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Abstract: In this study, the non-local Euler-Bernoulli beam theory was employed in the nonlinear free
and forced vibration analysis of a nanobeam resting on an elastic foundation of the Pasternak type.
The analysis considered the effects of the small-scale of the nanobeam on the frequency. By utilizing
Hamilton’s principle, the nonlinear equations of motion, including stretching of the neutral axis,
are derived. Forcing and damping effects are considered in the analysis. The linear part of the problem
is solved by using the first equation of the perturbation series to obtain the natural frequencies. The
multiple scale method, a perturbation technique, is applied in order to obtain the approximate
closed solution of the nonlinear governing equation. The effects of the various non-local parameters,
Winkler and Pasternak parameters, as well as effects of the simple-simple and clamped-clamped
boundary conditions on the vibrations, are determined and presented numerically and graphically.
The non-local parameter alters the frequency of the nanobeam. Frequency-response curves are drawn.
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1. Introduction

Nanotechnology is the manipulation of matter on a supramolecular, molecular, and atomic scale.
Many new devices and materials used in consumer products, electronics, biomaterials, medicine,
energy production, etc., may be created with the help of nanotechnology. The exclusive properties
of nanoscale materials are due to their very small size. The size effect of nano structures has an
important role in their static and dynamic analysis. The classical continuum mechanics is not able
to take into account the size effect in modeling of the material behavior at the nanoscale. Therefore,
various size-dependent continuum theories, which are the non-local elasticity theory, strain gradient
theory, the modified couple stress theory, the micropolar theory, and the surface elasticity theory, have
been developed to include the small-scale effect. Among these theories, Eringen’s non-local elasticity
theory [1,2] is a major subject among scientists. Peddison, et al. [3] were the first pioneers applying the
non-local elasticity theory to nanostructures.

Vibration analysis of nanostructures is necessary for the ideal design of nanoelectromechanical
systems (NEMS) and new nanodevices. The Winkler model is studied as a one-parameter model,
namely Winkler-type elastic foundation, consists of a series of closely-spaced elastic springs, where as
the Pasternak model studied as a two-parameter model, namely Pasternak-type elastic foundation,
consists of a Winkler-type elastic spring and transverse shear deformation. In contrast, the nonlinear
elastic foundation model studied as a three-parameter model, in which the layer is indicated by linear
elastic springs, shear deformation, and cubic nonlinearity elastic springs. The work of Niknam and
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Aghdam [4] deals with the Eringen’s non-local elasticity theory for the evaluation of a closed-form
solution of the buckling load and natural frequency of non-local functionally-graded (FG) beams on a
nonlinear-type elastic foundation. Fallah and Aghdam [5] carried out post buckling and free vibration
analysis of FG beams resting on an elastic foundation and subjecting axial force. Additionally, this
author and its coauthors [6] investigated nonlinear free vibration and thermo-mechanical buckling
analysis of a FG beam resting on a nonlinear type elastic foundation. Kanani, et al. [7] investigated the
free and force vibration of a FG beam in the presence of large amplitude resting on a nonlinear elastic
type foundation including shearing layer and cubic nonlinearity. Şimşek [8] developed a non-classical
beam theory for the static and nonlinear vibration analysis of microbeams resting on a nonlinear elastic
foundation on the base of the modified couple stress theory and Euler-Bernoulli beam theory.

Mustapha and Zhong [9] presented a mathematical model associated with single-walled carbon
nanotube (SWCNT) vibration analysis. The SWCNT taken as a non-local Rayleigh beam is assumed
to be axially loaded and embedded in a two parameter elastic medium. Mehdipour, et al. [10]
employed continuum mechanics and elastic beam model. Their study aims to analyze the transverse
vibration of a SWCNT having curved shape and embedded in a Pasternak elastic foundation. Work
of Shen and Zhang [11] deals with the post-buckling nonlinear vibration and nonlinear bending of
a SWCNT. The SWCNT modeled as a non-local beam including small-scale effect and resting on
a two parameter elastic foundation in thermal environments. Arani, et al. [12] carried out a study
related with the vibration behavior of single-walled boron nitride nanotubes in the presence of von
Kármán geometric nonlinearity effects modeled with non-local piezoelasticity. Its nanotube surrounded
by an elastic medium was assumed to be Winkler and Pasternak foundation model. Murmu and
Pradhan [13] applied an existing method to a well-known Eringen non-local elasticity theory to analyze
the stability response of SWCNT surrounded by Winkler- and Pasternak-type foundation models.
Yas and Samadi [14] were presented buckling and free vibration analysis of nanocomposite Timeshenko
beams reinforced by SWCNT resting on the two parameter medium.

Kazemi-Lari, et al. [15] considered the influence of viscoelastic foundation in the presence of
interaction between surrounding viscoelastic medium and carbon nanotubes (CNTs) considering the
action of a concentrated follower force. Surrounded medium is taken as the Kelvin–Voight, Maxwell,
and standard linear solid types of viscoelastic foundation. Ghanvanloo, et al. [16] applied an existing
method to a well-known classical Euler-Bernoulli beam model considering the instability and vibration
response of CNT resting on a linear viscoelastic Winkler foundation. Refiei, et al. [17] applied an
existing method to a well-known non-local Euler-Bernoulli beam theory to analyze the vibration
characteristics of non-uniform SWCNT conveying fluid and also embedded in viscoelastic medium.
It was concluded from their study that the nonlocal parameter, small-scale effect, may influence
extremely the natural frequency and mode shape of the system. The main motivation for Arani and
Amir’s [18] work is to develop an analytic model for the electro-thermal vibration of boron nitride
nanotubes by using strain gradient theory, in which nanotubes coupled by visco-Pasternak medium.
Wang and Li [19] carried out the study of the nonlinear free vibration of a nanotube in the presence of
small-scale effect embedded in viscous matrix modeled with non-local elasticity theory and Hamilton
principle. The work of Mahdawi, et al. [20] deals with the nonlinear free vibrational behavior of a
double walled carbon nanotube (DWCNT) in the presence of compressive axial load. DWCNT was
surrounded by a polymer matrix. The results of their study indicate that the surrounding medium
may influence profoundly the vibrational behavior of the embedded CNT.

