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Nonlinear Transforms of ECG Signals for Digital 
QRS Detection: A Quantitative Analysis 

Seth Suppappola and Ying Sun 

Abstruct- A class of algorithms has been developed which detects 
QRS complexes in the electrocardiogram (ECG). The algorithms employ 
nonlinear transforms derived from multiplication of backward differences 
(MOBD). The algorithms are evaluated with the American Heart Asso- 
ciation ECG database, and comparisons are made with the algorithms 
reported by Okada and by Hamilton and Tompkins. The MOBD al- 
gorithms provide a good performance tradeoff between accuracy and 
response time, making this type of algorithm desirable for real-time 
microprocessor-based implementation. 

I. INTRODUCTION 
Since the 4 R S  complex marks the beginning of the left ventricular 

contraction, detection of this event has many clinical applications. 
With the rapid growth of computer technology. more and more 
medical instruments nowadays are microprocessor based. And in 
particular, digital Q RS detection systems offer many advantages 
over analog platforms [I]. 

The purpose of this study is to characterize the role of nonlinear 
transforms in the QRS detection algorithms. The task is made 
difficult by the infinite number of possible forms for nonlinear 
operations and the lack of an effective mathematical tool for the 
analysis of nonlinear operations in the time domain.’ We approach 
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systems and has very limited applications to this problem. 

this problem by 1) evaluating the effects of a group of nonlinear 
transforms on C) RS detection with the American Heart Association 
(AHA) ventricular arrhythmia ECG database and 2 )  comparing our 
detection algorithms to two other algorithms reported in the literature. 

11. QRS DETECTION ALGORITHMS 

There are three QRS detection algorithms under investigation: 1 ) 
The multiplication of backward difference (MOBD) algorithms [ I ] ,  
which we propose: 2) the Okada algorithm [2], selected due to its 
fast response; and 3) the Hamilton-Tompkins algorithm [3], chosen 
for its high accuracy. 

The Okada algorithm and the Hamilton-Tompkins algorithm 
among other algorithms perform a squaring of the backward 
difference of the signal or compute an approximation to the actual 
derivative via a differentiating filter. The motivation for using such 
a procedure is derived from the inherent characteristic of the QRS 
complex to have high frequency content relative to the rest of the 
ECG. The difference or derivative of the QRS hence yields a larger 
value than that of the remainder of the signal. A squaring operation 
exploits this feature by amplifying the larger differences more than 
smaller differences, yet doing so in an exponential fashion. 

The MOBD algorithms take the exploitative capabilities of squar- 
ing one step further [ I ] .  Instead of squaring the difference, these 
algorithms multiply successive differences together. In doing so, more 
information indicating the occurrence of a ()RS complex is utilized. 
This is the case since not only does the QRS complex have a high 
frequency content, but it is also characterized by large amplitude. 

111. NONLINEAR TRANSFORMATION 
All of the nonlinear transforms operate on some form of the 

derivative of the ECG. These nonlinear transforms are described as 
follows. We shall use y [ t ~ ]  for the resulting nonlinear transformation 
at time 1 1 .  

A. MOBD: 
Let . r [ t ! ]  denote the first-order backward difference at time I I  

. ( . [ I ! ]  = I / [ t , ]  - I / [ t I  - 11 (1) 

where ( / [ ) I ]  is the ECG data sample. We define the Sth-order MOBD 
nonlinear transform as 

\ - I  

y[Jt ]  = n I.r[// - k]I .  ( 2 )  

Furthermore, if the sign consistency contraint is imposed, y[n] is 
forced to be zero if the backward differences are not in agreement 
with respect to sign. That is, 

A =o 

y[n] =O. if \gn( .r[ t i  - k ] )  # yyi( .r[tj  - ( k  + I ) ] ) .  
A* =0. 1. ’ ‘ ’ ..Y - 2 (3) 

where sgii ( x )  is the signum function, returning &l according to the 
sign of .r and 0 at the discontinuity at the origin. 

