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Nonlinear transient thermal analysis of a convective-radiative fin with functionally graded materials (FGMs) under the influence
of magnetic field is presented in this study.+e developed nonlinear thermal models of linear, quadratic, and exponential variation
of thermal conductivity are solved approximately and analytically using the differential transformation method (DTM). In order
to verify the accuracies of the nonlinear solutions, exact analytical solutions are also developed with the aids of Bessel, Legendre,
and modified Bessel functions. Good agreements are established between the exact and the approximate analytical solutions. In
the parametric studies, effects of heat enhancement capacity of fin with functionally graded material as compared to fin with
homogeneous material are investigated. Also, influence of the Lorentz force and radiative heat transfer on the thermal per-
formance of the fin are analyzed. From the results, it is shown that increase in radiative andmagnetic field parameters as well as the
in-homogeneity index improve the thermal performance of the fin. Also, the transient responses reveal that the FGM fin with
quadratic-law and exponential-law function shows the slowest and fasted thermal responses, respectively.+is study will provide a
very good platform for the design and optimization of an improved heat transfer enhancement in thermal systems, where the
surrounding fluid is influenced by a magnetic field.

1. Introduction

+e increasing demands for high-performance engi-
neering systems come with inherent increased heat gen-
eration in the thermal and electronics systems which
consequently lead to increased thermal damages. Effective
thermal management and dissipation of excess heat from
heat transfer components have been a major concern and
challenge in the design of the thermal and electronic
systems. In the quest for the thermal management of these
systems, the heat sink has proved to be an effective, passive
means of reducing the thermally induced failures by
enhancing heat dissipation from thermal systems and
electronics systems. Heat sinks are heat exchangers used

in dissipating heat from functional thermal systems to the
environment to ensure whether the device operates within
safe temperature limits. +e wide range of applications of
heat sinks in cooling different electronic and micro
electronics components such as the central processing
unit (CPU), high-power semiconductor devices, high-
power lasers, light-emitting diodes (LEDs), and sensi-
tive devices affirm its effectiveness as a passive mode of
cooling of thermal systems. +e improvement of the
thermal performance of heat sink and consequently en-
ergy saving in the thermal system is timely owing to
miniaturization in size of thermal systems, acoustic
control due to its destructive effects, and energy saving
using smaller fan size.
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To improve the thermal performance of cooling devices
using porous fin as a passive method for heat transfer
enhancement in thermal equipment, different authors have
proposed different innovative analysis and approach,
succeeding the pioneer of work of Kiwan and Al-Nimr [1]
and Kiwan [2–4] on the thermal performance analysis of
porous fin in the natural convection environment. Shalchi-
Tabrizi and Seyf [5] employed nanofluid and presented the
entropy generation and convective heat transfer in a micro
heat sink. Hashemi et al. [6] investigated the heat transfer
enhancement in a miniature heat sink using nanofluid,
while Hung et al. [7] presented a study on heat transfer
enhancement in micro channel heat sinks using nanofluids.
Seyf and Feizbakhshi [8] carried out a computational
analysis of nanofluid effects on convective heat transfer
enhancement of micro pin fin heat sinks, while Fazeli et al.
[9] investigated experimentally and numerically the heat
transfer in a miniature heat sink utilizing silica nanofluid.
However, other studies focus on the properties of con-
ventional airflow and features of channel cross section as
an approach to improve heat transfer enhancement in
heat sinks. In these studies, Kim and Mudawar [10] de-
veloped analytical heat diffusion models for different micro
channel heat sink cross-sectional geometries. Naphon et al.
[11] presented a numerical investigation of the heat
transfer flow in the minifin heat sink for CPU. Naphon and
Khonseur [12] studied the convective heat transfer and
pressure drop in the micro channel heat sink whilst Kim
and Kim [13] investigated fluid flow and the characteristics
of heat transfer in cross-cut heat sinks. Furthermore, the
effects of various geometries and airflow paths on the heat
sink performance have also been investigated in the pre-
vious literature. Hung et al. [14] analyzed the heat transfer
characteristics of the double-layered micro channel heat
sink. Wan et al. [15] presented an experimental analysis of
flow and heat transfer in a miniature porous heat sink for
high heat flux applications. Lelea [16] studied the effects of
inlet geometry on heat transfer and fluid flow of tangential
micro heat sink. Yu et al. [17] presented an enhanced heat
transfer study using a plate-pin fin heat sink. Chai et al. [18]
carried out a numerical simulation of fluid flow and heat
transfer in a micro channel heat sink with offset fan-shaped
reentrant cavities in sidewall. +e previous studies explored
the convective parameters around the heat sink while some
past research works employed the properties of the con-
ventional airflow, features of channel cross section, variable
geometries, and airflow paths to enhanced the heat sinks
thermal performance However, the use of materials with
changing composition, microstructure, or porosity across
the material volume has been proven to be an effective way
of improving the thermal performance of heat sink. Such
materials with varying electrical, chemical, mechanical,
magnetic, and thermal properties over the volume of the
bulk material are referred to as functionally graded ma-
terials (FGMs). +e continuous variations in properties in
the FGM along a specific axis could be based on the po-
rosity and pore size gradient structure, chemical gradient
structure, and microstructural gradient structure of the
FGM.

