Nonlinear variational inequalities and fixed point theorems

By Wataru TAKAHASHI

(Received April 21, 1975)

§1. Introduction.

It was proved by Hartman and Stampacchia [8] in 1966 that if $T: \mathbb{R}^n \to \mathbb{R}^n$ is a continuous mapping on a compact, convex subset X of R^n , then there exists $x_0 \in X$ such that $\langle Tx_0, x_0 - x \rangle \ge 0$ for all $x \in X$. This remarkable result has been investigated and generalized in various points of views by Browder [1], [2], Moré [10] and others. For example, Browder extended this theorem to the case of which our considering mappings T are of a compact convex subset X of a topological vector space E into the dual space E^* ; see Theorem 2 of [2]. In §2 of this paper, we shall obtain two generalizations of this Browder's theorem. One of them is Lemma 1 that has various applications. The other is Theorem 3 that generalizes the Browder's result to closed and convex sets in topological vector spaces. We shall also make use of Theorem 3 to prove Theorem 4 that generalizes Moré's theorem [10, Theorem 2.4]. In §3, using Lemma 1, we shall prove some fixed point theorems. Theorem 5 and Theorem 9 extend Browder's fixed point theorems [1, Theorem 1], [2, Theorem 3]. In §4, we shall discuss Sion's minimax theorem and Terkelsen's minimax theorem. At first, we shall show that Sion's theorem follows simply from the fundamental and useful theorem of Browder [2, Theorem 1]. Furthermore, we state a necessary and sufficient condition that a minimax condition holds. Using this, we shall generalize Terkelsen's minimax theorem; see Theorems 16 and 17. In §5, we give another proof for Fan's theorem [5] concerning systems of convex inequalities. The proof is simple. Furthermore, using this Fan's result, we prove Fan's minimax theorem [4] and also obtain a generalization of the result of Browder [2, Lemma 1]; see Theorems 18, 19 and 20. At last, by Lemma 1, we generalize Browder's theorem [2, Theorem 6] for multi valued mappings; see Theorem 21. By the same methods, we shall also generalize Kakutani's fixed point theorem [9]; see Theorem 22.

The author wishes to express his hearty thanks to Prof. H. Umegaki for many kind suggestions and advices.

§2. Variational inequalities.

Throughout this paper, we assume that a topological space is separated and a topological vector space is real. We also denote by R the set of all real numbers. In [2], Browder proved the following useful theorem.

THEOREM 1 (Browder). Let X be a nonempty compact convex subset of a topological vector space E (where we assume that E is separated but not necessarily locally convex). Let T be a mapping of X into 2^x , where for each x in X, T(x) is a nonempty convex subset of X [resp. open in X]. Suppose further that for each y in X, $T^{-1}(y) = \{x \in X; y \in T(x)\}$ is open in X [resp. a nonempty convex subset of X]. Then, there exists x_0 in X such that $x_0 \in T(x_0)$.

By using this, we can prove the following Lemma 1. However, we shall directly give a proof.

LEMMA 1. Let X be a nonempty compact convex subset of a topological vector space E and let F be a real valued function on $X \times X$ satisfying:

(1) For each $y \in X$, the function F(x, y) of x is upper semicontinuous;

(2) for each $x \in X$, the function F(x, y) of y is convex;

(3) $F(x, x) \ge c$ for all $x \in X$ with some real number $c \in R$. Then, there exists $x_0 \in X$ such that $F(x_0, y) \ge c$ for all $y \in X$.

PROOF. Suppose that for each $x \in X$, there exists $y \in X$ such that F(x, y) < c. Setting $A_y = \{x \in X; F(x, y) < c\}$ for each $y \in X$, we have $X = \bigcup_{y \in X} A_y$. Since X is compact, there exists a finite family $\{y_1, y_2, \dots, y_n\}$ such that $X = \bigcup_{i=1}^n A_{y_i}$. Let $\{\beta_1, \beta_2, \dots, \beta_n\}$ be a partition of unity corresponding to this covering, i. e. each β_i is a continuous mapping of X into [0, 1] which vanishes outside of A_{y_i} , while $\sum_{i=1}^n \beta_i(x) = 1$ for all x in X. For each i such that $\beta_i(x) \neq 0$, x lies in A_{y_i} , so that $F(x, y_i) < c$. Hence we have that

$$\sum_{i=1}^n \beta_i(x) F(x, y_i) < c$$

for all $x \in X$. Define a continuous mapping p of X into X by setting

$$p(x) = \sum_{i=1}^n \beta_i(x) y_i.$$

By using the Brouwer's fixed point theorem, we obtain an element $x_0 \in X$ such that

$$x_0 = p(x_0) = \sum_{i=1}^n \beta_i(x_0) y_i$$
.

For this point x_0 , we have

$$c \leq F(x_0, x_0) = F(x_0, \sum_{i=1}^n \beta_i(x_0) y_i)$$

$$\leq \sum_{i=1}^{n} \beta_{i}(x_{0}) F(x_{0}, y_{i}) < c$$
.

This is a contradiction. Therefore, there exists $x_0 \in X$ such that $F(x_0, y) \ge c$ for every $y \in X$.

The following Theorem which has been given in [2] is very useful. We shall prove this by using Lemma 1.