Most existing studies in the literature examine the vibrational behavior of nanostructures
surrounded by an elastic medium. The natural frequency of a SWCNT conveying a viscous fluid and are
also embedded in an elastic medium [21], free transverse vibration of an elastically-supported DWCNT
embedded in an elastic matrix in the presence of initial axial force [22], axial vibration of SWCNT
embedded in an elastic medium [23], vibration of nanotubes embedded in an elastic matrix [24],
nonlinear free vibration of embedded DWCNT including the von Kármán geometric nonlinearity [25],
nonlinear free vibration of clamped-clamped DWCNT surrounded by an elastic medium with
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consideration of the von Kármán geometric nonlinearity and the nonlinear van der Waals forces [26],
forced vibration of an elastically-connected DWCNT carrying a moving nanoparticle [27], nonlinear
vibration of embedded multiwalled carbon nanotubes (MWCNT) in thermal environments [28],
vibration analysis of embedded MWCNT at an elevated temperature with considering the small-scale
effect on the large amplitude [29], free transverse vibration of SWCNT embedded in elastic matrix
under various boundary conditions [30], thermal vibration of SWCNT embedded in an elastic
medium [31], thermal-mechanical vibration and buckling instability of a SWCNT conveying fluid
and resting on an elastic medium [32], electro-thermo-mechanical vibration analysis of non-uniform
and non-homogeneous boron nitride nanorod embedded in elastic medium [33], buckling behavior
of SWCNT on a Winkler foundation under various boundary conditions [34], critical buckling
temperature of SWCNT embedded in a one parameter elastic medium [35], and buckling analysis of
SWCNT including the effect of temperature change and surrounding elastic medium [36] were studied
with the aid of nonlocal elasticity theory. The surrounding elastic medium related with the above
studies was described as the Winkler model with spring constant k.

Another class of size-dependent continuum theories that deal with the electro-thermal transverse
vibration behavior of double-walled boron nitride nanotubes which are surrounded by an elastic
medium was presented with the aid of non-local piezoelasticity cylindirical shell theory [37]. Free
vibrations of SWCNT embedded in non-homogenous elastic matrix were studied with the aid of
the non-local continuum shell theory [38]. The nonlinear free vibration of embedded MWCNT was
investigated by using the multiple elastic beam models and continuum mechanics [39]. Nonlinear
thermal stability and vibration of pre/post buckled temperature and microstructure-dependent FG
beams resting on an elastic medium was investigated on the base of the modified couple stress
theory [40]. The method of multiple scales (a perturbation method) is an efficient technique to solve the
nonlinear differential equations. Free vibration analysis of beams resting on elastic foundation [41,42]
and nonlinear free vibration behavior of simply supported DWCNT with considering the geometric
nonlinearity were presented by using multiple scale method [43]. Nonlinear vibration of tensioned
nanobeam and nanobeam with different boundary condition was studied by using non-local elasticity
theory [44,45].

Lots of the work presented in the literature includes the vibration behavior of a nanobeam
embedded in an elastic medium, whereas investigations on the two-parameter medium are rather
limited. We examine the literature presented in the above, and it can be seen clearly that an elastic
medium surrounded by a Pasternak-type model is limited in literature. Most of the above work is
mainly related with the amplitude–frequency response of the nanotube. However, damping and
forcing effect included studies on the nonlinear vibration properties of nanosystems are also rather
limited. In the present study, the non-linear free vibration of the nanobeam resting on a two-parameter
medium is studied by the non-local continuum theory. The small scale and damping effects are taken
into account and nonlinear vibration behaviors of the nanobeam are illustrated.

2. Governing Equations

2.1. Non-Local Effects

In the classical (local) continuum theory, the stress at a point X depends only on the strain at the
same point, while the non-local elasticity theory proposed by Eringen [1,2], regards the stress at a point
as a function of strains at all points in the continuum. Therefore, the nonlocal stress tensor σ at point X
can be written as:

σ pXq “
w

V

K
`ˇ

ˇX1 ´ X
ˇ

ˇ , τ
˘

T
`

X1
˘

dV (1)

T pXq “ C pXq : ε pXq (2)

where TpXq is the classical macroscopic stress tensor at point X, K
`ˇ

ˇX1 ´ X
ˇ

ˇ , τ
˘

is the non-local
modulus,

ˇ

ˇX1 ´ X
ˇ

ˇ is the Euclidian distance and τ is a material constant, CpXq is the fourth order
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elasticity tensor, and σpXq and εpXq are the second order tensors representing stress and strain fields,
respectively. A simplified equation of differential form is used as a non-local constitutive relation, the
reason being is that solving of the integral constitutive Equation (2) is complicated.

T “
´

1 ´ µ∇2
¯

σ, µ “ τ2l2 (3)

where ∇2 is the Laplacian operator. Here, the non-dimensional non-local nanoscale parameter τ is
defined as e0a{l, in which e0 is constant appropriate to each material and a is internal characteristic
length and l is external characteristic length. The constitutive equation of nonlocal elasticity for a beam
takes the following form:

σ pXq ´ µ
B2σ pXq

BX2 “ Eε pXq (4)

where E is the elasticity modulus.

2.2. Nonlocal Euler-Bernoulli Beam

This study is carried out on the basis of the non-local Euler-Bernoulli beam model. Two types
of boundary conditions, which are simple-simple and clamped-clamped, are considered in this work
and shown in Figure 1. The nanobeam is resting on a two parameter elastic foundation with the
spring constants kL and kp of the Winkler elastic medium and Pasternak elastic medium, respectively.
The equation of motion is obtained by using Hamilton’s principle. For the Euler-Bernoulli beam model,
the displacement field is given as:

( )µ σ= − ∇ τµ =∇2 local nanoscale parameter τ is 

( ) ( ) ( )
σ

σ µ ε
∂

− =
∂

 
(a) (b) 

𝑢𝑢𝑥𝑥 𝑥𝑥 𝑧𝑧 𝑡𝑡 𝑢𝑢 𝑥𝑥 𝑡𝑡 − 𝑧𝑧 𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥 𝑢𝑢𝑦𝑦 𝑢𝑢𝑧𝑧 𝑥𝑥 𝑧𝑧 𝑡𝑡 𝜕𝜕 𝑥𝑥 𝑡𝑡𝑢𝑢 𝑎𝑎𝑎𝑎𝑎𝑎 𝜕𝜕
σ= ∫ σ= ∫

𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛
𝜀𝜀0 𝜕𝜕𝑢𝑢𝜕𝜕𝑥𝑥 �𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥�2 𝜀𝜀1 −𝑧𝑧𝑧𝑧 𝑧𝑧 𝜕𝜕2𝜕𝜕𝜕𝜕𝑥𝑥2𝜀𝜀0 𝑧𝑧𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛 𝜀𝜀𝑛𝑛𝑛𝑛𝑛𝑛 𝜀𝜀0 𝜀𝜀1 𝜕𝜕𝑢𝑢𝜕𝜕𝑥𝑥 �𝜕𝜕𝜕𝜕𝜕𝜕𝑥𝑥�2 − 𝑧𝑧 𝜕𝜕2𝜕𝜕𝜕𝜕𝑥𝑥2

Figure 1. Boundary conditions for different beam supports. (a) Simple-Simple case and (b) Clamped-
Clamped case.

