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Nonlinear Vibration of  Beams and Rectangular Plates 
By JoE G. EISL~Y, Department of Aeronautical and Astronautical Engineering, 

University of Michigan, Ann Arbor, Michigan, USA 

1. Introduct ion 

The influence of initial membrane stress on the free and forced nonlinear vibration 
of beams and rectangular plates is investigated by means of a simple extension of the 
results for the unstressed case. A single mode representation is used; both simply 
supported and clamped beam and plate boundary conditions are considered" and the 
discussion includes the post buckling region. 
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Notation 

plate width, length, and thickness, respectively 
a/b, p!ate aspect ratio 
time 
displacements in x, y ,  z directions, respectively 
coordinates in plane of plate 
plate flexural rigidity 
beam flexural rigidity 
stress function 
mass density 
POlSSON'S ratio 

Subscripts: 
s simply supported beam 
c clamped beam 
ss simply supported plate 
cc  clamped plate 

Other symbols are defined in the text. 

2. Free Vibrat ion of B e a m s  

When a beam with ends restrained to remain a fixed distance apart vibrates 
laterally there is stretching of the median line. This effect is usually accounted for in 
the strain-displacement relation by taking 

1 (w,~)2 (1) e v =  v , u +  ~ 
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If the other usual assumptions of simple beam vibration theory are retained the 

following equation results for a beam of unit width 

I / l ~ h w, tt + (E i w,vv),vv E h 1 b vo+T (w,,)~dy w,~y=p(y,~), (2) 
0 

where v o represents an initial axial displacement measured from the unstressed state. 
This equation has been investigated by WOINOWSKY-KRIEGER [1] 1) and BuR- 

GREEN [21 for a simply supported beam under the assumption of a single mode 

~ y  
w ( y , t ) = b ~ ( t ) s i n  b (3) 

Application of GALERKIN'S method leads to the following equation of motion for free 
vibration 

~,~ + p ~ + q~3 = 0 ,  (4) 
where 

P = P' = 12- ~2 (1 - 2,) , q = qs - 4 ' 7; = \ ~ ] b ' o~ = -.~. 

The parameter  2~ is a measure of the initial axial displacement and is defined 

~ -  ~~ , (5) 
VOcr 

where v%~ is the axial displacement which produces the buckling load. Thus ~ > 1 

refers to the post buckling region. I t  should be noted that  Equation (2) and hence 
Equation (4) retains validity for ~, > 1. The exact solution to Equation (4), which 
may  be obtained in terms of elliptic functions, is fully presented in Reference [2] and 
will not be repeated here. 

A beam with both ends clamped may  be investigated in a similar manner. How- 
ever, one does not have so obvious a choice for an assumed mode since the linear 
vibration mode changes with axial load and in general is different from the buckling 
mode. As the axial load is increased in compression the mode shape for linear vibration 
more closely resembles the buckling mode and at buckling (for which the linear 
vibration frequency goes to zero) the two modes are identical. Thus 

w(y,  t ) = b  ~(t) (1 - -cos  ~ )  (6) 

is a simple and logical choice. This leads to a slightly high value for the linear vibration 
frequency for axial compressive loads less than the buckling load. 

The resulting equation of motion is of the same form as Equation (4) where now 

4 ~4 4 ~4 
p = p ~ - -  q c~ 2 ( 1 - ~ ) ,  q = q ~ - -  3 (7) 

The parameter  ~, is defined in the same way as 2, with v0, T now referred to a clamped 
beam. I t  is interesting to note that  if it is assumed that  

~ = ~, (8) 

1) N u m b e r s  in  b r a c k e t s  refer  to References,  page  174. 
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the equation for the clamped beam may be rewritten 

.... + 1 6  (p, ~ + q, ~) = 0 .  (9) 

From this it may be concluded that, subject to the restrictions imposed by Equations 
(6) and (8), the ratio of the square of the nonlinear frequency of the clamped beam 
to that of the simply supported beam is always 16/3. Thus, if the frequency of one is 
known the other may be determined immediately. It  should be noted that Equation 
(8) implies that the load on the clamped beam is four times the load on the simply 
supported beam, all other factors being equal. 