THEOREM 2 (Browder). Let X be a compact convex subset of a locally convex topological vector space E, T a continuous (single valued) mapping of X into E*. Then, there exists x_0 in X such that $\langle Tx_0, x_0 - y \rangle \ge 0$ for all y in X.

PROOF. Define a real valued function F on $X \times X$ by setting $F(x, y) = \langle Tx, x-y \rangle$. Then, for each $y \in X$, the function F(x, y) of x is continuous and for each $x \in X$, the function F(x, y) of y is affine. Furthermore, F(x, x)=0 for all x in X. Therefore, by Lemma 1, there exists $x_0 \in X$ such that

$$F(x_0, y) = \langle Tx_0, x_0 - y \rangle \ge 0$$

for all y in X.

We shall generalize Theorem 2 to closed and convex sets X in topological vector spaces. Let H, X be nonempty subsets of a topological vector space E, then we put $B_H X = \overline{X} \cap \overline{H-X}$ and $I_H X = X \cap (B_H X)^c$ where \overline{A} is the closure of $A \subset E$ and A^c is the complement of A.

THEOREM 3. Let H be a closed convex subset of a locally convex topological vector space E and T be a continuous mapping of H into E*. If there exists a compact convex subset X of H such that $I_H X \neq \emptyset$ and for each $z \in B_H X$, there is $u_0 \in I_H X$ with $\langle Tz, z-u_0 \rangle \geq 0$, then there exists $x^* \in H$ such that $\langle Tx^*, x-x^* \rangle \geq 0$ for all $x \in H$.

PROOF. By Theorem 2, there exists $x^* \in X$ such that $\langle Tx^*, x-x^* \rangle \ge 0$ for all $x \in X$. If $x^* \in I_H X$, for each $y \in H$, we can choose λ (0< λ <1) small enough so that $x = \lambda y + (1-\lambda)x^*$ lies in X. Hence

$$0 \leq \langle Tx^*, x - x^* \rangle = \lambda \langle Tx^*, y - x^* \rangle,$$

and consequently, $0 \leq \langle Tx^*, y - x^* \rangle$. If $x^* \in B_H X$, by the hypothesis, there exists $u_0 \in I_H X$ such that

$$\langle Tx^*, x^*-u_0\rangle \geq 0$$
.

Since $\langle Tx^*, x-x^* \rangle \ge 0$ for all $x \in X$, it follows that $\langle Tx^*, x-u_0 \rangle \ge 0$ for all $x \in X$. Since $u_0 \in I_H X$, for each $y \in H$ there exists λ $(0 < \lambda < 1)$ such that $x = \lambda y + (1-\lambda)u_0 \in X$. Hence we obtain $0 \le \langle Tx^*, y-u_0 \rangle$ for all $y \in H$. Since $u_0 \in X$ implies $0 \le \langle Tx^*, u_0 - x^* \rangle$, we obtain $0 \le \langle Tx^*, y-x^* \rangle$ for all $y \in H$.

If H=E in Theorem 3, it is obvious that there exists $x^* \in E$ such that $Tx^*=0$. In fact, there exists $x^* \in E$ such that $\langle Tx^*, u-x^* \rangle \ge 0$ for all $u \in E$ and consequently $Tx^*=0$. Theorem 3 has a very interesting interpretation

when H is a cone in E, i.e. a nonempty, closed set H in E such that $\alpha x + \beta y$ belongs to H for all α , $\beta \ge 0$ and x, $y \in H$. We shall also need to know that the *polar* H^* of a cone H is the cone defined by

$$H^* = \{ y \in E^* : \langle y, x \rangle \ge 0 \text{ for all } x \in H \}.$$

THEOREM 4. Let H be a cone in E and T be a continuous mapping of H into E*. If there exists a compact convex subset X of H such that $I_H X \neq \emptyset$ and for each $z \in B_H X$, there is $u_0 \in I_H X$ with

$$\langle Tz, z-u_0 \rangle \geq 0$$

then, there exists $x^* \in H$ such that $Tx^* \in H^*$ and $\langle Tx^*, x^* \rangle = 0$.

PROOF. By Theorem 3, there exists $x^* \in H$ such that $\langle Tx^*, y - x^* \rangle \ge 0$ for all $y \in H$. Since $\langle Tx^*, \alpha y \rangle \ge \langle Tx^*, x^* \rangle$ for all $\alpha > 0$ and $y \in H$, we obtain that $\langle Tx^*, y \rangle \ge 0$ for all $y \in H$, i.e. $Tx^* \in H^*$. That $\langle Tx^*, x^* \rangle = 0$ is obvious from $\langle Tx^*, 0 - x^* \rangle \ge 0$.

The above Theorems 3 and 4 generalize the results proved by Moré [10]. These proofs were similar to those of [10].

§ 3. Fixed point theorems.

In this section, using Lemma 1, we shall prove some fixed point theorems. In [7], Fan has already obtained the following theorem by continuous seminorms instead of continuous linear functionals.

THEOREM 5. Let X be a nonempty compact convex subset of a topological vector space E and T be a continuous mapping of X into E. Then, either there exists $y_0 \in X$ such that y_0 and Ty_0 can not separated by a continuous linear functional, or there exist $x_0 \in X$ and $g \in E^*$ such that

$$g(x_0 - Tx_0) < 0 \le \inf_{y \in X} g(x_0 - y)$$
.