FGM was initially developed and used for high-
temperature applications in Japan during a space plane
project [19]. However, their effective thermal, physical,
chemical, and magnetic properties have paved ways for their
wide range of applications such as engine components, heat
shielding of satellites, thermal stress control of cylindrical
and spherical bodies, and vessels and several applications in
aerospace, automobile, and nuclear industries. Although
there are numerous studies in literature on cooling of
electronics components using heat sink [20–27], an in-depth
examination and review of the past works indicate to the best
of our knowledge that FGM has not been applied in heat
sinks except in [20]. Recent works on the applications of the
non-Fourier heat transfer in extended surfaces, transient
analysis of fins under dehumidification, and other optimi-
zation studies as well as the recent advancements in Leg-
endre polynomials have been well presented [28–47]. +us,
considering the significant capabilities and benefits of FGM
coupled with established enhanced heat transfer charac-
teristics of porous fins. However, different studies on the
thermal performance of fins with and without functionally
graded materials have been carried out. However, to the best
of the authors’ knowledge, a study on the transient thermal
analysis of fin with functionally graded materials is scarce.
+erefore, in this work, nonlinear transient thermal analysis
of a convective-radiative fin with functionally graded ma-
terials under the influence of magnetic field is presented.+e
developed nonlinear thermal models of linear, quadratic,
and exponential variation of thermal conductivity are solved
approximately and analytically using the differential trans-
formation method. +is method converges very fast and is
very efficient for the handling of both ordinary and partial
differential equations. However, when the domain of con-
vergence is at infinity, there is always a need to augment the
classical differential transform method with PADE
approximants, cosine and sine after treatments, domain
transformation, or multistep DTM. In order to verify the
accuracies of the nonlinear solutions, exact analytical so-
lutions are also developed with the aids of Bessel, Legendre,
and modified Bessel functions. +e effects of heat en-
hancement capacity of fin with the functionally graded
material as compared to fin with the homogeneous material
are investigated. Also, influence of the Lorentz force and
radiative heat transfer on the thermal performance of the fin
are analyzed.

2. Problem Formulation

Consider a heat sink made of FGM having length b and
thickness t exposed on both faces to a convective-radiative
environment at temperature T∞ as shown in Figure 1, as-
suming the fin medium is homogeneous, isotropic, and
saturated with a single-phase fluid. Moreover, the physical
properties of solid as well as fluid are considered as constant,
and the temperature variation inside the fin is one-
dimensional, i.e., temperature varies along the length only
and remain constant with time and there is no thermal
contact resistance at the fin base and the fin tip is an adi-
abatic type.
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Following the assumptions, the governing differential
equation is developed as

ρcp
zT

zt
� z

zx
k(x) zT

zx
( )− hP

A
T−Ta( )

− σεP
A

T4 −T4a( )− Jc × Jc
σA

.

(1)

But the Lorentz force can be written as

Jc × Jc
σ

� σB20u
2. (2)

After substitution of equation (2) into equation (1),
taking the magnetic term as a linear function of temperature,
we have

ρcp
zT

zt
� z

zx
k(x) zT

zx
( )− hP

A
T−Ta( )

− σεP
A

T4 −T4a( )− σB20u2
A

T−Ta( ).
(3)

Initial condition is stated as

t � 0, T � Ta, x> 0, (4)

while the boundary conditions are

t> 0, x � 0, zT

zx
� 0, t> 0, x � L, T � Tb. (5)

In most practical situations, the fin thickness at the end is
small that the heat transfer from the fin tip can be neglected
and solution can be obtained assuming fin is insulated at the
tip.+erefore, in this work, we assumed that the tip of the fin
is adiabatic/insulated.

In the present analysis, cases of linear, quadratic, and
exponential variation of thermal conductivity with the fin
length will be considered.

Linear variation of thermal conductivity with the fin
length:

k(x) � k0 1 + clx( ). (6)

Quadratic variation of thermal conductivity with the fin
length:

k(x) � k0 1 + cqx
2( ). (7)

Exponential variation of thermal conductivity with the
fin length:

k(x) � k0e
cix. (8)

It should be noted that when rapid cooling is required in
the domain of the FGM fin (such as in the condenser,
electronic devices, and CPU), FGMmaterials with quadratic
thermal conductivity variation may be applied. However, if
slow heat enhancement is required as in the fluidized bed,
exponential is advised. For an intermediate and moderate
heat transfer or enhancement process, linear thermal con-
ductivity variation will be useful.

Case 1. Linear variation of thermal conductivity with the fin
length:

ρcp

k0

zT

zt
� z2T

zx2
+ clx

z2T

zx2
+ cl

zT

zx
− hP
k0A

T−Ta( )
− σεP
A

T4 −T4a( )− σB20u2
k0A

T−Ta( ).
(9)

Case 2. Quadratic variation of thermal conductivity with the
fin length:

ρcp

k0

zT

zt
� z2T

zx2
+ cqx

2z
2T

zx2
+ 2cqx

zT

zx
− hP
k0A

T−Ta( )
− σεP
A

T4 −T4a( )− σB20u2
k0A

T−Ta( ).
(10)

Case 3. Exponential variation of thermal conductivity with
the fin length:

Radiation Convection

Conduction

b

x dx

h, Ta

Tb

Figure 1: Schematic diagram of heat transfer in a longitudinal fin with FGM.
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ρcp

k0

zT

zt
� ecixz

2T

zx2
+ cie

cix
zT

zx
− hP
k0A

T−Ta( )
− σεP
A

T4 −T4a( )− σB20u2
k0A

T−Ta( ).
(11)

In order to nondimensionalize the developed governing
equations, the following dimensionless parameters are used
in equations (9)–(11):

X � x
L
,

θ � T−Ta
Tb −Ta

,

τ � k0t

ρcpL
2
,

β � clL � ciL,

λ � βqL
2,

Nc2 � PLh
Ak0

,

Nr � 4σεPT
3
a

k0A
,

Ma2 � σB
2
0u
2

k0A
,

CT �
T∞

Tb −T∞
.

(12)

+en, the dimensionless forms of the governing equa-
tions (9)–(11) can be written as follows.

