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Abstract—Time efficiency and accurate path tracking represent
two conflicting demands typical of robotic applications: Time effi-
ciency induces one to plan extremely fast trajectories which can
easily collide with the manipulator kinematic and dynamic con-
straints, thus causing a reduction of accuracy. To deal with this
problem, several approaches can be found in the literature mainly
based on the synthesis of dynamic filters used for the online
trajectory scaling: A possibly unfeasible input trajectory is auto-
matically scaled to fulfill given dynamic bounds. In this way, an
accurate path tracking is guaranteed. This paper can be collocated
in such a framework. A new discrete-time filter, with novel capabil-
ities, is designed. Differently from other proposals, not only torque
constraints are considered but also kinematic constraints are easily
handled. Moreover, to preserve time efficiency, the new filter
always attempts to recover any delay caused by the constraints.

Index Terms—Industrial manipulators, kinematic and dynamic
bounds, nonlinear tracking filters, path tracking, trajectory scal-
ing, variable structure systems.

I. INTRODUCTION

MOTION control of industrial manipulators requires the
generation of appropriate reference signals in order to

improve the system performances in terms of precision and
time efficiency. Great attention is commonly devoted to design
trajectories able to minimize the time required to complete an
assigned task. The fulfillment of this requirement is crucial in
order to increase the production rate in industrial applications
which are often limited by the robot performances rather than
the process constraints.

In the last decades, several algorithms have been proposed
for the optimal trajectory planning. Some of them evaluate the
trajectory as a whole [1]–[4], while others take advantage of
the path-velocity paradigm [5]–[7], and then introduce a scaling
factor to guarantee the trajectory feasibility [8]–[10].

Unfortunately, traveling time minimization leads to an in-
crement of the mechanical solicitations and, moreover, the
actuators dynamic limits can easily be exceeded, thus causing a
degeneration of the control performances. For example, when
minimum-time trajectories are planned under dynamic con-
straints, there is always at least one joint working at its torque
limits: External disturbances and robot unmodeled dynamics
cannot be compensated by the controller, likely causing a path
tracking lost.
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To overcome these possible problems, nominal trajectories
are typically online modified by means of appropriate methods.
In the framework of the path-velocity decomposition [5], a
good path tracking is normally guaranteed by suitably scaling
the longitudinal time-law (LTL) used to move the manipulator
along the assigned path. Sometimes, the LTL is only scaled to
preserve given kinematic bounds [11], [12], sometimes it is
modified by accounting for dynamic limits [13]–[15]. When
dynamic bounds are considered, they are first online converted
into equivalent kinematics constraints on the longitudinal ve-
locity profile. Then, appositely designed dynamic systems are
used to “filter” the original LTL and generate output reference
signals which fulfill the assigned bounds.

This paper nests in such framework. The proposed control
scheme introduces several novelties with respect to similar
approaches [13]–[15]. First of all, in addition to usual torque
constraints, explicit limits on the maximum joint velocities are
considered. Second, a different parametrization of the LTL is
used. The time-law is commonly expressed as a function of
the manipulator position along the path [13] by specifying the
longitudinal velocity to be assumed in each point. In this paper,
it is defined by means of a standard trajectory specified in the
time domain. The difference is relevant. In the first case, time
delays caused by the trajectory scaling mechanism cannot be re-
covered: As long as saturations cease, the system automatically
assume the velocity planned for the current path position, so
that time delays accumulate along the trajectory, thus reducing
productivity. In the second case, any delay accumulated due
to saturations is extinguished as soon as dynamic conditions
make it possible: Efficiency is preserved and, at the same time,
a good path tracking is achieved. As a further advantage, the
longitudinal reference signal is generated in a natural way by
means of standard planning methods.

The dynamic filter used to scale the LTL represents itself
a novelty. Similar solutions were proposed in the past, deal-
ing with the optimal filtering of rough reference signals for
servosystems [16]–[18]. Unfortunately, none of them is suited
to directly manage the asymmetric kinematic bounds which
characterize the proposed robotic problem. For this reason,
a new filter, featuring an improved control law, has been
designed.

This paper is organized as follows. The robotic problem is
posed in Section II. In the same section, it is shown how joint
torque and velocity constraints can be converted into equivalent
kinematic constraints. Such constraints are used to scale the
LTL by means of a dynamic filter: The characteristics of the
new discrete-time filter are discussed in Section III, while a
detailed analysis of the filter convergence properties is reported

0278-0046/$26.00 © 2009 IEEE

Authorized licensed use limited to: Universita degli Studi di Parma. Downloaded on September 16, 2009 at 18:01 from IEEE Xplore.  Restrictions apply. 



3922 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 56, NO. 10, OCTOBER 2009

in Appendix I-A. The usefulness of the approach is investigated
in Section IV by means of an example concerning a Cartesian
manipulator: simulation results are proposed and analyzed.
Finally, conclusions are drawn in Section V.