ux px, z, tq “ u px, tq ´ z
Bw

Bx
, uy “ 0, uz px, z, tq “ w px, tq (5)

where u and w are the axial and transverse displacements, respectively. The axial force and resultant
bending moment for the beam model are:

N “
w

A

σxdA, M “
w

A

zσxdA (6)

where A is the area of the cross-section for the nanobeam. Taking into account the large amplitude
nonlinear vibration, the von Kármán nonlinear strain (i.e., εnon) should be considered and strain-
displacement relationship is given by:

ε0 “ Bu

Bx
` 1

2

ˆ

Bw

Bx

˙2

, ε1 “ ´zκ, κ “ B2w

Bx2 (7)

where ε0 is the nonlinear extensional strain and κ is the bending strain. Then the von Kármán nonlinear
strain (i.e., εnon) can be expressed as:

εnon “ ε0 ` ε1 “ Bu

Bx
` 1

2

ˆ

Bw

Bx

˙2

´ z
B2w

Bx2 (8)
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The force–strain and the moment–strain relations of the nonlocal beam theory can be obtained
from Equations (4)–(8):

N ´ pe0aq2 B2N

Bx2 “ EA

«

Bu

Bx
` 1

2

ˆ

Bw

Bx

˙2
ff

(9)

M ´ pe0aq2 B2M

Bx2 “ ´EI
B2w

Bx2 (10)

where I is the moment of inertia. The kinetic energy T can be written as:

T “ 1
2

ρA

Lw

0

«

ˆ

Bu

Bt

˙2

`
ˆ

Bw

Bt

˙2
ff

dx (11)

where ρA is the mass per unit length. The strain energy U can be written as:

U “ 1
2

Lw

0

#

N

«

Bu

Bx
` 1

2

ˆ

Bw

Bx

˙2
ff

´ M
B2w

Bx2

+

dx (12)

In addition, the virtual work by the external load from the elastic medium of the Pasternak type
is given by:

δWext “
Lw

0

qδwdx (13)

where q “ ´
„

kLw ´ kp
B2w

Bx2



is the load exerted by the Pasternak-type elastic medium. The stiffness

and the shear modulus parameters of the deformable medium are represented by kL and kp.
Hamilton’s principle can be represented analytically by the following formula:

δ

tw

0

rT ´ pU ´ Wextqs dt “ 0 (14)

Inserting Equations (11)–(13) into Equation (14) and integrating by parts, and collecting the
coefficients of δu and δw, the following equation of motion are obtained:

BN

Bx
“ ρA

B2u

Bt2 (15)

B2M

Bx2 ` N
B2w

Bx2 ` kLw ´ kp
B2w

Bx2 “ ρA
B2w

Bt2 (16)

Substituting Equation (16) into Equation (10), one obtains the expressions of the non-local force N
and non-local moment M as follows:

N “ EA

«

Bu

Bx
` 1

2

ˆ

Bw

Bx

˙2
ff

` pe0aq2 B3u

BxBt2 (17)

M “ ´EI
B2w

Bx2 ` pe0aq2 rρA
B2w

Bt2 ´ N
B2w

Bx2 ´ kLw ` kp
B2w

Bx2 s (18)

The longitudinal inertia
B2u

Bt2 can be neglected based on the discussion about the nonlinear

vibration of continuous systems [46,47], then the axial normal force N can be represented as:

N “ EA

2L

Lw

0

ˆ

Bw

Bx

˙2

dx (19)
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The nonlinear vibration equation of motion for the nanobeam resting on the Pasternak-type elastic
foundation can be obtained by substituting Equations (17)–(19) into Equations (15) and (16) as follows:

EI
B4w

Bx4 ` ρA
B2

Bt2

ˆ

w ´ pe0aq2 B2w

Bx2

˙

` kL

ˆ

w ´ pe0aq2 B2w

Bx2

˙

´ kp
B2

Bx2

ˆ

w ´ pe0aq2 B2w

Bx2

˙

“ EA

2L

«

Lr
0

ˆ

Bw

Bx

˙2

dx

ff

B2

Bx2

„

w ´ pe0aq2 B2w

Bx2



(20)

The following non-dimensional quantities aims to study problem under general form are considered:

x “ x

L
, w “ w

L
, t “ t

L2

d

EI

ρA
, γ “ e0a

L
, KL “ kLL4

EI
, Kp “

kpL2

EI
(21)

In the non-dimensional form considering the Equations (20) and (21) can be expressed as:

B4w

Bx4 ` B2w

Bt
2 ´ γ2 B4w

Bt
2Bx2

` KLw ´ KLγ2 B2w

Bx2 ´ Kp
B2w

Bx2 ` Kpγ2 B4w

Bx4

“ 1
2

«

Lr
0

ˆ

Bw

Bx

˙2

dx

ff

„

B2w

Bx2 ´ γ2 B4w

Bx4



(22)

The non-dimensional form of boundary conditions can be expressed as;

Simple ´ Simple Case Clamped ´ Clamped Case

wp0q “ 0, wp1q “ 0 wp0q “ 0, wp1q “ 0,
w2 p0q “ 0, w2 p1q “ 0 w1p0q “ 0, w1p1q “ 0

(23)

The multiple scale method will be able to employ to the partial differential equations and boundary
conditions to obtain the approximate solution for the problem [46,47]. Then, the introduction of the
forcing and damping term in Equation (22) can also be seen as the nonlinear exact solution:

B4w

Bx4 ` B2w

Bt
2 ´ γ2 B4w

Bt
2Bx2

` KLw ´ KLγ2 B2w

Bx2 ´ Kp
B2w

Bx2 ` Kpγ2 B4w

Bx4

“ 1
2

«

Lr
0

ˆ

Bw

Bx

˙2

dx

ff

„

B2w

Bx2 ´ γ2 B4w

Bx4



` FcosΩt ´ 2µ
Bw

Bt

(24)

In order to include stretching and damping effects at order ε, deflection w is transformed w “
?

ε y

to obtain a weak nonlinear system. The following transformation is performed for the damping and
forcing terms based on the multiple scale method:

F “ ε
?