Case 1. Linear variation of thermal conductivity with the fin
length:

zθ

zτ
� z2θ

zX2
+ βX z2θ

zX2
+ β zθ

zX
−Nc2θ

−Nr θ + CT( )4 −C4T[ ]−Ma2θ � 0.
(13)

Case 2. Quadratic variation of thermal conductivity with the
fin length:

zθ

zτ
� z2θ

zX2
+ λX2 z

2θ

zX2
+ 2λX zθ

zX
−Nc2θ

−Nr θ + CT( )4 −C4T[ ]−Ma2θ � 0.
(14)

Case 3. Exponential variation of thermal conductivity with
the fin length:

zθ

zτ
� eβX z2θ

zX2
+ βeβX zθ

zX
−Nc2θ

−Nr θ + CT( )4 −C4T[ ]−Ma2θ � 0,
(15)

and the dimensionless initial and boundary conditions
are

τ � 0, θ � 0, X> 0, τ > 0, X � 0, zθ

zX
� 0, (16)

τ > 0, X � 1, θ � 1. (17)

Case 1. Linear variation of thermal conductivity with the fin
length:

zθ

zτ
� z2θ

zX2
+ βX z2θ

zX2
+ β zθ

zX
−Nc2θ−Nrθ4 − 4NrCTθ3

− 6NrC2Tθ
2 − 4NrC3Tθ−Maθ � 0.

(18)

Case 2. Quadratic variation of thermal conductivity with the
fin length:

zθ

zτ
� z2θ

zX2
+ λX2 z

2θ

zX2
+ 2λX zθ

zX
−Nc2θ−Nrθ4 − 4NrCTθ3

− 6NrC2Tθ
2 − 4NrC3Tθ −Maθ � 0.

(19)

Case 3. Exponential variation of thermal conductivity with
the fin length:

zθ

zτ
� eβX z2θ

zX2
+ βeβX zθ

zX
−Nc2θ−Nrθ4 − 4NrCTθ3

− 6NrC2Tθ
2 − 4NrC3Tθ−Maθ � 0.

(20)

3. Method of Solution for the Nonlinear
Thermal Models: Differential
Transform Method

+e developed nonlinear thermal models in equations
(18)–(20) are very difficult to solve exactly and analytically.
+erefore, a recourse was made to an approximation
analytical method, differential transform method. +e
basic definitions and the operational properties of the
method can be found in our previous study [48].

Case 1. Linear variation of thermal conductivity with the fin
length.

+e recursive relation for the linear variation of thermal
conductivity with the fin length given in equation (20) is

4 Modelling and Simulation in Engineering



(h + 1)θ[k, h + 1] �(k + 1)(k + 2)θ[k + 2, h] + β∑k
r�0
∑h
u�0

δ[r− 1, h− u](k− r + 1)(k− r + 2)θ[k − r + 2, u]

+ β(k + 1)θ[k + 1, h]− Nc2 +Ma2( )θ[k, h]

−Nr

∑k
r�0
∑k−r
s�0

∑k−r−s
t�0

∑h
u�0

∑h−u
v�0

∑h−u−v
w�0

θ[r, h− u− v−w]θ[s, u]θ[t, v]θ[k − r− s− t, w]+

4CT∑k
r�0
∑k−r
s�0
∑h
u�0

∑h−u
v�0

θ[r, h− u− v]θ[s, u]θ[k− r− s, w]+

6C2T∑k
r�0
∑h
u�0

θ[r, h− u]θ[k− r, w]+

4C3Tθ[k, h]





.

(21)

Using the recursive relation in equation (21), one arrives at

θ[2, 1] � σ +Ma
2σ

2
+Nc

2σ

2
+ 2NrσC3T,

θ[3, 1] � − 1
6
βσ 2 +Ma2 + Nc2 + 4NrC3T( ),

θ[4, 1] � {σ
4
+Ma

2σ

6
+Ma

4σ

24
+ Nc

2σ

6
+ 1

12
Ma2Nc2σ + Nc

4σ

24
+ β

2σ

12
+ 1

24
Ma2β2σ + 1

24
Nc2β2σ + 1

2
Nrσ2C2T +

2

3
NrσC3T

+ 1
3
Ma2NrσC3T +

1

3
Nc2NrσC3T +

1

6
Nrβ2σC3T +

2

3
Nr2σC6T},

θ[2, 2] � 2NrC3Tσ + 3C
2
TNrσ

2 + 1
2
Ma2σ + 1

2
Nc2σ + 3

2
,

θ[3, 2] � − 1
6
βσ 3 +Nc2 +Ma2 + 6NrσC2T + 4NrC

3
T( ),

θ[5, 1] � {− βσ
10
− 1
15
Nc2βσ − 1

60
Nc4βσ − β

3σ

60
− 1
120

Nc2β3σ − 1
15
βσMa2 − 1

30
Nc2βσMa2 − 1

120
β3σMa2 − 1

60
βσMa4

− 1
5
Nrβσ2C2T −

4

15
NrβσC3T −

2

15
Nc2NrβσC3T −

1

30
Nrβ3σC3T −

2

15
NrβσMa2C3T −

4

15
Nr2βσC6T}.

(22)

Case 2. Quadratic variation of thermal conductivity with the
fin length.

+e recursive relation for the quadratic variation of thermal
conductivity with the fin length given in equation (19) is

(h + 1)θ[k, h + 1] �(k + 1)(k + 2)θ[k + 2, h] + λ∑k
r�0
∑h
u�0

δ[r− 2, h− u](k− r + 1)(k− r + 2)θ[k − r + 2, u]

+ 2λ∑k
r�0
∑h
u�0

δ[r− 1, h− u](k− r + 1)θ[k− r + 1, u]− Nc2 +Ma2( )θ[k, h]

−Nr

∑k
r�0
∑k−r
s�0

∑k−r−s
t�0

∑h
u�0

∑h−u
v�0

∑h−u−v
w�0

θ[r, h− u− v−w]θ[s, u]θ[t, v]θ[k − r− s− t, w]+

4CT∑k
r�0
∑k−r
s�0
∑h
u�0

∑h−u
v�0
θ[r, h− u− v]θ[s, u]θ[k− r− s, w]+

6C2T∑k
r�0
∑h
u�0

θ[r, h− u]θ[k− r, w]+

4C3Tθ[k, h]





.