Henceforth, we use the shorthand notation MOBD( r), with -Y 
indicating the order of the nonlinear transform, followed by the words 
“sign consistent“ if the sign consistency constraint is imposed. 

B .  Okada: 
The Okada algorithm 121 uses as its “derivative” the difference 

between the low-pass filter preprocessing stage output . r ~ p l  [ t t ]  and 
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a geometric mean of these outputs ; i ; ~ p ~ [ n ]  centered about n .  The 
nonlinear transform it uses is 

Y[n] = ( , r L P F [ n ]  - Y I , P F [ ) 1 ] ) 2 .  (4) 

C. Hamilton-Tompkins: 
The Hamilton-Tompkins algorithm [3] computes an approximation 

to the derivative using an FIR filter, the output of which we denote 
.rrlcr[n].  The nonlinear transform it uses is 

Note that in all the algorithms, the resulting transform is either 
positive or 0; therefore all waveforms undergo a type of full-wave 
rectification. The polarity of the ECG waveform hence becomes 
irrelevant. Thus the transformation can be viewed as a measure of 
QRS complex signal energy, thereby permitting easy comparison of 
this value (or a processed form of it) to a threshold to determine if 
the amount of “energy” is sufficient to have resulted from a QRS 
complex. 

IV. DECISION PROCESS 
All of the detectors in this study implement, as their final decision 

stage, a thresholding operation, essentially comparing the processed 
ECG signal to a threshold, which when surpassed results in an attempt 
for the detector to assert that a QRS complex has occurred. All the 
detectors implement a refractory period as well, which is a period 
of latency immediately following a QRS detection in which no 
additional detection may occur, even if the threshold is exceeded. 
This condition is justly applied due to a physiological constraint 
imposed by the refractory period of the cardiac muscle itself. Of 
the three types of algorithms, the Okada algorithm implements the 
least number of heuristic conditionals; however, it is not the least 
mathematically intensive. The Hamilton-Tompkins algorithm is, by 
far, the most complex of the three. It implements extensive filtering 
and an intricate decision process with many conditionals. Compared 
to the other algorithms, the MOBD algorithm processes the ECG 
with the least amount of computation. 

Conceptually, the flow of the MOBD algorithm is as follows: 1) 
quantize the data to fewer bits. 2) Compute the processed signal 
based on the MOBD nonlinear transforms. 3) Decrement, by half, a 
time-decaying adaptive threshold, but not to the extent that it decays 
below the average noise level. This is done every 100 ms beginning 
with the culmination of the latest refractory period. 4) Compare the 
processed signal to the adaptive threshold. If exceeded, and not in 
the refractory period, then assert that a QRS complex has occurred 
and enter the refractory period (100 ms). 5 )  Outside the refractory 
period, the geometric mean of the processed signal is computed as a 
measure of the noise in the ECG for the current RR interval. This 
mean value is then added to half the average noise level to yield 

period, reset the adaptive threshold to the maximum of the processed 
signal that occurred during the refractory period. 

The order of the MOBD nonlinear transform is dependent on the 
sampling frequency. As of yet, we do not have a quantitative way 
to choose the optimal order, and must do so via experimentation. 

250-Hz sampling frequency as this is the sampling frequency of the 
AHA ECG database. 

I the new average noise level. 6) At the termination of the refractory 

I Thus we restrict the discussion in this paper to the performance at a 
i 

V. PERFORMANCE EVALUATION 
To analyze and compare the various algorithms in an unbiased 

fashion, the entire content of the American Heart Association Ventric- 
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Fig. 1 .  Receiver operating characteristics for MOBD algorithms. 

ular Arrhythmia Database (AHA ECG database) is used. The digital 
version of the AHA ECG database contains over 40 h of annotated 
dual-channel ECG recordings quantized to 12 bits at 250 Hz. In this 
study the two channels are treated as independent; all algorithms 
operate on a single stream of data. In other words, the correlation 
between the two channels is not exploited as an effort to increase 
the effectiveness of QRS detection. An analysis software developed 
on an IBM PC compatible computer is used to run each algorithm 
through the entire database. Both the algorithms and the analysis 
software are implemented in the C language. 

