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Abstract 8 

In this paper, the propagation of bounded uncertainties in the dynamic response of a misaligned rotor is 9 

investigated using a Legendre collocation based non-intrusive analysis method. A finite element rotor 10 

model is used and the parallel and angular misalignments are modelled by additions of stiffness and 11 

force terms to the system. A simplex meta-model for the harmonic solutions of the vibration problem is 12 

constructed to take into account the uncertainties. The influences of uncertainties in the fault parameters 13 

are analysed and the calculation performance of the interval method is validated. Different propagation 14 

mechanisms of the uncertainties are observed in the interval responses and discussed in case studies. 15 

The results of this study will promote the understandings of the nonlinear vibrations in misaligned rotor 16 

systems with interval variables.  17 
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1. Introduction 19 

Rotating machineries have wide applications in industrial fields and play an important role in both the 20 

civil economics and military services (Roy and Meguid 2018; Biswas and Ray 2013; Lu et al. 2018). 21 

Typical faults such as a crack may occur during operation, which will cause harmful vibrations (Ma et 22 

al. 2015a). The stability of rotor systems mounted on journal bearings with multi slip zones was studied 23 

by Bhattacharya et al. (2017). Li et al. (2019) investigated the nonlinear dynamics of a rotor supported 24 

by nonlinear supports at both ends and the effect of rubbing was analysed. Residual bow was found to 25 

have a significant effect on the first order critical speed of the geared system with stiff viscoelastic 26 

supports (Kang et al. 2011). Misalignment is deemed to be the second most common fault after out of 27 

balance and they often exist simultaneously (Patel and Darpe 2009; Wang and Jiang 2018; Srinivas et 28 

al. 2019). Assembling error, long time operation and thermal effects are contributories to these faults. 29 

Extra reacting forces and moments will be generated and the dynamics including stability of the rotor 30 

system can be significantly influenced (Ma et al. 2015b; Tuckmantel and Cavalca 2019; Al-Hussain 31 

2003). In rotor systems, there are generally two types of misalignment, i.e. the parallel misalignment 32 

and the angular misalignment. The modelling methods and various dynamic behaviors in misaligned 33 

rotors have been investigated by many researchers worldwide. Li et al. (2012) established the 34 
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mathmatical model of a rotor system in aero-engine subject to misalignment and unbalance coupling 35 

faults. Wang et al. (2015) used an additional stiffness term to simulate the effect of angular misalignment 36 

and derived the motion equations of a four-degrees-of-freedom rotor system. Li et al. (2016; 2017) 37 

modelled angular misalignment based on the geometric constraints between the adjacent coordinates. 38 

Lees (2007) proposed the modelling method for parallel misalignment using the Lagrange’s formulation 39 

where shafts are connected by a number of bolts. The technique was further used to analyse angular 40 

misalignment (Didier et al. 2012a). Sinha et al. (2004) proposed an estimation method for the 41 

misalignment and unbalance faults based on only one run-down process. Its robustness was verified via 42 

sensitivity analysis on rotor bearing models. Xu and Marangoni (1994) carried out the experimental 43 

validation for dynamic characteristics of an unbalanced rotor system with misalignment and revealed 44 

some in-depth vibration behaviours at the 2  rotating speed of the system.  45 

In the design stage, it is very hard to accurately simulate the actual operational conditions and physical 46 

parameters will have critical impacts on the vibration characteristics of rotor systems. Errors and extra 47 

variations may be introduced in manufacturing, service and maintenance periods (Liu et al. 2016; Jiang 48 

et al. 2012). In other words, there are ubiquitous uncertainties in the physical models, excitations and 49 

classic faults. The corresponding dynamic behaviours can deviate from the design values and further 50 

cause instabilities or severe failures (Fu et al. 2017). This is especially true for misaligned rotors, which 51 

may be affected by manual assemble errors or small defects in couplings. In engineering, it often 52 

happens that the vibration will deteriorate when a well-balanced rotor is reassembled. The uncertainty 53 

analysis for rotordynamics has attracted attention in recent years. Some studies have been reported in 54 

the literature (Yang et al. 2019; Lu et al. 2019; Sinou et al. 2018; Fu et al. 2018a, 2018b; Didier et al 55 

