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Abstract Nonlinear dynamics of a rotating flexible

slender beam with embedded active elements is studied

in the paper. Mathematical model of the structure con-

siders possible moderate oscillations thus the motion

is governed by the extended Euler–Bernoulli model

that incorporates a nonlinear curvature and coupled

transversal–longitudinal deformations. The Hamilton’s

principle of least action is applied to derive a sys-

tem of nonlinear coupled partial differential equations

(PDEs) of motion. The embedded active elements are

used to control or reduce beam oscillations for various

dynamical conditions and rotational speed range. The

control inputs generated by active elements are rep-

resented in boundary conditions as non-homogenous

terms. Classical linear proportional (P) control and

nonlinear cubic (C) control as well as mixed (P − C)

control strategies with time delay are analyzed for
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vibration reduction. Dynamics of the complete sys-

tem with time delay is determined analytically solving

directly the PDEs by the multiple timescale method.

Natural and forced vibrations around the first and the

second mode resonances demonstrating hardening and

softening phenomena are studied. An impact of time

delay linear and nonlinear control methods on vibration

reduction for different angular speeds is presented.
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1 Introduction

Slender beam-like elements play an important role

in engineering and structural design. Typical applica-

tions might be cranes, aircraft wings, diving boards at

swimming pools, overhang structural elements of civil

engineering like masts or roof supports. When rotary

motion of the structure is considered further examples

might be wind turbines blades, helicopter blades, air-

craft propellers, etc.

Advances over the years in composite materials

technology as well as increasing demands particularly

from aeronautics and off-shore engineering have stim-

ulated the extensive use of light and flexible elements.

Predominantly, they are subjected to large elastic defor-

mations that affect the precision and stability of the

structure motion. Moreover, large deformations com-
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bined with low structural damping may lead to fatigue

damage and shorten the lifespan of the design. There-

fore, the attenuation of large vibrations observed in

highly flexible beam-like elements is a problem of pri-

mary importance.

Driven by practical needs as well as theoretical

challenges, efficient and accurate modeling of flexi-

ble beams dynamics and their control have received

great attention in the literature. Depending on complex-

ity, current compact beam theories can be divided into

three main groups: (a) un-shearable theory including

the classical Euler–Bernoulli one, (b) shear deformable

models— e.g., Timoshenko theory, the third-order

shear theory etc., and (c) three-dimensional beam the-

ories capturing different phenomena neglected by the

former two approaches. Typically, each of commonly

accepted theories can be formulated within linear or

nonlinear framework. Linear models are very useful

in a case of relatively stiff systems, performing small

oscillations. For thin slender flexible elements that

undergo large deformations, use of nonlinear theories

is much more favorable [32].

The dynamics of a rotating beam system within non-

linear framework was examined by several researchers.

Weidenhammer [44] studied rotating beams by adopt-

ing a (not-complete) nonlinear theory of Bernoulli–

Euler beams; the governing equations of motion were

derived applying Hamilton’s principle. The influential

work presenting a comprehensive nonlinear beam anal-

ysis was published by Crespo da Silva and Glynn in

[8,9]. The nonlinear-order three differential governing

equations were derived by Hamilton’s method account-

ing for contributions resulting from nonlinear curva-

ture as well as nonlinear inertia. It was shown that both

these effects may had a significant influence on the non-

planar moderately large oscillations of the system. This

initial research was later enhanced to consider com-

plex deformations involving flexure along two prin-

cipal directions as well as torsion [7]. Later, author

extended his analytical model to a rotating beams case

with the main application to helicopter rotor blades

[10].

Hamdan and El-Sinawi in [16] studied the inexten-

sible nonlinear Euler–Bernoulli beam model account-

ing for relatively large planar deformations and exact

expression for the beam curvature. Influence of a setting

angle and other selected structural parameters on rotor

response characteristics for a prescribed hub torque

scenarios was discussed. It was shown that for a soft

base and a low preset angle unstable vibrations of the

rotor might have occur.

Fenili et al. [13] presented a nonlinear mathemat-

ical model of a flexible beam-like structure in slew-

ing motion. Authors used the method of multiple

timescales to find analytical solutions in selected pri-

mary and secondary resonance states. Recently, the

importance of nonlinear effects coming from the large

displacement oscillations observed in rotating inexten-

sible beams leading to rich dynamic behavior has been

presented by Thomas et al. in [38]. The performed

analysis demonstrated both softening or hardening fre-

quency response characteristics dependent on the reso-

nance order. Interestingly, the observed softening effect

originating from geometric nonlinearities prevailed the

centrifugal stiffening phenomenon. Also Tian et al. [39]

presented a general formulation for nonlinear vibra-

tion analysis of rotating beams. The numerical solu-

tions demonstrated that Coriolis effect could essentially

change dynamics of the hub–beam system in the case

of small hub radius, large beam slenderness, and high

angular velocity.

When considering structures made of composite

materials the kinematic relations become much more

complicated since geometrically originated couplings

are accompanied by strong directional properties of

the constituent material. Studies accounting for cou-

pling between flexural and longitudinal vibrations were

published recently by Lenci and Rega [27] and next

by Babilio and Lenci [3,4]. Besides the mentioned

bending–axial couplings, authors took into account the

shear effect and imperfect boundary conditions. The

importance of the adopted definition of geometric cur-

vature was discussed by Lenci and his group in [24,26].

The proposed strict nonlinear shearable beam model

was solved analytically by attacking directly the non-

linear partial differential equations and the results were

verified by the Abaqus/CAE finite element analysis

[18,19]. The results showed softening versus harden-

ing dichotomy in the resonance curves and also strong

interactions between flexural and longitudinal (axial)

vibrations leading to internal resonances occurring for

specific combinations of beam to axial end spring

stiffness ratios. Analytical and numerical predictions

were accompanied by experimental studies on a slen-

der beam–spring system subject to kinematic excitation

in [20].

Widely reported large amplitudes observed in oscil-

lations of highly flexible beam-like elements motivated
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practicing engineers and scholars to extensively study

the methods of oscillations suppression and to improve

structural positioning accuracy. The fundamental idea

was the application of any control methods, that is

passive or active ones. Possibly the most promising

results can be obtained by closed-loop control strategy

achieved by the feedback of the system state recorded

by sensors to drive actuation forces/moments generated

by, e.g., piezoelectric devices [14].