(23)
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With the aid of the recursive relation in equation (23), we
have

θ[2, 1] � σ +Ma
2σ

2
+ Nc

2σ

2
+ 2NrσC3T,

θ[3, 1] � 0,

θ[2, 2] � 3σ
2
+Ma

2σ

2
+ Nc

2σ

2
+ 3Nrσ2C2T + 2NrσC

3
T,

θ[3, 2] � 0,

θ[4, 1] � σ

4
+Ma

2σ

6
+Ma

4σ

24
+ Nc

2σ

6
+ 1

12
Ma2Nc2σ + Nc

4σ

24
+ 1
2
Nrσ2C2T +

2

3
NrσC3T +

1

3
Ma2NrσC3T +

1

3
Nc2NrσC3T +

2

3
Nr2σC6T{ },

θ[5, 1] � 0.
(24)

Case 3. Exponential variation of thermal conductivity with
the fin length.

+e recursive relation for the exponential variation of
thermal conductivity with the fin length given in equation (20) is

(h + 1)θ[k, h + 1] �∑k
r�0
∑h
u�0

βr

r!
δ[h− u](k− r + 1)(k− r + 2)θ[k− r + 2, u] + β∑k

r�0
∑h
u�0

βr

r!
δ[h− u](k− r + 1)θ[k − r + 1, u]

− Nc2 +Ma2( )θ[k, h]−Nr
∑k
r�0
∑k−r
s�0

∑k−r−s
t�0

∑h
u�0

∑h−u
v�0

∑h−u−v
w�0

θ[r, h− u− v−w]θ[s, u]θ[t, v]θ[k − r− s− t, w]+

4CT∑k
r�0
∑k−r
s�0
∑h
u�0

∑h−u
v�0
θ[r, h− u− v]θ[s, u]θ[k− r− s, w]+

6C2T∑k
r�0
∑h
u�0

θ[r, h− u]θ[k − r, w]+

4C3Tθ[k, h]




.

(25)
From the recursive relation in equation (25), one arrives at

θ[2, 1] � σ +Ma
2σ

2
+ Nc

2σ

2
+ 2NrσC3T,

θ[3, 1] � − 2βσ
3
− 1
3
Ma2βσ − 1

3
Nc2βσ − 4

3
NrβσC3T,

θ[2, 2] � 3σ
2
+Ma

2σ

2
+ Nc

2σ

2
+ 3Nrσ2C2T + 2NrσC

3
T,

θ[3, 2] � −βσ − 1
3
Ma2βσ − 1

3
Nc2βσ − 2Nrβσ2C2T −

4

3
NrβσC3T,

θ[4, 1] � {σ
4
+Ma

2σ

6
+Ma

4σ

24
+ Nc

2σ

6
+ 1

12
Ma2Nc2σ + Nc

4σ

24
+ β

2σ

4
+ 1
8
Ma2β2σ + 1

8
Nc2β2σ + 1

2
Nrσ2C2T +

2

3
NrσC3T

+ 1
3
Ma2NrσC3T +

1

3
Nc2NrσC3T +

1

2
Nrβ2σC3T +

2

3
Nr2σC6T},

θ[5, 1] � {− 3βσ
10
− 1
5
Ma2βσ − 1

20
Ma4βσ − 1

5
Nc2βσ − 1

10
Ma2Nc2βσ − 1

20
Nc4βσ − β

3σ

15
− 1
30
Ma2β3σ − 1

30
Nc2β3σ − 3

5
Nrβσ2C2T

− 4
5
NrβσC3T −

2

5
Ma2NrβσC3T −

2

5
Nc2NrβσC3T −

2

15
Nrβ3σC3T −

4

5
Nr2βσC6T}.

(26)

4. Development of Exact Analytical Solution for
the Linearized Thermal Models

In order to verify the accuracies of the nonlinear solutions
as developed in the previous sections, exact analytical
solutions are also developed. In order to do this, we

considered a case where the temperature difference within
the material during the heat flow is small. Under such
scenario, the adoption of temperature-invariant physical
and thermal properties of the fin and expression T4 as a
linear function of temperature can be done without any loss
of generality and accuracy:
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T4 � 4T3aT− 3T
4
a . (27)

On substituting equation (27) into equation (9), we
arrived at the following equation:

ρcp
zT

zt
� z

zx
k(x) zT

zx
( )− hP

A
T−Ta( )

− 4σεPT
3
a

A
T−Ta( )− σB20u2

A
T−Ta( ).

(28)

Upon substitution of equations (6)–(8) into equation (28)
and expanding the resulting equations, we have the following.

Case 1. Linear variation of thermal conductivity with the fin
length:

ρcp

k0

zT

zt
� z2T

zx2
+ clx

z2T

zx2
+ cl

zT

zx
− hP
k0A

T−Ta( )
− 4σεPT

3
a

k0A
T−Ta( )− σB20u2

k0A
T−Ta( ).

(29)

Case 2. Quadratic variation of thermal conductivity with the
fin length:

ρcp

k0

zT

zt
� z2T

zx2
+ cqx

2z
2T

zx2
+ 2cqx

zT

zx
− hP
k0A

T−Ta( )
− 4σεPT

3
a

k0A
T−Ta( )− σB20u2

k0A
T−Ta( ).

(30)

Case 3. Exponential variation of thermal conductivity with
the fin length:

ρcp

k0

zT

zt
� ecixz

2T

zx2
+ cie

cix
zT

zx
− hP
k0A

T−Ta( )
− 4σεPT

3
a

k0A
T−Ta( )− σB20u2

k0A
T−Ta( ).

(31)

Applying the nondimensionalize parameters in equation
(12) to equations (29)–(31), we obtain the dimensionless
forms of the linearized governing equations as given below.

