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ABSTRACT

Nonlinear models have recently shown interesting properties

for spectral unmixing. This paper considers a generalized bilin-

ear model recently introduced for unmixing hyperspectral images.

Different algorithms are studied to estimate the parameters of this

bilinear model. The positivity and sum-to-one constraints for the

abundances are ensured by the proposed algorithms. The perfor-

mance of the resulting unmixing strategy is evaluated via simulations

conducted on synthetic and real data.

Index Terms— hyperspectral imagery, spectral unmixing, bilin-

ear model, Bayesian inference, MCMC methods, gradient descent

algorithm, least square algorithm.

1. INTRODUCTION

Spectral unmixing is one of the major issues when analyzing hy-

perspectral images. Unmixing hyperspectral images is based on the

assumption that a pixel spectrum is a combination of pure spectral

components (referred to as endmembers). The underlying mixture

model can be linear or nonlinear. The linear mixture model (LMM)

has been widely used in the literature and has shown promising re-

sults [1]. However, the LMM can be inappropriate for some hyper-

spectral images where the detected photons interact with multiple

components before they reach the sensor. In this case, nonlinear

models can be more interesting for abundance estimation, e.g., for

scenes including mixtures of orchards [2] or vegetation [3].

This paper considers a generalized bilinear model (GBM) intro-

duced in [4] for nonlinear unmixing of hyperspectral images. This

model has shown good properties for modeling non-linear interac-

tions between pure spectral components. However, estimating the

abundances associated with this nonlinear model is a challenging

problem. This paper studies two approaches to address this estima-

tion problem. The first approach is based on a Bayesian model con-

structed from appropriate prior distributions for the abundances and

the non-linear mixing coefficients. The parameter priors are chosen

to ensure positivity and sum-to-one constraints for the abundances

and physical constraints about the non-linear mixing coefficients.

The joint posterior distribution of the model parameters is then de-

rived. The minimum mean square error (MMSE) estimator is then

computed from samples distributed according to this posterior gen-

erated by Markov chain Monte Carlo (MCMC) methods. The sec-

ond approach is based on the minimization of a cost function under

appropriate constraints for the abundances and non-linear mixing co-

efficients. Two optimization algorithms are considered. The first one

is inspired from the works of [5] and [6] and relies on a Taylor se-

ries expansion of the model nonlinearity. The second algorithm uses

a constrained gradient descent method coupled with a line search

technique as in [7].

The paper is organized as follows. Section 2 introduces the lin-

ear and bilinear models considered in this work. Section 3 presents

algorithms for estimating the parameters of these models. Simula-

tion results for synthetic and real images are analyzed in Sections 4

and 5. Conclusions and future works are reported in Section 6.

2. UNMIXING MODELS

The physical assumption underlying the LMM is that each incident

photon interacts with only one earth surface component. In this case,

the L-spectrum y = [y1, . . . , yL]
T

of an observed pixel can be ex-

pressed as a mixture of R endmembers mk with additive noise [8]

y =

R
∑

k=1

αkmk + n = Mα+ n (1)

where M is the L × R matrix whose columns are the L × 1
endmember spectra mk = [m1,k, . . . ,mL,k]

T
, k = 1, . . . , R,

α = [α1, . . . , αR]
T is the R × 1 abundance vector and n =

[n1, . . . , nL]
T

is assumed to be an independent and identically

distributed (i.i.d.) zero-mean Gaussian sequence with variance σ2.

The GBM considered in this work is a nonlinear model that ac-

counts for the presence of second order interactions between end-

member #i and endmember #j (for i, j = 1, . . . , R and i 6= j)

(see [4] for motivations about this model). The corresponding mixed

pixel y is then expressed as

y = Mα+

R−1
∑

i=1

R
∑

j=i+1

γi,jαiαjmi ⊙mj + n (2)

where ⊙ denotes the Hadamard (term-by-term) product operation,

i.e, mi⊙mj = [m1,im1,j , · · · ,mL,imL,j ]
T , and with the follow-

ing constraints for the different parameters

αk ≥ 0, ∀k ∈ {1, . . . , R} and

R
∑

k=1

αk = 1 (3)

0 ≤ γi,j ≤ 1, ∀i ∈ {1, . . . , R− 1} , ∀j ∈ {i+ 1, . . . , R} . (4)

Eq. (3) expresses the usual positivity and sum-to-one constraints for

the abundances. Eq. (4) introduces constraints for the non-linear

mixing coefficient γi,j that controls the interaction between end-

members #i and #j. Precisely, the parameter γi,j is upper bounded

by 1, reflecting the fact that the interaction term γi,jαiαj is always

smaller than the product of the individual abundances αiαj as ex-

plained in [4]. Moreover, it makes sense to assume γi,j ≥ 0 to

consider constructive interferences and ensure positive observations

in y (a similar assumption has been made in [5] and [2]). Note

that the proposed GBM defined in (2) reduces to the standard LMM

for γi,j = 0, ∀(i, j) and to the non-linear model studied in [5] for

γi,j = 1, ∀(i, j). As a consequence, the proposed GBM can be

viewed as a generalization of these two models. It is also important

to note that for αi = 1 and αj = 0 for any j 6= i, the second order



terms of the proposed model disappear and the observed vector y

reduces to the ith endmember mi. Thus, the pure materials (end-

members) are present in the data generated by the proposed GBM.