PROOF. Suppose that for each $x \in X$, there exists $f \in E^*$ such that f(x-Tx) < 0. Setting $A_f = \{x \in X : f(x-Tx) < 0\}$ for each $f \in E^*$, we have $X = \bigcup_{f \in E^*} A_f$. Since X is compact, there exists a finite family $\{f_1, f_2, \dots, f_n\}$ in E^* such that $X = \bigcup_{i=1}^n A_{f_i}$. Let $\{\beta_1, \beta_2, \dots, \beta_n\}$ be a partition of unity corresponding to this covering $\{A_{f_i}\}$ of X. Define a real valued function F on $X \times X$ by setting

$$F(x, y) = \sum_{i=1}^{n} \beta_i(x) f_i(x-y).$$

Then, by Lemma 1, there exists $x_0 \in X$ such that

$$F(x_0, y) = \sum_{i=1}^{n} \beta_i(x_0) f_i(x_0 - y) \ge 0$$

for all $y \in X$. On the other hand, we know that

$$F(x_0, x_0) = \sum_{i=1}^n \beta_i(x_0) f_i(x_0 - Tx_0) < 0.$$

By putting $g = \sum_{i=1}^{n} \beta_i(x_0) f_i$, we complete the proof.

As direct consequences of Theorem 5, we have the following two Theorems.

THEOREM 6 (Browder). Let X be a nonempty compact convex subset of a locally convex topological vector space E and T be a continuous mapping of X into E. If for each $x \in X$, there exist $x_1 \in X$ and $\lambda \ge 0$ such that $Tx - x = \lambda(x_1 - x)$, then T has a fixed point.

PROOF. Suppose T has no fixed point. By Theorem 5, there exist $x_0 \in X$ and $g \in E^*$ such that

$$g(x_0 - Tx_0) < 0 \le \inf_{y \in X} g(x_0 - y)$$
.

For this x_0 , we can choose $x_1 \in X$ and $\lambda \ge 0$ such that $Tx_0 - x_0 = \lambda(x_1 - x_0)$. Since T has no fixed point, $\lambda > 0$. Hence we have

$$g(x_0-Tx_0) < 0 \leq \frac{1}{\lambda} g(x_0-Tx_0).$$

This is a contradiction. Therefore, we have a fixed point.

THEOREM 7. Let H be a closed convex subset of a locally convex topological vector space E and T be a continuous mapping of H into H. If there exists a compact convex subset X of H such that for each $x \in B_H X$, there exist $x_1 \in X$ and $\lambda \geq 0$ with $Tx - x = \lambda(x_1 - x)$, then T has a fixed point in H.

PROOF. Consider the restriction to X of T. If T has no fixed point in X, by Theorem 5 there exist $x_0 \in X$ and $g \in E^*$ such that

$$g(x_0 - Tx_0) < 0 \le \inf_{y \in X} g(x_0 - y)$$
.

Let $x_0 \in I_H X$. Since $Tx_0 \in H$, we can choose λ (0< λ <1) small enough so that $y = \lambda T x_0 + (1-\lambda)x_0$ lies in X. Hence we obtain

$$g(x_0 - Tx_0) < 0 \leq \lambda g(x_0 - Tx_0)$$
.

This is a contradiction. Similarly, we obtain a contradiction for the case of $x_0 \in B_H X$. Therefore, T has a fixed point.

We shall generalize Theorem 5 to multi valued mappings. Let X and Y be topological spaces. A mapping T of X into 2^{Y} such that for each $x \in X$, Tx is a nonempty subset of Y is said to be *upper semicontinuous*, if for every point $x_0 \in X$ and any open set G in Y containing $T(x_0)$, there is a neighborhood U of x_0 in X such that $T(x) \subset G$ for all $x \in U$. The following definition is due to Fan [7]. Let E be a topological vector space, and let $X \subset E$. A mapping

T of X into 2^E such that for each $x \in X$, Tx is a nonempty subset of E is said to be upper demi-continuous, if for every $x_0 \in X$ and any open half-space H in E containing Tx_0 , there is a neighborhood U of x_0 in X such that $Tx \subset H$ for all $x \in U$. An open half-space H in E is a set of the form $\{x \in E : h(x) > r\}$ where h is a continuous linear functional, not identically zero, and r is a real number. It is obvious that if a mapping T of X into 2^E is upper semicontinuous, then T is upper demi-continuous. As usual, we say that two sets A, B in E can be strictly separated by a closed hyperplane, if we can find a continuous linear form $h \in E^*$ and a real number r such that h(x) < r for $x \in A$ and h(y) > rfor $y \in B$. We can prove the following Theorem. The proof employs suitable modifications of the methods used in [2, Theorem 3] and [7, Theorem 5].

THEOREM 8. Let X be a nonempty compact convex set in a topological vector space E. Let S, T be two upper demi-continuous set valued mappings defined on X such that for each $x \in X$, Tx and Sx are nonempty subsets of E. Then, there exists $y_0 \in X$ for which Sy_0 and Ty_0 can not be strictly separated by a closed hyperplane, or there exist $x_0 \in X$ and $g \in E^*$ such that $g(x_0 - Tx_0) < g(x_0 - Sx_0)$ and $0 \leq \inf_{y \in X} g(x_0 - y)$.