The analysis software operates in an automated fashion. The 
performance statistics are accumulated based on a valid detection 
interval (VDI), which begins 50 ms before and ends 100 ms after the 
annotation time mark [I] .  To avoid penalizing an algorithm with a 
slow response, the VDI is shifted by the processing delay for each 
algorithm. We have experimentally measured the average detection 
delay: 12 ms for the MOBD(4) sign consistent algorithm, 38 ms 
for the Okada algorithm, and 312 ms for the Hamilton-Tompkins 
algorithm. 

If the algorithm fails to assert that a QRS complex has occurred 
at some point within the VDI, a false negative (FN) is declared. If 
the algorithm asserts that a QRS complex has occurred outside the 
VDI, a false positive (FP) is declared. Furthermore, a detector is 
allowed to assert the presence of a QRS complex only once during 
a VDI; otherwise, an FP will be declared for each extra detection. 
The receiver operating characteristics (ROC) curve [4] is established 
by plotting the true detection rate (TDR) versus the false detection 
rate (FDR), where TDR is given by 1 minus the FN rate and FDR 
is given by the FP rate. The quantization level is the variable along 
each ROC curve. The quantization level can be considered as a gain 
factor. The original quantization level of the AHA ECG database 
is 12 bits. By dropping bits of the sampled data from the least 
significant side (shifting right), the equivalent effect of decreasing 
input gain is created. The upper-left comer of the ROC plot (where 
TDR = 1 and FDR = 0) gives the optimal detection performance. 
An algorithm that has the ROC curve closer to the upper-left comer 
is considered a better algorithm than one that has the ROC curve 
farther away from the upper-left comer. Along the same ROC curve 
performance tradeoffs between FP’s and FN’s can be made. To obtain 
a single index related to the accuracy of QRS detection, we use a 
detection error rate defined by weighting FP’s and F”s  equally, i.e., 
the % detection error is given by the sum of the FF’ rate and the 
FN rate. 

I 
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Fig. 2. Detection results (tape 4207, channel I )  from MOBD(4) sign consistent, Okada, and Hamilton-Tompkins algorithms. 

TABLE I 
MINIMUM ERROR RATE 

Algorithm Data Bits FP FN % Error Ratet 

7 11633 13253 6.94 MOBD(4) sign 
consistent 
Okada 12 13066 26510 11.04 
Hamilton-Tompkins 12 6746 7068 3.85 
tTotal beats analyzed: 35855 I .  

0.00 0.01 0.02 0.03 0.04 0.05 
False Detection Rate 

Fig. 3. 
Okada, and Hamilton-Tompkins algorithms. 

Receiver operating characteristics for MOBD(4) sign consistent. 

VI. RESULTS 
In Fig. 1 the ROC curves are established for three MOBD algo- 

rithms as the quantization level varies between 6 and 12 bits. It also 
shows that the MOBD(4) sign consistent algorithm gives the best 
performance around 8-bit quantization and is superior to the rest of 
the MOBD algorithms. 

In Fig. 2, a particularly noisy segment of ECG is shown to compare 
the noise rejection capability among the three different algorithms. 
Notice that the Okada algorithm, showing many FP’s, is relatively 
susceptible to noise. In Fig. 3 the ROC curves are shown for the 
three algorithms. It shows that the best quantization for the MOBD, 
Okada, and Hamilton-Tompkins algorithms are 7, 12, and 12 bits, 
respectively. At their best performance points, the accuracy ranking, 
from best to worst, is Hamilton-Tompkins, MOBD, and Okada (see 
Table I for performance statistics). 