With reference to large oscillations of the cantilever

beams the problem of structural control by means of

piezo sensor-actuator layers was studied by Rechdaoui

et al. in [36]. To mitigate vibrations the proportional

and time derivative potential feedback control was for-

mulated. It was shown by tuning the control parameters

and gains the nonlinear dynamic behavior of the struc-

ture could be actively suppressed. The problem of large

amplitude oscillations of beams and their control was

studied also by Nguyen et al. in [33] with reference

to marine risers represented by long tensioned Euler–

Bernoulli beam undergoing bending in two orthogonal

planes. Based on the set of equations, the boundary con-

troller applied at the top end of the riser was designed

using Lyapunov’s direct method. The proposed algo-

rithm was used to effectively stabilize the riser at its

equilibrium position. Similar problem was studied by

Do in [12]. The structure was modeled analytically

as extensible and shearable slender beam undergoing

large 3D translational and cross-section rotary motions.

The control design and stability analysis were based on

two Lyapunov-type theorems developed for a class of

evolution systems in Hilbert space.

The control of complex flexural-torsional vibrations

of a rotating composite beam was studied also by co-

authors of this paper in [43]. It was proposed to use the

saturation control method to reduce vibrations of flex-

ible beam clamped to the hub that was excited by the

prescribed harmonic torque. Conducted tests showed

narrowing down the zones of effective suppression of

beam vibrations while increasing the rotating speed

of the structure. Other control methods exploited by

piezo actuator devices for beam oscillations suppress-

ing include LQR technique [5], LQG [30], P control

[28], PID control [35]. Further reading on beam vibra-

tions and various control laws can be found in a com-

prehensive book by He and Liu [17].

A significant effort and research works are also

focused on accounting for the effect of time delays as

present in all actual dynamical systems with system

control. Daqaq et al. [11] examined the effect of feed-

back delays on the nonlinear vibrations of a piezoelec-

tric actuated cantilever beam and analyzed the effect

of feedback delays on a blade when subjected to har-

monic base excitations. Alhazza et al. [1] investigated

the effect of time delays on the stability, amplitude

and frequency–response characteristics of a beam. The

authors found that even the small time delays could

completely altered the behavior and stability of the

parametrically excited beam and might lead to unex-

pected structural phenomena. Liu et al [29] studied

the piezoelectric based optimal delayed feedback con-

trol method when applied to large amplitude nonlin-

ear vibrations of a beam. The time-delayed feedback

control to reduce the nonlinear resonant vibration of a

piezoelectric elastic beam was studied also by Peng et

al. in [34]. Authors tested three different single-input

linear time-delayed feedback control methodologies,

namely displacement, velocity and acceleration time-

delayed feedback. It was shown the time-delayed feed-

back control could act as a vibration absorber at specific

values of time delay magnitude.

It is interesting to note the vast majority of papers

proposing the use of piezoelectric transducers for feed-

back structural control adopt the simplified mechan-

ical model of the piezoelectric active elements and

their mutual interaction with hosting structure. Most

of them capture just the phenomenological behavior of

the combined system involving functional material and

the host member. These models consider solely the con-

verse piezoelectric effect where the commanded actu-

ation strain is transferred as a shear force to the master

structure along the actuator–subsystem interface. This

force–since located off beam mid-line–generates the

control moment.

The discussed above new results obtained for non-

linear stationary beams, followed by the observed inter-

actions between transversal and longitudinal vibrations

and the dichotomy of softening and hardening response

behavior as well as the potential of feedback control

methods motivated authors of the present contribution

to a more detailed study of the problem under discus-

sion. In particular, the nonlinear phenomena observed

for the rotating inextensible beams [38,39] and pro-

vided conclusions suggested to analyze a more general

case of an extensible beam. As reported in the litera-

ture, the effect of longitudinal vibrations can be even

more important if the rotating beam carries a heavy

tip mass. A preliminary study of a rotating extensible
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beam model which takes into account transversal and

also longitudinal vibrations was presented in [41] and

then extended in [42]. In the current work, we con-

sider the configuration of the system corresponding to

an arbitrary preset angle of the beam and added tip

mass. We also modify definition of the beam curva-

ture adopted in the mathematical model, according to

the comments presented by Lenci in [25]. The model

studied in this paper considers an active structure with

embedded piezo-layers and a boundary control method

with time delay. On the basis of the proposed complete

active beam model we determine approximate solu-

tions on the basis of the multiple timescales method

applied directly to the partial differential equations with

time delay and associated dynamic boundary condi-

tions.

Following the given above comments the rest of

this manuscript is organized as follows: In Sect. 2, the

dynamic nonlinear model of a highly flexible beam is

derived using the Hamilton’s principle and then solved

by the multiple timescales method in Sect. 2.2. Next,

identification of model parameters based on laboratory

experiment is presented (Sect. 3). Finally, results of

numerical simulations are presented in Sect. 4. The

paper is concluded by results discussion and final

remarks. “Appendix” contains listing of adopted shape

functions of the first- and second-order perturbation

solution.

2 Mathematical model of the rotor and extensible

beam

2.1 Derivation of governing equations

We consider a rotating hub–beam structure which

is carrying a tip mass mt as shown in Fig. 1. The

highly elastic isotropic and slender beam with span-

wise embedded piezo-layers is attached to the hub at

an arbitrary preset angle θ (Figs. 1b and 2b). In order to

describe motion of the structure, we introduce a fixed

(X0, Y0, Z0) coordinates system originated at the hub

centre C , a set of coordinates (X, Y, Z ≡ Z0) rotat-

ing with the hub and with the same origin, and a set

of local coordinates (x, y, z) fixed to the beam and ori-

ented along the symmetry axes of the undeformed blade

with the origin at clamping point 0. We assume the rota-

tion is performed about Z ≡ Z0 axis and it is described

by a temporary position angle ψ(T ).