PROOF. Suppose that for each $x \in X$, Sx and Tx can be strictly separated by a closed hyperplane. Thus for each $x \in X$, we can find $g_x \in E^*$ and $r_x \in R$ such that $g_x(Sx) < r_x$ and $r_x < g_x(Tx)$. Because S, T are upper demi-continuous on X, there exists a neighborhood U_x of x in X such that $g_x(Sy) < r_x$ and $r_x < g_x(Ty)$ for all $y \in U_x$. Hence, x is an element of the interior $N(g_x)$ of $\{z \in X : g_x(Sz) < g_x(Tz)\}$. Thus, $X = \bigcup_{x \in X} N(g_x)$. By compactness of X, there exists a finite set $\{x_1, x_2, \dots, x_n\} \subset X$ such that $X = \bigcup_{i=1}^n N(g_{x_i})$. Let $\{\beta_i\}_{i=1}^n$ be a partition of unity corresponding to the open covering $\{N(g_{x_i})\}$ of X. Let

$$F(x, y) = \sum_{i=1}^{n} \beta_i(x) g_{x_i}(x-y)$$

for x, $y \in X$. By Lemma 1, we have $x_0 \in X$ such that

$$\sum_{i=1}^n \beta_i(x_0) g_{x_i}(x_0 - y) \ge 0$$

for all $y \in X$. We also know that

$$\sum_{i=1}^n \beta_i(x_0) g_{x_i}(Sx_0) < \sum_{i=1}^n \beta_i(x_0) g_{x_i}(Tx_0) \, .$$

By putting $g = \sum \beta_i(x_0)g_{x_i}$, we complete the proof.

If S is the identity mapping of X, then Theorem 8 becomes the following result which generalizes Theorem 5.

THEOREM 9. Let X be a nonempty compact convex subset of a topological

vector space E and T be a upper semicontinuous mapping of X into 2^E such that for each $x \in X$, Tx is a nonempty subset of E. Then, either there exists $y_0 \in X$ such that y_0 and Ty_0 can not be strictly separated by a closed hyperplane, or there exist $x_0 \in X$ and $g \in E^*$ such that

$$g(x_0 - Tx_0) < 0 \le \inf_{y \in X} g(x_0 - y)$$
.

As a consequence of Theorem 9, we have

THEOREM 10 (Browder). Let X be a compact convex subset of a locally convex topological vector space E and T be a upper semicontinuous mapping of X into 2^{E} such that for each $x \in X$, Tx is a nonempty closed convex set in E. If for each $x \in X$, there exist $x_1 \in X$, $w_1 \in Tx$ and $\lambda \ge 0$ such that $w_1 - x = \lambda(x_1 - x)$, then T has a point $x_0 \in X$ such that $x_0 \in Tx_0$.

Using Lemma 1 for normed vector spaces, we have

THEOREM 11. Let X be a nonempty compact convex subset of a normed vector space E and T be a continuous mapping of X into E. Then, there exists $x_0 \in X$ such that

$$\min_{y \in X} \|Tx_0 - y\| \ge \min_{x \in X} \|Tx - x\|.$$

PROOF. Define a real valued function F on $X \times X$ by F(x, y) = ||Tx-y||. Theorem is obvious from Lemma 1.

Using Theorem 10, we shall prove the following Theorem which generalizes Theorem 17 of [2].

THEOREM 12. Let X be a nonempty compact convex subset in a locally convex topological vector space E and A be an open subset of $X \times X$ having the following properties:

(1) $(x, x) \in A$ for every $x \in X$;

(2) for any $x \in X$, the set $\{y \in X : (x, y) \notin A\}$ is convex.

Then, there exists a point $x_0 \in X$ such that $x_0 \times X \subset A$.

PROOF. Suppose that for each $x \in X$, there exists $y \in X$ such that $(x, y) \notin A$. We define a set valued mapping T of X into 2^x setting $Tx = \{y \in X : (x, y) \notin A\}$ for each $x \in X$. It is obvious that for each $x \in X$, Tx is nonempty, closed and convex. Since the graph of T, i.e. $G(T) = \{(x, y) : x \in X, y \in Tx\} = \{(x, y) : (x, y) \notin A\}$ is closed, it follows that T is upper semicontinuous. Now, by using Theorem 10, we obtain an element $x_0 \in Tx_0$, i.e. $(x_0, x_0) \notin A$. This completes the proof.

As direct consequences of Theorem 12, we have the following two Theorems.

THEOREM 13 (Browder). Let X be a nonempty compact convex subset of a locally convex topological vector space E_1 , let E_2 be a separated topological vector space, and let g be a continuous mapping of $X \times X$ into E_2 . Let C be a closed subset of E_2 . Suppose that for each x in X, the set $\{y \in X : g(x, y) \in C\}$ is nonempty and convex. Then there exists an element u of X such that $g(u, u) \in C$.

PROOF. Let $A = \{(x, y) \in X \times X : g(x, y) \notin C\}$. Then, by Theorem 12, we can obtain an element u of X such that $g(u, u) \in C$.

THEOREM 14. Let X be a nonempty compact convex subset in a locally convex topological vector space E and let F be a real valued lower semicontinuous function on $X \times X$. Let $c \in R$ and suppose that for each $x \in X$, $\{y \in X :$ $F(x, y) \leq c\}$ is nonempty and convex. Then, there exists $x_0 \in X$ such that $F(x_0, x_0) \leq c$.