2012b; Koroishi et al. 2012; Ritto et al. 2011; Sinou and Faverjon 2012), which were devoted to 56 

investigating the linear and nonlinear dynamics of rotor systems under various uncertain conditions 57 

based on both the stochastic and non-probabilistic approaches. More specifically, Li et al. (2016; 2017) 58 

studied the random nonlinear vibration characteristics of a rotor system with angular misalignment and 59 

nonlinear bearings using the Polynomial Chaos Expansion (PCE). Multiple typical faults in a rotor 60 

system, including the parallel and angular misalignments, were considered by Didier et al. (2012a) and 61 

the influences of the stochastic fault parameters were investigated using the PCE. Li et al. (2012) and 62 

Wang et al. (2015) employed the Taylor interval method to reveal the uncertain dynamics of misaligned 63 

dual rotors simplified from the aero-engine. Some important factors should be considered in the 64 

uncertainty propagation analysis of misaligned rotor systems, i.e. the application prerequisites and 65 

implementation convenience of the propagation methods, the accuracy of the physical model and the 66 

underlying computational efficiency. The distribution model of uncertainty should be established in the 67 

probability-based methods or hypothesis should be made, which could be subjective. The Taylor 68 

interval analysis method is derivative-based and intrusive, which is only suitable for small range 69 
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uncertainty and is difficult to adapt to large-scale models or high-order problems. Therefore, they can 70 

only be used in systems with a few degrees of freedom. This paper will focus on the uncertainty 71 

propagation analysis of a finite element rotor model with both the parallel and angular misalignments. 72 

A Legendre collocation based non-intrusive interval surrogate is proposed for this purpose, which 73 

avoids complicated approximation theory and derivation operations in the previous methods. Large 74 

variations in the uncertainties can be applied. Efforts aimed at reducing the computation burden are 75 

incorporated to deal with multi-dimensional uncertainties. The high efficiency and accuracy, as well as 76 

the uncomplicated implementation of the method will be demonstrated via case studies. The variability 77 

patterns of the responses due to the uncertainties in the two types of misalignment will be revealed.  78 

The remainder of the content is as follows. The modelling process of the parallel and angular 79 

misalignments will be briefly explained in Section 2. Section 3 presents the steps and principles of the 80 

uncertainty propagation method. Numerical simulation with uncertainties in the fault parameters will 81 

be given in Section 4. Some conclusions are summarised in the last section.  82 

2. Misalignment modelling and the deterministic motion equation 83 

The finite element method (FEM) has been widely used to model the rotating systems and establish the 84 

governing equations of motion in relation to the lateral vibration (Friswell et al. 2010). For a general 85 

rotor-disk-bearing system, the modelling of the Euler beam elements, mass disks and linear isotropic 86 

bearing elements is standard. The matrices for different typical elements and the assemblage technique 87 

will not be described in the current study and the readers are referred to Friswell et al. (2010) for further 88 

instructions. Generally, the governing motion equation of a rotor-disk-bearing system can be 89 

represented as 90 

 ( ) ( ( ) ( ) ( )t t t t   Mq C G q Kq F)  (1) 91 

where M  , C  , K   and G   are, respectively, the global mass, damping, stiffness and gyroscopic 92 

matrices of the system. The acceleration, velocity and displacement vectors are denoted by ( )tq , ( )tq  93 

and ( )tq  , respectively. ( )tF   is the unbalance and gravitational forces.    represents the angular 94 

speed of the shaft. All quantities given in Eq. (1) are formulated in the fixed coordinate system. 95 

2.1. Parallel misalignment  96 

In this subsection, the effects of the parallel misalignment on the system will be modelled. The two 97 

rotors connected by coupling with N bolted joints are assumed to be operating at a synchronized rotating 98 

speed. The bolts are distributed on a circle at a radius pr  from the shaft centerline and they have a 99 

transverse stiffness tk . Suppose the centerlines of the two shafts have a relative vertical displacement100 

p  , the schematic configuration of the fault is illustrated in Fig. 1. bbviously, the effects are 101 

exaggerated here to show the relationship although the displacement is generally small in reality.  102 