ε F (25)

µ “ ε µ (26)

Substituting Equations (25) and (26) into Equation (24) and performing some necessary
simplifications, the simplified equations takes the following form:

B4y

Bx4 ` B2y

Bt
2 ´ γ2 B4y

Bt
2Bx2

` KLy ´ KLγ2 B2y

Bx2 ´ Kp
B2y

Bx2 ` Kpγ2 B4y

Bx4

“ 1
2

ε

«

Lr
0

ˆ

By

Bx

˙2

dx

ff

„

B2y

Bx2 ´ γ2 B4y

Bx4



` εF cosΩt ´ 2εµ
By

Bt

(27)
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The non-dimensional form of boundary conditions can be expressed as:

Simple ´ Simple Case Clamped ´ Clamped Case

yp0q “ 0, yp1q “ 0 yp0q “ 0, yp1q “ 0,
y2 p0q “ 0, y2 p1q “ 0 y1p0q “ 0, y1p1q “ 0

(28)

A straight forward asymptotic expansion can be introduced, which is why there is no quadratic non-linearity:

y
`

x, t; ε
˘

“ ε0y0px, T0; T1q ` εy1px, T0; T1q (29)

where ε is a small parameter to denote the deflections. Hence, a weakly non-linear system can be
investigated by this procedure. New independent variables are introduced and the fast and slow time
scales are written as:

T0 “ ε0t “ t, T1 “ ε1t “ εt (30)

Denoting D0 “ B{BT0, D1 “ B{BT1, the ordinary time derivatives can be transformed into partial
derivatives as:

B
Bt

“ D0 ` εD1 ` ¨ ¨ ¨ ,
B2

Bt
2 “ D0

2 ` 2εD0D1 ` ¨ ¨ ¨ (31)

Inserting Equations (29) and (31) into Equation (27), we can get the following relation for the
equation of motion and boundary conditions at different orders:

Order (ε0)

´

1 ` Kpγ2
¯

yiv
0 ´ γ2D0

2y2

0 ´ KLγ2y2

0 ´ Kpy2

0 ` D0
2y0 ` KLy0 “ 0 (32)

Orderpεq:

`

1 ` Kpγ2
˘

yiv
1 ` D0

2y1 ` KLy1 ´ γ2D0
2y2

1 ´ KLγ2y2

1 ´ Kpy2

1

“ ´2 D0D1y0 ` 2γ2 D0D1y2

0 ` 1
2

˜

1r
0

y1
0

2
dx

¸

y2

0 ´ 1
2

γ2

˜

1r
0

y1
0

2
dx

¸

yiv
0 ` F cosΩt ´ 2µD0y0

(33)

Fundamental frequencies are obtained by solving the first order of expansions, whereas the
solvability condition is obtained by solving the second order of expansion. The first order of
perturbation is linear, as given in Equation (12); the solution may be represented by:

y0 px, T0, T1q “
”

A pT1q eiωT0 ` cc
ı

Y pxq (34)

where cc represents the complex conjugate of the preceding terms. Substituting Equation (34) into
Equation (32), one obtains:

´

1 ` Kpγ2
¯

Yivpxq `
´

ω2γ2 ´ KLγ2 ´ Kp

¯

Y2 pxq `
´

KL ´ ω2
¯

Ypxq “ 0 (35)

The following shape function for any beam segment can be considered for the solution of
the equations:

Ypxq “ c1eiβ1x ` c2eiβ2x ` c3eiβ3x ` c4eiβ4x (36)

The boundary conditions are applied and the frequency equations can be obtained. Using the
functions in Equation (36) will give the dispersion relation shown below:

´

1 ` Kpγ2
¯

βn
4 ´

´

ω2γ2 ´ KLγ2 ´ Kp

¯

βn
2 `

´

KL ´ ω2
¯

pn “ 1, 2, 3, 4q (37)

y1 px, T0, T1q “ ϕ px, T1q eiωT0 ` cc ` W px, T0, T1q (38)
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and substituting Equation (38) into Equation (33), we eliminate the terms producing secularities. Here
W px, T0, T1q stands for the solution related with non-secular terms. One obtains:

`

1 ` Kpγ2
˘

ϕiv `
`

γ2ω2 ´ KLγ2 ´ Kp

˘

ϕ2 `
`

KL ´ ω2
˘

ϕ

“ ´2iωA1Ypxq ` 2iωγ2 A1Y2 pxq

`3
2

A2 A

˜

1r
0

Y12pxqdx

¸

Y2 pxq ´ 3
2

γ2 A2 A

˜

1r
0

Y12pxqdx

¸

Yivpxq

`1
2

FeiσT1 ´ 4iµωAYpxq

(39)

where cc represents the complex conjugate of preceding terms and NST represents the non-secular
terms. Excitation frequency is assumed to close to one of the natural frequencies of the system; that is:

Ω “ ω ` εσ (40)

where σ is a detuning parameter of order 1, the solvability condition for Equations (39) and (40) is
obtained as follows:

2iω pD1 A ` 2µAq ` 2iωγ2D1 Ab ` 3
2

A2 A
´

b2 ` γ2bc
¯

´ 1
2

eiσT1 f “ 0 (41)

where
1r

0
Y2pxqdx “ 1,

1r
0

Y12pxqdx “ b,
1r

0
Y2 2pxqdx “ c,

1r
0

FYpxqdx “ f .

Taking into account the real amplitude a and phase θ, the complex amplitude A in Equation (41)
can be written as the following form:

A “ 1
2

a pT 1qeiθpT1q (42)

Then amplitude and phase modulation equations are:

ωaD1ψ “ ωaσ ` ωγ2abσ ´ ωγ2abD1ψ ´ 3
16

a3
`

b2 ` γ2bc
˘

` 1
2

f cosψ,

ωD1a
`

1 ` γ2
˘

` 2µωa “ 1
2

f sinψ

(43)

where θ “ σ T1 ´ ψ. In the steady-state case, Equation (43) will be solved in the following section and
variation of nonlinear amplitude will be discussed.

3. Numerical Results

Numerical examples for the simple-simple and clamped-clamped end condition beam frequencies
are presented in this section. The linear fundamental frequencies for both types of boundary conditions
will be evaluated, and the nonlinear frequencies for free, undamped vibrations will also be evaluated.
In the case of the µ = f = σ = 0, one obtains:

D1a “ 0 and a “ a0 pconstantq (44)

from Equation (44). The steady-state real amplitude is represented by a0. The frequency of non-linear is:

ωn1 “ ω ` a2
0λ (45)

where λ “ 3
16

`

b2 ` γ2bc
˘

ω
`

1 ` γ2b
˘ is the nonlinear correction terms.
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At the steady state, a1 “ 0, ψ1 “ 0 become zero. The detuning parameter of frequency is
as follows:

σ “ 3
16

a2
`

b2 ` γ2bc
˘

ω
`

1 ` γ2b
˘ ¯

g

f

f

e

f 2

4ω2a2
`

1 ` γ2b
˘2 ´ µ2 (46)

The linear frequencies and nonlinear correction terms with different small scale effect (nonlocal
parameter) γ, the Winkler parameter (KL) and the Pasternak parameter (Kp) are given in Tables 1
and 2 for the first five frequencies for simple-simple (S-S) and clamped-clamped (C-C) supported case,
respectively. The similar conclusions are derived from these tables for the effect of non-local parameter
and the stiffness coefficients of the Winkler and Pasternak foundation on the natural frequencies. It can
be seen in Tables 1 and 2 that non-dimensional natural non-local frequency of the nanobeam is smaller
than the classical (local) natural frequency. Note that the non-local parameter γ = 0 corresponds to the
classical nanobeams without the non-local effect. This is attributed to the effect of small scale effect.
It is evident that an increase in the nonlocal parameter leads to the decrease in the natural frequency
although correction term increases with nonlocal parameter. This situation can be interpreted that
the non-local effect reduces the stiffness of the material and, hence, the comparative lower natural
frequencies. The effect of the coefficients of the two parameter foundation on the frequency value of
nanobeam is also seen in Tables 1 and 2 that show the linear frequency with the Winkler parameter and
the Pasternak parameter (Kp). In these tables, the dimensionless parameter of Winkler KL = 10, 100,
200 and of Pasternak Kp = 0, 5, 25, 50 are taken. It can be deduced from Tables 1 and 2 that the linear
frequencies increase when the Winkler and the Pasternak parameters increase with regardless of the
type of boundary condition. Furthermore, for the considered values of the foundation parameters, the
effect of both foundation parameters on the linear frequency is more prominent for C-C end condition.