PROOF. Let $A = \{(x, y) \in X \times X : F(x, y) > c\}$. Then, by Theorem 12, we can obtain an element x_0 of X such that $F(x_0, x_0) \leq c$.

As a consequence of Theorem 1, we have the following Theorem which generalizes Lemma 1 and [7, Lemma].

THEOREM 15. Let X be a nonempty compact convex set in a separated topological vector space E. Let A be a subset of $X \times X$ having the following properties:

(1) For any $y \in X$, the set $\{x \in X : (x, y) \in A\}$ is closed;

(2) $(x, x) \in A$ for every $x \in X$;

(3) for any $x \in X$, the set $\{y \in X : (x, y) \notin A\}$ is convex.

Then, there exists a point $x_0 \in X$ such that $x_0 \times X \subset A$.

PROOF. Suppose that for each $x \in X$, there exists $y \in X$ such that $(x, y) \notin A$. Setting $Tx = \{y \in X : (x, y) \notin A\}$ for each $x \in X$, it is obvious that for each $x \in X$, Tx is nonempty and convex and for each $y \in X$, $T^{-1}y$ is open. Hence by Theorem 1 we have $x_0 \in X$ such that $x_0 \in Tx_0$, i.e. $(x_0, x_0) \notin A$.

§4. Minimax theorems.

In this section, we discuss minimax theorems. At first, as a direct consequence of Theorem 1, we shall prove Sion's minimax theorem [12]. Let X and Y be convex subsets each in a topological vector space and let f be a mapping of $X \times Y$ into R. If for each $(y, a) \in Y \times R$, $\{x : f(x, y) < a\}$ is convex, f(x, y) is said to be quasi-convex on X. If for each $(x, a) \in X \times R$, $\{y : f(x, y) > a\}$ is convex, f(x, y) is said to be quasi-concave on Y; see Sion's paper [12].

THEOREM 16 (Sion). Let X and Y be compact convex subsets each in a topological vector space and let $f: X \times Y \rightarrow R$ be a function satisfying:

(1) For each $y \in Y$, f(x, y) is lower semicontinuous and quasi-convex on X;

(2) for each $x \in X$, f(x, y) is upper semicontinuous and quasi-concave on Y. Then,

$$\max_{y \in Y} \min_{x \in X} f(x, y) = \min_{x \in X} \max_{y \in Y} f(x, y).$$

PROOF. Let us be

$$\max_{y} \min_{x} f(x, y) < c < \min_{x} \max_{y} f(x, y).$$

We define a set valued mapping T of $X \times Y$ into $2^{X \times Y}$ setting $T(x, y) = B_y \times A_x$, where $A_x = \{y \in Y : f(x, y) < c\}$ and $B_y = \{x \in X : f(x, y) > c\}$. By using Theorem 1, we obtain an element $(x_0, y_0) \in X \times Y$ such that $(x_0, y_0) \in T(x_0, y_0)$. Therefore, we have $c < f(x_0, y_0) < c$. This is a contradiction.

Secondly we state a necessary and sufficient condition that a minimax condition holds and then generalize Terkelsen's minimax theorem by using the method employed in [13].

LEMMA 2. Let X be a compact space, and let F be a family of lower semicontinuous real valued functions on X. If $c = \sup_{f} \min_{x} f(x)$, the following are equivalent.

(1) The family $\{A(f): f \in F\}$ has the finite intersection property, where $A(f) = \{x: f(x) \leq c\}$ for each $f \in F$.

(2)
$$\sup_{f} \min_{x} f(x) = \min_{x} \sup_{f} f(x).$$

PROOF. (1) \Rightarrow (2). Since the family $\{A(f): f \in F\}$ has the finite intersection property and X is compact, we have $\bigcap_{f \in F} A(f) \neq \emptyset$. Let $x_0 \in \bigcap_f A(f)$. Since $f(x_0) \leq c$ for every $f \in F$, we obtain $\sup_f f(x_0) \leq c$. Hence we have

$$\min_{x} \sup_{f} f(x) \leq \sup_{f} f(x_0) \leq \sup_{f} \min_{x} f(x).$$

In the other hand, it is obvious that

$$\sup \min f(x) \leq \min \sup f(x).$$

 $(2) \Rightarrow (1)$. The equalities

$$\min_{x} \sup_{f} f(x) = \sup_{f} \min_{x} f(x) = c$$

imply the existence of $x_0 \in X$ with $\sup_f f(x_0) = c$. Hence, since $f(x_0) \leq c$ for every $f \in F$, it is obvious that the family $\{A(f): f \in F\}$ has the finite intersection property.