As the bolts are evenly distributed in a circumference, their angles can be defined as 103 
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According to the geometrical relationship, the position of the ith bolt on the two rotors in fixed 105 

coordinate frame can be given as (Lees 2007; Didier et al. 2012a) 106 
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where [    ]T
v w    denotes the nodal lateral displacement vector of the coupling and t is time. Then 109 

the sum of strain energy of bolts can be given as 110 

 2 21
[( sin( )) ( (1 cos( ))) ]

2
pm t p pE Nk v t w t         (5) 111 

After the Lagrange’s operation, the effects of parallel misalignment will be represented by an additional 112 

stiffness term and a force term on the coupling node (Didier et al. 2012a; El-Mongy and Younes 2018) 113 

 (1,  1,  0,  0)pm tNk diagK  (6) 114 

  [sin( ),  1 cos( ),  0,  0]T

pm b pNk t t   F  (7) 115 

2.2. Angular misalignment  116 

The angular misalignment can be modelled similarly to the previous method. The bolts will have an 117 

axial stiffness 
ak  and the first one will have the stiffness 

ak k  in z direction (Didier et al. 2012a). 118 

Suppose the magnitude of angular misalignment is 
a , a schematic diagram showing the configuration 119 

of the fault is presented in Fig. 2. Similarly, the magnitude of the angular misalignment is small and it 120 

is intentionally magnified. 121 

The positions of bolts are calculated in the fixed frame as 122 
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O M  (8) 123 

Then the strain energy of bolts can be given as 124 

 2 21
[( )cos( ) ( cos( )]

2

N

am i a i i

i

E r k t t            (9) 125 

By Lagrange’s calculation, one can describe the effects of angular misalignment using a time-variant 126 

stiffness term and a two-order harmonic force term (Didier et al. 2012a) 127 
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Considering the effects of the parallel and angular misalignments on the rotor, the motion equations of 130 

the misaligned system can be written as  131 
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0 1 1 2 2
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Mq C G q K K K q

F F F F F
 (12) 132 

where 0K  is a constant stiffness matrix, including K  in Eq. (1), the stiffness in Eq. (6) and the 133 

constant part in Eq. (10). 
cK  and 

sK  are the stiffness matrices of the second order harmonics. 0F134 

is the constant part of the forces on the system. 1cF  and 1sF  are the force amplitudes of the first order 135 

harmonics whilst 2cF  and 2sF  are those of the second order harmonics.  136 

Given the form of Eq. (12), the harmonic balance method (HBM) (Nayfeh and Mook 2008), a fast 137 

method for steady-state solutions, can be conveniently employed to solve the dynamic response of the 138 

system. The forces on the system shown in the right hand side of Eq. (12) are already in harmonic form. 139 

The displacement vector can then be expressed in finite Fourier expansion 140 

  0

1

( ) cos( ) sin( )
n

k k

k

t k t k t 


  q A A B  (13) 141 

where n  is the truncation order. brder 4 will be adequate for the present study according to previous 142 

nonlinear analyses of faulty rotor systems (Sinou and Faverjon 2012; Tai et al. 2015; Yang et al. 2019). 143 

Then magnitude of the j-th order harmonic component of the dynamic response can be calculated as 144 

 2 2 ,  0,  1,  ,  k k k nA + B  (14) 145 

Submit Eq. (13) into Eq. (12) and balance the coefficients of the same order harmonic terms, it will 146 

generate a set of linear equations 147 

 =HX   (15) 148 

where  149 

 0 1 1= [ ,  ,  ,  ,  ,  ]T

n nX A A B A B  (16) 150 

 151 

 0 1 1 2 2= [ ,  ,  ,  ,  ,  ,  ,  ]T

c s c sF F F F F 0 0  (17) 152 

 153 
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(18) 155 

where ( ) 2

0 ( )s
s K M   and ( ) ( ),  1,  2,   ,  s

s s n   C G  . Then the unknown Fourier 156 

coefficients, i.e. the steady-state dynamic responses, can be solved by Eq. (15).  157 