Table 1. The first five frequencies and correction term due to nonlinear terms for different γ, KL, and
Kp values for simple-simple support conditions.

KL KP γ ω1 ω2 ω3 ω4 ω5 λ

10

0

0 10.3638 39.6049 88.8827 157.945 246.76 1.76231
0.1 9.93271 33.5769 64.7187 98.38 132.544 1.83879
0.2 8.93522 24.7849 41.7484 58.4659 74.9066 2.04407
0.3 7.84771 18.7699 29.7864 40.611 51.3169 2.32733
0.4 6.91145 14.9337 22.9928 30.9739 38.9105 2.6426
0.5 6.17194 12.3849 18.7082 25.021 31.3244 2.95923

5

0 12.5203 42.0231 91.347 160.425 249.248 1.45877
0.1 12.1658 36.3978 68.0635 102.314 137.119 1.50127
0.2 11.366 28.49 46.7661 64.8678 82.7327 1.60692
0.3 10.5325 23.4457 36.4878 49.3844 62.1862 1.73408
0.4 9.85475 20.5039 31.1898 41.8205 52.4188 1.85334
0.5 9.35098 18.7291 28.1803 37.6247 47.0629 1.95319

25

0 18.8189 50.552 100.602 169.984 258.958 0.97052
0.1 18.5849 45.9823 80.0573 116.732 154.067 0.98274
0.2 18.0715 40.0156 62.9571 85.826 108.533 1.01066
0.3 17.5592 36.596 55.7485 74.8137 93.8186 1.04015
0.4 17.1612 34.7847 52.4341 70.0516 87.65 1.06427
0.5 16.877 33.769 50.7016 67.6306 84.556 1.08219

50

0 24.513 59.5186 111.092 181.225 270.606 0.74508
0.1 24.3339 55.6896 92.8969 132.568 172.931 0.75057
0.2 23.9441 50.8745 78.64 106.367 133.97 0.76279
0.3 23.5599 48.231 72.9969 97.6982 122.354 0.77522
0.4 23.2647 46.8715 70.4982 94.1014 117.69 0.78506
0.5 23.0559 46.1227 69.2193 92.3132 115.405 0.79217
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Table 1. Cont.

KL KP γ ω1 ω2 ω3 ω4 ω5 λ

100

0

0 14.0502 40.7252 89.3876 158.23 246.943 1.29992
0.1 13.7353 34.8914 65.4103 98.8364 132.883 1.32973
0.2 13.0322 26.5385 42.8127 59.2306 75.505 1.40147
0.3 12.312 21.0311 31.2607 41.7044 52.1864 1.48345
0.4 11.7375 17.6923 24.8731 32.3942 40.0503 1.55606
0.5 11.3178 15.6008 20.9761 26.7591 38.7995 1.61376

5

0 15.7085 43.0806 91.8383 160.706 249.428 1.1627
0.1 15.4275 37.6139 68.7215 102.753 137.447 1.18387
0.2 14.8049 30.028 47.7186 65.5579 83.2749 1.23366
0.3 14.1751 25.2923 37.701 50.2874 62.9056 1.28847
0.4 13.679 22.5922 32.6007 42.883 53.2703 1.3352
0.5 13.3207 20.9947 29.7343 38.8023 48.0095 1.37111

25

0 21.0748 51.4345 101.048 170.249 259.132 0.86664
0.1 20.8662 46.9507 80.6175 117.117 154.358 0.8753
0.2 20.4102 41.1248 63.6678 86.3487 108.947 0.89486
0.3 19.9581 37.8057 56.5499 75.4128 94.297 0.91513
0.4 19.6089 36.0552 53.2854 70.6911 88.162 0.93142
0.5 19.3606 35.0763 51.5815 68.2927 85.0865 0.94337

50

0 26.2848 60.2699 111.496 181.473 270.772 0.69486
0.1 26.1178 56.4919 93.3801 132.907 173.191 0.6993
0.2 25.755 51.7514 79.2102 106.789 134.306 0.70915
0.3 25.3982 49.1551 73.6108 98.1577 122.721 0.71911
0.4 25.1247 47.8219 71.1336 94.5784 118.072 0.72694
0.5 24.9314 47.0883 69.8664 92.7994 115.794 0.73258

200

0

0 17.2456 41.935 89.9452 158.546 247.145 1.05906
0.1 16.99 36.2961 66.1703 99.341 133.259 1.075
0.2 16.4267 28.36 43.9651 60.0688 76.1643 1.11186
0.3 15.8615 23.2875 32.8212 42.8865 53.1359 1.15148
0.4 15.4197 20.3228 26.808 33.9026 41.2799 1.18447
0.5 15.1027 18.5307 23.2378 28.5666 34.223 1.20933

5

0 18.6214 44.226 92.3811 161.016 249.628 0.98082
0.1 18.385 38.9205 69.4453 103.239 137.81 0.99343
0.2 17.8658 31.6494 48.7551 66.3162 83.8731 1.0223
0.3 17.3475 27.1974 39.0046 51.2721 63.6955 1.05284
0.4 16.9445 24.7064 34.0999 44.0335 54.2008 1.07788
0.5 16.6566 23.2546 31.3708 40.0702 49.0399 1.09651

25

0 23.327 52.3976 101.542 170.542 259.324 0.78296
0.1 23.1387 48.0039 81.2353 117.544 154.682 0.78934
0.2 22.7284 42.3232 64.4484 86.9259 109.405 0.80359
0.3 22.3232 39.1059 57.4273 76.073 94.8257 0.81817
0.4 22.0115 37.4163 54.2156 71.3949 88.7273 0.82976
0.5 21.7907 36.4739 52.5419 69.021 85.6722 0.83817

50

0 28.1228 61.0939 111.944 181.748 270.957 0.64944
0.1 27.9667 57.3701 93.914 133.283 173.479 0.65307
0.2 27.6282 52.7087 79.8389 107.256 134.677 0.66107
0.3 27.2959 50.162 74.287 98.6658 123.128 0.66912
0.4 27.0416 48.8563 71.8331 95.1056 118.495 0.67541
0.5 26.8621 48.1384 70.5784 93.3367 116.225 0.67992
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Table 2. The first five frequencies and correction term due to nonlinear terms for different γ, KL, and
Kp values for clamped-clamped support conditions.

