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Abstract

We present a method of variable selection for the sparse generalized additive model. The method 

doesn’t assume any specific functional form, and can select from a large number of candidates. It 

takes the form of incremental forward stagewise regression. Given no functional form is assumed, 

we devised an approach termed “roughening” to adjust the residuals in the iterations. In 

simulations, we show the new method is competitive against popular machine learning 

approaches. We also demonstrate its performance using some real datasets. The method is 

available as a part of the nlnet package on CRAN (https://cran.r-project.org/package=nlnet).
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1. Introduction

Modern high-throughput biology and deep phenotyping data present the challenge of 

selecting a small subset of predictors from thousands of variables, which often exhibit 

complex correlation structure. Statistical variable selection for predictors linearly associated 

with the outcome variable has been extensively studied. Some major methods are reviewed 

in (Fan and Lv 2010, Wu and Ma 2014).

It is known that nonlinear and complex associations exist in omics data (Francesconi and 

Lehner 2014, Li 2002, Reshef et al. 2011). Such relations may represent critical regulatory 

mechanisms, and may be important for building robust predictive models. It is desirable to 

simultaneously select predictors that associate with the outcome variable both linearly and 

nonlinearly. Some existing regression and machine learning methods are aimed at achieving 

this goal. Regression methods include those that use polynomial approximation of nonlinear 

models (Rech, Terasvirta, and Tschernig 2001), functional and adaptive group Lasso 

(Huang, Horowitz, and Wei 2010, Ravikumar et al. 2009), regularization based on partial 

derivatives in reproducing kernel Hilbert space of smooth functions (Rosasco et al. 2010).
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Testing procedures, such as the Hilbert-Schmidt Independence Criterion (HISC) (Gretton et 

al. 2005, Gretton et al. 2008), and Brownian Distance Covariance and its variations 

(Kosorok 2009, Székely and Rizzo 2009), can be used to detect nonlinear associations 

between random vectors. Such methods can be combined with some heuristic selection 

scheme to achieve variable selection. Examples include backward elimination using HSIC 

(BAHSIC) (Song et al. 2012), nonlinear independence screening (Wu et al. 2014), and 

independent ranking and screening (Zhu et al. 2011). Semi-parametric Copula regression 

can detect mild nonlinear relations (Noh, El Ghouch, and Bouezmarni 2013). However 

copula regression itself is not sensitive to non-monotone relations, and the success depends 

on the correct specification of the parametric family (Dette, Van Hecke, and Volgushev 

2014). Lopez-Paz et al used random nonlinear copula projections to overcome this issue, and 

achieved variable selection by greedy dependence maximization (Lopez-Paz, Hennig, and 

Schölkopf 2013).

Some widely-used machine learning methods that provide variable importance ranking, such 

as Random Forest (Breiman 2001), multivariate adaptive regression splines (MARS) 

(Friedman 1991), and boosting (Friedman 2001) etc, are effective in selecting important 

predictors from large number of candidate variables. Given that nonlinear associations can 

be of different functional forms, and that high-throughput data generally contain higher 

levels of measurement noise, the statistical power to detect such associations and select the 

correct predictors is limited.

In this study, we consider the type of variable selection problem when the outcome variable 

is continuous, and it is associated with a small subset of q predictors in the form 

E(Y ∣ X1, X2, …, X
q
) = ∑

i = 1
q

f
i
(X

i
), where f1(), f2)(),…, fq() are arbitrary continuous 

functions. Variable selection under this sparse additive model setting has been explored by 

some authors, generally in the series expansions and regularized regression framework 

(Ravikumar et al. 2009, Huang, Horowitz, and Wei 2010). Here we present a variable 

selection method based on a fully nonparametric measure of nonlinear associations, and 

follow the general workflow of incremental forward stagewise regression, which can handle 

very large number of potential predictors (Hastie et al. 2007). Unlike the linear case, where 

forward stagewise regression can be achieved by gradually increasing the regression 

coefficients through the iterations, in our case there is no functional form assumed, and 

hence no regression coefficient. We devise a procedure named “roughening”, which is the 

reverse of smoothing in concept, to allow the forward stagewise procedure in the nonlinear 

model-free scenario.