Case 1. Linear variation of thermal conductivity with the fin
length:

zθ

zτ
� z2θ

zX2
+ βX z2θ

zX2
+ β zθ

zX
−Nc2θ−Nrθ−Ma2θ. (32)

Case 2. Quadratic variation of thermal conductivity with the
fin length:

zθ

zτ
� z2θ

zX2
+ λX2 z

2θ

zX2
+ 2λX zθ

zX
−Nc2θ−Nrθ−Ma2θ. (33)

Case 3. Exponential variation of thermal conductivity with
the fin length:

zθ

zτ
� eβX z2θ

zX2
+ βeβX zθ

zX
−Nc2θ−Nrθ−Ma2θ, (34)

and the dimensionless initial and boundary conditions are

τ � 0, θ � 0, X> 0, τ > 0, X � 0, zθ

zX
� 0, τ > 0, X � 1,

θ � 1.
(35)

4.1. Method of Solution Using Laplace Transform Method.
In order to provide closed-form solutions to the developed
equations, we adopted integral transforms using Laplace
transform. We first apply Laplace transform over the time
and then solve the resulting equation using Bessel, modified
Bessel, Legendre, and sign and gamma functions. +e
procedures are given as follows:

+e Laplace transform of a real function f(t) and its
inversion formulas are defined as follows:

F(s) � ∫∞
0
e−stf(t)dt,

f(t) � 1

2πi
∫s+i∞
s− i∞

e−stF(s) dt,
(36)

where s � a + ib(a, b ∈ R) is a complex number.
Applying Laplace transform on equations (15)–(17), we

have the equation in Laplace domain as follows.

Case 1. Linear variation of thermal conductivity with the fin
length:

d2θ̃

dX2
+ βX d2θ̃

dX2
+ β dθ̃

dX
− s + Nc2 + Nr +Ma2( )θ̃. (37)

Case 2. Quadratic variation of thermal conductivity with the
fin length:

d2θ̃

dX2
+ λX2 d

2θ̃

dX2
+ 2λX dθ̃

dX
− s +Nc2 + Nr +Ma2( )θ̃. (38)

Case 3. Exponential variation of thermal conductivity with
the fin length:

eβX
d2θ̃

dX2
+ βeβX dθ̃

dX
− s + Nc2 +Nr +Ma2( )θ̃, (39)

and the dimensionless initial and boundary conditions in
Laplace domain are

s � 0, θ̃ � 0, X> 0, (40)

s> 0, X � 0, zθ̃

zX
� 0, s> 0, X � 1, θ � 1

s
. (41)

With the aids of Bessel, modified Bessel, Legendre, and
sign and gamma functions, it could be shown that the so-
lutions of equations (37)–(39) are as follows.

Case 1. Linear variation of thermal conductivity with the fin
length:

Modelling and Simulation in Engineering 7



θ̃(X, s) � {J0 (2/β) ��������������������������
− s + Nc2 +Nr +Ma2( )(1 + βX)√( )Y1 2csgn(1/β)(1/β) �������������������

− s +Nc2 + Nr +Ma2( )√( )
−Y0 (2/β)

��������������������������
− s + Nc2 +Nr +Ma2( )(1 + βX)√( )J1 2csgn(1/β)(1/β) �������������������

− s +Nc2 + Nr +Ma2( )√( )} × {J0 (2/β) �������������������
− s +Nc2 + Nr +Ma2( )√( )

· Y1 2csgn(1/β)(1/β)
�������������������
− s +Nc2 + Nr +Ma2( )√( )−Y0 (2/β) �������������������

− s +Nc2 + Nr +Ma2( )√( )J1 2csgn(1/β)(1/β) �������������������
− s + Nc2 +Nr +Ma2( )√( )}−1.

(42)

Case 2. Quadratic variation of thermal conductivity with the
fin length:

θ̃(X, s) �

��
π

√
Qn( ������
− λX( )

√ )− Γ(−(n/2))Γ(p/2)Qm(0)Pn( ������
− λX( )

√ ){ }��
π

√
Qn( ����
− λ( )

√ )− Γ(−(n/2))Γ(p/2)Qm(0)Pn( ����
− λ( )

√ ){ } ,

(43)
where

m �

����������������������
λ + 4 s +Nc2 + Nr +Ma2( )√

+
�
λ

√

2
�
λ

√ ,

n �

����������������������
λ + 4 s +Nc2 + Nr +Ma2( )√

−
�
λ

√

2
�
λ

√ ,

p �

����������������������
λ + 4 s +Nc2 + Nr +Ma2( )√

+ 5
�
λ

√

2
�
λ

√ .

(44)

Case 3. Exponential variation of thermal conductivity with
the fin length:

θ̃(X, s) � e−(β(X−1)/2){K0 (2/β) ������������������
s + Nc2 +Nr +Ma2( )√( )I1 (2/β) ������������������

s + Nc2 +Nr +Ma2( )√
e−((βX)/2)( ) + I0 (2/β) ������������������

s +Nc2 + Nr +Ma2( )√( )
· K1 (2/β)

������������������
s +Nc2 + Nr +Ma2( )√

e−((βX)/2)( )} × {K0 (2/β) ������������������
s +Nc2 + Nr +Ma2( )√( )I1 (2/β) ������������������

s + Nc2 +Nr +Ma2( )√( )e−(β/2)
+ I0 (2/β)

������������������
s + Nc2 +Nr +Ma2( )√( )K1 (2/β) ������������������

s + Nc2 +Nr +Ma2( )√( )e−(β/2)}−1.
(45)

It should be noted that the first and second kinds of
Bessel, modified Bessel, and Legendre functions are given as
follows:

J
]
(z) �∑∞

r�0

(−1)r(z/2)2r+]
r!Γ(] + r + 1) ,

Y
]
(z) � 2

π
∑∞
r�0

(−1)r(z/2)2r+]
r!Γ(] + r + 1)

 ln z

2
( )− 1

π
∑∞
r�0

(]− r− 1)!(z/2)2r−]
r!