II. ONLINE TRAJECTORY SCALING FOR

ROBOTIC MANIPULATORS

The problem here investigated is similar to that described
in [13], where an online strategy was proposed to scale the
velocity profile of any given input trajectory such to fulfill
known system constraints. To this purpose a two-level control
scheme was designed. At the primary level, a standard feedback
controller was adopted, tuned for disturbances rejection and
good transient performances. At the secondary level, a dynamic
filter was used to modify the nominal, and potentially rough,
LTL in order to fulfill the manipulator torque constraints and
track, at the best, a given path.

In this paper, the same two-level approach is used. The first
level is represented by a standard computed torque controller,
while a novel filter is used for the optimal trajectory scaling.

Some preliminary definitions can be useful for the discus-
sion. The robot trajectory is defined according to the so-called
path-velocity decomposition [5]. For this reason, the path to be
followed is described in the joint space by means of a vectorial
function Γ(x) defined as follows:

Γ : [0, xf ] → IRn

x → qd := Γ(x) (1)

where x ∈ IR is the scalar which parametrizes the curve, while
n ∈ N is the number of independent joints. Without any loss of
generality, the path is assigned in the joint space.

A monotonically increasing LTL, defined in the time domain,
is used to move the end effector along Γ(x). It is defined as
follows:

x : [0, tf ] → [0, xf ]
t → xd := x(t) (2)

where tf is the total traveling time. Evidently, the overall
robot trajectory is obtained by combining (1) and (2): qd(t) :=
Γ(x(t)). By taking into account the chain differentiation rule,
it is possible to evaluate the trajectory time derivatives

q̇d =Γ′(x)ẋ (3)

q̈d =Γ′′(x)ẋ2 + Γ′(x)ẍ. (4)

Superscript ′ indicates a differentiation with respect to x, e.g.,
Γb′(x) = (dΓ(x)/dx), while, as usual, dots indicate time deriv-
atives, e.g., ẋ(t) = (dx(t)/dt).

Consider a serial link rigid-body manipulator, whose dy-
namic is described by

τ = H(q)q̈ + c(q, q̇) + F(q)q̇ + g(q) (5)

where q := [q1, q2, . . . , qn]T ∈ IRn is the vector of the joint
variables, τ := [τ1, τ2, . . . , τn]T ∈ IRn is the vector of the ap-
plied torques, H(q) ∈ IRn×n is the symmetric positive-definite
inertia matrix, c(q, q̇) ∈ IRn is the vector of Coriolis and

Fig. 1. Proposed control scheme. (Dashed box) A standard computed torque
controller is used to drive the manipulator, in conjunction with the ATLS
proposed in this paper.

centripetal forces, F(q) ∈ IRn×n describes the viscous friction,
and g(q) ∈ IRn is the vector of gravitational forces. The ma-
nipulator is subject to dynamic and kinematic constraints. More
precisely, maximum admissible torques are bounded, so that it
is possible to write

τ i ≤ τi ≤ τ i, i = 1, 2, . . . , n (6)

where τ i ∈ IR− and τ i ∈ IR+ represent the lower and the upper
bounds of the ith joint torque. Analogously, maximum joint
velocities are bounded, i.e.,

q̇
i
≤ q̇i ≤ q̇i, i = 1, 2, . . . , n (7)

where q̇
i
∈ IR− and q̇i ∈ IR+ represent the lower and the upper

limits of the ith joint velocity.
Owing to (6) and (7), the following tracking problem can be

defined.
Problem 1: Given a manipulator described by (5) and a

desired trajectory (1) and (2), design a control law to achieve the
best possible path tracking compatibly with torque constraints
(6) and joint velocity constraints (7).

The control scheme proposed to deal with Problem 1 is
shown in Fig. 1. As anticipated, it is based on a computed
torque controller. The controller output is saturated to account
for (6), while the manipulator internal dynamics has been
modified in order to introduce the effects of (7). If an improper
trajectory is used to drive the torque controller, saturations
cause a drastic degeneration of the tracking performances. The
proposed trajectory scaling system guarantees that reference
signals used to drive the controller are always feasible. It is
based on a three-stage scheme. The first stage is a kinematic
bounds estimator (KBE) which online converts, on the basis of
the manipulator current state of motion, bounds (6) and (7) into
equivalent kinematics constraints for x(t) or, better, for ẋ(t)
and ẍ(t). Such constraints are then used by the automatic time-
law scaler (ATLS) to modify any given nominal, but possibly
unfeasible, reference signal r(t) and generate a feasible time-
law x(t). Finally, x(t) is converted by the third stage into a
feasible trajectory by means of (1), (3), and (4). Equations
required for the KBE are devised in the following, while the
ATLS is described in Section III.
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The output signal of a computed torque controller is evalu-
ated according to

τ =H(qd)q̈d+c(qd, q̇d)+F(qd)q̇d + g(qd) + KT
p e + KT

v ė
(8)

where Kp,Kv ∈ IRn are the controller feedback gains and
where e := qd − q is the reference tracking error, while ė :=
q̇d − q̇ is its first derivative. Due to (1), (3), and (4), it is always
possible to rewrite (8) as follows:

τ = b1(x)ẍ+ b2(x, ẋ) (9)

where

b1(x) :=H (Γ(x))Γ′(x) (10)

b2(x, ẋ,q, q̇) :=H (Γ(x))Γ′′(x)ẋ2 + c (Γ(x),Γ′(x)ẋ)

+ F (Γ(x))Γ′(x)ẋ+ g (Γ(x))

+ KT
p e + KT

v ė. (11)

Let us define [ b1,1 b1,2 · · · b1,n ]T := b1(x) and
[ b2,1 b2,2 · · · b2,n ]T := b2(x, ẋ,q, q̇). Due to (9), con-
straints (6) can be rewritten as follows:

τ i ≤ b1,i ẍ+ b2,i ≤ τ i, i = 1, 2, . . . , n. (12)

By reorganizing (12), it is possible to convert τ i and τ i

into equivalent bounds ψi and φi on ẍ. In particular, given the
current status of motion (x, ẋ), for each joint i = 1, 2, . . . , n, it
is necessary to guarantee that ẍ ∈ [ψi, φi], where

φi =

⎧⎪⎨⎪⎩
τ i−b2,i

b1,i
, if b1,i > 0

τ
i
−b2,i

b1,i
, if b1,i < 0

∞, if b1,i = 0

ψi =

⎧⎪⎨⎪⎩
τ

i
−b2,i

b1,i
, if b1,i > 0

τ i−b2,i

b1,i
, if b1,i < 0

−∞, if b1,i = 0.

Since bounds φi and ψi must be simultaneously fulfilled ∀i =
1, 2, . . . , n, any feasible acceleration ẍ must belongs to the
range [U−, U+], where

U+ := min
i=1,...,n

{φi} U− := max
i=1,...,n

{ψi}. (13)

Named Γ′
i(x) the i element of Γb′(x), due to (3), it is possible

to rewrite (7) as follows:

q̇
i
≤ Γ′

i(x)ẋ ≤ q̇i, i = 1, 2, . . . , n. (14)

By means of (14) it is then possible to convert the bounds
on q̇i into equivalent bounds ẋ− and ẋ+ on ẋ. First of all,
since negative velocities along the path are not acceptable, it is
necessary to assign ẋ− := 0. Upper bound ẋ+ is then evaluated
according to the following expressions:

ρi =

⎧⎪⎪⎨⎪⎪⎩
q̇i

Γ′
i
(x) , if Γ′

i(x) > 0
q̇

i

Γ′
i
(x) , if Γ′

i(x) < 0
∞, if Γ′

i(x) = 0.

Velocity ẋ is feasible only if it lies in the interval [ẋ−, ẋ+],
where

ẋ+ := min
i=1,...,n

{ρi}, ẋ− := 0. (15)

It is important to point out that the solution of Problem 1
could possibly not exist depending on the current status of
motion [6]. More precisely, depending on the current values of
x and ẋ, and assigned a set of torque bounds τ i, τ i and velocity
bounds q̇

i
, q̇i, it could not exist any ẍ such that (12) is fulfilled.

In this case, independently from the adopted scaling method,
path tracking is lost. A feasible solution certainly exists until
condition U+ ≥ U− is satisfied.

III. AUTOMATIC TIME-LAW SCALER

The ATLS is composed by a reference LTL generator, whose
output is a signal r(t), and a dynamic nonlinear discrete-time
filter, which appropriately modifies r(t) in order to fulfill (13)
and (15). In particular, if r(t) is feasible the filter output is
x(t) = r(t), otherwise r(t) is abandoned and an appropriate
x(t), which fulfill the constraints, is generated.

Similar dynamic filters have been successfully used in the
past to generate smooth set points for motion control systems
[16]–[18]. None of them can be used in this context since they
are not able to handle asymmetric bounds on the acceleration
like those deriving from (13). Since manipulator controllers are
discrete-time implemented, a sampled time filter is proposed to
solve the following design problem.

Problem 2: Design a nonlinear discrete-time filter whose
output x(t) tracks “at best” a given reference signal r(t) by
fulfilling the following requirements.

1) The first and second time derivatives of x must be
bounded

ẋ− ≤ ẋ ≤ ẋ+, U− ≤ ẍ ≤ U+ (16)

where ẋ−, ẋ+ ∈ IR, U+ ∈ IR+ and U− ∈ IR−.
2) Bounds (16) can be time varying and can also change

during transients.
3) If (16) is not satisfied owing to the filter initial conditions

or to a sudden change of the bounds, ẍ must be forced in
a single step within the given limits, while ẋ must reach
the assigned bounds in minimum time.

4) When a reference signal r satisfying (16) is applied, the
tracking condition x = r is reached in minimum time and
without overshoot.

5) When a discontinuous reference signal is applied (or the
reference signal has time derivatives larger than the bound
values), the tracking is lost. As soon as the reference
signal newly satisfies (16), tracking is achieved in mini-
mum time.