The longitudinal and transversal displacements

u(x, T ) andv(x, T )of an elementary segment attributed

to point A, which is next moved to A′ position, are

defined in the rotating coordinate frame as presented in

Fig. 2a. Due to its high slenderness and low stiffness,

the beam can be deformed with large amplitudes. The

kinematics of the beam deformations at any arbitrary

time instant is shown in Fig. 2b where dx denotes the

initial length of an infinitesimal beam element, while

ds is its extended length. Moreover, we assume that the

(b)(a)

Sensor

controller
control signal

gain

C C

Fig. 1 Configuration of beam–hub structure with embedded PZT element with control subsystem (a), orientation of the preset angle θ

(b)
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(a)
(b)

Fig. 2 Top view on beam deformation plane xy (a), kinematics of infinitesimal beam element at arbitrary longitudinal position x (b)

beam is allowed to deform only in (x, y) plane because

of its high stiffness in the orthogonal direction z. For the

specific preset angle θ = 0, this plane would overlap

with the plane of rotation. Moreover, in the presented

analysis, twist of the beam is neglected leaving these

more general cases for future developments.

In its reference configuration, the beam has length L ,

cross section A, second moment of inertia I , and mass

per unit length ρ1; finally the hub radius is denoted Rh

and its mass moment of inertia Jh.

The kinematic relations in the extensible-unshearable

(Euler–Bernoulli) beam element are given as

cos ϕ =
1 + u′

√
(1 + u′)2 + v′2

, tan ϕ =
v′

1 + u′
,

ϕ′ =
v′′ + u′v′′ − v′u′′

(1 + u′)2 + v′2
, (1)

where (...)′ denote derivative with respect to spatial

coordinate ∂...
∂x

, in the following notation ˙(...) describes

a time derivative ∂...
∂T

.

Assuming the material to be uniform (the Young

modulus E is constant), the axial force N along the

deformed beam element is related to the axial stiffness

E A, and the bending moment M to the mechanical

curvature and bending stiffness E I as

N = E Aê, M = E Iκm, (2)

where elongation due to extension of the beam’s mid-

plane ê and mechanical curvature κm are given as

ê =

√
(1 + u′)2 + v′2 − 1, κm = ϕ′. (3)

Assuming the linear elastic behavior of the mate-

rial and given above kinematic relations, the potential

energy of the beam element is

Ṽ =
1

2

∫ L

0

(
E Aê2 + E Iϕ′2

)
dx . (4)

The kinetic energy of the beam-hub system has three

components, which arise from motion of the hub T̃h,

beam T̃b and tip mass T̃t:

T̃ = T̃h +

∫ L

0

T̃bdx + T̃t, (5)

where

T̃h =
1

2
Jhψ̇

2,

T̃b =
1

2
ρ1

{
u̇2 + v̇2 + 2

[
(Rh + x + u)v̇ − vu̇

]
ψ̇ cos θ

+
[
(Rh + x + u)2 + v2 cos2 θ

]
ψ̇2
}
,

T̃t =
1

2
mt

{
u̇2

t + v̇2
t + 2

[
(Rh + L + ut)v̇t − vt u̇t

]
ψ̇ cos θ

+
[
(Rh + L + ut)

2 + v2
t cos2 θ

]
ψ̇2
}
.

(6)
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The equations of motion are derived using the

Hamilton’s principle of the least action

∫ T1

T0

(
δT̃ − δṼ + δ D̃ − δW̃

)
dT = 0, (7)

where D̃ and W̃ are works done by dissipative and

nonconservative forces in the system, respectively

D̃ =
1

2
cu u̇2 +

1

2
cv

[
v̇2 + 2(Rh + x)ψ̇ v̇ cos θ

]
,

W̃ = fv(x, T )v + fu(x, T )u, (8)

Terms cu , cv are two independent linear viscous damp-

ing coefficients in longitudinal (x) and transverse (y)

directions of the beam, respectively. Note that the y-

direction damping (second component of Eq. (8)1) con-

tains terms responsible for beams oscillation about xz

plane and slewing motion of the rotor. External excita-

tion applied to the structure can be represented by any

time-dependent force functions fv(x, T ) and fu(x, T ).

Variations of kinetic and potential energies, dissipa-

tion, and external works are given by

δṼ =
∂ Ṽ

∂u′
δu′ +

∂ Ṽ

∂v′
δv′ +

∂ Ṽ

∂u′′
δu′′ +

∂ Ṽ

∂v′′
δv′′,

δ D̃ =
∂ D̃

∂ u̇
δu̇ +

∂ D̃

∂v̇
δv̇,

δT̃ =
∂ T̃

∂u
δu +

∂ T̃

∂v
δv +

∂ T̃

∂ u̇
δu̇ +

∂ T̃

∂v̇
δv̇,

δW̃ =
∂W̃

∂u
δu +

∂W̃

∂v
δv.

(9)

Substituting Eqs. (1)–(6) and (8)–(9) into Eq. (7),

then integrating by parts, we get a set of partial differ-

ential equations of motion and corresponding boundary

conditions. Due to computational difficulties, we limit

ourselves to the specific case of constant hub speed

ψ̇(T ) = const. Moreover, since the problem will be

solved by the multiple timescales method up to the third

order of approximation, the formulas (1) and (3) are

expanded in Taylor series up to fourth order of geomet-

ric nonlinearities. After some mathematical manipula-

tions, one arrives at the system of two nonlinear partial

differential equations governing the longitudinal and

transverse motion:

ρ1

[
ü − (Rh + x)ψ̇2 − 2ψ̇ cos θv̇ − ψ̇2u

]
+ cu u̇

+ E A
(
−u′′ − v′v′′ + v′2v′′ + 2u′v′v′′

)

+ E I
(
−v′′v′′′ − v′v′′′′ + 2u′′v′′2 + 4v′v′′u′′′

+ 5v′u′′v′′′ +3u′v′′v′′′ + v′2u′′′′ + 3u′v′v′′′′
)

= fu

(10)

ρ1

(
v̈ + 2u̇ψ̇ cos θ − vψ̇2 cos2 θ

)
+ cv [v̇

+ (Rh + x) cos θψ̇
]

+ E A

(
−v′u′′ − u′v′′ + 2u′v′u′′ + u′2v′′ −

3

2
v′2v′′

)

+ E I
(
v′′′′ − 3v′′u′′′ − 4u′′v′′′ − v′u′′′′ + 2u′v′′′′

+ 8v′′2v′′ − 2v′′3 + 7v′u′′u′′′

+ 9u′v′′u′′′ + 12u′u′′v′′′ − 8v′v′′v′′′

+ 3u′v′u′′′′ + 3u′2v′′′′ − 2v′2v′′′′
)

= fv, (11)

as well as the associated boundary conditions

• At x = 0

u = 0, v = 0, v′ = 0 (12)