3. Free  V i b r a t i o n  of  P l a t e s  

The effect of large deflection on the free vibration of rectangular plates has been 
investigated by CHU and HERRMANN [3] for simply supported plates and by YAMAKI 
[4] for simply supported and clamped plates. The dynamic yon K~rm~n equations, 
which are used, may be written 

(io) 
D g 4 w - h ( F ,  vvw, xx+ F,~xw, v v - - 2 F , ~ v w , ~ v ) + ~ h w ,  t t P (x , y , t ) ,  ] 

where 
a,.= F, vv, a v =  F . . . .  ~:,y=-- F,~e 

are the membrane stresses. The single mode assumed for the simply supported plate is 

w(x, y, t) = b ~(t) sin ~ x sin ~ y (11) 
a b 

and for the clamped plate is 

w(x,y,t) b~(t) ( t -  2~x (1--cos . 

In Reference [3] the inplane boundary conditions are provided by edges restrained 
to remain a fixed distance apart. In Reference [41 these conditions as well as certain 
force free conditions are imposed. In each case an equation of the form of Equation 
(4) results when a single term Galerkin procedure is applied. These results may be 
extended to include the effects of initial edge displacement. The coefficients of 
Equation (4) for the simply supported plate are then 

~4 (1  )2. q = q s , =  , ~ - + ~ +  16r4 j P = P'" = -i~ ~2 (1 - ~t,s) r~  + 1 xa ( 3 - -  v 2 v 3 - v ~  (13) 

and for the clamped plate are 

( 2 p = p . -  4'~2(1-~.) 3 + ~ + ~  
27 

q = q ~ ,  =X4 t +  r2 + 7 

2 (1_v2)  (17 17 1 1 1 )] 
+ 9- 32- + ~ + (1+# )2  + 4(1 +4r2)  ~ + 4 (4+r2)  2 " 
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In addition the nondimensional time for a plate is 

1]2 t (15) Z ' =  [ ~ ( 1 E  v2) ~- .  

The parameters 2s, and ,tcc are measures of the initial edge displacement. Consider, 
for example, edge displacements which, for values equal to and below the buckling 
values, produce uniform stresses on all four edges. Thus 

E u o E v o - (16) ( T x = ~  a ( i - - v )  b " 

The parameter ,t is now defined 

2 - -  u~ -- v~ , (17) 
U O cr 7) 0 cr 

where for a simply supported plate 

Vo _ ~ ~ 1)  (Uo_)~, = (~_)~, 12 (1 + v) ( r  1~ + (18) 

and for a clamped plate 

v o 7~ 2 c~ 2 r 2 2 3 
( ~ 2 ) c r  = ( b ) c r -  9 (1 + v) ( ~ - @ ~ f f - ) ( 3  @ rz- + ri- ) .  (19) 

This latter value is obtained from an approximate solution based on a single term 
assumed mode of the form of Equation (12) and is known to give good accuracy. 
See TIMOSHENKO and GERE [51. 

If the uniform edge stress is considered to originate from the uniform heating of a 
plate with restrained edges then 2 may be identified as simply 

A T  
,~ ATe, r , (20) 

where A T~ is the buckling temperature. 

4 .  F o r c e d  V i b r a t i o n  - H a r m o n i c  

Consider the forced vibration which occurs when a uniform load is applied periodi- 
cally. Let P(y ,  t) in Equation (2) and P ( x , y ,  t) in Equation (10) be of the form B f ( t )  
where B is a constant and f(t) is periodic. The equation of motion becomes 

~, , ,  + p ~ + q ~a =/3/(~), (21) 
where/3 is, respectively 

4 B  2 B  flss 1 6 ( 1 - -  v 2) B 4 ( 1 - -  v ~) B 
/ 3 " = - ~ E ~ '  /3c-- 3 E ~ '  - ~ E ~  ' / 3 " -  9 E .  

This equation may be recognized as the familiar Du~rIZ~G's equation which is exten- 
sively discussed in books on nonlinear oscillation, as, for example, in STOKER ~61. 
I t  is discussed in reference to the vibration of simply supported beams by METZLE~ 
[7} and in reference to plate vibration by YAMA~I [4] and LIN [8! for harmonic forcing 

/(z) = A cose) 3. (22) 
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In each case a first order approximate steady state solution is obtained by assuming 

~('r) = A cosco ~ (23) 

which leads to the following frequency-amplitude relation (using, for example, the 
Ritz-Galerkin method) 

3 A2 (24) o ~ 2 = ( # _ t ~ ) + ~ _ q  �9 

This result is valid for the cases considered here subject to certain limitations and 
interpretations imposed by the range of values and sign of the parameter 15. 