6) The time derivatives ẋ and ẍ of the bounded output must
be available for the generation of feedforward actions.

Problem 2 is an optimal minimum-time tracking problem
subject to bounded dynamics. Its solution is based on a chain
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Fig. 2. Optimal bounded-dynamics trajectory tracker.

of two integrators like that shown in Fig. 2, whose dynamic
equation is

[
xk+1

ẋk+1

]
=

[
1 T
0 1

] [
xk

ẋk

]
+

[
T 2

2
T

]
uk (17)

where T is the system sampling time, (x, ẋ) is the internal
state, while u is the control command of the integrator chain.
Subscript k indicates the sample number, so that uk represents
the command signal at time tk = kT .

The integrators are driven by an algebraic discrete-time
nonlinear controller C designed by means of variable structure
control techniques [19]. In order to fulfill the requirements of
Problem 2, the following control law C is proposed:

C : uk :=
{
U−sat(σk), if σk ≥ 0
−U+sat(σk), if σk < 0

(18)

σk := żk − ˙̃zk (19)

where żk and ˙̃zk are evaluated by means of the following
expressions:

ż+ := − ẋ+−ṙk
TU− (20)

z+ := − 	ż+

[
ż+−	ż+
−1

2

]
(21)

ż− :=
ẋ−−ṙk
TU+

(22)

z− :=	−ż−

[
−ż−− 	−ż−
−1

2

]
(23)

[α β] :=
{

[U+ U−], if yk

T + ẏk

2 >0
[U− U+], if yk

T + ẏk

2 ≤0
(24)

zk :=
1
Tα

∣∣∣∣yk

T
+
ẏk

2

∣∣∣∣ (25)

γk :=

⎧⎨⎩ z+, if zk<z
+

zk if z+≤zk≤z−
z−, if zk>z

−
(26)

mk :=

⌊
1 +

√
1 + 8 |γk|
2

⌋
(27)

˙̃zk := − γk

mk
−mk−1

2
sgn(γk) (28)

Fig. 3. (y, ẏ) phase plane.

Fig. 4. (z, ż) phase plane.

żk :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

ẏk

T |α| , if
[(
zk≥0& ẏk

T |α| ≤ ˙̃zk

)
or

(
zk<0& ẏk

T |α| ≥ ˙̃zk

)]
(29)

ẏk

T |β| +
(

mk−1
2 + |γk |

mk

)
× α+β

|β| , otherwise (30)

and where rk is the sampled reference signal, ṙk is the cor-
responding discrete-time derivative, yk := xk − rk is the filter
tracking error, ẏk := ẋk − ṙk is the filter velocity error. Func-
tions 	·
 and �·� respectively provide the ceil and the floor of
their arguments, provides the upper integer of its argument,
while sat(·) saturates its argument to ±1. Signals rk and ṙk are
assumed to be known. Moreover, ṙk is supposed to be piecewise
constant.

The filter behavior is summarized in the following with
the help of Figs. 3 and 4. The interested reader can find the
analytic demonstrations of the filter convergence properties in
Appendix I-A.

The objective of controller C is to force the system state
(y, ẏ) toward the origin of the phase plane since this implies,
according to the definition of y and ẏ, that a perfect tracking
of r is achieved. This result must be obtained in minimum
time and by satisfying, if possible, the given constraints on the
maximum velocity and acceleration. To this purpose, any point
in the (y, ẏ)-plane is transformed into an equivalent one in the
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(z, ż)-space by means of (20)–(30). It is possible to verify that
such mapping is bijective, and the origins of the two spaces
coincide. As a consequence, tracking is achieved if controller
C is able to force the state (z, ż) and, in turn, (y, ẏ) toward the
origin. The two constants ż+ and ż− represent the transformed
values in the (z, ż)-plane of velocity constraints ẋ+ and ẋ−.
Analogously, ẏ+ and ẏ− represent the transformed values in
the (y, ẏ)-plane of the same constraints.

From a practical point of view, control law (18)–(30) cre-
ates a sliding surface in the phase plane, whose equation,
due to (19), is clearly given by (28). The sliding surface has
been planned such that it monotonically decreases when z ∈
[z+, z−], while it becomes constant and equal to ˙̃z = ż+ if
z ≤ z+ or ˙̃z = ż− if z ≥ z−. Sliding surface ˙̃z is surrounded
by a boundary layer (BL): If the filter state is outside such
BL, the command signal is u = U+ or u = U−, otherwise
u lies in the interval [U−, U+]. In this way, being ẍ = u,
the constraint on the maximum acceleration is automatically
fulfilled.