The nonparametric association method we use is the Dissimilarity based on Conditional 

Ordered List (DCOL) (Yu and Peng 2013, Yu, Peng, and Sun 2011), which is sensitive to 

relationships where an X has predictive value for Y, i.e. the distribution of Y|X is unimodal 

with limited spread. This is a useful property when our focus is selecting variables for 

prediction. In the following discussion, we use the abbreviation NVSD (Nonlinear Variable 

Selection using DCOL) to refer to our method. We demonstrate its performance in 

simulation studies, and its utility using real datasets.
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2. Methods

2.1. The model

We assume the predictors form a p-dimensional random vector (X1,X2, …,Xp).. Without loss 

of generality, we assume the first q variables truly associate with the continuous outcome 

variable Y through the functional form

E(Y ∣ X1, X2, …, X
q
) = ∑

i = 1
q

f
i
(X

i
),

where f1(), f2(), …, fq() are arbitrary continuous functions on finite support, with finite value 

and finite first derivative everywhere. We also assume all X variables are continuous and on 

finite support.

2.2. Dissimilarity based on Conditional Ordered List (DCOL)

We reported the DCOL and its utilities in missing value imputation and clustering in an ad 

hoc manner (Yu and Peng 2013, Yu, Peng, and Sun 2011). The DCOL is a useful measure of 

predictive nonlinear association between random variables/vectors (Fig. 1). Here we use a 

slightly different version of DCOL in order to estimate the variance component explained by 

each X variable. Given two random variables X and Y, and the corresponding data points 

{(xi, yi)}i=1,…,n, we sort the points based on the values of x to obtain: (xi, yi): x1 ≤ x2 ≤ … ≤ 

xn. We then obtain the dcol(Y|X) by

d
col

(Y ∣ X) = 1/(n − 1)∑
i = 2
n (y

i
− y

i + 1)2

Intuitively, when the spread of Y is small given X, dcol(Y|X) is small (Fig. 1). Thus we can 

use dcol(Y|X) to measure the spread of conditional distribution Y|X in a model-free manner.

2.3 Estimating variance attributed to X in univariate regression without estimating the 

functional form between X and Y

In this study we assume the relationship between Y and X is Y = f(X) + ε, where f() is a 

continuous function, and ε is additive noise with mean 0 and variance σ2. We can use DCOL 

to estimate σ2 without estimating the functional form of f(). Because

Δ
i

= y
i + 1 − y

i
= f (x

i + 1) − f (x
i
) + ε

i + 1 − ε
i
.

Assuming X is continuous on finite support, when the sample size is large, the difference 

between xi+1 and xi approaches zero. Hence

Δ
i

≃ ε
i + 1 − ε

i
.
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We also have:

Δ =
1
n

( f (x
n
) − f (x1) + ε

n
− ε1) 0, as n ∞

Under the condition that f() has finite value and finite first derivative everywhere, we can 

show (Appendix A) that

s(Δ) = 1
n − 2

∑i = 1
n − 1(Δi − Δ)2 2σ

2, as n ∞ (1)

Thus if we take the sample variance of {Δi}i=1,…,n−1, it provides an estimate of the variance 

of ε. Let

SΔ = 1
2(n − 2)

∑i = 1
n − 1Δi

2 = 1
2(n − 2)

∑i = 1
n − 1(yi + 1 − yi)

2 (2)

Then SΔ is an estimate of σ2. Given the sample variance of {yi}i=1,…,n, σ
Y
2 , which is 

estimated directly from the sample, we have an estimate of how much of the variance of Y is 

attributed to X, without knowing the function that links Y to X.

2.4 Permutation test to assess the significance of Y’s dependence on X

As the function linking X to Y, f(), is unspecified, we can find the significance of the 

dependency of Y on X using the permutation test. Under the null hypothesis that Y and X 

are independent, sorting the data pairs {(xi, yi)} based on the x values is equivalent to a 

random re-ordering of Y. We repeatedly re-order the y vector in random to generate 

permuted vectors y
( j)

j = 1

m
, and compute the S value from the permuted vectors,

SΔ
( j) =

1
2(n − 2)

∑
i = 1
n − 1

y
i + 1
( j) − y

i
( j) 2

, j = 1, …, m .

We then take the proportion of SΔ
( j)

j = 1

m
 below the observed SΔ to be the p-value of the 

permutation test.