KL KP γ ω1 ω2 ω3 ω4 ω5 λ

10

0

0 22.5957 61.7538 120.945 199.884 298.572 1.87211
0.1 21.3446 51.0811 85.7747 121.389 156.772 2.05167
0.2 18.5608 36.5609 54.6156 71.6824 88.5434 2.42999
0.3 15.6759 27.1862 38.9625 49.7775 60.8526 2.90516
0.4 13.2865 21.375 30.1288 37.9597 46.2584 3.87926
0.5 11.4372 17.5601 24.537 30.6482 37.2987 6.69827

5

0 23.9143 63.5888 122.972 202.019 300.775 1.65438
0.1 23.0822 53.8346 89.2907 125.642 161.759 1.82242
0.2 21.2855 41.035 60.6274 79.1969 97.5636 2.17425
0.3 19.5297 33.3506 47.3877 60.3333 73.6037 2.51772
0.4 18.1866 29.0183 40.6783 51.1438 62.2405 2.80017
0.5 17.2362 26.4531 36.892 46.048 56.0107 3.02728

25

0 28.5299 70.4196 130.757 210.337 309.426 1.18673
0.1 28.9764 63.6572 102.155 141.384 180.334 1.34457
0.2 29.7794 55.4292 80.2951 103.958 127.411 1.66884
0.3 30.3974 51.0386 71.8034 91.0459 110.794 1.96823
0.4 30.7834 48.8132 68.137 85.5259 103.971 2.18714
0.5 31.0191 47.5964 66.3087 82.7336 100.604 2.33713

50

0 33.3266 78.0638 139.862 220.285 319.907 0.92027
0.1 34.9378 74.1135 116.255 158.885 201.157 1.0774
0.2 37.7969 69.3394 99.5596 128.361 156.931 1.37241
0.3 40.0275 66.8639 93.7733 118.747 144.388 1.62261
0.4 41.4571 65.6397 91.529 114.841 139.572 1.79539
0.5 42.3505 64.9805 90.5076 112.918 137.3 1.90954

100

0

0 24.5064 62.4783 121.316 200.109 298.723 1.50573
0.1 23.3579 51.9546 86.2978 121.759 157.059 1.63646
0.2 20.8447 37.7717 55.4334 72.3074 89.0502 1.91101
0.3 18.323 28.7939 40.1008 50.6734 61.5876 2.3019
0.4 16.3258 23.3857 31.5871 39.1272 47.2212 3.26741
0.5 14.8597 19.9588 26.3071 32.0829 38.4863 6.27336

5

0 25.7273 64.2926 123.337 202.242 300.924 1.37867
0.1 24.9557 54.6641 89.7933 126 162.037 1.50948
0.2 23.304 42.1173 61.3651 79.763 98.0238 1.7793
0.3 21.712 34.6737 48.328 61.0746 74.2126 2.04099
0.4 20.5123 30.5297 41.7699 52.0162 62.9594 2.26079
0.5 19.6745 28.1028 38.0923 47.0151 56.8084 2.44452

25

0 30.0659 71.0558 131.101 210.551 309.571 1.06129
0.1 30.4898 64.3603 102.595 141.702 180.583 1.1989
0.2 31.254 56.2352 80.8536 104.39 127.764 1.48043
0.3 31.8434 51.9128 72.4274 91.5388 111.2 1.73861
0.4 32.2121 49.7265 68.7942 86.0504 104.403 1.92589
0.5 32.4374 48.5326 66.9839 83.2758 101.05 2.05326

50

0 34.6506 78.6381 140.183 220.489 320.047 0.85284
0.1 36.2029 74.7182 116.641 159.168 201.381 0.99659
0.2 38.9693 69.9854 100.011 128.711 157.218 1.26757
0.3 41.1364 67.5336 94.252 119.126 144.699 1.49748
0.4 42.5288 66.3217 92.0193 115.232 139.894 1.65584
0.5 43.4 65.6694 91.0034 113.315 137.627 1.76014
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Table 2. The first five frequencies and correction term due to nonlinear terms for different γ, KL, and
Kp values for clamped-clamped support conditions.

KL KP γ ω1 ω2 ω3 ω4 ω5 λ

200

0

0 26.4682 63.2735 121.728 200.359 298.89 1.76017
0.1 25.4085 52.9083 86.8752 122.169 157.377 1.97028
0.2 23.1193 39.073 56.3282 72.9956 89.6099 2.41183
0.3 20.8742 30.481 41.3289 51.6507 62.3942 2.83125
0.4 19.145 25.4341 33.1323 40.3849 48.2685 3.14686
0.5 17.9112 22.3239 28.1437 33.6052 39.7643 3.36847

5

0 27.6024 65.0657 123.742 202.489 301.09 1.59829
0.1 26.8847 55.5713 90.3484 126.396 162.345 1.79521
0.2 25.3589 43.2882 62.1746 80.3875 98.5325 2.20304
0.3 23.9042 36.0869 49.3517 61.8879 74.8833 2.58175
0.4 22.82 32.1257 42.9502 52.9687 63.7486 2.86038
0.5 22.07 29.829 39.383 48.0668 57.6819 3.05255

25

0 31.6853 71.756 131.482 210.788 309.732 1.19923
0.1 32.0879 65.1325 103.081 142.054 180.86 1.37629
0.2 32.8149 57.1174 81.4697 104.868 128.155 1.71325
0.3 33.3767 52.8672 73.1145 92.0834 111.649 2.0006
0.4 33.7286 50.7221 69.5172 86.6295 104.881 2.20012
0.5 33.9439 49.5521 67.7262 83.874 101.544 2.33272

50

0 36.0647 79.2714 140.539 220.716 320.203 0.94342
0.1 37.5586 75.3844 117.069 159.482 201.629 1.11319
0.2 40.2319 70.6962 100.509 129.099 157.536 1.40332
0.3 42.3344 68.2699 94.781 119.545 145.044 1.63477
0.4 43.6886 67.0713 92.5611 115.665 140.251 1.79052
0.5 44.5372 66.4264 91.5512 113.756 137.99 1.89222

Studies related to the nonlocal beams resting on the Pasternak type elastic foundation in the
existing literature are rather limited for the analysis of fundamental and nonlinear frequency. However,
the study of Yokoyama [48] includes the first few values of the classical EB beam resting on a
Pasternak-type foundation. Also, the study of Mustapha and Zhong [9] includes the non-uniform
SWCNT depended on a non-local Rayleigh beam resting on Pasternak-type foundation. A comparison
study is performed to check the reliability of the present method. For this purposes, linear frequency
of a local EB beam embedded Pasternak foundation for the S-S case are compared with those of the
work of Mustapha and Zhong [9] and the work of Yokoyama [48]. It can be seen from the Table 3 that
they only studied the first second values of the non-dimensional natural frequencies of a local EB beam
embedded on a Pasternak foundation, which takes the value of 25 and 36. However, in this paper
extensive natural frequency analyses were performed for the first five frequencies. It is obvious from
Table 3 that there is good harmony between the three results.