The time required to pass the entire ECG database, one channel at a 
time, through each of the detection algorithms was 6.1 h for MOBD, 
10.4 h for Okada, and 9.2 h for Hamilton-Tompkins. The analysis 
overhead including accessing the database and tallying the statistics 
was estimated to be 4.7 h. Thus the relative computational complexity 
was 1 .0 for MOBD, 4.1 for Okada, and 3.2 for Hamilton-Tompkins. 
While only integer (16-bit) operations were used in the MOBD 
algorithm, long integer (32-bit) operations were necessary for both 
the Okada and the Hamilton-Tompkins algorithms. 

VII. DISCUSSION 
From the preceding results, it is clear that of the three real- 

time QRS detection algorithms investigated in this study, no single 
algorithm proves to be preeminent. We find that there is a tradeoff 
between response time and accuracy. To make a decision about the 
presence of a QRS complex in real time, it is obviously less accurate 
to observe the ECG waveform only up to the peak of the QRS 
complex than to observe the entire appearance of the QRS complex. 
In other words, accuracy is gained by gathering more information 
at the sacrifice of response time. The Hamilton-Tompkins is most 
accurate with a 4% detection error; however, it suffers from a very 
slow response with the detection point at an average of 312 ms after 
the onset of the R-wave. The MOBD(4) sign consistent algorithm 
shows a 7% detection error and the fastest response with a 12- 
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ms response time. The Okada algorithm does not prevail in either 
category, with an 11% detection error and a 36-ms response time; it 
is, however, the easiest one to implement. As to the computational 
complexity. the Okada algorithm is 4. I times higher than the MOBD 
algorithm; the Hamilton-Tompkins is 3.2 times higher than the 
MOBD algorithm. 

A very interesting characteristic of the MOBD algorithm is that, 
to an extent, it uses the quantization effect for improving the signal 
to noise ratio and consequently, reduces the adverse effects of the 
noisy differencing operation. As shown in Fig. 3, the Okada algorithm 
primarily works with 12-bit quantization; its performance degrades 
drastically with fewer bits. The Hamilton-Tompkins algorithm was 
found to maintain good performance for quantization between 8 and 
12 bits, with its best performance at 12 bits. In contrast, the best 
performance for the MOBD algorithm is with 7-bit quantization. As 
the number of bits increases, in all three cases, the number of FP’s 
increases. This is not unusual because we could easily achieve 0 FP’s 
by quantizing all the data to 0 bits (i.e.. no signal). However, the 
analogy is not true for FN’s. In the Okada and Hamilton-Tompkins 
algorithms, as the number of data bits increases, the number of F ” s  
decreases. This is the intuitive result, as more data bits implies less 
quantization error and, thus, a more accurate representation of the 
ECG signal. In contrast. with the MOBD algorithm, as the number 
of bits increases, the number of FN’s decreases to a point, but then 
increases drastically. 

The MOBD algorithm’s preference of fewer data bits can be 
exploited to increase the dynamic range of QRS detection. This can 
be accomplished by an implementation analogous to an automatic 
gain control: With “normal” input magnitude of the ECG signal, five 
right shifts are performed to reduce the sample word length from 12 to 
7 bits. When the input magnitude decreases, the number of right shifts 
is decreased accordingly to maintain the desirable quantization level. 
An increase of the dynamic range by 30 dB is therefore achieved. 

This study provides a quantitative analysis of using an unconven- 
tional nonlinear transform, multiplication of backward differences, 
in the context of QRS detection. The MOBD algorithm shows an 
extremely fast response and a reasonable accuracy; it should be 
suitable for those real-time applications in which detection of the 
presence of the Qn.5 complex must be made while i t  is occurring. 