The null distribution only depends on the Y values, but not on the X values. Thus no matter 

how many potential predictors we need to compare, the permutation only needs to be 

conducted on the y vector.

2.5 Roughening

The word “roughening” is used as opposed to “smoothing”. We first describe the method, 

and then discuss its purpose in the next sub-section. As the name indicates, roughening is an 
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anti-intuitive procedure that increase the roughness of the response of random variable Y to 

a random variable X. In general, the procedure can be used with any smoother. Given the 

observations, (xi, yi), i = 1,…, n, we can first fit any smoother to estimate the smoothed 

response at every given x, (xi, ỹi), i = 1,…, n, and then calculate

yi = yi + θ(yi − y∼i), (3)

where θ is a small positive constant. This operation moves every point slightly away from 

the smoothed curve. Hence the name “roughening”. The farther away the point is from its 

fitted value on the smooth curve, the more the point is moved. The size of the small constant 

may be heuristically determined. In this study, we used the cubic smoothing spline as the 

smoother, which fits a cubic spline, i.e. a piecewise cubic polynomial with continuous first 

and second derivatives, with a roughness penalty (Green and Silverman 1994).

Besides the general roughening procedure, we also develop a roughening process 

specifically for the DCOL. DCOL is not a smoothing procedure, yet its value is smaller 

when the relation between Y and X is smoother. Consider eq. 2, estimating a smooth curve 

would be to reduce the value of SΔ with the fitted Y values. Thus the roughening procedure 

should go against the gradient to increase SΔ. Assume the Y values are ordered based on X,

∇SΔ =
1

(n − 2)

y1 − y2

2y2 − y1 − y3

2y3 − y2 − y4

⋯⋯

y
n

− y
n − 1

With a small step size θ, which absorbs the constant term 1
(n − 2)

, we go against the gradient 

to increase the value of SΔ.

y
new = y + θ∇SΔ =

y1(1 + θ) − y2θ

y2(1 + 2θ) − (y1 + y3)θ

y3(1 + 2θ) − (y2 + y4)θ

⋯⋯

yn(1 + θ) − yn − 1θ

(4)

2.6 The effect of roughening

In an additive model with more than one predictors, by roughening based on one of the 

predictors, we change the relative contribution of the predictors, favoring other predictors. 
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We start by discussing the DCOL roughening. We consider the situation where two 

predictive variables contribute to the generation of Y.

Y = f (X1) + g(X2) + ε

Without loss of generality, we can assume f(X1) and g(X2) both are centered at mean zero. 

In the roughening process, suppose we order the data points by X1, such that

x1, i
≤ x1, i + 1, i = 1, …, N − 1

At the same time, with the assumption that X1 and X2 are independent of each other, the 

ordering by X1 has no bearing on X2, i.e. x2,i, i = 1,…,N are i.i.d. samples from its 

underlying distribution. With DCOL roughening, we have yi = f(x1,i) + g(x2,i) + εi, and

y
i
new = (1 + 2θ)y

i
− θy

i − 1 − θy
i + 1

= y
i
+ θ 2 f x1, i

− f x1, i − 1 − f x1, i − 1 + 2θg x2, i
− θ g x2, i − 1 + g x2, i + 1 + θ(2ε

i
− ε

i − 1

− ε
i + 1)

Notice the data points are sorted based on X1. Assuming all X’s are on finite and continuous 

support, and f() is a continuous function, when the sample size is large, x1,i−1 and x1,i+1 both 

approach x1,i. So f(x1,i−1) and f(x1,i+1) both tend to f(x1,i). Thus the second term, which 

equals (f(x1,i) − f(x1,i−1)) + (f(x1,i) − f(x1,i+1)), goes to zero.

On the other hand, given that the ordering has no bearing on x2’s, thus x2,i−1 and x2,i+1 can 

be considered as random i.i.d. samples drawn from the probability density function of X2. 

Hence g(x2,i−1) + g(x2,i+1) has a mean of zero, and variance of 2φ2, assuming the standard 

deviation of g(X2) is φ.

