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A systematic procedure is described for deriving nonlinear transport equ-
ations from statistical mechanics. The procedure is based on the Chapman-
Enskog point of view. It makes use of operator methods that are standard in

" linear response theory. As an illustration, the resulting transport equations are
expanded to second order in deviations from equilibrium, and also to second ~
order in gradlents ! '

Introduction

"

The purpose of this article is to descrlbe a systematlc method for deriving

,‘nonlmear transport equations from statlstlcal mechanics. = The method i is used

to determme explicitly the form of transport equations to second order in
deviations from equilibrium. The results involve only operators that are famil-
iar in linear response theory, and have a structure that may be amenable to
calculation, ‘ \

A number of ‘methods intended to accomplish this purpose have been de-
scribed already. Several different approaches have been proposédl. One of
these, based on ideas of Brownian motion theory, has been discussed in some
detail by Nérdholm and Zvvanzig,l’» by Mori and Fujisaka,” and by Garcia-
Colin and del Rio,” and by others. Another approach, modeled on the Chap-
~man-Enskog, point of view was originated by Robertson,” and has been ‘discuss-
ed by Piccirelli,”’ by Kawasaki and Gunton,® and by Ernst, Hauge, and van
Leeuwen.” A third approach, based on higher order Kubo theory, was devel-
oped by Weare and Oppenhelm

The present article is a further development of the Chapman- -Enskog

point of view. The basic idea here is that the phase space distribution func-
tion, vas it evolves in time, always stays close to a local equilibrium form.
Initial deviations from local equilibrium are expected to decay rapidly, and
later deviations are expected to develop and to remain proportional to gradi-
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Nonlinear Transport Equations from Statistical Mechanics 75

ents of thermodynamic forces. In our treatment, we assume (as others have)

that the initial distribution has the local equilibrium form, and we calculate
the later deviations explicitly. Calculations of this sort were presented in.

Refs. 4) ~7); they make use of time-dependent projection operators. While
such operators are convenient for formal manipulations, they are extremely
difficult to cope with in practical calculations. The present treatment also uses

projection operators, but ours are exactly the same ones that appear in Mori’s

well-known linear response theory; they are time-independent, and they do not
present serious difficulties in practical calculations. ©

We proceed immediately to the derivation, and return afterwards to a dis-
cussion of the relation of our approach to earlier ones.

Liouville equation

A point in phase space is ‘denoted by I. The phase space distribution
fu'ncfion at time ¢ is f(I7;£). Tts time dependence is determined by the Liou-
- ville equation / b k ‘

2 pe Ly, o

‘where L is the Liouville operator.. (Note that the frequently used factor
v/ —1(=1) has been omitted.) The phase space distribution function at equilib-
rium is f,(I"). Deviations from thermal equ1hbr1um are represented by the

quantlty W(T t), defined by _ ,
£ ) STy exo W5 ). @
Then (in classical mechanics only!) W obeys the same Liou‘vil‘le equation,

0 7 \ ’ '
SW=—LW. 3)
5 | . G

Projections

We are concerned with a partlcular set of dynamlcal variables, denoted
collectively by the vector A(I"). These are chosen so that their equilibrium
averages vanish, k B

W=0. @

[Throughout this article, { > means the equilibrium average] The matrix
of second moments at equilibrium is M,

Ady=M. S )
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76 ’ R. Zwanzig

The inﬁer product of two dynamical variables is (A, B), and is defined by
(A, B) =<AB). - - ®

Using thls inner product, we may ‘define a pI'OJeCtIOII operator P by its action
on some dynamlcal variable G,

— (G, 1) + (G, A) M AD). )

This is the projection operator that appears in Mori’s form of linear response
theory. [The extra term (G,1) is just the equilibrium average of G, and is
included for completeness] We shall need also the adjoint of P,

=,(1,F)+A(f)'M_1-(A,F)- (&
This is an adjoint in the sense

(F, PG) = (PF, G). | )