• At x = L

mt

[
ü − (Rh + L) ψ̇2 − 2v̇ψ̇ cos θ − uψ̇2

]

+ E A

(
u′ +

1

2
v′2 − u′v′2

)

+ E I
(
v′v′′′ − 2v′u′′v′′ − v′2u′′′ − 3u′v′v′′′

)

= Qup + Quc

mt

(
v̈ + 2u̇ψ̇ cos θ

−vψ̇2 cos2 θ
)

+ E A

(
u′v′ − u′2v′ +

1

2
v′3

)

+ E I
(
−v′′′ + 2u′′v′′ + v′u′′′ + 2u′v′′′ − 2v′u′′2

−6u′u′′v′′ + v′v′′2 − 3u′v′u′′′ − 3u′2v′′′ + 2v′2v′′′
)

= 0

E I
(
v′′ − v′u′′ − 2u′v′′ + 3u′v′u′′ + 3u′2v′′ − 2v′2v′′

)

= Qvp + Qvc

(13)

The underlined terms Qup, Quc, Qvp and Qvc present

on the right-hand side of conditions (13)1 and (13)3 are

artificiality introduced control generalized loads result-

ing from the action of piezoelectric actuators. It can be

shown if the active layer is distributed along the whole

span of hosting specimen (e.g., beam or plate), the

action of the piezoelectric actuators is mathematically

represented as non-homogenous boundary conditions

at the free end of the structure. These nonzero terms

represent the induced dynamic moment/shear force and
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are effective and robust computational ways toward

the implementation of a feedback control in mathe-

matical models of active structures. Since the proposal

by Lagnese [21] this boundary control moment/force

methodology has been successfully adopted by many

investigators to study the behavior of the plates, shells,

and beam structures with feedback control [6,15,22,

31].

The subsequent terms Qup, Qvp, and Quc, Qvc rep-

resent proportional (subscript ’p’) and cubic (subscript

’c’) functions of longitudinal and transverse displace-

ments, respectively. Considering the time delay τ in the

system, these are expressed by formulas

Qup(L , T − τ) = ĝupuτ (L , T − τ),

Qvp = ĝvpvτ (L , T − τ),

Quc(L , T − τ) = ĝucu3
τ (L , T − τ),

Qvc = ĝvcv
3
τ (L , T − τ).

(14)

2.2 Solution by perturbation method

The analysis is applied for the pure nth flexural mode

without internal resonance interactions. To solve the

problem, we introduce three timescales

t0 = T, t1 = εT, t2 = ε2T, (15)

where t0, t1, t2 are fast and slow timescales, respec-

tively. Parameter ε is a formal small parameter and

serves as a book keeping device grouping small terms

in a proper perturbation order. Thus using the chain rule

the first- and second-order time derivatives are

v̇(x, T ) =
∂v(x, T )

∂t0
+ ε

∂v(x, T )

∂t1
+ ε2 ∂v(x, T )

∂t2
+ O(ε3),

v̈(x, T ) =
∂2v(x, T )

∂t2
0

+ ε
∂2v(x, T )

∂t0∂t1

+ ε2

[
∂2v(x, T )

∂t0∂t2
+

∂2v(x, T )

∂t2
1

]
+ O(ε3).

Next, we seek the solutions in a series of small param-

eter at the subsequent three orders of perturbation:

v(x, T ) = εv0(x, t0, t1, t2) + ε2v1(x, t0, t1, t2)

+ ε3v2(x, t0, t1, t2) + O(ε4),

vτ (x, T, τ ) = εvτ0(x, τ, t0, t1, t2)

+ ε2vτ1(x, τ, t0, t1, t2)

+ ε3vτ2(x, τ, t0, t1, t2) + O(ε4),

(16)

where v(x, T ) denotes the solution without time delay,

and vτ (x, T, τ ) is its counterpart when time delay τ is

considered. The variables u corresponding to the lon-

gitudinal direction are expanded in the similar way. For

the sake of text brevity, they are deliberately omitted

here.

To decouple linear response of the structure, we

assume the angular speed to be of ε order (relatively

small quantity) and write

ψ̇ = ε�. (17)

By this assignment, the small book-keeping parameter

ε shifts the angular velocity � term from first to the

second and higher orders of the problem. Furthermore,

eliminating � from the first-order solution will result in

a classical cantilever beam equation (linear part of the

solution). Without this assumption, static predeforma-

tions due to constant angular speed could be studied.

The external excitations fu , fv present on RHS in

(10) and (11) as well as damping coefficients and con-

trol loads are shifted to the third and second perturba-

tion order of the problem, respectively. Following this

assumption, they are declared by

fv(x, T ) = ε3ξv(x) cos (ωvT )

= ε3ξv(x) cos (ω0vt0 + σvt2) ,

fu(x, T ) = ε3ξu(x) cos (ωu T )

= ε3ξu(x) cos (ω0u t0 + σu t2) ,

cu = ε2Cu, cv = ε2Cv,

ĝup = ε2gup, ĝvp = ε2gvp,

ĝuc = ε0guc, ĝvc = ε0gvc

(18)

where ξv (ξu) describe the amplitudes of uniformly

distributed external excitations at frequencies ωv (ωu).

The later ones are expressed by corresponding natural

frequencies ω0v (ω0u) at the fast timescale and detun-
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ing parameters σv (σu) attributed to the second slow

timescale t2.

Inserting equations (15)–(18) into expressions (10)–

(13) and collecting ε power-like terms, we obtain the

following sets of equations and corresponding bound-

ary conditions

• O(ε1):

ρ1
∂2u0

∂t2
0

− E Au′′
0 = 0 ρ1

∂2v0

∂t2
0

+ E Iv′′′′
0 = 0 (19)

boundary conditions at x = 0

u0 = 0, v0 = 0, v′
0 = 0, (20)

and x = L

mt
∂2u0

∂t2
0

+ E Au′
0 = 0,

mt
∂2v0

∂t2
0

− E Iv′′′
0 = 0, v′′

0 = 0 (21)

• O(ε2):

ρ1
∂2u1

∂t2
0

− E Au′′
1 = − 2ρ1

∂2u0

∂t0∂t1
+ 2ρ1� cos θ

∂v0

∂t0

+ ρ1 (Rh + x) �2

+ E Av′
0v

′′
0 + E I

(
v′′

0v′′′
0 + v′

0v
′′′′
0

)