Table 3. Non-dimensional natural frequencies of a local EB beam embedded on a Pasternak foundation
(γ = 0) for the simple-simple support conditions.

Mode

Non-Dimensional Natural Frequencies

KL = 25 and Kp = 25 KL = 36 and Kp = 36

Present Ref. [9] Ref. [48] Present Ref. [9] Ref. [48]

1 19.2133 19.2178 19.21 22.1069 22.1112 ——
2 50.7002 50.7804 50.71 54.916 55.1873 ——
3 100.677 —— —— 105.47 —— ——
4 170.028 —— —— 175.093 —— ——
5 258.987 —— —— 264.196 —— ——

The effect of the non-local parameter on the natural frequency is examined and scrutinized in
Figure 2 that plots the variation of the natural frequency (ω) with the non-local parameter (γ) for
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the S-S and CC nanobeam, respectively. It can be deduced from Figure 2 that the natural frequency
decreases when the non-local parameter increases. Regardless of the type of boundary condition, it is
observed that the non-local parameter has an influence on the natural frequency.

(a) (b) 
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Figure 2. Variation of the natural frequency with the dimensionless nonlocal parameter for KL = 10,
Kp = 5. (a) S-S nanobeam and (b) C-C nanobeam (___ ω1, _ _ ω2, _._ ω3, - - ω4, _ . . ω5).

Variation of the nonlinear frequency with amplitude is shown for the first five modes of vibration
in Figure 3, the frequencies are calculated taking into account the non-local parameter (γ = 0.3). It can
be seen from Figure 3 that the nonlinear frequencies increase with an increase in the mode number.
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Figure 3. Nonlinear frequency versus amplitude curves of nanobeam for different modes for the
KL = 100, Kp = 5 and γ = 0.3. (a) simple-simple; (b) clamped-clamped (___ ω1, _ _ ω2, _._ ω3,

ω4, +++ ω5).

In Figures 4–6 the nonlinear frequency versus amplitude curves of nanobeam are shown for the
first mode and S-S and C-C boundary condition. One can observe a hardening behavior. The frequency
response bending to the left side is called the softening nonlinearity, but to the right side is called
the hardening nonlinearity. So, the behaviors in Figures 4–6 are of hardening type, i.e., the nonlinear
frequency increases as the vibration amplitude increases. Figure 4 shows the effect of the Winkler
parameter KL on the nonlinear frequency versus amplitude curves with γ = 0.3 and Kp = 5. It can be
seen in Figure 4 that the nonlinear frequency of nanobeam increases with the increment of the KL

values. The Winkler parameter KL has a significant effect on the nonlinear frequency value. In Figures 5
and 6 γ = 0.3 is fixed and Kp is increased. The nonlinear frequencies increase in both figures. From
Figures 5 and 6 it is noted that the Pasternak parameter Kp has a pronounced effect on the nonlinear
frequency amplitude curves of nanobeam. It can be readily observed that the value of nonlinear



Math. Comput. Appl. 2016, 21, 3 14 of 19

natural frequency have a direct relation with the Winkler and Pasternak parameter value. The C-C
nanobeam has the highest natural frequency and nonlinear frequencies since the end condition is the
strongest for the C-C nanobeam.
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Figure 4. Nonlinear frequency versus amplitude curves of nanobeam for the first mode and γ = 0.3.
(a) simple-simple; (b) clamped-clamped (Kp = 5: ___ KL = 10, _ _ KL = 100, _._ KL = 200).
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Figure 5. Nonlinear frequency versus amplitude curves of nanobeam for the first mode KL = 10 and
γ = 0.3. (a) simple-simple; (b) clamped-clamped (___ Kp = 0, _ _ Kp = 5, _._ Kp = 25, Kp = 50).

Frequency response curves are presented in Figures 7–10. The detuning parameter σ shows the
nearness of the external excitation frequency to the natural frequency of system. Several figures are
drawn using Equation (46) assuming f = 1 and damping coefficient µ = 0.1. Increasing the forcing
term increase amplitudes when σ < 0 and decreases the amplitudes when σ > 0 at different values.
The maximum amplitudes happen when σ > 0. In Figure 7, the influence of the mode number on
the hardening nonlinear properties is shown both types of boundary condition. Five different mode
numbers are considered and compared. It can be seen that for the first mode or fundamental mode, the
resonant amplitude is larger and the corresponding width is broader. Figure 8 presents the frequency
response curves of S-S and C-C case for the first mode in order to discuss the influence of the Winkler
parameter KL. It can be observed that, for S-S and C-C end condition, the amplitude decreases with
the Winkler parameter increasing. Figures 9 and 10 present the frequency response curves of S-S and
C-C case for the first mode in order to discuss the influence of the Pasternak parameter Kp. It can be
seen that for the fundamental mode, the amplitude decreases with the Pasternak parameter increasing.
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Both observations denote that the Winkler and Pasternak parameter has significant influences on the
primary resonance of the nanobeam.
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Figure 6. Nonlinear frequency versus amplitude curves of nanobeam for the first mode KL = 200 and
γ = 0.3. (a) simple-simple; (b) clamped-clamped (___ Kp = 0, _ _ Kp = 5, _._ Kp = 25, Kp = 50).

increase amplitudes when σ < 0 and decreases the amplitudes when σ > 0 at different values. The 
maximum amplitudes happen when σ > 0. In Figure 7, the influence of the mode number on the 
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(a) simple-simple; (b) clamped-clamped (Kp = 5: ___ KL = 10, _ _ KL = 100, _._ KL = 200).
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Figure 9. Effects of the Pasternak parameter on frequency-response curves for the first mode and γ = 0.3.
(a) simple-simple; (b) clamped-clamped (KL = 10: ___ Kp = 0, _ _ Kp = 5, _._ Kp = 25, Kp = 50).
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Figure 10. Effects of the Pasternak parameter on frequency-response curves for the first mode, KL = 200
and γ = 0.3. (a) simple-simple; (b) clamped-clamped (___ Kp = 0, _ _ Kp = 5, _._ Kp = 25, Kp = 50.).