Evaluation of W

Let us use P to separate W into two parts,
W=PW+ (1—-P)W. o (10)

~In the same way, we separate the Liouville equation for W into two equations.
‘These equations can be solved by a standard procedure, leading to

A—P)yW &) =T ®a By W (0) — Ltds U@—s)LEW (s)  (11)

and

O%PW(t) _PLPW () + j "2s PLU (t—s) LBW (s)
- —PLU (®) A—P)W (0), (12)
where | | L
 T@=ewl-tQ-PLIA-P).  as)
This is the adjoint of v, | |
U(f) —exp[t(1—P) L] (1—P) (14)
because ‘
FUTWG) = UDFG. BNCE)
" The projected- part of W is

PW=(1, W)+ A)(r) M (AW, e
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Nonlinear Transport Equations from Statistical Mechanics 77

In the following, we use the notation
(A, W) =c, ' 17)
M1 (A, W) =b. ‘

Then the equation for PW is equivalent to an equatioﬁ for ¢ (2),
, e
%c(t} —i0.c(t) — stK(t-s) () + (FI(D), W©).  (18)

Not only does this have the same structure as in Mori’s linear response theory,
‘but the quantities 2, K(t—s), and F* () are identical with Mori’s expres-

sions for them. [To see this, one uses Eq. (15) to replace U by U.] Be-

cause we are not going to need the explicit form of ¢(z) in the fellowing
~ discussion, we do not pursue this here.

"The remaining part of W can be evaluated from Eq (11). It contains

a contribution from the initial value (1— P)W(0) and a contrlbutlon propor-
tional to c(t)

A-PYW () =T @) A—P)yW(0) + j:dsg (t—s) - Mc(s), (19)

where & is given by
F = —U (¥ LA ) (20)
Finally, we note that (1, W) is a numerlcal constant w, that is 1ndepen—
" dent of time. This plays a role of a normalization factor.
When these results are cqmbmed, we find that W has four distinct con-
tribu‘;ions,
W' £) =w,+ A) -b(2) + J dsT (I t--s5) -b(s) +T (1) 1—P) W (0).
: 0
| (21)
 If the initial ensemble has the local equilibrium form
- ST50) =fo (I exp[wy+ A-6(0) ], (22)

~then the contribution from (1—P) W(0) vanishes for all £ On the other
hand, if the initial ensemble deviates from- the local equilibrium form, then
this extra contribution is a kind of “noise”, just as in linear response theory.
In the following, we assume initial local equilibrium and we omit this term.

Time dependent averages

Now that an expression for f(I';£) has been obtained, we can use it to
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78 : o * . R. Zwanzig

find average values. But first, some further notation is needed. The time

‘dependent average of G(I"), taken with F(I'; £), will be denoted by <G>,, -
Gy [aremrsarsv. @
We use the abbrev1at10n

sb,rf EF T r), @

’Where 7(s) is any arbitrary function of s, and ‘we omit. the term in W(t)
arising from (1 PYyw(0). Then the average is

(G = j TG (). () exp FAMT) B0+l @

Next, we 1ntroduce the local equlllbrlum average <G>b,
<G>b““<G exp A-bY/{exp A- b> A (26)

Note that the factor Se(I") has been absorbed in the symbol < o Whenever
it is important to remember that & is a function of time #, we indicate this by
{ >p. Now the average of G can be written in the form

(G =(G e hudullep by e

_Where the denominator accounts for normalization.
" In ﬁartieula’r, the average of A, denoted by a(t), is

a () =< Ap =< A exp ddu/{exp b | (28
and its time derlvatlve is the average of LA | B o
da(2) /dt=<LAY =< (LA) exp dudu/<exp duu - (29)