ρ1
∂2v1

∂t2
0

+ E Iv′′′′
1 = − 2ρ1

∂2v0

∂t0∂t1
− 2ρ1� cos θ

∂u0

∂t0

+ E A
(
v′

0u′′
0 + u′

0v
′′
0

)

+ E I
(
3v′′

0 u′′′
0 + E I

(
3v′′

0 u′′′
0

+ 4u′′
0v

′′′
0 + v′

0u′′′′
0 + 2u′

0v
′′′′
0

)

(22)

boundary conditions at x = 0

u1 = 0, v1 = 0, v′
1 = 0, (23)

and at x = L

mt

[
∂2u1

∂t2
0

+ 2
∂2u0

∂t0∂t1
− 2 cos θ

∂v0

∂t0
� − (Rh + L)�2

]

+E A

(
u′

1 +
1

2
v′2

0

)
+ E Iv′

0v
′′′
0 = 0,

mt

(
∂2v1

∂t2
0

+ 2
∂2v0

∂t0∂t1
+ 2 cos θ

∂u0

∂t0
�

)

+E Au′
0v

′
0 + E I

(
−v′′′

1 + 2u′′
0v′′

0 + v′
0u′′′

0 + 2u′
0v

′′′
0

)
= 0,

E I
(
v′′

1 − v′
0u′′

0 − 2u′
0v

′′
0

)
= 0 (24)

• O(ε3):

ρ1
∂2u2

∂t2
0

− E Au′′
2 = ξu(x) cos (ω0u t0 + σu t2) − Cu

∂u0

∂t0

+ ρ1

[
−

∂2u0

∂t2
1

− 2
∂2u0

∂t0∂t2
− 2

∂2u1

∂t0∂t1

+2 cos θ�

(
∂v0

∂t1
+

∂v0

∂t1

)
+ �2u0

]

+ E A
(
−v′2

0 u′′
0 − 2u′

0v′
0v′′

0

+v′
1v′′

0 + v′
0v′′

1

)

+ E I
(
−2u′′

0v′′2
0 − 4v′

0v′′
0 u′′′

0

− 5v′
0u′′

0v′′′
0 − 3u′

0v′′
0v′′′

0

+ v′′
1v′′′

0 + v′′
0v′′′

1 − v′2
0 u′′′′

0

−3u′
0v′

0v′′′′
0 + v′

1v′′′′
0 + v′

0v′′′′
1

)

ρ1
∂2v2

∂t2
0

+ E Iv′′′′
2 = ξv cos(ω0v t0 + σv t2)

− Cv

[
∂v0

∂t0
+ (Rh + x) cos θ�

]

+ ρ1

[
−

∂2v0

∂t2
1

− 2
∂2v0

∂t0t2
− 2

∂2v1

∂t0t1

+ cos θ�

(
−2

∂u0

∂t1
−2

∂u1

∂t0

)

+ cos2 θ�2v0

]

+ E A

(
− 2u′

0v′
0u′′

0 + v′
1u′′

0 + v′
0u′′

1

−u′2
0 v′′

0 + u′
1v′′

0 +
3

2
v′2

0 v′′
0 + u′

0v′′
1

)

+ E I
(
−8u′′2

0 v′′
0 + 2v′′3

0 − 7v′
0u′′

0u′′′
0

− 9u′
0v′′

0 u′′′
0 + 3v′′

1 u′′′
0 + 3v′′

0 u′′′
1

− 12u′
0u′′

0v′′′
0 + 4u′′

1v′′′
0 + 8v′

0v′′
0v′′′

0

+ 4u′′
0v′′′

1 − 3u′
0v′

0u′′′′
0 + v′

1u′′′′
0

+ v′
0u′′′′

1 − 3u′2
0 v′′′′

0 + 2u′
1v′′′′

0

+2v′2
0 v′′′′

0 + 2u′
0v′′′′

1

)
(25)

boundary conditions at x = 0

u2 = 0, v2 = 0, v′
2 = 0, (26)
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and at x = L

mt

[
∂2u2

∂t2
0

+
∂2u0

∂t2
1

+ 2
∂2u0

∂t0∂t2
− �2u0 + 2

∂2u1

∂t0∂t1

−2 cos θ�

(
∂v0

∂t1
+

∂v1

∂t0

)]

+ E A
(

u′
2 − u′

0v
′2
0 + v′

0v
′
1

)

+ E I
(
−2v′

0u′′
0v

′′
0 − v′2

0 u′′′
0 − 3u′

0v
′
0v

′′′
0 + v′

1v
′′′
0

+v′
0v

′′′
1

)
= gupuτ (L , T − τ) + gucu3

τ (L , T − τ),

mt

[
∂2v2

∂t2
0

+ 2 cos θ

(
∂u0

∂t1
+

∂u1

∂t0

)
�

+
∂2v0

∂t2
1

+ 2
∂2v0

∂t0∂t1
− cos2 θv0�

2 + 2
∂2v1

∂t0∂t1

]

+ E A
[
−u′2

0 v′
0 + u′

1v
′
0 + 0.5v′3

0 + u0v
′
1

]

+ E I
[
−v′′′

2 − 2v′
0u′′2

0 − 6u′
0u′′

0v
′′
0

+ 2u′′
1v

′′
0 + 2v′

0v
′′2
0 + 2u′′

0v
′′
1 − 3u′

0v
′
0u′′′

0

+ v′
1u′′′

0 + v′
0u′′′

1

− 3u′2
0 v′′′

0 + 2u′
1v0′′′ + 2v′2

0 v′′′
0 + 2u′

0v
′′′
1

]
= 0,

E I
[
v′′

2 − v′
1u′′

0 − v′
0u′′

1 + 3u′2
0 v′′

0 − 2u′
1v

′′
0

− 2v′2
0 v′′

0 + u′
0(3v′

0u′′
0 − 2v′′

1 )
]

= gvpvτ (L , T − τ) + gvcv
3
τ (L , T − τ).

(27)

2.2.1 First-order solution

The solutions to the first-order problem Eqs. (19)–(22)

are given as products of time dependent functions and

linear mode shapes

u0(x, T ) =
[

A(t1, t2) eiω0u t0 + Ā(t1, t2) e−iω0u t0
]
φ̂u(x),

v0(x, T ) =
[

B(t1, t2) eiω0v t0 +B̄(t1, t2) e−iω0v t0
]
φ̂(x),

φ̂u(x) = sin(φu x),

φ̂(x) = r1 sin(φx) + r2 cos(φx)

+ r3 sinh(φx) + r4 cosh(φx), (28)

where A(t1, t2), Ā(t1, t2) and B(t1, t2), B̄(t1, t2) are

complex amplitudes dependent on both slow timescales

and the over bar symbol denotes complex conjugate.