Thus we can argue that in y
i
new, the contribution from g(x2,i) is on average boosted, as 

compared to yi. We can write

y
i
new = y

i
+ 2θg x2, i

+ ω,

where ω is the noise term with mean 0 and variance of 2θ2φ2 + 6θ2σ2. Hence after a step of 

roughening, the relative contribution of the predictive variable that is not the basis of the 

current roughening step would be increased. The same argument can extend to later 

iterations of the roughening process, as well as the scenario of multiple predictive variables. 

When the general roughening procedure is used with a smoother, a set of positive weights 

are applied to the points surrounding the ith data point. The above argument still holds. See 
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Appendix B for details. Notice the arguments here require the assumption of X1 and X2 

being independent to be true.

2.7 Incremental forward stage-wise variable selection procedure

In the linear regression framework, regularized regression provides an effective approach to 

select predictors from a large number of variables. However in the nonlinear framework and 

without any assumption on the function linking the outcome to the predictors, regularization 

cannot be easily achieved. It has been shown that forward stagewise regression achieves 

similar effect as L1 regularization in linear regression (Hastie et al. 2007). Here we devise a 

forward stagewise regression procedure for nonlinear regression.

In each step of the forward stagewise selection, our goal is to take out a small portion of the 

contribution by the currently selected variable. When linearity is assumed, this is easily done 

by conducting linear regression and adding gradually and iteratively to the regression 

coefficients. Alternatively, the new residual can also be obtained by adding “noise” with 

regard to the currently selected variable x* to the residual. The idea behind the procedure is 

that the “error” with regard to the current predictor x* contains true signal from other 

predictors, as argued in the previous section. Here we do not wish to assume a functional 

form. So instead we use the roughening procedure to add errors with regard to x* to the 

residual vector.

In deciding which predictor is best associated with the current residual in every iteration, we 

consider the fact that when the true underlying relation is linear, Pearson’s correlation has 

higher statistical power than non-linear association methods. Thus we take a heuristic 

approach: we compute both the Pearson correlation and its p-values, and the DCOL-based p-

value. Then the minimum of the two p-values is taken, and multiplied by 2 for a simple 

Bonferroni-type correction. Box 1 shows the workflow of our procedure.

Box 1

Forward stagewise variable selection based on DCOL

1. Set θ to some small constant, such as 0.01.

2. Find the p-values of linear association and DCOL association between every 

X and Y, p
i
(linear) and p

i
(DCOL), i = 1, …, p.

For every predictor Xi, take p
i

= 2min p
i
(linear), p

i
(DCOL) .

3. Find the predictor with smallest p-value, and conduct the roughening 

procedure with step size θ.

4. With the updated Y values, repeat steps (2) and (3).

5. Stop the iteration until the minimum p-value is larger than a predetermined 

threshold, such as 0.001.
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In every iteration, the top-ranked candidate predictor is selected for the roughening 

procedure. In the case where the predictors are mutually independent, it is easy to see that 

when the sample size is large, all true predictors will receive higher rank than nuisance 

predictors, and based on our discussion in the previous section, when the sample size is 

large, the roughening process doesn’t improve the ranks of nuisance predictors, but changes 

the rank within the true predictors.

Given no functional form is assumed, our procedure doesn’t include a prediction model once 

the variables are selected. Existing nonlinear regression models can be borrowed to make 

predictions with the selected variables. In this study we used the multivariate adaptive 

regression splines (MARS) model (Friedman 1991) for prediction.

3. Results and Discussion

3.1 Simulation study

We conducted a simulation study using the following data generation scheme:

1. Determine the number of true predictors q, the total number of potential 

predictors p, the sample size n.

2. Generate the matrix Xp×n of observations for all potential predictors. Introduce 

correlation between the predictors by generating multivariate normal data using 

the correlation structure of p randomly sampled genes from a real gene 

expression matrix (Spellman et al. 1998). When uniformly distributed predictors 

are needed, each row of the data matrix is transformed by taking normal 

quantiles.

3. Randomly select q rows of the matrix to be true predictors. For the ith true 

predictor, randomly draw a function fi() that links it to the outcome variable: 

linear (50% chance), absolute value (12.5% chance), sine (12.5% chance), 

sawtooth wave (12.5% chance), and box wave (12.5% chance). Randomly draw a 

coefficient from unif[1, 3], and with 50% chance flip the sign of the coefficient.

4. Generate the y values by y
j

= ∑
i = 1
q

β
i
f
i

x
i j

+ ε
j
, with εj are i.i.d. samples from 

N(0, σ2).