THEOREM 17. Let X be a compact space, and let F be a family of lower semicontinuous real valued functions on X satisfying:

(1) For any f, $g \in F$, there exists $h \in F$ such that $f+g \leq 2h$;

(2) for each $(f, b) \in F \times \{b \in R : c \leq b\}$, every finite intersection of sets $\{x : f(x) \leq b\}$ is connected, with $c = \sup \min f(x)$. Then,

$$\sup_{f} \min_{x} f(x) = \min_{x} \sup_{f} f(x)$$

PROOF. Suppose that $A(f) \cap A(g) = \emptyset$ for some pair $f, g \in F$. Then, since

 $c < \min_{x} \max[f(x), g(x)]$, it follows that there exists $b \in R$ such that $c < b < \min_{x} \max[f(x), g(x)]$. By (1), there exists $k \in F$ such that $f+g \leq 2k$. Let $A = \{x: f(x) \leq b\}$, $B = \{x: g(x) \leq b\}$ and $C = \{x: k(x) \leq b\}$. Since A and B are nonempty closed sets with $A \cap B = \emptyset$ and $C \subset A \cup B$, by (2) we obtain either $C \subset A$ or $C \subset B$. If $C \subset A$, set $f_1 = k$, $g_1 = g$, and if $C \subset B$, set $f_1 = f$, $g_1 = k$. Then $b < \min_{x} \max[f_1(x), g_1(x)]$ in each case. Defining $r = \min f(x)$, $d = \min g(x)$, $r_1 = \min f_1(x)$ and $d_1 = \min g_1(x)$, it can be verified that we have either $2r_1 > r + b$ and $d_1 = d$, or $r_1 = r$ and $2d_1 > d + b$. Similarly, we obtain $f_i, g_i \in F$ for all $i=2, 3, \cdots$ such that either $2r_i > r_{i-1} + b$, $d_i = d_{i-1}$, or $r_i = r_{i-1}$, $2d_i > b + d_{i-1}$, where $r_i = \min f_i(x)$, $d_i = \min g_i(x)$. It is obvious that at least one of the sequences $\{r_i\}$ and $\{d_i\}$ must converge to b. Suppose $r_i \rightarrow b$ for $i \rightarrow \infty$. Since c < b, there exists i_0 such that $c < r_{i_0} < b$. This is a contradiction, because $\{x: f_{i_0}(x) \leq c\}$ is nonempty. Therefore, we have $A(f) \cap A(g) \neq \emptyset$ for each pair $f, g \in F$.

Now, we can show by the mathematical induction that the family $\{A(f): f \in F\}$ has the finite intersection property. In fact, let $\{f_1, f_2, \dots, f_n\} \subset F$ and $A = A(f_n)$. Since $A(f) \cap A \neq \emptyset$ for each $f \in F$, we have $\min_{x \in A} f(x) \leq c$ and hence $\sup_{f} \min_{x \in A} f(x) \leq c$. The inequality $\min_{x \in X} f(x) \leq \min_{x \in A} f(x)$ implies

$$c = \sup_{f} \min_{x \in \mathcal{X}} f(x) \leq \sup_{f} \min_{x \in \mathcal{A}} f(x) \leq c,$$

i.e. $\sup_{f} \min_{x \in A} f(x) = c$. Therefore, the family of restrictions $\{f|_A : f \in F\}$ satisfies the assumptions of Theorem with respect to A.

§ 5. Systems of convex inequalities.

In this section, at first we give another proof for Fan's theorem [5] concerning systems of convex inequalities. The proof is simple.

LEMMA 3. Let X and Y be topological spaces. Suppose that f is a nonnegative real valued continuous function on X and g is a real valued lower semicontinuous function on Y. Then, setting F(x, y)=f(x)g(y) for each $(x, y) \in X \times Y$, F is lower semicontinuous on $X \times Y$.

PROOF. For any $c \in R$, let $Z = \{(x, y) : f(x)g(y) \leq c\}$. We shall show that if $\{(x_{\alpha}, y_{\alpha}) : \alpha \in I\}$ is a generalized sequence such that (x_{α}, y_{α}) converges to (x_0, y_0) , then $(x_0, y_0) \in Z$. Let $c \geq 0$. Suppose that $f(x_0)g(y_0) > c \geq 0$. Then it follows that $f(x_0)>0$ and $g(y_0)>0$ and hence there exists $\beta > 0$ such that $g(y_0) > \beta > c/f(x_0)$. Defining $A = \{x : f(x) > c/\beta \geq 0\}$ and $B = \{y : g(y) > \beta\}$, it is obvious that $A \times B$ is open and $(x_0, y_0) \in A \times B$. Hence, we have that $(x_\alpha, y_\alpha) \in A \times B$ for some $\alpha \in I$. This implies $g(y_\alpha) > \beta > c/f(x_\alpha)$, i. e. $f(x_\alpha)g(y_\alpha) \geq c$. This is a contradiction. Therefore we have $f(x_0)g(y_0) \leq c$. Similarly we can prove

Lemma 3 for the case of c < 0.

THEOREM 18 (Fan). Let X be a compact convex set in a topological vector space. Let f_1, f_2, \dots, f_n be n real valued lower semicontinuous convex functions defined on X and $c \in \mathbb{R}$. Then there exists a point $x \in X$ satisfying $f_i(x) \leq c$ $(1 \leq i \leq n)$, if and only if, for any n nonnegative numbers α_i with $\sum_{i=1}^n \alpha_i = 1$, there is a point $x \in X$ such that

$$\sum_{i=1}^n \alpha_i f_i(x) \leq c.$$

PROOF. We need only prove the "if" part. Let $A(f_i) = \{x : f_i(x) \le c\}$ and $B(f_i) = \{x : f_i(x) > c\}$ for each $i=1, 2, \dots, n$. Suppose that $\bigcap A(f_i) = \emptyset$. Then, $\bigcup B(f_i) = X$. Let $\{\beta_1, \beta_2, \dots, \beta_n\}$ be a partition of unity corresponding to this covering. Setting

$$F(x, y) = \sum_{i=1}^{n} \beta_i(x) f_i(y)$$

for each $(x, y) \in X \times X$, then there exists a real number α_0 such that $F(x, x) \ge \alpha_0 > c$ for all $x \in X$. By using Lemma 1, we obtain $x_0 \in X$ such that $F(x_0, y) \ge \alpha_0 > c$ for all $y \in X$. This completes the proof.