Parameters r1-r4 are trigonometric coefficients which

satisfy the boundary value problem (20)–(21).

When considering the time delay the sought delayed

solutions to the first-order problem uτ0, vτ0 are again

defined as products of time dependent amplitude func-

tions and linear mode shapes. However, the former ones

are shifted by appropriate time delays τu and τv whereas

the deformation modes stay similar to their counter-

parts in regular solution as given by Eq. (28)3,4

uτ0(x, T, τ ) =
[

A(t1, t2) ei(ω0u t0−τu)

+ Ā(t1, t2) e−i(ω0u t0−τu)
]
φ̂u(x),

vτ0(x, T, τ ) =
[

B(t1, t2) ei(ω0v t0−τv)

+B̄(t1, t2) e−i(ω0v t0−τv)
]
φ̂(x).

(29)

This treatment of time delay effect within the mul-

tiple timescales method framework was successfully

adopted by Rusinek et al. in [37].

The natural frequencies ω0u , ω0v in axial and trans-

verse directions are given by

ω0u =

√
E Aφ2

u

ρ1
, ω0v =

√
E Iφ4

ρ1
, (30)

respectively, whileφu andφ have to be found by solving

the transcendental equations

ρ1 cos(φu L) − mtφu sin(φu L) = 0,
ρ1+ cosh(φL)[ρ1 cos(φL) − mtφ sin(φL)]+mt cos(φL) sinh(φL)

ρ1[cos(φL)+ cosh(φL)] + mt[sinh(φL) − sin(φL)]
= 0. (31)

Subsequent roots determine the mode shapes

Eq. (28)3,4 and corresponding natural frequencies

Eq. (30).
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2.2.2 Second-order solution

Considering the second-order problem, we solve Eqs.

(22)–(24). Namely, in the first attempt, we are focused

on secular generating terms (the ones containing

e±iω0u t0 and e±iω0v t0 ) to vanish. Following this, the solv-

ability conditions are

∫ L

0

(
ρ1

∂2u1

∂t2
0

− E Au′′
1

)
u0dx

=

∫ L

0

(
−2ρ1

∂2u0

∂t0∂t1

)
u0dx,

∫ L

0

(
ρ1

∂2v1

∂t2
0

+ E Iv′′′′
1

)
v0dx

=

∫ L

0

(
−2ρ1

∂2v0

∂t0∂t1

)
v0dx .

(32)

After integration by parts and substituting the

boundary conditions Eqs. (23)–(24) and performing

simple algebraic manipulations, we get

∂ A

∂t1
=

∂ Ā

∂t1
=

∂ B

∂t1
=

∂ B̄

∂t1
= 0. (33)

Then analyzing Eqs. (22)–(24), we decompose har-

monics, calculate time derivatives, and then reduce par-

tial differential equations to ordinary differential ones.

Finally, the second-order solutions are given by

u1(x, T ) = r5�
2 + r6 Rh�

2 + r7 B B̄

+ ir8 cos θ�B eiω0v t0

− ir8 cos θ�B̄ e−iω0v t0

+ r9 B2 e2iω0v t0 +r9 B̄2 e−2iω0v t0 ,

v1(x, T ) = ir10� cos θ A eiω0u t0 −ir10� cos θ Ā e−iω0u t0

+ r11 AB eiω0u t0 eiω0v t0

+ r11 Ā B̄ e−iω0u t0 e−iω0v t0

+ r12 AB̄ eiω0u t0 e−iω0v t0

+ r12 ĀB e−iω0u t0 eiω0v t0 .

(34)

where r5–r12 are real valued functions dependent

on A, E, I, ρ1, ω0u, ω0v that represent mode shapes,

while using parameters Rh, � and θ we can manipulate

their magnitudes. To keep the length of the paper con-

cise these functions are reported just graphically only

for a set of fixed parameters as given in “Appendix A”.

Studying the Eq. (22) and associated boundary con-

ditions (23)–(24) one observes the time delays to be

absent at this order of perturbation. Therefore, the

second-order solution of time-delayed problem is iden-

tically zero.

2.2.3 Third-order solution

In the third-order problem Eqs. (25)–(27), we con-

sider only terms proportional to e±iω0v t0 and e±iω0u t0 ,

to which solvability conditions are applied (multiply

functions by linear solutions and next integrate by parts

in 0 to L limits). After cumbersome computations, tak-

ing into account boundary conditions (26)–(27), one

obtains the following set of four modulation equations

in the slow timescale t2:

∂ A

∂t2
= q1ξu eiσu t2 +q2Cu A + iq3gup A e−τu

+ iq4guc A2 Ā e−τu +iq5 AB B̄

+ iq6�
2 A + iq7�

2 A cos2 θ,

∂ Ā

∂t2
= −q1ξu e−iσu t2 +q2Cu Ā

− iq3gup Ā eiτu

− iq4guc AĀ2 eiτu −iq5 ĀB B̄ − iq6�
2 Ā

− iq7�
2 cos2 θ Ā,

∂ B

∂t2
= ip1ξv eiσv t2 +p2Cv B + ip3gvp B e−iτv

+ ip4 AĀB + ip5 B2 B̄

+ ip6gvc B2 B̄ e−iτv +ip7�
2 B + ip8 Rh�

2 B

+ ip9�
2 cos2 θ B,

∂ B̄

∂t2
= −ip1ξv e−iσv t2 +p2Cv B̄ − ip3gvp B̄ eiτv

− ip4 AĀB̄ − ip5 B B̄2

− ip6gvc B B̄2 eiτv −ip7�
2 B̄

− ip8 Rh�
2 B̄ − ip9�

2 cos2 θ B̄,

(35)

where q1–q7 and p1–p9 are real valued coefficients cal-

culated during integration process. We preferentially

convert the above equations expressing complex ampli-
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tudes in their polar form by introducing new variables