3. Legendre collocation approach for uncertainty quantification 158 

In the above modelling, uncertainties in the fault parameters are not included. This section will establish 159 

the propagation model of bounded uncertainties in the harmonic responses. As discussed previously, 160 

the non-intrusive and non-probabilistic uncertainty propagation procedures will prevail in complicated 161 

engineering systems with little prior statistic information. Some interval analysis methods and surrogate 162 

modelling techniques (Qiu and Wang 2003; Wu et al. 2013, 2016; Elishakoff and Sarlin 2016; Soize 163 

2001; Qi and Qiu 2012) have been proposed for dynamic analysis of the uncertain truss structures and 164 

multibody systems. Here, a Legendre collocation scheme is proposed to establish a simple meta-model 165 

for the uncertain harmonic solutions. Firstly, the uncertain-but-bounded magnitude of the parallel 166 

misalignment is expressed in interval form 167 

 1 1[ ,  ]I c c c c

p p p p p          (19) 168 

where superscripts I and c denote the interval quantity and its nominal value. 1  is the uncertainty 169 

range indicator for the parallel misalignment. Similarly, the uncertain magnitude of the angular 170 

misalignment can also be written as 171 

 2 2[ ,  ]I c c c c

a a a a a          (20) 172 

where 2  is its uncertainty indicator. More indicators will be generated if other physical parameters 173 

are to be considered uncertain and a standard uncertain variable vector  1 2 3, , ,    can be 174 

defined, which represents all the indicators. In the presence of interval parameters, the response output 175 

of the rotor will also be uncertain. The harmonic solutions in Eq. (15) can be expressed as  176 

 
[ ,  ],  0,  1,  ,  

[  ],  1,  2,  ,  

I

i i i

I
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i n
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A A A

B B , B
 (21) 177 

where an underscore represents the lower bound (LB) and an overbar denotes the upper bound (UB). 178 

Solving the uncertain dynamic problem is equivalent to determining the bounds of the interval harmonic 179 

solutions expressed in Eq. (21). The meta-modelling technique can be used for this purpose. In the 180 
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following, the interval modelling method for any harmonic solutions of interest will be explained. It 181 

could be either the Fourier coefficient of a single component or all of them in a row. Naturally, the 182 

uncertain solution will be a function of the vector , which can be denoted as ( )f  .  183 

To establish the surrogate function, the basics of the Legendre orthogonal series should be described. 184 

The recursive relationships of Legendre polynomials are as follows 185 

 
0 1

1 1

( ) 1,   ( ) ;

( 1) ( ) (2 1) ( ) ( )n n n

L x L x x

n L x n xL x nL x 

 
    

 (22) 186 

They are orthogonal on standard interval [-1, 1] with a constant weight function ( ) 1x  . The zeros 187 

of the Legendre polynomial  i  , which are already defined according to the polynomial 188 

expression, can be used as samples in the uncertain parameter space due to their distribution structure.  189 

It is worth mentioning that approximation of the uncertain response via the Gauss-Legendre quadrature 190 

will not be adopted due to the complexity in deduction. Instead, a regression form involving less 191 

mathematic efforts will be outlined. Suppose there are m uncertain parameters, we can predefine a p-192 

order regression model for the uncertain response in a way similar to the response surface method 193 
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where ( )k  is the unknown coefficient vector with the same size of ( )k
S . ( )k

S  is the vector for all 195 

the combinations of terms 1 2

1 1
mii i
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In Eq. (23), the coefficient vector (1) (2) ( )= ,  ,  ,  ]p[     should be determined to fully construct 200 

the model. The dimension of vector   is ( )!/ !/ !n m p m p  . Let (1) (2) ( )[1,  , ,  ,  ]p TS S S S , it 201 

further leads to the following expression 202 

 ( ) ( )f  S    (26) 203 

For each uncertainty indicator 
i  , the least number of collocations should be 1n p    . These 204 

collocations can be generated by the zeros of the n -order Legendre polynomial. In problems with 205 

single uncertainty, all the collocations should be used to estimate the unknown coefficients. When 206 

multiple uncertainties are taken into consideration, strategies aimed to reduce the computational efforts 207 

should be introduced. It was proposed that 2n  collocations, i.e. two times of the dimension of  , 208 

will give robust results and achieve good efficiency (Isukapalli 1999; Wu et al. 2015). The collocations 209 