Fig. 3 shows some system trajectories in the (y, ẏ)-plane by
considering different starting conditions, while Fig. 4 shows the
same trajectories in the transformed (z, ż)-plane. From the two
figures, it is possible to deduce that the origin of the (z, ż)-plane
is reached in two steps: The system state is first driven toward
˙̃z, then it slides along such surface by pointing to the origin.
When outside the BL (region R1), transients are obtained by
applying the maximum command signal: The BL is reached
with certainty and in minimum time, as demonstrated in
Appendix I-B. Control law C guarantees that the BL cannot
be crossed: as soon as the system state reaches region R2,
with a single step, it is forced to the sliding surface and, then,
it slides toward the origin with command signal u = 0 (see
Appendix I-C). Finally, (z, ż) enters in region R3 and, again
with a single step, it is forced to the frontier of the BL: The
origin is reached by applying the maximum command signal
and with a deadbeat behavior (see Appendix I-D). Apart from
the two single-step transients from R1 to R2 and from R2 to
R3, the command signal is always u ∈ {U−, 0, U+}, i.e., the
controller has a bang-zero-bang behavior.

From Figs. 3 and 4, it can be evinced that if the constraint
on the maximum velocity is violated, e.g., ż /∈ [ż−, ż+] for a
sudden change of the given bounds, the system is forced within
the new bounds by applying the maximum control action, i.e.,
in minimum time as required by point 3) of Problem 2.

Some applicative remarks can be useful in order to adopt the
filter for actual applications. Difference U+ − U− depends on
the distance of filter state x, ẋ from the boundary of the feasible
region: If the difference tends to zero, the state is approaching
the frontier. Under this condition, due to the limitedness of
available dynamics (remember that ẍ ∈ [U−, U+]), boundary
could be possibly crossed, thus causing a torque constraints
violation. This situation should be avoided. Owing to the char-
acteristics of the proposed filter, several solutions are possible,
all of them based on an appropriate reduction of ẋ+. Indeed,
interval [U−, U+] enlarges as soon as current ẋ is reduced, so
that feasibility can be more easily maintained.

Filter stability requires ż+ ∈ IR+ and ż− ∈ IR− (see
Appendix I-A), so that ṙ must necessarily fulfill the following

condition owing to (20) and (22):

ẋ− ≤ ṙ ≤ ẋ+. (31)

Inequality (31) cannot be guaranteed a priori since ẋ+ is
continuously modified by the KBE. The solution to this prob-
lem is straightforward, since it is sufficient to saturate ṙ within
[ẋ−, ẋ+]: tracking is lost, but the filter remains stable, and r(t)
is newly hooked as soon as ṙ returns inside interval [ẋ−, ẋ+].

A few words must be spent on the computational overhead of
the proposed scaling method. Fig. 1 shows that it only requires
two additional blocks with respect to traditional computed
torque control schemes, more precisely the KBE and the ATLS.
The KBE online returns U−, U+, ẋ−, and ẋ+ by means of (13)
and (15) which are based on terms already evaluated inside the
computed torque controller: The additional cost is negligible.
In addition, the ATLS has a marginal cost. Its outputs x, ẋ, ẍ
are evaluated at the sampling instants by executing the sequence
of algebraic equations (18)–(30), and by updating the internal
state of the two integrators (17): The computational burden
is irrelevant if compared with that required by the computed
torque controller. Summarizing, the advantages deriving from
the scaling method can be gained at an almost zero cost.

IV. SIMULATION RESULTS

The effectiveness of the proposed filter is verified by simu-
lating the control of a two-link Cartesian planar robot. The two
orthogonal prismatic joints are characterized by the following
dynamic parameters: m1 = 23.90 kg, m2 = 3.88 kg, B1 =
1.5e− 3 N · m−1 · s, and B2 = 2.8e− 3 N · m−1 · s, where m1

and m2 are the link masses while B1 and B2 represent the
joint friction coefficients. The trajectory filter and the torque
controller sampling times are equal to 1e− 3 s, while the
solution of the continuous robot dynamics has been obtained
with the Runge–Kutta method for the ODEs [20] by adopting a
variable integration step superiorly constrained to 1e− 4 s.

The manipulator path is an ellipsoid represented by means of
a curve in the joint space parametrized with respect to angle x ∈
[0, 2π] rad, i.e., qd(x) = Γ(x) := [Γ1(x) Γ2(x)]T, where{

Γ1(x) := 0.4 (1 − cos(x))
Γ2(x) := 0.8 sin(x).

The trajectory is completely defined once a time-law r(t)
is assigned. Function r(t) has been chosen such to be too
demanding with respect to the robot velocity constraints

r(t) :=

⎧⎨⎩
π
12 t

2, 0 ≤ t ≤ 2
π
3 (t− 1), 2 ≤ t ≤ 6
π
6 (t+ 4), 6 ≤ t ≤ 8.

(32)

Corresponding ṙ(t) is obtained straightforward.
Simulations are carried out by considering joint velocities

and torques constrained between the following bounds: |q̇i| ≤
0.65 m · s−1 and |τi| ≤ 15 N, i = 1, 2. The feedback controller
gains are equal to Kp = [200 200]T and Kv = [60 60]T.