After data generation, we split the data into the training and testing data at a 1:1 ratio. The 

training data was analyzed by four different methods: NVSD with cubic smoothing spline 

roughening and DCOL roughening, generalized boosted regression with Gaussian (squared 

error) loss (Friedman 2001), Random Forest (RF) for continuous outcome (Breiman 2001), 

multivariate adaptive regression splines (MARS), and backward elimination using HSIC 

(BAHSIC) (Song et al. 2012). Using the training data, each method was used to rank the 

candidate predictors, and a 5-fold cross-validation was conducted sequentially from the most 

important variable to determine the best number of predictors. Then prediction was 

conducted on the testing data. For BAHSIC, seven kernel settings were tested, which include 

linear kernel, inverse distance kernel, and Gauss kernel with scale parameter 1000, 10, 1, 0.1 

and 0.001. Prediction was conducted using MARS. The best-performing among the five in 

each simulation scenario is reported. Given the high correlations between the candidate 
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predictors, and each method’s different level of resistance to nuisance variables, we decided 

to use prediction accuracy on testing data to compare the performance of the methods. The 

prediction accuracy was evaluated using a modified version of normalized root mean 

squared error (NRMSE):

NRMSE = ∑
j

y
j

− y
j

2
/range(y) .

For all the methods, cross-validation was used to select the number of predictors, and the 

prediction accuracy was found using only the selected predictors.

We used a number of parameter combinations, i.e. sample size, number of true predictors, 

total number of variables, with each setting repeated 50 times. Figure 2 shows the results of 

average NRMSE. The rows represent different numbers of candidate predictors, and the 

columns represent different numbers of true predictors. NVSD with cubic smoothing spline 

roughening (solid red line) showed slightly better performance than NVSD with DCOL 

roughening (dashed red line) in most scenarios. When the true number of predictors is 3, 

NVSD clearly out-performed the other methods at low to moderate sample sizes (Fig. 2, left 

column). When the true number of predictors is 6, NVSD performed similarly to BAHSIC, 

boosting and RF at low sample size, while maintaining an edge at moderate sample sizes.

When the sample size was large, NVSD fell slightly behind MARS (Fig. 2, center columns). 

When the true number of predictors was increased to 15, Boosting and RF achieved better 

performance at low sample size, and NVSD remains competitive at moderate to high sample 

sizes (Fig. 2, right column). When the number of nuisance variables is small, BAHSIC 

achieved the best performance when sample size was large. When the number of nuisance 

variables is large, boosting performed better when the sample size was large.

Overall, NVSD behaved quite competitively against the other popular machine learning 

methods, especially when the sample size is not large. Besides uniformly distributed 

predictors, the results generated from normally distributed predictors are shown in 

Supplementary Figures 1, which generally agrees with Figure 2. Although NVSD was 

designed for continuous outcome data, we tested its performance on data with binary 

outcomes. The data generation followed the same procedure as described. After the y values 

were generated, we further dichotomized the values into two groups by thresholding at the 

median. NVSD was again compared with the four other methods using prediction error rate 

as the performance indicator (Supplementary Figure 2). Similar to the continuous case, 

NVSD had an edge when the true number of predictors was relatively small, and remained 

competitive when the true number of predictors became larger.

The roughening procedure iterates until no predictor is significantly associated with the 

roughened residuals. The step size parameter θ controls the rate of change of the residuals in 

the roughening procedure. In the current results we used θ=0.005. In Supplementary Figures 

3 and 4, we show comparisons of θ=0.001, 0.005, 0.01, and 0.05. They were applied on the 

same data, with 10 independent datasets at each parameter setting. The results were almost 

identical, except the smallest step size 0.001 performed slightly worse than the rest in a few 
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settings using spline. The results indicate the method is robust against the choice of θ in a 

reasonable range.

The correlation structure between the predictors may influence the performance of the 

methods. To assess the impact, we conducted three more simulations – (1) The covariance 

matrix is the identity matrix (Supplementary Figure 5); (2) weaker correlation matrix - 

Consider the covariance matrix is Σ from the real data. In the modified matrix Σ′, 
σ′

i j
= sign(σ

i j
)σ

i j
2  (Supplementary Figure 6); (3) a stronger correlation matrix - Consider the 

covariance matrix is Σ from the real data. In the modified matrix Σ′, σ′
i j

= sign(σ
i j

) σ
i j

(Supplementary Figure 7). In all three situations, the relative performance between the 

methods generally stayed the same.