" Both of these are functionals of b(f) By eliminating &6 (¢), we can find an
expression for da/dt¢ as a functional of a(%). This is analogous to the theory
"of the equation of state of a gas in the grand canonical ensemble. There,
both the pressure and the density are functlons of the chemical potential. The

equation of state is found by eliminating the chemical potential. In the present -

case, the elimination of &(#) can be accomplished easily, at least to low order,
by expanding @ (#) and da/dt in powers of b(¢).
- However, as earlier workers have found, it is more useful to adhere to

the local equilibrium description as closely as possible.  If the average a(z)

is given, then there is a local équilibrium distribution function with time depen:
dent parameters B(z) which gives precisely the average a(?),

a@®) =(Aexp A-BOYexp ABOY=(Mos. - (30)

220z 1snBny 91 U0 1saNnb Aq /€6Z.81 /7L 9 SdLd/EYL L0 L/10p/aloIe/sdid/woo dno diwspeoe/:sdny woly papeojumod



Nonlinear Trans’;bort Equatz'ons from Smtistical Mechanics 79

As in the Chapman-Enskog procedure for derlvmg transport equations, the

parameters B(£), or the “thermodynamic fields”, play a more natural role than
the averages themselves. This suggests that we should use Egs. (28) and
(30) to relate B(z) to b(#), and then use this relation to find da/dt as a
functional of B(#). This also can be done by. constructing power series ex-
- pansions. \ o

Expansion in B

By using the various definitions, it is easy to carry out the expahsion to
terms of order B - We will do this now. : , N

First, both da/dt and a(t) are expanded in powers of b(t). Factors of
‘b can come from the local equilibrium averages or from Dy The expansion
is facilitated by the observation that con‘calnc the projection (1 P,
that <> and {A¢y,> both vanish. ‘

To second order in b, the time derivative is

-

' da (&) /dt ={(LA)A>-b(t) +%< (LA) AA} b)) b () +< (LA) ¢bz>
T A b @ LA GO G, 31)
Similarly, the : average itself is |
Ca(t) = <AA>-b (t) + 41 <AAA>‘: b(t)b(¢) + <A¢b;A,> b))
CFIARSHO®Y. | @
But the average can be obtained also from {Adg,
| a(®) =CAAY B() +1<{AAA} BOB® +OB). (33)
On comparing Eqs. (32) and (38), we find that 5=B+O0(B). More, specifi-

cally, the relation is | |
b(t) =B(2) + 4B @), |
AB(t) = — M7 A A>-B(® +3{AGD} +OB).  (34)

Note the subscript B on (g,. :
Now we put this into Eq. (31) collectmg terms ’co order B2 and using
the deﬁnmon of the projection P we obtain

4a®) (1) ay-B@ + LA ALY BOB® +{LAYn>

LA Q=P B@ + (LA A=P) > +< LAYz

+O(BY). (35
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Recall that ¢,z is defined by Eq. (24), and is linear in 4B. In deriving this
expression for da/dt, we have assumed that the initial phase space distribution

has the local equilibrium form, and we have neglected all terms of order B®

and higher. Subject to these ‘restrictions, the result is exact.

The first two -terms in da/dt are in fact the expansion of {LA)p, the:

flux calculated at local equilibrium. Terms involving ¢ have a dissipative
character. The first of these is exactly what one finds in linear response
theory; to see this, one uses Eq. (24) to relate ¢ to &, then Eq. (20) for
&, and ﬁnalleq. (15) to take the adjoint of U (#). When this is done, we
obtain. \ l ,

A > = — |, #sx@—9 B0, 6o
where the kernel K (#) has Mori’s férm, | N
| K@) = (U@ LA, LA - M. _(37) |
The next term in Eq. (35) can be reduced in the same way,
(LAY (L Py A>- Bl = ~ [(asBw ko -9 B, cE)

where the kernel K® (¢) is

K? ()= (U@ AQ~P)LA, LA). (39)

The other terms in da/dt are messier to write out explicitly; how\ever,‘ they

are proportional to (LA)® and (LA)*, and may not be so interesting if LA
introduces a parameter of smallness. This is what happens in the gradient
expansion. ‘ '

Gradient expansion

Another kind of expansion which can be carried out easily to low order
is the gradient expansion. We have in mind here the standard “hydrodynam-

2

ic” situation, where the variables A are characterized'by a wave vector &
(or a gradient), and their rates of change LA are proportional to k.