Fig. 5 shows what happens when the scaling filter is not
used. In particular, Fig. 5(b) and (c) shows that both q̇2 and
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Fig. 5. Tracking performances of a standard torque controller due to joint
velocity and torque saturations. (a) (Dashed line) Reference robot path com-
pared with the (solid line) actual robot path. (b) Joint torques (solid line) τ1 and
(dashed line) τ2. (c) Joint velocities (solid line) q̇1 and (dashed line) q̇2.

τ2 cross the assigned limits and, consequently, path tracking
is lost, as shown in Fig. 5(a): The maximum error is equal to
emax = maxx∈[0,2π]{‖e‖} = 0.1619 m.

By adopting the proposed filter, the situation neatly im-
proves. Curves shown in Fig. 6(c) and (d) exactly coincide with
those of Fig. 5(b) and (c) until the saturation on q2 occurs, i.e.,
at the beginning the filter acts as a pass-through and r = x.
Then, the filter starts scaling the reference signal to guaran-
tee that assigned bounds are touched but not crossed. As a
result, path-tracking error reduces of several order of magnitude
with respect to the previous case: emax = maxx∈[0,2π]{‖e‖} =
1.824e− 4 m.

One relevant filter feature is that it always tries to hook in
minimum time its input reference trajectory compatibly with
the assigned constraints. Analogous approaches (see, e.g., [13])
do not own this characteristic, since they preserve path tracking
but do not take care of delays introduced into the original time-
law. Fig. 7 compares reference signal r with filter output x:
The time instant when tracking is lost is evident, as well as
the moment when tracking is newly gained. Since r must be
reached in minimum time, the filter assumes the bang-bang
behavior shown in Fig. 6(c) and (d): Until r is not newly gained,
there is always one torque or velocity constraint which is active.
The asymmetry of U+, U− is clearly shown in Fig. 6(b) and
justifies the use of the novel filter proposed in this paper.
Fig. 6(a), together with Fig. 6(b), also prove that, as desired,
both ẋ(t) and ẍ(t) fulfill bounds U+, U−, ẋ+, and ẋ−.

Fig. 6. Simulation results using the nonlinear trajectory scaling filter.
(a) (Solid line) Longitudinal velocity ẋ and (dotted line) online evaluated
velocity bound ẋ+. (b) (Solid line) Longitudinal acceleration ẍ and (dotted
lines) online acceleration bounds U+ and U−. (c) Joint torques (solid line) τ1
and (dashed line) τ2. (d) Joint velocities (solid line) q̇1 and (dashed line) q̇2.

Fig. 7. Simulation results using the nonlinear trajectory scaling filter. Com-
parison between (solid line) x(t) and (dashed line) r(t).

The approach robustness has been tested by adding a white
noise on q and q̇ in order to emulate a sensor disturbance. The
simulation results shown in Fig. 8 refer to a very consistent
additive noise: Its “peak to peak” amplitude is approximatively
equal to 2e− 2 m for q, and to 8e− 2 m · s−1 for q̇. Clearly,
such disturbances have a strong impact on the torque command
due to the feedback action, as can be evinced by comparing
Fig. 8(a) with Fig. 5(b), which report two situations where the
filter is disabled. Evidently, path tracking is lost in both cases.

It is very interesting to observe what happens when the
filter is enabled. As shown in Fig. 9, filter bounds U+, U−,
ẋ+, and ẋ− are affected by disturbances due to (13) and (14).
However, the same figures highlight that filter outputs, i.e., ẍ
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Fig. 8. Comparison of the torque profiles in presence of white additive noise
on the robot measurement data. (a) When the trajectory filter not activated.
(b) With the trajectory filter active.

Fig. 9. Simulation results using the proposed trajectory filter in presence of
disturbances. (a) (Solid line) Longitudinal velocity ẋ and (dotted line) velocity
bound ẋ+. (b) (Solid line) Longitudinal acceleration ẍ and (dotted lines)
acceleration bounds U+ and U−.

and ẋ, are only marginally influenced by noise: Practically,
almost no further disturbances are introduced on τ , as proven
by Fig. 8 where τ signals obtained with or without the filter
are compared. In general, measurement noise does not affect
the behavior and the stability of the scaling filter as long as
condition (31) is satisfied and U+ ≥ U−. Owing to the noise,
tracking errors evidently increase with respect to the ideal
situation, but they are almost completely due to the feedback
action. In particular, the worst case path-tracking error is equal
to emax = maxx∈[0,2π]{‖e‖} = 1.079e− 2 m.

V. CONCLUSION

In this paper, a discrete-time filter has been proposed for
the online automatic scaling of robot trajectories. By means
of the new filter, it is possible to modify any input trajectory
in order to fulfill given requirements on the maximum joint
torques and velocities. The approach requires minor adaptations
of a standard manipulator controller, since the desired result is
obtained by simply inserting the new filter between a possible

unfeasible reference signal and the controller itself. Simulation
results demonstrate that path-tracking performances neatly im-
prove and, simultaneously, the velocity reference is followed at
best, compatibly with the manipulator constraints.