3.2 Community crime rate data

The Communities and Crime Data Set was downloaded from the UCI machine learning data 

repository (Lichman 2013). The data contains 1994 communities (rows) and 123 attributes 

(columns) (Redmond and Baveja 2002). The outcome variable is community crime rate. 

Some missing values were present. After removing attributes with >10% missing values, 90 

attributes were retained for the analysis. K-nearest neighbor (KNN) imputation was used to 

impute the remaining missing values.

We applied the forward stagewise variable selection procedure to the data, with a stopping 

alpha level of 0.01. Eight variables were selected by this procedure (Table 1). Three of the 

variables (PctKids2Par, FemalePctDiv, PctIlleg) are related to family structure; two variables 

(racePctWhite, racePctHisp) are related to race; three variables (pctWInvInc, 

PctPersDenseHous, HousVacant) are related to the housing conditions of the region.

As shown in Figure 3, six of the selected variables, racePctWhite, PctPersDenseHous, 

HousVacant, PctIlleg, HousVacant, and racePctHisp, showed clear nonlinear relations with 

the outcome variable. We then obtained predicted values from 5-fold cross-validation using 

the same variable selection procedure (Figure 3, lower-right panel). For y values at the lower 

end (low crime rates), the prediction appears to be biased towards higher values. Otherwise 

the prediction is reasonably good.

All methods used in the simulation were applied to the data and prediction accuracy was 

compared using NRMSE. The data was randomly split into training and testing datasets at a 

1:1 ratio for 20 times. For BAHSIC the kernel was selected using 5-fold cross validation in 

the training data. And the average NRMSE on the testing data was calculated. Overall the 

performance were close, with NVSD and gbm leading the performance at NRMSE=0.136. 

The NRMSE of other methods were MARS: 0.137; RF: 0.141, and BAHSIC: 0.140.

3.3. Gene expression in ALL patients (GSE10255)

We downloaded the GSE10255 dataset from the Gene Expression Omnibus (GEO) (Barrett 

and Edgar 2006). The data contained gene expression in diagnostic bone marrow leukemia 

cells in patients with primary acute lymphoblastic leukemia (ALL). The dataset is measured 
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with HGU133A gene expression microarray. We selected the probesets with known 

ENTREZ Gene IDs.

For genes represented by more than one probesets, we merged the corresponding probesets 

by taking their mean expression levels. The dataset contained 12704 genes and 161 samples. 

The outcome variable is the reduction of circulating leukemia cells after MTX treatment. 

Here the interest is mainly in selecting genes that are relevant to the disease outcome and 

analyzing the biological implications of such genes.

Given the dataset contains magnitudes more genes than samples, we used an iterative 

procedure to select multiple groups of genes. This is a heuristic approach necessitated by the 

fact that the biological system is modular - genes function in quasi-autonomous groups 

(Wagner, Pavlicev, and Cheverud 2007), and each of the groups may respond almost 

independently to the clinical situation (Ideker and Krogan 2012). We expect that multiple 

biological functions (gene modules) may be associated with the clinical outcome, and each 

module may predict the outcome well by itself given the limited sample size.

We first conducted the NVSD to select a group of genes. Then after removing the selected 

genes from the data matrix, we applied the NVSD again to select another group of genes. 

This process was iterated until the group size was less than 20. A total of 17 groups were 

selected. The full list of genes are in Appendix D. The first one contained 134 genes. We 

used the GOstats method to evaluate the biological functions of each group (Falcon and 

Gentleman 2007), based on the Gene Ontology biological processes. We limited the analysis 

to GO biological process terms with 10 to 1000 human genes. We show the top 5 GO terms 

of the first 5 groups in Table 2.