A =
1

2
a(t2) eiβa(t2), Ā =

1

2
a(t2) e−iβa(t2),

B =
1

2
b(t2) eiβb(t2), B̄ =

1

2
b(t2) e−iβb(t2),

(36)

and obtain a modified set of four modulation equations

of amplitudes a, b and phase angles βa , βb

∂a

∂t2
= −2q1ξu sin (t2σu − βa) + q2Cua

+ q3gupa sin τu +
1

4
q4guca3 sin τu,

a
∂βa

∂t2
= 2q1ξu cos (t2σu − βa) + q3gupa cos τu

+
1

4
q4guca3 cos τu +

1

4
q5ab2

+ q6�
2a + q7�

2 cos2 θa,

∂b

∂t2
= −2p1ξv sin (t2σv − βb) + p2Cvb

+ p3gvpb sin τv +
1

4
p6gvcb3 sin τv,

b
∂βb

∂t2
= 2p1ξv cos (t2σv − βb) + p3gvpb cos τv

+
1

4
p4a2b +

1

4
p5b3 +

1

4
p6gvcb3 cos τv

+ p7�
2b + p8 Rh�

2b + p9�
2 cos2 θb.

(37)

Coefficients q1–q7 and p1–p9 contain terms of

first- and second-order solutions and can be calculated

numerically for fixed properties of the beam. Mate-

rial data and geometry of the structure used to derive

approximate solution were measured within laboratory

experiment described in Sect. 3. Further parametric

analysis of the system is presented in Sect. 4.

Finally, the approximate solutions of Eq. (16) take

the form

u(x, T ) = εa sin(φu x) cos(ω0u t0 + βa)

+ ε2
[
(r5 + r6 Rh)�

2 +
r7

4
b2

− r8� cos θb sin(βb + ω0vt0)

+
r9

2
b2 cos(2ω0vt0 + 2βb)

]
+ O(ε3),

uτ (x, T, τ ) = εa sin(φu x) cos(ω0u t0 + βa − τu)

+O(ε3),

v(x, T ) = εb [r1 sin (φx)+r2 cos (φx)+r3 sinh (φx)

+ r4 cosh (φx)] cos (ω0vt0 + βb)

+ ε2 [−r10� cos θa sin (ω0u t0 + βa)

+
r11

2
ab cos (ω0u t0 + ω0vt0 + βa + βb)

+
r12

2
ab cos (ω0u t0 − ω0vt0 + βa − βb)

]

+O(ε3),

vτ (x, T, τ ) = εb [r1 sin (φx) + r2 cos (φx)

+ r3 sinh (φx) + r4 cosh (φx)]

× cos(ω0vt0 + βb − τv) + O(ε3),

(38)

where (38)1,3 are solutions to the regular problem, and

(38)2,4 are their counterparts if time delay is accounted

for.

2.3 Stability analysis

Stability analysis of analytical solutions is performed

on the basis of modulation equations (37) which are

rewritten in a shorter form

ȧ = f1 (a, βa, b, βb) ,

β̇a = f2 (a, βa, b, βb) ,

ḃ = f3 (a, βa, b, βb) ,

β̇b = f4 (a, βa, b, βb) ,

(39)

where “dot” means time derivative with respect to

timescale t2. In the steady state the right-hand sides

of Eq. (39) are equal to zero. The solutions of Eq. (39)

are disturbed in the vicinity of the steady state. Sub-

stituting perturbed solutions into Eq. (39), then sub-

tracting from unperturbed ones and expanding the dis-

turbed functions f1, f2, f3, f4 in Taylor series in the

neighborhood of the steady state and considering the

linear terms we obtain a set of linear, homogeneous

differential equations in variations

δ̇a =
∂ f1

∂a
δa +

∂ f1

∂βa

δβa +
∂ f1

∂b
δb +

∂ f1

∂βb

δβb
,

δ̇βa =
∂ f2

∂a
δa +

∂ f2

∂βa

δβa +
∂ f2

∂b
δb +

∂ f2

∂βb

δβb
,

δ̇b =
∂ f3

∂a
δa +

∂ f3

∂βa

δβa +
∂ f3

∂b
δb +

∂ f3

∂βb

δβb
,

δ̇βb
=

∂ f4

∂a
δa +

∂ f4

∂βa

δβa +
∂ f4

∂b
δb +

∂ f4

∂βb

δβb
,

(40)
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Fig. 3 Experiment setup; a laser scanning head with camera, b

computer with scanning unit, c anti-vibrational table, d compos-

ite specimen

where δ means variation of the selected variable and

the derivatives are computed for a steady state. The

stability of the solutions depends on eigenvalues of the

Jacobian matrix

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1

∂a

∂ f1

∂βa

∂ f1

∂b

∂ f1

∂βb

∂ f2

∂a

∂ f2

∂βa

∂ f2

∂b

∂ f2

∂βb

∂ f3

∂a

∂ f3

∂βa

∂ f3

∂b

∂ f3

∂βb

∂ f4

∂a

∂ f4

∂βa

∂ f4

∂b

∂ f4

∂βb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(41)

If any of the eigenvalue has a positive real part, the

system becomes unstable.

3 Laboratory experiment

To identify the coefficients of the analytical model

the laboratory experiment was conducted. The test

stand comprised the laser vibrometer PSV-500 camera

system—see Fig. 3 marks (a,b), and a highly flexible

specimen (d) mounted to a dedicated grip fixed to an

anti-vibrational slip table TIRA TGT MO 48XL (c). A

series of reflective markers were sticked on the beam

surface to be traced by the scanning laser. Moreover,

piezoelectric macro fiber composite (MFC) patches

M8528-P1 by Smart-Material Corp. were bonded on

the tested blade as shown in Fig. 4. These are the ele-

ments operating in d33 mode, so the piezoceramic pol-

ing direction (being in-plane of the transducer) when

oriented along the beam span axis x excites the speci-

men bending (note also Fig. 1). To amplify the signal

from the vibrometer generator, a dedicated MFC high-

voltage amplifier was used.

The beam was made of multilayered ThinPregTM

120EP-513/CF resin reinforced with M40JB-12000-

50B (TORAY) carbon fibers composite. The laminate

stacking sequence was a special 18-layered configu-

ration [0,−602, 0,−60, 603,−602, 02,−60, 02, 602,

−60] ensuring the macroscopically isotropic proper-

ties of the material [40]. One of numerous advantages

of this composite material is its susceptibility to large

deformations within elastic regime. The geometric data

of the beam and resulting material properties are gath-

ered in Table 1, while outcomes of identification tests

are displayed in Fig. 5.