Moreover, when the non linearity coefficients γij are small (it will

be the case in most real applications), the data generated by the pro-

posed model lie into a modified simplex whose extremities are the

pure materials. To illustrate the effect of endmember interactions,

synthetic pixels have been generated from R = 3 endmembers fol-

lowing the proposed GBM. The resulting pixels are depicted in the

hyperspectral space as blue points in Fig. 1 (right figure). From this

figure, it appears that the pixels lie on a curved simplex whose ver-

tices are the endmembers. For comparison, we also show the simplex

associated with the LMM obtained by removing the second-order

terms (left figure).

(a) LMM. (b) GBM.

Fig. 1. Data generated according to the mixing models.

3. UNMIXING ALGORITHMS

This section studies two approaches for estimating the GBM pa-

rameters. We denote as θ =
(

αT ,γT
)T

the unknown GBM

parameter vector, where α is the abundance vector and γ =
[γ1,2, · · · , γR−1,R]

T is the nonlinearity coefficient vector.

3.1. Bayesian Algorithm

The Bayesian algorithm studied in this Section has been initially in-

troduced in [4]. Bayesian estimators are computed from the posterior

distribution of θ denoted as f(θ|y). This posterior distribution is re-

lated to the likelihood of the observations f(y|θ) and the parameter

prior distribution f(θ) via Bayes’ theorem

f(θ|y) =
f(y|θ)f(θ)

f(y)
∝ f(y|θ)f(θ) (5)

where ∝ stands for “proportional to”. As a consequence, comput-

ing the Bayes estimators require to define prior distribution for the

unknown parameter vector (summarized in f(θ)) as well as the like-

lihood related to the observation.

3.1.1. Likelihood

The observation model defined in (2) and the Gaussian properties of

the noise sequence n yield the following likelihood function

f(y|θ) =

(

1

2πσ2

)L
2

exp

[

−
||y − µ (θ) ||2

2σ2

]

(6)

where

µ (θ) = Mα+

R−1
∑

i=1

R
∑

j=i+1

γi,jαiαjmi ⊙mj (7)

and || · || denotes the standard l2 norm such that ||x||2 = xTx.

3.1.2. Parameter priors

To satisfy the sum-to-one constraint (3), one can express one abun-

dance as a function of the others, e.g., αR = 1 −
∑

k 6=R αk. A

uniform distribution on the simplex defined as

S =







α1:R−1

∣

∣αk ≥ 0, ∀k 6= R and
∑

k 6=R

αk ≤ 1







is then assigned to the reduced abundance vector α1:R−1 =
(α1, ..., αR−1)

T
. Moreover, to satisfy the constraints (4), uni-

form priors on (0, 1) have been considered for the non-linearity

coefficients γi,j assumed to be a priori independent (see [4]).

3.1.3. Posterior distribution

The posterior distribution of the unknown parameter vector θ can be

computed from Bayes theorem according to (5). Unfortunately, this

posterior distribution is too complex to derive closed-form expres-

sions for standard Bayesian estimators such as the minimum mean

square error (MMSE) estimator or the maximum a posteriori (MAP)

estimator. Instead, we can use Markov chain Monte Carlo (MCMC)

methods to generate samples according to the posterior distribution

of θ. These simulated samples are then used to approximate the

Bayesian estimators of θ (see [4] for more details).

3.2. Optimization algorithms

The main problem with the MCMC method advocated in the pre-

vious Section is its computational complexity. This section studies

alternative estimation strategies based on optimization algorithms al-

lowing computational cost to be significantly reduced. More pre-

cisely, estimating the GBM parameter vector can be formulated as

the following optimization problem

θ̂ = argmin
θ

||y − µ (θ)||2 (8)

subject to (s.t.) the constraints given by (3) and (4), where µ (θ) has

been defined in (7). This paper proposes two algorithms to solve this

minimization problem.