The first group (134 genes) over-represents some signal transduction pathways, including 

the granulocyte macrophage colony-stimulating factor (GM-CSF) production, the JAK-

STAT cascade, as well as immune cell proliferation. Given that MTX is an immune 

suppressor, it is expected that immune cell proliferation processes are related to the MTX 

treatment outcome. At the same time, the JAK-STAT pathway has been documented to be 

related to the disease ALL. Mutations in JAK1 and JAK2 can cause constitutive JAK-STAT 

activation, which is associated with ALL (Mullighan et al. 2009, Hornakova et al. 2009). On 

the other hand, it was suggested that constitutive JAK-STAT activation could also be 

achieved through an autocrine loop involving GM-CSF (Chai, Nichols, and Rothman 1997). 

Similarly, groups 2 and 3 also over-represents some immune, stress response, and signal 

transduction GO terms. Group 4 over-represents GO terms of cell motility and regulation in 

protein degradation. Some genes involved in these processes and selected by the NVSD 

method have been documented to be important in leukemia. For example, TRIB1 was found 

to be important in myeloid cell development and transformation (Nakamura 2015), and 

APOE was found to be an important marker in distinguishing high- and low-risk pediatric 

ALL (Braoudaki et al. 2013). Among the terms over-represented by group 5, plasminogen 

activation was documented in some acute leukemia cells, and thought to contribute to the 

invasive behavior of these cells (Scherrer et al. 1999).
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We next examined the first group of genes in more detail. Among the 134 genes, 47 have 

very low linear correlation with the outcome variable. The absolute value of Spearman’s 

correlation coefficients between these genes and the outcome are below 0.1. We further 

examined the biological functions over-represented by this subset of 47 genes. As shown in 

Table 3, the top 5 GO terms were still dominated by GM-CSF signal transduction and some 

immune system processes, including cytokine and immune cell proliferation terms. The 

results agree well with Table 2, which indicate that the variables found by the NVSD method 

were not dominated by those linearly associated with the outcome variable, and those 

variables nonlinearly associated with the outcome are functionally meaningful.

3.4. Discussion

In this study, we devised a nonlinear variable selection scheme for continuous outcome 

named NVSD (Nonlinear Variable Selection using DCOL). It is a nonparametric 

incremental forward stagewise procedure. No functional form between the predictors and the 

outcome variable is assumed. The implementation of the method is available as part of the 

nlnet package on CRAN (https://cran.r-project.org/package=nlnet), which contains a number 

of methods based on DCOL. The computation time is shown in Supplementary Figure 8. 

The figure was generated using step size of 0.01, stopping alpha of 0.01, and in the setting of 

6 true predictors, on an iMac computer with Core i7-860 CPU. Using different number of 

predictors resulted in similar computing time. The DCOL version and the spline version 

used similar computing time. Hence we report the average computing time over the two in 

the figure. Empirically, the computing time increased roughly linearly with the sample size, 

and roughly quadratically with the number of predictors. With 100 predictors and 100 

samples, the method took ~0.5 minute. With 1000 predictors and 500 samples, the method 

took ~8 minutes.

Although the NVSD method assumes no functional form, hence no coefficient is available, 

we implemented a heuristic approach to show the solution path. Based on section 2.3, 

suppose variable Xi is first selected at step k, we can estimate the proportion of variance of 

the residual rk that is attributed to Xi, denoted SΔ,k. Then at step j, if Xi is selected again, we 

can estimate the proportion of variance of the current residual rj attributed to Xi, denoted 

SΔ,j. We then take the ratio dj=(SΔ,k − SΔ,j)/SΔ,k. It can be easily seen that in the simple case 

of a single predictor being repeatedly selected, SΔ,j decreases with the roughening steps, as 

the predictor’s contribution to the residuals becomes smaller and smaller. Thus dj increases 

with the iterations and approaches 1. With multiple predictors, the relation becomes more 

complex, and dj only roughly records the reduction of the proportion of the outcome being 

explained by Xi along the iterations. A plot of d1, …., dm against the step number 1, …, m, 

where m is the total iterations, resembles the coefficient path plot of the linear forward 

stagewise regression, but without the relative scale between the predictors. An example plot 

derived from the crime rate data is shown in Figure 4.

There is an conceptual relation between NVSD and boosting. We draw a parallel to the 

linear case. For linear regression, the incremental forward stagewise regression can be seen 

as a version of boosting, achieved by a subgradient descent to minimize the correlation 

between the residuals and the predictors (Freund, Grigas, and Mazumder 2013). In the 
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NVSD using DCOL roughening, we are indeed conducting a gradient descent of the relation 

as measured by the DCOL statistic. In the NVSD using smoothers, points farther away from 

the smoothed curve are moved by a larger amount in the generation of the new residuals. 