APPENDIX I

In the following, the filter stability is proved. Simultaneously,
some relevant properties are highlighted. The discussion re-
ported hereafter will analyze a system evolution starting from
a point (z, ż) located in the left plane of the (z, ż)-space, i.e.,
such that z ≤ 0. An analogous discussion holds when z > 0:
The corresponding demonstrations are omitted for conciseness.

A. General Properties

It is easy to verify that, when z ≤ 0, (24) returns [α β] :=
[U− U+], so that (25)–(30) simplify as follows:

zk := − 1
TU−

(
yk

T
+
ẏk

2

)
(33)

γk :=
{
z+, if zk < z+

zk, if z+ ≤ zk ≤ 0
(34)

mk :=

⌊
1 +

√
1 − 8 |γk|
2

⌋
(35)

˙̃zk := − γk

mk
+
mk−1

2
(36)

żk :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− ẏk

TU− , if
(
− ẏk

TU− ≥ ˙̃zk

)
(37)

ẏk

TU+ +
(

mk−1
2 − γk

mk

)
× U++U−

U+ , if
(
− ẏk

TU− < ˙̃zk

)
. (38)

The following two properties have general validity and will
be used in the last part of the section to prove the system
stability.

Property 1: For any point (zk, żk) lying inside the BL, the
filter command signal is given by

uk := − ẏk

T
+

(
γk

mk
− mk − 1

2

)
U−. (39)

Proof: Potentially, two different control laws could apply
inside the BL due to (37) and (38). Suppose that

− ẏk

TU− = ˙̃zk. (40)

According to (37), it immediately follows that żk =
−(ẏk/TU

−) = ˙̃zk, so that, due to (19), it is possible to con-
clude that, when (40) holds, the considered point is lying on
the sliding surface. Practically, (37) and (38) are two alternative
mappings that can be used depending on the position of the
considered point with respect to the sliding surface.

Now, hypothesize that −(ẏk/TU
−) < ˙̃zk, and, equivalently,

that σk < 0. Since (zk, żk) is located inside the BL but below
the sliding surface, it is possible to write

uk = −U+σk = −U+(żk − ˙̃zk).
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Equation (39) is easily obtained after few algebraic manipu-
lations by means of (36) and (38).

Similarly, when −(ẏk/TU
−) ≥ ˙̃zk or, equivalently, when

σk ≥ 0, the control law becomes

uk = U−σk = U−(żk − ˙̃zk).

Again, (39) is immediately obtained by considering (36)
and (37). �

Property 2: Given any point (zk, żk) lying within the BL,
controller C generates a new point such that

zk+1 = zk + ˙̃zk. (41)

Moreover, the following condition holds:

sgn(zk) = sgn(zk+1). (42)

Proof: Being ṙk piecewise constant, and assuming that

ṙk =
rk+1 − rk

T

the discrete-time evolution (17) is converted into an equivalent
one in the (y, ẏ)-plane defined as follows:[

yk+1

ẏk+1

]
=

[
1 T
0 1

] [
yk

ẏk

]
+

[
T 2

2
T

]
uk. (43)

The evolution of system (43), obtained by applying com-
mand signal (39), can be converted, by means of (33), into the
following updating law for z:

zk+1 = zk +
mk(mk − 1) − 2γk

2mk
. (44)

From (35), it descends that, when zk ≤ 0, the following
inequality is verified:

zk ≤ γk ≤ −mk + 1 (45)

so that (44) implies

zk+1 ≤ (mk − 1)(2 −mk)
2mk

. (46)

Due to definition (35), we have that mk ∈ N \ 0. As a
consequence, it is possible to deduce form (46) that zk+1 ≤ 0,
thus (42) holds.

Equation (41) immediately descends from (44) by consider-
ing (36). �

Property 2 practically asserts that any point within the BL
cannot abandon the left plane z ≤ 0. Properties 1 and 2 generi-
cally apply to any point within the BL.

B. Behavior Inside Region R1

Proposition 1: Given any starting point (z, ż) lying inside
region R1, the BL which surrounds sliding surface ˙̃z is reached
in minimum time and in a finite number of steps.

Proof: The proof is straightforward since from (18) and
(19), it follows that above the sliding surface, we have uk =
U−, while below uk = U+. Due to (43), it is possible to
conclude that ẏ monotonically decreases above ˙̃z while it
monotonically increases below ˙̃z: owing to the shape of the slid-
ing surface region R2 or, alternatively, region R3 are certainly
reached after a finite number of steps (see also Fig. 3). �

C. Behavior Inside Region R2

Proposition 2: Given any point (zk, żk) lying within the BL
and with zk < z+, controller C generates a command signal
such that the system evolves as follows:[

zk+1

żk+1

]
=

[
1 0
0 0

] [
zk

żk

]
+

[
ż+

ż+

]
. (47)

Proof: Since zk < z+, due to (34), we can write γk = z+,
so that (35) and (36) become constant and can be rewritten as
follows:

m+ :=
⌊

1 +
√

1 − 8z+

2

⌋
(48)

˙̃zk := − z+

m+
+
m+ − 1

2
. (49)