If LA is of order k, then & and ¢ are also of order k. This suggests the

“expansion of exp ¢ in powers of ¢, keeping & (#) to all orders. In this way,

~ we can get da/dt to order & for all b(z), and a(#) to order & for all & (z). '
On converting from 6 (#) to B(Z), we find that 4B(¢) is of order .&. When

this is worked out in detail, we obtain the result

C%a () =(LAYn J:ds Ks(t,5) - B(s) +O ), (40)
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Nonlinear Transport Equations from Statistical Mechanics 81

Where the Bdependent kernel Kz (t s) is given by
Ky(t, s) =<{[LA— <LA>m]P (?f)U(t—S)LA%m- (41)

In this expression, P, (¢) is the projection operator used by Ernst, Hauge and
van Leeuwen,” or the projection operator 1— P (¢¥) used by Kawasaki and

- Gunton.® (While these operators are not quite the same, they have the same

effect in this expressmn)
It is not hard to ﬁnd the expansion of Kp(t,s) to first order in B the
result is ’

Kp(t,s) =K(t—s) -M+B() -K® (t—5s), N (42)

where K (¢—s) is given by Eq. (37), and K® (£—s). is given by Eq. (39).
It is comforting that, at least to order A*B? it does not make any dlfference
whether one expands first in B and then in %, or vice versa.

Comparison with earlier work

- Here we make some remarks about the relation of this procedure to ear-
lier ones. The preceding results, to order B, can be obtained also by a

brute force expansion of the general results of Kawasaki and Gunron, or to

order k%, by an expansion of the results of Ernst et al. They are equivalent
to results obtained by Weare and Oppenheim, on allowing for their Markoffian
approximations. (I thank J. Brey for showing this to me.) If only an
expansion is desired, the present procedure appears simpler and more direct
than the others; but if a general formalism is required, the procedure due to
Piccirelli or to Kawasaki and Gunton may be preferable.

Does the expansion converge?

'

Kewasaki and Gunton, and Ernst and coworkers,“” have investigated the
nonlinear dependence of the stress tensor ¢ on the rate of shear D; they find,
for a simple fluid, that the Newtonian stress tensor must be corrected by a
term do~D*?. This suggests that a straightforward expansion in powers of
B may not converge. However, it should be noted that they calculate a
steady state stresé, without including external forces required to maintain the
steady state, and without a sink to remove the heat that is generated in a
steady shear. It is not clear whether or not these omissions have seriously
affected their conclusions. If similar calculations are performed eXplicitly on
the time dependent B? correction to the Newtonian stress tensor, it may turn
out that these corrections diverge at long times or zero frequencies. There is

precedent for such behavior in the theory of linear transport coefficients of

~ dense gases. In that case, it may be necessary to-include higher orders in
B, and to re-sum divergent terms to get the D¥* effect.
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Discussion

M. S. Green: I would like to ‘point ouf that when the ‘terms indicated by

- dots" in Prof. Zwanzig’s equations are taken into account it is possible to have
divergencies or non-analyticities. It seems that the appearance of such diver-
gences is a universal phenomena in transport equations derived by projection onto
the slowly varying macroscopic variables. They occur in the two most carefully
" investigated cases, i.e., the long time tails in hydrodynamics and the divergences
associated with recollisions in the kinetic theory of dense gases. These divergences
usually do not interfere with the physical usefulness of the first’ approximation but
they indicate that physical concepts such as Markoffian character, reduction of

the description, expansion in powers of the gradlent break down in higher order.
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