,"7owr«a/ of the Optical Society of America 

A, 7(6): 1055-1073 (1990). 

33. Theiler, James, et al. "Testing for nonlinearity in time series: the method of surrogate 
data," Physica D, 58:11-94 (1992). 

34. Waibel, Alexander, et al. "Phoneme Recognition Using Time-Delay Neural Networks," 
IEEE Transactions on Acoustics, Speech, and Signal Processing, J7(3):328-339 (1989). 

35. Wan, Eric A. "Time Series Prediction by Using a Connectionist Network with Internal 
Delay Lines." Time Series Prediction: Forecasting the Future and Understanding the 

Past edited by Andreas S. Weigend and Neil A. Gershenfeld, 195-218, Addison-Wesley, 
1994. 

36. Weigend, Andreas S. and Neil A. Gershenfeld. Time Series Prediction: Forecasting the 

Future and Understanding the Past. Reading, Massachusetts: Addison-Wesley, 1994. 

37. Yule, G. "On a Method of Investigating Periodicity in Disturbed Series with Special 
Reference to Wolfer'sSunspot Numbers," Phil. Trans.Roy. Soc, A(226):267-298 (1927). 

77 



Vita 

Capt James A. Stewart was bom at Laughlin AFB, Texas on 22 November, 1962. 

He graduated from high school in Hondo, Texas in 1981, and received a bachelors degree in 

Aerospace Engineering from the University of Texas at Austin in 1985. He was commissioned 

through the Air Force Reserve Officer Training Corps at the University of Texas. Upon 

graduation he made a short visit back to Laughlin AFB, in an unsuccessful attempt to become 

a pilot. He then moved to Mather AFB, California to attend Undergraduate Navigation 

Training, which he completed in December 1986. After a three month visit to Castle AFB, 

California for KC-135 Combat Crew Training School, he was assigned to Plattsburgh AFB, 

New York from 1987 until 1993 as a KC-135 navigator. He entered the Masters program in 

the School of Engineering, Air Force Institute of Technology in August, 1993. 

James married the former Janis R. Lents in 1983, and they have four children, Amanda, 

Tristan, Elizabeth, and Trevor. 

Permanent address:   HCR 2, Box 67 
Yancey, TX 78886 

78 