− 1
π
∑∞
r�0

(−1)r(z/2)2r+n
r!(r + n)! [ψ(r + ] + 1) + ψ(r + 1)],

I
]
(z) �∑∞

r�0

(z/2)2r+]

r!Γ(] + r + 1),

K
]
(z) �(−1)]+1 ∑∞

r�0

(z/2)2r+]

r!Γ(] + r + 1)
 ln z

2
( ) + 1

2
∑∞
r�0

(]− r− 1)!(z/2)2r−]
r!

+ 1
2
(−1)v∑∞

r�0

(−1)r(z/2)2r+n
r!(r + n)! [ψ(r + ] + 1) + ψ(r + 1)],

P
]
(z) � 1

2]]!

d

dx]
(x− 1)] � 2]∑]

r�0
xr

]

r
( ) ] + r− 1

2

r

 ,

Q
]
(z) � 1

2
P
]
(z)ln 1 + z

1− z( ) � 2]−1∑]
r�0
xr

]

r
( ) ] + r− 1

2

r

 ln 1 + z
1− z( ),

ψ(r + 1) � −c +∑n
r�1

1

m
,

csgn(z) �
1, if Re(z)> 0
−1, if Re(z)< 0
sgn(Im(z)), if Re(z) � 0

 ,
sgn(z) � z

|z|.

(46)
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It should be noted that ψ is a digamma function while c
is the Euler–Mascheroni constant and c sgn is a sign function
for real and complex expressions.

+e determination of the inverse Laplace transforms of
equations (41)–(43) and (45) is very complex. However, they
can be numerically evaluated using Simon’s approach [49]
given as

θ(X, τ) � e
apτ

τ

1

2
θ̃ X, ap( ) +∑N

n�1
Re θ̃ X, ap + i

nπ

τ
( )[ ](−1)n .

(47)

Lee et al. [50] suggested values of apτ ranging between 4
and 5. Equations (41)–(43) and (45) converge more quickly
because it does not contain oscillating cosine and sine
functions.

+e optimally value is [50]

apτ � 4.7⇒ ap �
4.7

τ
. (48)

Case 1. Linear variation of thermal conductivity with the fin
length:

θ(X, τ) � e
apτ

τ
1
2
{J0 (2/β) �������������������������������

− (4.7/τ) + Nc2 + Nr +Ma2( )(1 + βX)√( )Y1 2csgn(1/β)(1/β) �����������������������
− (4.7/τ) +Nc2 +Nr +Ma2( )√( )

−Y0 (2/β)
�������������������������������
− (4.7/τ) +Nc2 +Nr +Ma2( )(1 + βX)√( )J1 2csgn(1/β)(1/β) �����������������������

− (4.7/τ) + Nc2 + Nr +Ma2( )√( )}
× {J0 (2/β) �����������������������

− (4.7/τ) + Nc2 + Nr +Ma2( )√( )Y1 2csgn(1/β)(1/β) �����������������������
− (4.7/τ) + Nc2 + Nr +Ma2( )√( )

−Y0 (2/β)
�����������������������
− (4.7/τ) +Nc2 +Nr +Ma2( )√( )J1 2csgn(1/β)(1/β) �����������������������

− (4.7/τ) + Nc2 +Nr +Ma2( )√( )}−1

+∑N
n�1
Re{J0 (2/β) ��������������������������������������

− (1/τ)(4.7 + inπ) +Nc2 + Nr +Ma2( )(1 + βX)√( )
· Y1 2csgn(1/β)(1/β)

�������������������������������
− (1/τ)(4.7 + inπ) +Nc2 + Nr +Ma2( )√( )−Y0 (2/β) ��������������������������������������

− (1/τ)(4.7 + inπ) + Nc2 +Nr +Ma2( )(1 + βX)√( )
· J1 2csgn(1/β)(1/β)

�������������������������������
− (1/τ)(4.7 + inπ) +Nc2 + Nr +Ma2( )√( )} × {J0 (2/β) �������������������������������

− (1/τ)(4.7 + inπ) + Nc2 +Nr +Ma2( )√( )
· Y1 2csgn(1/β)(1/β)

�������������������������������
− (1/τ)(4.7 + inπ) +Nc2 + Nr +Ma2( )√( )−Y0 (2/β) �������������������������������

− (1/τ)(4.7 + inπ) + Nc2 +Nr +Ma2( )√( )
· J1 2csgn(1/β)(1/β)

�������������������������������
− (1/τ)(4.7 + inπ) +Nc2 + Nr +Ma2( )√( )}−1(−1)n.

(49)

Case 2. Quadratic variation of thermal conductivity with the
fin length:

θ(X, τ) � e
apτ

τ

1

2
θ̃ X, ap( ) +∑N

n�1
Re θ̃ X, ap + i

nπ

τ
( )[ ](−1)n ,

(50)
where

θ̃ X, ap( ) �
��
π

√
Qn′( ������
− λX( )

√ )− Γ − n′/2( )( )Γ p′/2( )Qm′(0)Pn′( ������
− λX( )

√ ){ }��
π

√
Qn′( ����
− λ( )

√ )− Γ − n′/2( )( )Γ p′/2( )Qm′(0)Pn′( ����
− λ( )

√ ){ } ,

m′ �

���������������������������
λ + 4 (4.7/τ) +Nc2 + Nr +Ma2( )√

+
�
λ

√

2
�
λ

√ ,

n′ �

���������������������������
λ + 4 (4.7/τ) +Nc2 + Nr +Ma2( )√

−
�
λ

√

2
�
λ

√ ,

p′ �

���������������������������
λ + 4 (4.7/τ) +Nc2 + Nr +Ma2( )√

+ 5
�
λ

√

2
�
λ

√ .