will be drawn randomly from the tensorial candidate space  210 

  2 1, 1 2, 1 , 1
ˆ

n m n n m n             (27) 211 
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At each collocation set ˆ( ,  1: )j m , the deterministic harmonic solution can be evaluated by Eq. (15) 212 

as 213 

 ˆ ˆ{ ,  1,  2,  ,  2 }j j = nX X  (28) 214 

 1ˆ ˆ ˆˆ =j j j j

     X H    (29) 215 

It should be noted that Eq. (29) represents a deterministic simulation as the uncertain parameters are 216 

all specified to fixed collocations. As a non-intrusive scheme, this is the only step where the rotor system 217 

model is involved and the deterministic modelling of the misalignment faults in Section 2 is integrated 218 

into the uncertainty propagation procedure. In other words, they are actually working independently 219 

and no further modifications to the established solver are needed in different uncertain cases. At the 220 

same time, the sample outputs of the S  matrix should be calculated 221 

 ˆ ˆ{ ,  1,  2,  ,  2 }j j = nS S  (30) 222 

 (1) (2) ( )ˆ ˆ ˆ ˆ ˆ= [1,  , ,  ,  ]p T

j j j j j       S S S S     (31) 223 

Then, the unknown coefficient vector   can be estimated in regression form as  224 

 T 1ˆ ˆ ˆˆ (  XS S S  (32) 225 

The simplex meta-function of Eq. (26) is completely determined as long as the unknown coefficient 226 

vector is obtained. Ranges of the uncertain harmonic solutions can be easily estimated by this simple 227 

and explicit mathematical expression with respect to the standard variable vector  . The calculation 228 

performance will be assessed in the numerical simulation section and verifications will be provided.  229 

4. Numerical results with case studies 230 

In this section, numerical simulations regarding different uncertain parameters are carried out to 231 

investigate their effects on the vibration behaviours of the misaligned rotor. Here, only the model of the 232 

second rotor is presented as the first is rigid. Figure 3 shows the academic model of the rotor, which 233 

consists two rigid discs and is supported by two bearings at the two ends. It is discretized into 14 Euler 234 

beam elements with the torsional vibration being neglected. The two discs are located at node 3 and 12. 235 

The values of the model parameters are given in Table 1. Mass imbalance is considered at disc 2 and 236 

the rest of the rotor system is assumed to be well-balanced. All the responses will be drawn at node 2. 237 

The deterministic parallel misalignment is 0.001 m and the angular misalignment is 0.001 rad.  238 

Firstly, the uncertainty in parallel misalignment is investigated. The varying range is taken as 10% of 239 

its mid-value. The uncertain results of the first four harmonic components using the 3-order surrogate 240 

procedure are demonstrated in Fig. 4. As clearly indicated in Fig. 4, the uncertainty in the parallel 241 

misalignment affects mainly the first order harmonic component and a small variability is noticed in 242 

the 3   component. In the 2   and 4   components, the upper and lower response bounds stay 243 

close to the deterministic lines and no obvious response ranges are noticed. The results can be explained 244 

by referring to Eq. (7), which shows that the parallel misalignment will add a first-order harmonic force 245 

to the rotor system. The trivial variability in the third component is introduced by the coupling of the 246 
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first order and the third order components, which can be observed when applying the HBM.  247 

It is important to validate the accuracy of the obtained uncertainty propagation results. To this end, the 248 

scanning method is used to provide reference solutions using 100 equally spaced samples in the interval 249 

of uncertain parallel misalignment. To validate the accuracy, it will be difficult to identify the differences 250 

in the response bound curves between the reference solutions and those from the surrogate method since 251 

they are very close to each other. Instead, the difference rate diagram for the upper and lower bounds is 252 

provided by taking the reference solutions as accurate ones, as shown in Fig. 5. The magnitudes of 253 

difference rates in Fig. 5 for the UB and LB demonstrate that the two categories of results are almost 254 

identical for the 2  and 4  components. The largest rates appear in the 1  and 3  components, 255 

but they are actually small (less than 1%). The simulation tasks are carried out on a personal laptop 256 

operating Windows 10 with Intel Core i7-8550U@1.8GHz and 16GB RAM. The average CPU time for 257 

the proposed Legendre method is 69.55 s whilst for the scanning method it is 3766.72 s. The calculation 258 

efficiency is verified by this comparison. In fact, the deterministic model will be evaluated for every 259 

sample to gather all the sample harmonic responses. The advantage will be significant if the rotor model 260 

has many degrees of freedom. Thus, the effectiveness of the proposed method is validated.  261 