3.2.1. Fan-FCLS algorithm (FFA)

The optimization problem (8) reveals two main difficulties: i) the

nonlinearities of the mixture model and ii) the constraints on the

parameters. These difficulties will be addressed consecutively in the

following paragraphs.

a) Nonlinearity: to overcome the difficulty related to the non-

linearity defined in (2), we propose to linearize the objective crite-

rion by using a first order Taylor series expansion of µ (θ). This

approach leads to an iterative algorithm similar to the algorithm pro-

posed by Fan et al. in [5]. At iteration t of the algorithm, i.e., at the

given point estimate θ(t) =
(

α
(t)
1 , · · · , α

(t)
R , γ

(t)
1,2, · · · , γ

(t)
R−1,R

)

,

the linearization yields

µ (θ) ≈ µ
(

θ
(t)

)

+
∂µ

∂θ

∣

∣

∣

∣

θ=θ(t)

(

θ − θ
(t)

)

, (9)

where ∂µ

∂θ
is the gradient of µ, i.e., a matrix of size (L×R(R+1)/2)

containing the derivatives
∂µi

∂θj
. Straightforward computations lead to

the following iterative updating rule for the parameter vector θ

θ
(t+1) = argmin

θ

∣

∣

∣

∣

∣

∣h
(t) − Pθ

∣

∣

∣

∣

∣

∣

2

s.t. (3) and (4) (10)



where the elements of the matrix P are pi,j = ∂µi

∂θj
and

h
(t) =

(

y − µ
(

θ
(t)

)

+ Pθ
(t)

)

. (11)

b) Constraints: to solve (10), a strategy inspired by [6] is

adopted. First, we introduce a vector with positive components w =
[w1, . . . , wS ]

T such that w = 1S − γ, where 1S = [1, . . . , 1]T

is the S × 1 vector of ones, and S = R(R − 1)/2 is the number

of nonlinearity coefficients1 γs. The constraints (4) can then be

expressed as

{

γs ≥ 0, ∀s = 1, . . . , S
ws ≥ 0, and ws + γs = 1, ∀s = 1, . . . , S.

(12)

The optimization problem (10) is finally reformulated to apply

the fully constrained least squares (FCLS) algorithm of [6]. The

(S + 1) constraints
∑R

i=1 αi = 1 and w + γ = 1S can be handled

by introducing the extended matrix P̃

P̃ =





δP OL,S

OS,R IS IS
1
T
R 0

T
S 0

T
S



 (13)

and the extended vectors h̃
(t)

and θ̃

h̃
(t)

=





δh(t)

1S

1



 , θ̃ =





θ

γ

w



 (14)

where Om,n is the m × n matrix of zeroes and IS is the S × S
identity matrix. The parameter δ in (13) and (14) controls the impact

of the equality constraints. The final updating rule is given by

θ̃
(t+1)

= argmin
θ̃

∣

∣

∣

∣

∣

∣h̃
(t)

− P̃ θ̃

∣

∣

∣

∣

∣

∣

2

subject to the non-negativity constraints







αi ≥ 0, i = 1, . . . , R
γs ≥ 0, s = 1, . . . , S
ws ≥ 0, s = 1, . . . , S.

(15)

The solution of this minimizing problem is computed iteratively

using the nonnegativity constrained least-square algorithm (NCLS)

[6]. The stopping rule of the NCLS is

∣

∣

∣

∣

∣

∣θ
(t+1) − θ(t)

∣

∣

∣

∣

∣

∣

2

< ρ, where

ρ is a given threshold. The iterative procedure can be initialized by

θ
(0) =

(

α
(0)
1 , . . . , α

(0)
R , 0, . . . , 0

)

, (16)

which is the solution obtained when considering the LMM.

3.2.2. Gradient descent algorithm (GDA)

An alternative of the linearization-based approach described above

consists of using a gradient descent algorithm (GDA). The sum-to-

one constraint for the abundances can be handled by expressing one

abundance as a function of the others, e.g., αR = 1 −
∑

k 6=R αk.

Then the GDA is used to minimize a cost function

J (θR) = ‖y − µ (θ)‖2

1Note that, for conciseness, the nonlinearity coefficients γi,j are now in-
dexed as γs with s = 1, . . . , S.

with respect to θR =
(

αT
1:R−1,γ

T
)T

, using the following iterative

scheme

θ
(t+1)
R = θ

(t)
R − λ(t) ∂J

∂θR

. (17)

The step parameter λ(t) is adjusted by a constrained line search pro-

cedure as in [7]. The principle of the line search is to determine the

parameter λ(t) that minimizes the function J(·) in the gradient di-

rection. The constraints (3) and (4) will be satisfied by enforcing the

parameter λ(t) to belong to a bounded set. Note that the line search

procedure has been performed by using the golden section method

[7]. Note also that the algorithm has been initialized by (16).

4. SIMULATION RESULTS FOR SYNTHETIC IMAGES

Four synthetic images have been used to evaluate the three algo-

rithms introduced above. The first image denoted as I1 has been gen-

erated according to the LMM. The two images I2 and I3 have been

obtained from the non-linear mixing models defined in [5] and (2).