Let X and Y be arbitrary sets. A function $F: X \times Y \rightarrow R$ is convexlike on X, if for any $x_1, x_2 \in X$ and $\lambda \in R$ with $0 < \lambda < 1$, there exists $x_0 \in X$ such that

$$F(x_0, y) \leq \lambda F(x_1, y) + (1 - \lambda) F(x_2, y)$$

for all $y \in Y$. Similarly, F is concavelike on Y, if for any $y_1, y_2 \in Y$ and $\lambda \in R$ with $0 < \lambda < 1$, there exists $y_0 \in Y$ such that

$$F(x, y_0) \ge \lambda F(x, y_1) + (1 - \lambda)F(x, y_2)$$

for all $x \in X$. By using Theorem 18, we can prove the following Fan's minimax theorem [4].

THEOREM 19 (Fan). Let X be a compact convex set in a topological vector space, let Y be a set, and let $F: X \times Y \rightarrow R$ be a function satisfying:

(1) For each $y \in Y$, F(x, y) is lower semicontinuous and convex on X;

(2) for each $x \in X$, F(x, y) is concavelike on Y. Then,

$$\sup \min F(x, y) = \min \sup F(x, y).$$

PROOF. Let $c = \sup_{y} \min_{x} F(x, y)$. Let $\{y_1, y_2, \dots, y_n\}$ be a finite subset of Y and $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ be nonnegative numbers such that $\sum_{i=1}^{n} \alpha_i = 1$. By hypothesis, there exists $y_0 \in Y$ such that

$$\sum_{i=1}^{n} \alpha_i F(x, y_i) \leq F(x, y_0)$$

for all $x \in X$. Since for $y_0 \in Y$ there exists $x_0 \in X$ such that $F(x_0, y_0) \leq c$, i.e. $\sum \alpha_i F(x_0, y_i) \leq c$, by Theorem 18, it follows that there exists $z \in X$ such that $F(z, y_i) \leq c$ for $i=1, 2, \dots, n$. Therefore, by Lemma 2, we have $\sup_{y \in X} \min_{x} F(x, y) = \min_{y \in X} \sup_{y \in X} F(x, y)$.

As a direct consequence of Theorem 19, we obtain a generalization of [2, Lemma 1].

THEOREM 20. Let X be a compact convex set in a topological vector space, let Y be a set, and let $F: X \times Y \rightarrow R$ be a function satisfying:

(1) For each $y \in Y$, F(x, y) is lower semicontinuous and convex on X;

(2) for each $x \in X$, F(x, y) is concavelike on Y.

Let $c \in R$. If for each $y \in Y$, there exists $x \in X$ such that $F(x, y) \leq c$, then there exists $u \in X$ such that $F(u, y) \leq c$ for all $y \in Y$.

PROOF. By Theorem 19, we have

$$\sup_{y} \min_{x} F(x, y) = \min_{x} \sup_{y} F(x, y).$$

Since for each $y \in Y$, there exists $x \in X$ such that $F(x, y) \leq c$, we have $\sup \min F(x, y) \leq c$. Therefore, we have $u \in X$ such that $\sup F(u, y) \leq c$.

§6. Variational inequalities for multi valued mappings.

By using Lemma 1 we can prove the following Theorem.

THEOREM 21. Let X be a compact convex subset of a locally convex topological vector space E and T be a upper semicontinuous multi valued mapping of X into 2^{E^*} such that for each $x \in X$, Tx is nonempty and compact. If for each $x \in X$,

$$\min_{y\in X} \max_{w\in Tx} \langle w, x-y \rangle = \max_{w\in Tx} \min_{y\in X} \langle w, x-y \rangle,$$

then there exist $x_0 \in X$ and $w_0 \in Tx_0$ such that $\langle w_0, x_0 - y \rangle \ge 0$ for all $y \in X$.