A CMOS Integrated Circuit for 
Multichannel Multiple-Subject Biotelemetry 
Using Bidirectional Optical Transmissions 

Shoji Kawahito, Susumu Ueda, Makoto Ishida, 
Tetsuro Nakamura, Shiro Usui and Shunji Nagaoka 

Abstract- A CMOS integrated circuit for a noninvasive biological- 
signal telemetry system specified for use in medical and physiological 
studies of the influence of weightlessness in space is presented. The 
system can monitor multichannel (4 channels maximum) biological signals 
from multiple subjects (4 subjects maximum) in real time by using time 
multiplexing. A key technique, so-called synchronized multiple-subject 
telemetry, to achieve multiple-subject telemetry has been proposed. This 
technique utilizes bidirectional optical transmissions with direct and 
scattered infrared lights between an observer and each of the subjects. 
An experimental CMOS IC to give a small light-weight low-power, and 
smart telemetry instrument for use on animals has been developed. This 
IC is for evaluating circuit blocks of the implantable monolithic telemetry 
instrument. The major circuit blocks include CMOS digital circuits for 
synchronization, subject selection and time multiplexing, analog circuits 
for pulse interval modulation (PIM), and other blocks such as a CMOS 
optical pulse receiver and an LED driver. A preliminary experimental 
multichannel telemetry from two subjects has been performed with the 
implemented IC chips, and the principal operation of the multiple-subject 
optical biotelemetry has been demonstrated. 

I. INTRODUCTION 

As space development advances, the continuous noninvasive moni- 
toring of the physiological state of human or animal subjects becomes 
increasingly important not only for astronautics, but also with regard 
to studies of the effect of weightlessness. The development of a 
noninvasive physiological-state monitoring system, or biotelemetry 
system, is intensively required for supporting such a study [ l ] ,  [2], 
[3]. The biotelemetry system used in space should meet the following 
requirements: 

1) it should utilize small light-weight low-power equipment for 
use with small animals; 

2) it should provide telemetry of multichannel biological sig- 
nals from multiple subjects when we consider that there are 
differences between individual animals [2]; 

3) noninvasive monitoring must be possible; and 
4) it is desired to be electromagnetic interference free. 
In order to meet these requirements, the application of microelec- 

tronics is essential especially from the viewpoint of realizing small 
light-weight and low-power implantable telemeters. In fact, many 
IC-based implantable telemeters have been reported [4], [5]. The 
application of microelectronics is also attractive for realizing versatile 
telemeters. A multichannel telemeter is a typical example [6]. 

In this paper, we describe a CMOS integrated circuit specified for 
the aforementioned biotelemetry system. For the real-time monitor- 
ing multichannel biological signals from multiple animal subjects, 

REFERENCES 

[ I ]  Y. Sun, S .  Suppappola, and T. A. Wrublewski, “Microcontroller-based 
real-time QRS detection,” Biomed. Instrum. Technol.. vol. 26. no. 6, 
pp. 477484, 1992. 

[2] M. Okada, “A digital filter for the QRS complex detection,” IEEE 
Truns. Biomed. Eng., vol. BME-26, pp. 7OG703, 1979. 

[3] P. S. Hamilton and W. J. Tompkins. “Quantitative investigation of &RS 
detection rules using the MIT/BIH arrhythmia database,” IEEE Trans. 
Biomed. Eng., vol. BME-33. pp. 1157-1 165. 1986. 

141 0. Pahlm and L. Sommo. “Softwjare QRS detection in ambulatory 
monitoring-A review.” Mrd. B i d .  Eng. comput.. vol. 22, pp. 289-297, 
19x4. 

Manuscript received December IO. 1992; revised November 17, 1993. 
S. Kawahito and S. Usui are with the Department of Information and 

Computer Sciences, Toyohashi University of Technology, Toyohahi 44 I ,  
Japan. 

S. Ueda, M. Ishida and T. Nakamura are with the Department of Electrical 
and Electronic Engineering, Toyohashi University of Technology, Toyohashi 
441, Japan. 

S. Nagaoka is with the National Space Development Agency of Japan, 
Tokyo 105, Japan. 

IEEE Log Number 9401241. 

001 8-9294/94$04.00 0 1994 IEEE 