(51)

Modelling and Simulation in Engineering 9



Case 3. Exponential variation of thermal conductivity with
the fin length:

θ(X, τ) � e
apτ

τ
1
2
e−(β(X−1)/2){K0 (2/β) �����������������������

(4.7/τ) + Nc2 + Nr +Ma2( )√( )I1 (2/β) �����������������������
(4.7/τ) +Nc2 + Nr +Ma2( )√

e−((βX)/2)( )
+ I0 (2/β)

�����������������������
(4.7/τ) + Nc2 + Nr +Ma2( )√( )K1 (2/β) �����������������������

(4.7/τ) + Nc2 + Nr +Ma2( )√
e−((βX)/2)( )}

× {K0 (2/β) �����������������������
(4.7/τ) + Nc2 + Nr +Ma2( )√( )I1 (2/β) �����������������������

(4.7/τ) + Nc2 + Nr +Ma2( )√( )e−(β/2)
+ I0 (2/β)

�����������������������
(4.7/τ) + Nc2 + Nr +Ma2( )√( )K1 (2/β) �����������������������

(4.7/τ) + Nc2 + Nr +Ma2( )√( )e−(β/2)}−1

+∑N
n�1
Ree−(β(X−1)/2){K0 (2/β) ������������������������������

(1/τ)(4.7 + inπ) + Nc2 + Nr +Ma2( )√( )
· I1 (2/β)

������������������������������
(1/τ)(4.7 + inπ) + Nc2 + Nr +Ma2( )√

e−((βX)/2)( ) + I0 (2/β) ������������������������������
(1/τ)(4.7 + inπ) + Nc2 +Nr +Ma2( )√( )

· K1 (2/β)
������������������������������
(1/τ)(4.7 + inπ) + Nc2 + Nr +Ma2( )√

e−((βX)/2)( )}
× {K0 (2/β) ������������������������������

(1/τ)(4.7 + inπ) +Nc2 + Nr +Ma2( )√( )I1 (2/β) ������������������������������
(1/τ)(4.7 + inπ) + Nc2 + Nr +Ma2( )√( )e−(β/2)

+ I0 (2/β)
������������������������������
(1/τ)(4.7 + inπ) +Nc2 + Nr +Ma2( )√( )K1 (2/β) ������������������������������

(1/τ)(4.7 + inπ) + Nc2 + Nr +Ma2( )√( )e−(β/2)}−1(−1)n.
(52)

For homogenous material (HM), β� 0.+e solution for
the homogeneous material using Laplace transform is
given as

θ(X, τ) �
cosh

�������������
Nc2 +Nr +Ma2

√( )X
cosh

�������������
Nc2 +Nr +Ma2

√( )
+ 4
π
∑∞
n�1

(−1)n
2n− 1( )e− (2n−1)2π2( )/4( )+Nc2+Nr+Ma2( )τ

· cos (2n− 1)πX
2

( ).
(53)

5. Results and Discussion

+e results of the exact analytical solutions of the fin with the
functionally graded material are shown in Figures 2–8. +e
influences of magnetic field, thermal radiation, in-
homogeneity index, and the temperature distribution and
history are investigated.

Figures 2–4 show the effects of varying time on the
temperature distribution on the FGM fin with variable
thermal conductivity according to linear-, quadratic-, and
exponential-law functions, respectively. We observe that the
temperature increases with an increase in time. +e solution

seems to converge to a steady state solution as time evolves.
We also notice that temperature at the tip of the fin increases
with time.

Also, it is depicted in the figure, the time required to cool
down to the ambient temperature for all the FGM fins of the
variable thermal conductivities considered. +e FGM fin
with quadratic-law and exponential-law functions shows
the slowest and fasted thermal responses, respectively. It is
illustrated that, in such cooling down process of the fin, the
FGM fin with exponential-law function requires small time
to reach steady state than the linear- and quadratic-law
functions.

Figures 5(a)–5(d) show the variation of temperature with
length at difference dimensionless time for linear-, qua-
dratic-, and exponential-law functions. It is depicted in the
figure that the variation of FGM fin thermal conductivity
according to the linear law shows an enhanced performance
as compared to the quadratic- and exponential-law func-
tions.+ese enhancements in the energy saving of FGM heat
sinks in both linear, quadratic, and exponential laws depict
some advantages in the cooling of thermal systems as this
causes the lower airflow rate around the heat sinks which
results to the smaller fan size and lower electrical energy
consumption [16]. +e other benefit of smaller fan size is a
reduction on the airflow rate within such sensitive devices
and controlling the acoustic level, which results to lower
distortions, and increasing the electrical or computer
component lifetimes.
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Figures 6 and 7 illustrate the impacts of magnetic
field (Lorentz force) and radiation number on the tem-
perature distribution in the FGM fin. From the figures, as the
magnetic field and radiation parameters increase, the
temperature decreases rapidly and the rate of heat transfer
through the fin increases as the temperature in the fin drops
faster as depicted in the figures. +e occurrence of rapid
decrease in fin temperature as the magnetic parameter is
increased is because the augmentation of the Hartmann
number causes the force created by the magnetic field to
increase which consequently increases the magnetic field
strength and created a reduction in the fin temperature. +e
illustration shows the thermal efficiency of the fin is

enhanced by the magnetic force and thermal radiation is
induced in the heat transfer process.