4. Conclusions

In the present study, the free and force vibration of a nanobeam resting on an elastic foundation of
the Pasternak type is investigated based on the non-local Euler Bernoulli beam theory. The non-linear
equations of motion, including stretching of the neutral axis, are derived. The governing equations and
boundary conditions are derived by using Hamilton’s principle. The multiple scale method is used
to solve the governing differential equation of the nanobeam. The effect of different parameters,
such as Winkler modulus, Pasternak shear modulus, and the non-local factor on frequencies is
investigated for the nanobeam with simple-simple and clamped-clamped boundary conditions. The
extensive numerical data is given in tabular form for various values of the parameters so that these
results can be used as a reference for future studies. Results revealed that increasing the non-local
parameters lead to decreasing the linear and nonlinear frequencies and to increasing the correction
terms. Furthermore, increasing the Winkler and Pasternak parameters increase the values of both
linear and nonlinear frequencies. Observed non-linearity is of the hardening type because of the
stretching of the neutral axis.
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27. Şimşek, M. Nonlocal effects in the forced vibration of an elastically connected double-carbon nanotube

system under a moving nanoparticle. Comput. Mater. Sci. 2011, 50, 2112–2123. [CrossRef]

28. Ansari, R.; Ramezannezhad, H. Nonlocal Timoshenko beam model for the large-amplitude vibrations of

embedded multiwalled carbon nanotubes including thermal effects. Physica E 2011, 43, 1171–1178. [CrossRef]

29. Ansari, R.; Ramezannezhad, H.; Gholami, R. Nonlocal beam theory for nonlinear vibrations of embedded

multiwalled carbon nanotubes in thermal environment. Nonlinear Dyn. 2012, 67, 2241–2254. [CrossRef]

30. Kiani, K. A meshless approach for free transverse vibration of embedded single walled nanotubes with

arbitrary boundary conditions accounting for nonlocal effect. Int. J. Mech. Sci. 2010, 52, 1343–1356. [CrossRef]

31. Murmu, T.; Pradhan, S.C. Thermo-mechanical vibration of a single-walled carbon nanotube embedded in an

elastic medium based on nonlocal elasticity theory. Comput. Mater. Sci. 2009, 46, 854–859. [CrossRef]

32. Chang, T.P. Thermal–mechanical vibration and instability of a fluid-conveying single-walled carbon nanotube

embedded in an elastic medium based on nonlocal elasticity theory. Appl. Math. Model. 2012, 36, 1964–1973.

[CrossRef]

33. Rahmati, A.H.; Mohammadimehr, M. Vibration analysis of non-uniform and non-homogeneous boron

nitride nanorods embedded in elastic medium under combined loadings using DQM. Physica B 2014, 440,

88–98. [CrossRef]

34. Pradhan, S.C.; Reddy, G.K. Buckling analysis of single walled carbon nanotube on Winkler foundation using

on nonlocal elasticity theory and DTM. Comput. Mater. Sci. 2011, 50, 1052–1056. [CrossRef]

35. Narender, S.; Gopalakrishnan, S. Critical buckling temperature of single walled carbon nanotubes embedded

in a one-parameter elastic medium based on nonlocal continuum mechanics. Physica E 2011, 43, 1185–1191.

[CrossRef]

36. Murmu, T.; Pradhan, S.C. Thermal effects on the stability of embedded carbon nanotubes. Comput. Mater. Sci.

2010, 47, 721–726. [CrossRef]

37. Arani, A.G.; Amir, S.; Shajari, A.R.; Mozdianfard, M.R.; Maraghi, Z.K.; Mohammadimehr, M. Electro-thermal

nonlocal vibration analysis of embedded DWBNNTs. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2011, 224,

745–756. [CrossRef]

38. Mikhasev, G. On localized modes of free vibrations of single walled carbon nanotubes embedded in

nonhomogeneous elastic medium. ZAMM 2014, 94, 130–141. [CrossRef]

39. Fu, Y.M.; Hong, J.W.; Wang, X.Q. Analysis of nonlinear vibration for embedded carbon nanotubes.

J. Sound Vib. 2006, 296, 746–756. [CrossRef]

40. Komijani, M.; Esfahani, S.E.; Reddy, J.N.; Liu, Y.P.; Eslami, M.R. Nonlinear thermal stability and vibration of

pre/post-buckled temperature and microstructure dependent functionally graded beams resting on elastic

foundation. Compos. Struct. 2014, 112, 292–307. [CrossRef]

41. Ozturk, B.; Coskun, S.B.; Koc, M.Z.; Atay, M.T. Homotopy perturbation method for free vibration analysis of

beams on elastic foundation. IOP Conf. Ser. Mater. Sci. Eng. 2010, 10, 012158. [CrossRef]

42. Öz, H.R.; Pakdemirli, M.; Özkaya, E.; Yılmaz, M. Nonlinear vibrations of a slightly curved beam resting on a

nonlinear elastic foundation. J. Sound Vib. 1998, 212, 295–309. [CrossRef]

http://dx.doi.org/10.1016/j.physe.2011.06.017
http://dx.doi.org/10.1016/j.physe.2008.10.002
http://dx.doi.org/10.1016/j.ijmecsci.2012.11.011
http://dx.doi.org/10.1016/j.mechrescom.2012.02.001
http://dx.doi.org/10.1016/j.compositesb.2012.10.043
http://dx.doi.org/10.1016/j.commatsci.2009.09.002
http://dx.doi.org/10.1016/j.apm.2012.03.032
http://dx.doi.org/10.1016/j.commatsci.2011.02.017
http://dx.doi.org/10.1016/j.physe.2011.01.024
http://dx.doi.org/10.1007/s11071-011-0142-z
http://dx.doi.org/10.1016/j.ijmecsci.2010.06.010
http://dx.doi.org/10.1016/j.commatsci.2009.04.019
http://dx.doi.org/10.1016/j.apm.2011.08.020
http://dx.doi.org/10.1016/j.physb.2014.01.036
http://dx.doi.org/10.1016/j.commatsci.2010.11.001
http://dx.doi.org/10.1016/j.physe.2011.01.026
http://dx.doi.org/10.1016/j.commatsci.2009.10.015
http://dx.doi.org/10.1177/0954406211422619
http://dx.doi.org/10.1002/zamm.201200140
http://dx.doi.org/10.1016/j.jsv.2006.02.024
http://dx.doi.org/10.1016/j.compstruct.2014.01.041
http://dx.doi.org/10.1088/1757-899X/10/1/012158
http://dx.doi.org/10.1006/jsvi.1997.1428


Math. Comput. Appl. 2016, 21, 3 19 of 19

43. Yan, Y.; Wang, W.; Zhang, L. Applied multiscale method to analysis of nonlinear vibration for double walled

carbon nanotubes. Appl. Math. Model. 2011, 35, 2279–2289. [CrossRef]
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