It  is recognized that as ,~ --> 1, p + 0, and when 2 > 1, p < 0. Certain approxima- 
tions often used in solving ])UFFING'S equation and in determining the stability of 
these solutions require that 

3 q A2 ~ 1 ~ ~ 1 (25) 
4 p ' " 

Clearly this may not be the case for the range of interest here and these approximations 
must be avoided. 

The effects of varying the parameter 2 can best be illustrated by an example. The 
response of a simply supported beam with e = 0-005 has been computed from 
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Figure  l a  

H a r m o n i c  forcing, )~ = 0. 
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Figure lb 
Harmonic  forcing, ~t = I. 
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Harmonic  forcing, ~, = 2. 
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Equat ion  (24) for free and forced s teady state oscillation. Values of ;t = 0, 1, 2 have 
been considered and typical  results are plotted in Figures la,  lb,  and lc. The ordinate 
is the absolute value of the amplitude A, and the abscissa is the ratio of the period of 
the linear vibration for 2 = 0 to the actual period. 

To investigate the stabili ty of these s teady state solutions let 

~(T) = A cos~o ~ + ~ (~ ) ,  (26) 

where 7 is a small variation. If  Equat ion  (26) is substi tuted into Equat ion (21) and 
only linear terms in y are retained, it follows tha t  

y ,  ~ ,  + (p + 3 q A 2 cos~'a 3) y - 0 .  (27) 

This is a form of HILL'S equation known as the Mathieu equation which m a y  be put  
in a s tandard  form 

7,~z + ((9 + s cosz) 7 - 0 ,  (28) 
where 

( 9 - -  p +  3 q A 2 / 2  3 q A 2  
4 o~ , 8 - -  8 a~ , z = 2 o) "c . 

The exact solution of Equat ion (28) for the stability boundaries in terms of (9 and s is 
discussed in Reference [6]. A portion of these boundaries are presented in Figure 2. 
The shaded regions are stable. 
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Figure 2 
Stability boundaries for Mathieu equation. 

The results for 2 = 0 are presented in Figure la. This case is identical to the 
problem of a mass on a hard  spring and is the one considered for beams and plates 
in References [4], [7], and [8]. The upper branch of the response curve is for the most  
par t  stable. To the left of the point a there are narrow regions of instability which m a y  
be identified in Figure 2 where a portion of this curve is replotted in terms of (9 and s. 
The upper port ion of the lower branch is unstable. I t  lies in the region C of Figure 2. 
Tile lower portion of this branch is stable and lies in the region B of Figure 2. The 
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boundary between regions B and C is reproduced in Figure la. As /~ is increased 
similar results will be obtained with the free vibration curve moving to the left and 
becoming straighter. 

When ~ = 1, p = 0, and the curves in Figure lb  may  be obtained. The free vibra- 
tion curve is now a straight line. The regions of stability and instability are determined 
by the requirement d = s obtained from inspection of the coefficients of Equation (28). 
This condition is plotted in Figure 2 and the results are transferred to Figure lb  
where the stability boundaries are seen to be radial lines. There are additional regions 
of stability and instability to the left of the point b corresponding to larger values of 

and e. 
A further increase in ~ leads to still different results. There is now a minimum 

amplitude for which free vibration can occur which results from the form of the 
assumed solution in Equation (23). This solution requires symmetrical vibration 
about the flat position. For the buckled case (2 > 1) another type of motion is 
possible in which vibration takes place about the static buckled position on one side 
of the flat position. This latter type of motion is not considered here. Therefore, in the 
above it is assumed that  the proper conditions exist for exciting the motion. 

The curves for 2 = 2 are given in Figure lc. To the left of the point c the upper 
branch is for the most part  unstable. A portion of this curve is replotted in Figure 2. 
The lower branch is unstable except for one narrow region of stability shown. 