Although motivated from a different angle, it is conceptually similar to boosting with L2 loss 

and component-wise smoothing spline as the learner (Bühlmann and Yu 2003). We cannot 

call NVSD a boosting procedure, because it is not directly aimed at minimizing a loss 

function for prediction, but we see it is connected to boosting in concept.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of DCOL. The DCOL score is calculated from the average squared length of the 

blue bars.
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Figure 2. 
Simulation results. The average NRMSE are plotted against the sample size. Different sub-

plots represent different true number of predictors (columns) and total number of variables 

(rows). The results were based on 50 simulations at each parameter setting. The ±standard 

error of the estimate is shown as a vertical bar.
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Figure 3. 
Variables selected for the crime rate data. The outcome variable is plotted against the 

selected variables one at a time using density scatter plots. The lower-right plot shows the 

scatterplot of predicted values in 5-fold cross-validation against the true values.
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Figure 4. 
A example of the heuristic solution path plot generated from the crime rate data.
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Table 1

Selected variables for the communities crime rate data.

Variable Attribute

PctKids2Par percentage of kids in family housing with two parents

racePctWhite percentage of population that is Caucasian

FemalePctDiv percentage of females who are divorced

pctWInvInc percentage of households with investment / rent income in 1989

PctPersDenseHous percent of persons in dense housing (more than 1 person per room)

PctIlleg percentage of kids born to never married

HousVacant number of vacant households

racePctHisp percentage of population that is of hispanic heritage
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Table 2

Top 5 GO biological process terms for the first 5 groups of genes.

GOBPID Pvalue Term

Group: 1, number of genes: 134

GO:0032645 0.000161 regulation of granulocyte macrophage colony-stimulating factor production

GO:0046427 0.00053 positive regulation of JAK-STAT cascade

GO:0046641 0.00086 positive regulation of alpha-beta T cell proliferation

GO:0032946 0.00104 positive regulation of mononuclear cell proliferation

GO:0050714 0.0014 positive regulation of protein secretion

Group: 2, number of genes: 120

GO:1901998 0.0028 toxin transport

GO:2001240 0.0028 negative regulation of extrinsic apoptotic signaling pathway in absence of ligand

GO:0034405 0.00308 response to fluid shear stress

GO:0045619 0.0036 regulation of lymphocyte differentiation

GO:0048566 0.00401 embryonic digestive tract development

Group: 3, number of genes: 107

GO:0002819 2.55E-06 regulation of adaptive immune response

GO:0050707 1.76E-03 regulation of cytokine secretion

GO:0051223 2.69E-03 regulation of protein transport

GO:0035058 3.22E-03 nonmotile primary cilium assembly

GO:0007168 3.91E-03 receptor guanylyl cyclase signaling pathway

Group: 4, number of genes: 60

GO:2000146 0.000125 negative regulation of cell motility

GO:0051928 0.000596 positive regulation of calcium ion transport

GO:0043903 0.00147 regulation of symbiosis, encompassing mutualism through parasitism

GO:0045862 0.00151 positive regulation of proteolysis

GO:0043243 0.00333 positive regulation of protein complex disassembly

Group: 5, number of genes: 62

GO:0010755 0.000934 regulation of plasminogen activation

GO:0002407 0.0031 dendritic cell chemotaxis

GO:1901522 0.00422 positive regulation of transcription from RNA polymerase II promoter involved in cellular response to chemical 
stimulus

GO:0048384 0.00964 retinoic acid receptor signaling pathway
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Table 3

Top 5 GO biological process terms for the genes in group 1 that are not linearly correlated with the outcome 

variable (absolute value of Spearman correlation less than 0.1).

GOBPID Pvalue Term

GO:0032725 6.79E-06 positive regulation of granulocyte macrophage colony-stimulating factor production

GO:0042119 6.27E-05 neutrophil activation

GO:0050730 0.000513 regulation of peptidyl-tyrosine phosphorylation

GO:0042108 0.00111 positive regulation of cytokine biosynthetic process

GO:0046634 0.00138 regulation of alpha-beta T cell activation
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