As it is displayed, Figures 8(a) and 8(b) show the effects
of the in-homogeneity index on the dimensionless tem-
perature distribution and consequently on the rate of heat
transfer. From the figures, it is shown that as the in-
homogeneity index increases, the rate of heat transfer
through the fin increases. For all the values of convective,
magnetic field, and radiative parameters, the tempera-
ture gradient along the fin with FGM is smaller than
the fin with homogeneous material for both linear-
and exponential-law functions. Moreover, increasing the in-
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Figure 3: Temperature history in the fin at various locations when
the thermal conductivity varies according to quadratic-law function.
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Figure 2: Temperature history in the fin at various locations when the thermal conductivity varies according to linear-law function.
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the thermal conductivity varies according to exponential-law
function.
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Figure 5: Temperature distribution in the fin for different variable thermal conductivity at (a) τ � 0.1, (b) τ � 0.15, (c) τ � 0.30, and (d) τ � 0.35.
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Figure 6: Effects of the magnetic field parameter on the temperature distribution.
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homogeneity index, β, the temperature gradient decreases as
shown in the figures. Furthermore, the rate of heat transfer
enhancement for FGM longitudinal fin increases by in-
creasing the in-homogeneity index, β, of the FGM fin. It is
therefore established from these results that the temperature
profiles of the fin are highly sensitive in linear-law function
with FGM than that of power-law function. In addition, the
application of fin with FGM is favourable at low thermo-
geometric convective, magnetic field, and radiative pa-
rameters since the difference between fin with FGM and fin
with HM fin temperature profiles slightly decreases as the
dimensionless thermogeometric parameters increase. It
could be inferred from the figures that the application of fin
with FGM decreases the thermal resistance along the fin, and
consequently, a fin with FGM has higher temperature at the
fin tip than the fin with HM. +e rate of energy saving in

power-law class FGM heat sink is significantly higher than
the linear class FGM heat sink.

Table 1 shows the comparison of results between the
DTM and the exact analytical method. From the table, it
is established that the temperature predictions in the
heat sink using the differential transformation method are
in excellent agreement with the results of the numerical
methods.

6. Conclusion

Transient thermal analysis of a convective-radiative fin
with functionally graded materials under the influence of
magnetic field has been presented in this work. Different
variations of thermal conductivity according to linear,
quadratic, and exponential variations considered in the
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Figure 8: Temperature distribution in the fin for varying thermogeometric parameter under (a) linear-law function and (b) exponential-law
functions.
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thermal models are solved analytically with the aids of
Bessel, Legendre, and modified Bessel functions, respec-
tively. +e impacts of Lorentz force and radiative as well as
in-homogeneity index on the thermal performance of the fin
have been investigated and discussed. +e results show that
increase in radiative and magnetic field parameters as well as
in-homogeneity index improve the thermal performance of
the fin. Also, it was established that the transient responses of
the functionally graded material (FGM) fin with quadratic-
law and exponential-law function show the slowest and
fastest thermal responses, respectively. It is therefore hoped
that the study will aid in the design and optimization ap-
proach of the fin for improved heat transfer enhancements
of thermal systems under the influence of magnetic field.

Nomenclature

ar: Aspect ratio of the porous fin base area to the surface
area

A: Cross-sectional area of the fins (m2)
Ab: Porous fin base area
As: Porous fin surface area
Bi: Biot number
h: Heat transfer coefficient (W·m−2·k−1)
hb: Heat transfer coefficient at the base of the fin

(W·m−2·k−1)
cp: Specific heat of the fluid passing through the porous fin

(J/kg·K)
Da: Darcy number
g: Gravity constant (m/s2)
h: Heat transfer coefficient over the fin surface (W/m2·K)
H: Dimensionless heat transfer coefficient at the base of

the fin (W·m−2·k−1)

k: +ermal conductivity of the fin material (W·m−1·k−1)
kb: +ermal conductivity of the fin material at the base of

the fin (W·m−1·k−1)
keff: Effective thermal conductivity ratio
K: Permeability of the porous fin (m2)
L: Length of the fin (m)
M: Dimensionless thermogeometric parameter
m: Mass flow rate of fluid passing through the porous fin

(kg/s)
P: Perimeter of the fin (m)
Q: Dimensionless heat transfer rate per unit area
qb: Heat transfer rate per unit area at the base (W/m2)
Qb: Dimensionless heat transfer rate at the base in the

porous fin
Qs: Dimensionless heat transfer rate at the base in the solid

fin
Ra: Rayleigh number
Sh: Porosity parameter
t: +ickness of the fin
Tb: Base temperature (K)
T: Fin temperature (K)
Ta: Ambient temperature (K)
Tb: Temperature at the base of the fin (K)
v: Average velocity of fluid passing through the porous fin

(m/s)
x: Axial length measured from the fin tip (m)
X: Dimensionless length of the fin
w: Width of the fin.

Greek Symbols
β: In-homogeity index
δ: +ickness of the fin (m)
δb: Fin thickness at its base
c: Dimensionless internal heat generation parameter
θ: Dimensionless temperature
θb: Dimensionless temperature at the base of the fin
η: Efficiency of the fin
β′: Coefficient of thermal expansion (K−1)
ε: Porosity or void ratio
υ: Kinematic viscosity (m2/s)
ρ: Density of the fluid (kg/m3).

Subscripts
s: Solid properties
f: Fluid properties
eff: Effective porous properties.
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Table 1: Comparison of results when Nc� 0.01, Ma� 0.1, and
Nr� 0.5.

X Exact DTM Error

0.00 0.863499158 0.863499231 0.000000073
0.05 0.863828540 0.863828568 0.000000028
0.10 0.864817031 0.864817090 0.000000059
0.15 0.866465671 0.866465743 0.000000072
0.20 0.868776195 0.868776261 0.000000066
0.25 0.871751037 0.871751104 0.000000067
0.30 0.875393336 0.875393404 0.000000068
0.35 0.879706946 0.879707010 0.000000064
0.40 0.884696438 0.884696500 0.000000062
0.45 0.890367120 0.890367181 0.000000061
0.50 0.896725040 0.896725096 0.000000056
0.55 0.903777007 0.903777060 0.000000053
0.60 0.911530606 0.911530658 0.000000052
0.65 0.919994212 0.919994259 0.000000047
0.70 0.929177015 0.929177056 0.000000041
0.75 0.939089039 0.939089079 0.00000004
0.80 0.949741166 0.949741203 0.000000037
0.85 0.961145166 0.961145189 0.000000023
0.90 0.973313722 0.973313764 0.000000042
0.95 0.986260463 0.986260549 0.000000086
1.00 1.000000000 1.000000000 0.000000000
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