Due to (43) and (49), it is possible to write

− ẏk+1

TU− =
m+ − 1

2
− z+

m+
= ˙̃zk. (50)

It was early anticipated that the sliding surface has been
designed such that ˙̃z = ż+ when z < z+, so that from (50), it
descends

− ẏk+1

TU− = ż+. (51)

Owing to the shape of the sliding surface (see also Fig. 4), it
is possible to assert that, in any case, ˙̃zk+1 ≤ ż+. Thus, from
(51), it follows:

− ẏk+1

TU− ≥ ˙̃zk+1. (52)

Equation (52) indicates that żk+1 must be evaluated accord-
ing to (37) and, consequently, bearing in mind (51), we finally
obtain, as desired

żk+1 = − ẏk+1

TU− = ż+. (53)

The expression for zk+1 is obtained straightforward by
means of (41) and taking into account that ˙̃zk = ż+. �

Remark 1: Equation (47), implies that when the system state
enters into the BL and z < z+, ż is forced to the sliding surface
ż+ with a single step and there it remains. Moreover, being
ż+ ≥ 0, coordinate z increases, i.e., the state slides to the right.
Necessarily, after a finite number of steps, it reaches region R3.
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Fig. 10. Phase-plane in the (z, ż)-plane: details in the vicinity of the origin.
Circled numbers indicate the corresponding value of m.

D. Behavior Inside Region R3

It is clear that, after a finite number of steps, the system
reaches the BL of the region z+ ≤ z ≤ 0 directly from R1 or,
alternatively, from R2. The following discussion is devoted to
demonstrate that the system state cannot abandon the BL, and
it must move toward the origin of the (z, ż)-space.

Due to (34), we can assume γk = zk when z+ ≤ z ≤ 0.
Property 3: Assume that at step k, system state (zk, żk) is

lying within the BL, with z+ ≤ zk ≤ 0, and it is characterized
by mk. The new state (zk+1, żk+1) generated by controller C
satisfies the following equality:

mk+1 = mk − 1.

Proof: It is possible to rearrange (44) as follows:

zk+1 = (mk − 1)
(
zk

mk
+

1
2

)
. (54)

It is worth noting that (35) induces a partition along the
z-axis. In particular, owing to (35), associated with any m ∈
N \ 0, there is an interval Sm in z defined as follows (see also
Fig. 10):

Sm :=
{
z : − (m+ 1)m

2
< z ≤ −m(m− 1)

2

}
. (55)

Now, hypothesize that current zk is contained in Smk
, i.e.,

zk ∈ Smk
. By taking into account (55) and (54), and by

defining

mk+1 := mk − 1 (56)

the following equation holds:

− (mk+1 + 1)mk+1

2
< zk+1 ≤ −mk+1(mk+1 − 1)

2
. (57)

By comparing (57) with (55), it is immediately possi-
ble to conclude that zk+1 ∈ Smk+1 , where mk+1 is defined
by (56). �

Property 4: Given any point (zk, żk) lying within the BL,
with z+ ≤ zk ≤ 0, the new point (zk+1, żk+1) generated by
controller C is located on the upper frontier of the BL.

Proof: Due to Properties 2 and 3, it is possible to assert
that zk < zk+1 ≤ 0, so that the position of the sliding surface
corresponding to zk+1 can be certainly written, according to
(36) and due to (54), as follows:

˙̃zk+1 = − zk

mk
+
mk − 3

2
. (58)

Bearing in mind (39) and (43), it is possible to assert that

− ẏk+1

TU− = − zk

mk
+
mk − 1

2
. (59)

By comparing (58) with (59), it is possible to conclude that
żk+1 must be evaluated by means of (37). Consequently

żk+1 = − zk

mk
+
mk − 1

2
. (60)

The position of the new point with respect to the sliding
surface is

σk+1 = żk+1 − ˙̃zk+1 = 1 (61)

i.e., it exactly lies on the upper frontier of the BL. �
Previous properties are used in the following to prove the

stability of the filter controller.
Proposition 3: Given any starting point (zk, żk) lying within

the BL, with z+ ≤ zk ≤ 0, controller C forces the system
trajectory toward the origin of the (z, ż)-plane in minimum time
and with a deadbeat dynamics.

Proof: According to (54) and (60), the system evolution
only depends on the current zk andmk. Owing to Property 3,m
decreases at each step until it reaches the value m = 1. When it
happens, owing to (54) and (60), we have zk+1 = 0 and żk+1 =
−zk. It is easy to verify by means of (35) thatmk+1 will be still
equal to one, so that at the next step (54) and (60) return zk+2 =
0 and żk+2 = 0: the origin of the (z, ż)-plane is reached with a
deadbeat behavior. It is important to note that, due to Property 4,
once the system reaches the BL, it is forced in a single step
toward the frontier of the BL itself. The same Property 4 makes
it possible to assert that during the subsequent steps the system
does not abandon such frontier, so that the evolution toward the
origin is obtained by applying the maximum control command
uk = U−, i.e., in minimum time. �
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