Figure 6 presents the influence of 5% bounded uncertainty in the angular misalignment on the harmonic 262 

responses of the rotor system. An obvious phenomenon contrary to that in the case of uncertain parallel 263 

misalignment can be seen. In Fig. 6, variabilities of the responses only appear at the 2  and 4  264 

components whilst no visible fluctuations are observed in the 1  and 3  components, which can be 265 

evidenced by Eqs. (10) and (11). The effects of angular misalignment are expressed in second order 266 

harmonic form and coupling effects will be introduced. Furthermore, the case with multi uncertainties 267 

in different physical parameters is considered. Using the same 3-order surrogate, Fig. 7 gives the 268 

variability of the vibration response of the rotor system under 5% uncertainties in both the 269 

misalignments, 10% uncertainty in the unbalance and 2% uncertainty in the stiffness of bearing 2. With 270 

those multiple uncertainties present, the traditional sampling-based scanning method will be 271 

computationally prohibitive due to the geometrical growing samples. However, the bounds of the 272 

harmonic components in Fig. 7 are smooth which shows the robustness of the surrogate. The variability 273 

of dynamic response also indicates that the propagation of uncertainties causes significant deviations in 274 

the deterministic harmonic solutions. As expected, all of the four harmonic components are affected by 275 

the multiple uncertain parameters.  276 

5. Conclusions 277 

A finite element rotor model with both parallel and angular misalignments is considered in this paper 278 

to investigate the propagation of non-probabilistic uncertainties in the dynamic responses. The HBM 279 

coupled with a non-intrusive Legendre collocation based surrogate method is used to obtain the ranges 280 

of the harmonic solutions. The uncertainty in parallel misalignment propagates only into the 1  and 281 
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3  components whilst the uncertainty in angular misalignment affects the 2  and 4  components. 282 

Multi uncertainties will demonstrate significant influences on all of the harmonic components of the 283 

dynamic responses. Moreover, the effectiveness of the proposed method is validated via the scanning 284 

method. The method is also suitable for the uncertainty analysis of general engineering structures.  285 
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Figure 1. Schematic diagram of parallel misalignment. 388 
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Figure 2. Schematic diagram of angular misalignment. 391 
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Figure 3. Academic model of the rotor system. 397 
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 399 

Figure 4. Response variability under 10% uncertainty in parallel misalignment: (a) 1   harmonic 400 

component, (b) 2   harmonic component, (c) 3   harmonic component, (d) 4   harmonic 401 

component. 402 
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 404 

Figure 5. Calculation error rate: (a) 1  harmonic component, (b) 2  harmonic component, (c) 3  405 

harmonic component, (d) 4  harmonic component. 406 
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 408 

Figure 6. Response variability under 5% uncertainty in angular misalignment: (a) 1   harmonic 409 

component, (b) 2   harmonic component, (c) 3   harmonic component, (d) 4   harmonic 410 

component. 411 
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 413 

Figure 7. Response variability under multiple uncertainties: (a) 1   harmonic component, (b) 2  414 

harmonic component, (c) 3  harmonic component, (d) 4  harmonic component. 415 
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List of Tables 417 

 418 

Table 1. Values of parameters 419 

Parameter Value Parameter Value 

Length of shaft, l    0.825 m  Young’s modulus, E     11 22.1 10  N/m  

Axial stiffness of bolts, 
a

k  52 10  N/m  Density,    37800 kg/m  

Transverse stiffness of bolts, 
t

k  61 10  N/m  Viscous damping, C   200 N s/m  

Unbalance angle,    0 rad   Stiffness of bearing 1, 
1K   77 10  N/m  

Poisson’s ratio,    0.3  Stiffness of bearing 2, 
2K  77 10  N/m  

Disk mass, 
d

m    0.5 kg  Mass unbalance, 
e

m d  55 10  kg m   

Radius of the disks, 
0R    0.22 m  Additional stiffness, '

k  
61 10  N/m  

 420 

 421 