The last image denoted as I4 has been decomposed into two different

regions whose pixels satisfy the LMM and the GBM. The abundance

vectors α(p) (p = 1, . . . , 100) have been generated uniformly on

the simplex. The nonlinearity coefficients are uniformly drawn in the

set [0, 1] for the GBM. All images (of size 10 × 10) have been cor-

rupted by an additive Gaussian noise of variance σ2 = 2.8× 10−3.

To compare the different algorithms, we propose three measures of

performance. First, the reconstruction error (RE) is used to mea-

sure the distance between the measured pixel y(p) and the estimated

spectrum ŷ(p)

RE =

√

√

√

√

1

nL

n
∑

p=1

‖ŷ(p)− y(p)‖2. (18)

The spectral angle mapper (SAM) is also used to estimate the per-

formance of the unmixing procedure [1]

SAM =
1

n

n
∑

p=1

arccos

(

〈y(p), ŷ(p)〉

‖y(p)‖ ‖ŷ(p)‖

)

(19)

where arccos(·) denotes the inverse cosine operator. The third crite-

rion compares the estimated and actual abundances by using the root

mean square error (RMSE) [9]

RMSE =

√

√

√

√

1

nR

n
∑

p=1

‖α(p)− α̂(p)‖2 (20)

where α(p) and α̂(p) are the actual and estimated pth abundance

vectors of the image and n is the number of pixels (here n = 100).

Table 1 (left) shows the REs and SAMs obtained when unmixing

the synthetic images with the GBM. The different algorithms (FFA,

GDA and Bayesian) perform very similarly for these examples. The

corresponding RMSEs between the actual and estimated abundances

are provided in Table 2. Even if the unmixing performances are very

similar for all algorithms, the FFA seems to provide better perfor-

mance for abundance estimation. Finally, it is interesting to note that

the Bayesian algorithm provides posterior distributions for the un-

known parameters that can be used to determine uncertainties about

the estimations (such as standard deviations or confidence intervals).

However, the price to pay with the Bayesian approach is its high

computational complexity as illustrated in Table 1 (right).



Table 1. RE and SAM obtained with the 3 algorithms.

RE (×10−2) SAM (×10−2)

Bay FFA GDA Bay FFA GDA

I1 5.75 5.47 5.49 16.12 15.55 15.58

I2 5.44 5.44 5.53 13.93 13.93 14.15

I3 5.55 5.47 5.50 14.87 14.70 14.78

I4 5.65 5.49 5.51 15.42 15.08 15.14

Table 2. RMSEs (left) between actual and estimated abundances and

computational times (right).

RMSEs (×10−2) Time (s.)

Bay. FFA GDA Bay. FFA GDA

I1 1.86 1.59 2.76 236 16.54 32.95

I2 7.73 1.49 5.34 258 19.90 26.74

I3 4.02 1.81 2.93 240 18.67 17.40

I4 3.42 1.98 2.82 241 17.96 23.10

5. SPECTRAL UNMIXING OF AN AVIRIS IMAGE

This section considers a real hyperspectral image acquired over Mof-

fett Field (CA, USA) in 1997 by the JPL spectro-imager AVIRIS. A

50×50 subimage (that has received much attention in the literature)

has been unmixed using the proposed approaches. The subimage is

mainly composed of R = 3 spectral components (water, soil and

vegetation). These spectral components have been extracted by the

vertex component analysis (VCA) [10]. Table 3 shows the unmix-

ing results when the AVIRIS image has been processed using the

proposed methods. Note that the unmixing performance is related

to the computational complexity (e.g., see the values of SAM). Fig.

2 shows examples of abundance maps obtained with the Bayesian

algorithm. The GBM allows the abundances of the three pure mate-

rials (top figures) to be recovered. However, it also provides interac-

tions between the materials as illustrated in the three bottom figures.

Fig. 2. Fraction maps estimated using GBM for Moffett Field.

Table 3. Unmixing performance for a real AVIRIS image.

RE ×10−2 SAM ×10−1 Time (s.)

FFA 1.85 1.849 49.78

GDA 1.80 1.841 143.58

Bayesian 1.82 1.837 4469.1

6. CONCLUSION

This paper studied different estimation algorithms for the general-

ized bilinear model. The first algorithm was based on the Bayesian

estimation principle. It provided point estimates for the unknown

model parameters as well as information about estimation uncer-

tainties. The other algorithms relied on optimization theory. They

only provided point estimates of the parameters but at the price of

a reduced computational cost. The performance in terms of spectral

unmixing show to be very similar for the different algorithms. Future

works include the introduction of spatial correlation in the general-

ized bilinear model. Using the correlations between adjacent pixels

of an image has shown interesting properties for the linear unmixing

of hyperspectral images. Determining the impact of spatial informa-

tion on non-linear unmixing is clearly an interesting problem.
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