5. F o r c e d  V i b r a t i o n  - E l l i p t i c  

An exact solution of Equation (21) is possible if f(7) is properly chosen. One 
possibility of interest is to choose an elliptic forcing function 

/ (7) = A c ~ ( ~  7, k) (29) 

for which Equation (21) has as its solution 

~(7) = A c ~ ( ~  7, k) (3O) 

subject to the conditions 

~o 2 p - fi + q A 2 k 2 -  q A2 
' 2 o~2 �9 (3a) 

The period o:[ the oscillation is given by  

=[2 
T - -  4k 4 f d9 

co co j [ 1 - k  2sin 291 lz2 " (32) 
o 

This approach is of interest because it reduces to the exact solution for free 
vibration when fi = 0. I t  has been considered by LIN [81 for a simply supported plate 
with X = 0. The method is explained in greater detail by Hsu [9]. 

The response to elliptic forcing has been computed for the same example beam 
and the curves are plotted in Figures 3a, 3b, and 3c. The stability of these solutions 
may  be determined from the following equation 

?', = + (p + 3 q A 2 c n 3 [o) r, k~) ~' ----- 0 .  (33) 
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This  is a form of HILL'S equat ion for which the general  proper t ies  are discussed in 
Reference  [61. P re sumab ly  s imilar  problems of s t ab i l i ty  would arise as in the  case of 
ha rmonic  forcing. 
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Figure 3a 
Elliptic forcing, ~t = 0. 
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Figure 3b 
Elliptic forcing, ~t = 1. 
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Figure 3c 
Elliptic forcing, ~ = 2. 
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Zusammen/assung 

Der  Einf luss  yon  V o r s p a n n u n g e n  auf  die freien u n d  e r zwungenen  n i ch t l i nea ren  
Schwingungen  yon  B a t k e n  u n d  rech teck igen  P l a t t e n  wi rd  mi t t e l s  e iner  e in fachen  E r -  
we i t e rung  der  L 6 s u n g e n  ffir Fglle ohne  V o r s p a n n u n g  un~ersucht .  Es  wird  eine einzige 
K o o r d i n a t e n f n n k t i o n  b e n t i t z t ;  es werden  e in fach  aufgetegte  u n d  e i n g e s p a n n t e  F~lle be- 
t r a c h t e t ;  u n d  die Diskuss ion  wird  auch  auf  den  i ibe rkr i t i schen  Bere ich  ausgedehn t .  
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Steady State Thermal Stresses in an Elastic Solid Bounded 
by Two Cones 1) 

B y  SUBHENDU K. DATTA, D e p a r t m e n t  of Ma thema t i c s ,  Rensse l ae r  Po ly t echn i c  I n s t i t u t e ,  
Troy,  N.Y.,  U S A  

I n trod u c t ion  

In hydrodynamics similarity transformations have been used by many authors 
to reduce the number of independent variables in boundary layer equations. But their 
use in elasticity has not been explored very much. Mathematically speaking the 
similarity means a transformation of variables in a system of partial differential 
equations. BIRKHO~F E2~ 2) was the first to give a general method of obtaining similarity 
solutions of problems of hydrodynamics. Later MORGA~ [41 gave a rigorous theory 
using a one parameter group of transformations to reduce by one the number of 
independent variables in a system of partial differential equations. He also applied 
this to obtain the stress distributions within an elastic solid bounded by one or two 
cones [5]. For reference concerning the boundary layer equations, the reader may 
consult the bibliography given by ABBOTT and KLINE [11 at the end of their report, in 
which they give methods of finding similarity variables based upon the mathematicM 
technique of solving partial differential equations by separation of variables. They 
discuss the solution of a problem of non-steady-state heat conduction in a semi- 
infinite rectangular corner in addition to getting the solutions for various fluid 
dynamic problems. Recently MANOHAR [31 gave a simple method of finding the 
similarity variables for a system of partial differential equations and applied this to 
some boundary layer problems. In this work we shall extend his method to include 
some thermo-elastic problems. Recently SINGH [11] used Mellin transforms to solve 
a thermo-elastic problem for an elastic solid bounded by one or two cones. MuKI and 
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