PROOF. Define a real valued function F on $X \times X$ by

$$F(x, y) = \max_{w \in Tx} \langle w, x - y \rangle.$$

Then, by upper semicontinuity of T, we have that $x \mapsto F(x, y)$ is upper semicontinuous. In fact, let $y \in X$, $a \in R$ and $A = \{x \in X : F(x, y) \ge a\}$. We shall show that if $\{x_{\alpha} \in A : \alpha \in I\}$ is a generalized sequence such that x_{α} converges to x_{0} , then $x_{0} \in A$. For each $x_{\alpha} \in A$, there exists $w_{\alpha} \in Tx_{\alpha}$ such that $\langle w_{\alpha}, x_{\alpha} - y \rangle \ge a$. Since $\bigcup_{x \in X} Tx$ is compact, there exists a subsequence $\{w_{\alpha'}\}$ of $\{w_{\alpha}\}$ such that $w_{\alpha'} \to w_{0}$. Since T is upper semicontinuous of X of $2^{E^{*}}$, we have $w_{0} \in Tx_{0}$. We have also

$$a \leq \lim_{\alpha'} \langle w_{\alpha'}, x_{\alpha'} - y \rangle = \langle w_0, x_0 - y \rangle.$$

Hence A is closed, i.e. $x \mapsto F(x, y)$ is upper semicontinuous. It is obvious that $y \mapsto F(x, y)$ is convex and F(x, x)=0 for all $x \in X$. Hence, by Lemma 1, there exists $x_0 \in X$ such that $\max_{w \in Tx_0} \langle w, x_0 - y \rangle \ge 0$ for all $y \in X$. Since

$$\min_{y \in \mathcal{X}} \max_{w \in Tx_0} \langle w, x_0 - y \rangle = \max_{w \in Tx_0} \min_{y \in \mathcal{X}} \langle w, x_0 - y \rangle,$$

we have $w_0 \in Tx_0$ such that $\langle w_0, x_0 - y \rangle \ge 0$ for all $y \in X$.

In Theorem 21, if Tx is convex, we know by Theorem 19 that a minimax condition holds. So, we shall obtain Browder's theorem [2, Theorem 6]. Furthermore, we can prove the following Theorem.

THEOREM 22. Let X be a compact convex subset of a finite dimensional Euclidean space E and T be a upper semicontinuous multi valued mapping of X into 2^{E} such that for each $x \in X$, Tx is nonempty compact. If for each $x \in X$,

$$\min_{y \in X} \max_{w \in T_X} \langle w - x, x - y \rangle = \max_{w \in T_X} \min_{y \in X} \langle w - x, x - y \rangle,$$

then, there exist $x_0 \in X$ and $w_0 \in Tx_0$ such that $\langle w_0 - x_0, x_0 - y \rangle \ge 0$ for all $y \in X$.

PROOF. Let $F(x, y) = \max_{w \in Tx} \langle w - x, x - y \rangle$ for $x, y \in X$. Since T is upper semicontinuous of X into 2^E , for each $y \in X, x \mapsto F(x, y)$ is upper semicontinuous. It is obvious that for each $x \in X, y \mapsto F(x, y)$ is convex. By using Lemma 1, we obtain $x_0 \in X$ such that

$$F(x_0, y) = \max_{w \in Tx_0} \langle w - x_0, x_0 - y \rangle \ge 0$$

for all $y \in X$. Since

$$\min_{y\in X}\max_{w\in Tx_0}\langle w-x_0, x_0-y\rangle = \max_{w\in Tx_0}\min_{y\in X}\langle w-x_0, x_0-y\rangle,$$

there exists $w_0 \in Tx_0$ such that $\langle w_0 - x_0, x_0 - y \rangle \ge 0$ for all $y \in X$.

In Theorem 22, if T is a mapping of X into 2^x , by putting $y=w_0$, we obtain $w_1=x_0$, i. e. $x_0 \in Tx_0$. Kakutani's fixed point theorem [9] is the case of which for each $x \in X$, Tx is convex; that is, a minimax condition holds.

References

- [1] F.E. Browder, On a new generalization of the Schauder fixed point theorem, Math. Ann., 174 (1967), 285-290.
- [2] F.E. Browder, The fixed point theory of multi-valued mappings in topological vector spaces, Math. Ann., 177 (1968), 283-301.
- [3] N. Dunford and J.T. Schwartz, Linear operators, Part 1, Interscience, New York, 1958.
- [4] K. Fan, Minimax theorems, Proc. Nat. Acad. Sci., 39 (1953), 42-47.
- [5] K. Fan, Existence theorems and extreme solutions for inequalities concerning convex functions or linear transformations, Math. Z., 68 (1957), 205-217.

- [6] K. Fan, Applications of a theorem concerning sets with convex sections, Math. Ann., 163 (1966), 189-203.
- [7] K. Fan, Extensions of two fixed point theorems of F.E. Browder, Math. Z., 112 (1969), 234-240.
- [8] P. Hartman and G. Stampacchia, On some nonlinear elliptic differential functional equations, Acta Math., 115 (1966), 271-310.
- [9] S. Kakutani, A generalization of Brouwer's fixed point theorem, Duke Math. J., 8 (1941), 457-459.
- [10] J. J. Moré, Coercivity conditions nonlinear complementarity problems, SIAM Review, 16 (1974), 1-16.
- [11] H.H. Schaefer, Topological vector space, Macmillan, New York, 1966.
- [12] M. Sion, On general minimax theorems, Pacific J. Math., 8 (1958), 171-176.
- [13] F. Terkelsen, Some minimax theorems, Math. Scand., 31 (1972), 405-413.
- [14] W. Takahashi, Minimax theorems and fixed point theorems, Res. Rep. Inf. Sci. No. A-7, 1974.
- [15] W. Takahashi, Systems of convex inequalities and fixed point theorems, Res. Rep. Inf. Sci. No. A-8, 1974.

Wataru TAKAHASHI

Department of Information Sciences Tokyo Institute of Technology Oh-okayama, Meguro-ku, Tokyo, Japan