The above data of the tested prototype have been

adopted for the numerical investigations. In the fur-

ther analysis, the governing equations and BCs are

transformed to dimensionless forms. The space coor-

dinates are normalized to the beam length: x̄ = x/L ,

ū = u/L , v̄ = v/L , R̄h = Rh/L and angles remain as

they are θ̄ = θ, ψ̄ = ψ . Dimensionless time is defined

as t̄ = t/ω⋆, where ω⋆ =
√

E I
ρ1 L4 , and thus correspond-

ing dimensionless natural frequencies and dimension-

less angular velocity are now given by ω̄u = ωu/ω⋆,

ω̄v = ωv/ω
⋆, �̄ = �/ω⋆, respectively.

Fig. 4 Section of the MFC

patch (orange colour)

bonded onto the composite

specimen (black). (Color

figure online)
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Table 1 Dimensions of the blade (length, width, thickness) and laminate material properties: density, mass per unit length, longitudinal

Young modulus, transversal Young modulus, shear modulus, Poisson’s ratio

L [mm] b [mm] h [mm] ρ [kg/m3] ρ1 [kg/m] E [GPa] G [GPa] ν [−]

595 35 0.9 1350 0.042525 55.7225 20.4862 0.36

Fig. 5 Experimental free

oscillations of the beam and

matched logarithmic

decrement of damping (a);

and fast Fourier transform

of the beams response (b).

Linear mode shapes

corresponding to the first

two flexural (c) and the first

longitudinal (d) natural

frequencies (FE analysis

made in commercial

Abaqus software)

The adopted transformation rules result in the

dimensionless bending and axial stiffnesses normal-

ized as Ē I = 1, Ē A = E AL2

E I
, dimensionless beam

mass per unit length ρ̄1 = 1 and dimensionless tip

mass m̄t = mt

ρ1 L
. Dimensionless values of the physical

parameters given in Table 1 are

L̄ = 1, Ē I = 1, Ē A = 5.24481 × 106, ρ̄1 = 1,

(42)

and the tip mass is equal to zero for the studied case,

m̄t = 0.

Coefficients q1–q7 and p1–p9 present in Eq. (35)

were calculated for two basic cases:
• The combination of first longitudinal and the first
flexural mode

q1 = −0.00008848 q2 = 0.5 q3 = −0.00027798

q4 = −0.00083394 q5 = 7070.1147 q6 = −0.00013899

q7 = 0.00055597

p1 = −0.11134646 p2 = 0.5 p3 = −0.78299175

p4 =1.4467399×107 p5 = 0.272619 p6=−2.34897526

p7 = 0.16969987 p8 = 0.22338865 p9 = −0.14220694

(43)

• The combination of first longitudinal and the second
flexural mode

q1 = −0.00008848 q2 = 0.5 q3 = −0.00027798

q4 = −0.00083394 q5 = 180241.709 q6 = −0.00013899

q7 = 0.00055597

p1 = −0.00984674 p2 = 0.5 p3 = −0.43393589

p4 = 5.88527845 × 107 p5 = −569.351085 p6 = −1.30180768

p7 = 0.14700054 p8 = 0.19621623 p9 = −0.02269225. (44)

These values are used in numerical analysis given in

the following section.

4 Parametric studies of the system

The derived analytical solutions of the governing

equations expanded up to ε3 approximation order as

obtained in Sect. 2.2 enable comprehensive parametric

study of the system. To this aim, bifurcation diagrams

are constructed to present the effects of various struc-

tural parameters on system response characteristics. In

particular, parameters �, σv , ξ , Rh, θ are kept in Eq.

(37) and thus can be used in these analyses.

The modulation equations obtained from MTS

method involve also control signals Cu , Cv . They can be

modified according to the adopted control law to meet

the required beam behavior. In this paper, we consider

two control strategies, namely a proportional P control

and cubic control C . Proportional strategy considers

the input signal multiplied by a gain coefficient gp and

supplied with some time delay τ to the actuators. In the

case of nonlinear cubic C control, the signal is raised
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to power 3, gained by gc factor and than supplied with

delay τ .

Moreover, by calculating coefficients pi (i =

1, . . . , 9) and qi (i = 1, . . . , 7) as present in (35) for

individual longitudinal and transverse vibration modes

the multiple different dynamic states of the system can

be considered.

We start the analysis from solving the modulation

equations analytically. To this aim, we introduce new

variables γ like

γa(t2) = σa t2 − βa(t2), γb(t2) = σbt2 − βb(t2),

and next substitute them into Eq. (37). In a steady state

a′(t2) = 0, β ′
a(t2) = 0, b′(t2) = 0, γ ′(t2) = 0; there-

fore, the modulation formulas simplify to the set of non-

linear but algebraic equations. Solution to this system

involve response amplitude as a function of selected

bifurcation parameters including the detuning parame-

ters σu and σv . Moreover, these relations can be used to

tune control parameters for effective vibration reduc-

tion.

We note that for a general case all four modulation

Eq. (37) are involved in the solution. However, if we

neglect axial excitation and control in this direction,

one can set a′(t2) = 0 followed by a(t2) = 0 relation

due to damping. Then, the dynamics of the structure is

governed only by the third and the forth equations of

the system. It should be emphasized this simplification

can be done if we confine the transverse excitation fre-

quency only to the vicinity of the corresponding natural

frequency and exclude the possibility of internal reso-

nance. Study of the structural dynamics involving the

internal longitudinal–transversal resonances for simply

supported beams can be found in [23]. This problem for

rotating beams with a tip mass will be discussed in a

separate contribution.

4.1 Natural vibrations

We start the analysis from analytical solutions to deter-

mine backbone curves which represent nonlinear nat-

ural vibrations around the first and second flexural fre-

quencies. Dimensionless values of the linear natural

frequencies corresponding to non-rotating system con-

figuration are:

– The first flexural natural frequency: ω01 = 3.51602

(16.5774 rad/s),

– The second flexural natural frequency: ω02 =

22.034492 (103.889 rad/s),

– The first longitudinal natural frequency: ω0u =

3597.37 (16 961.0 rad/s).

It can be observed for the adopted structural param-

eters the first longitudinal frequency ω0u is located far

away from the flexural ones. Thus, as it has been men-

tioned above, the internal resonance case does not occur

in the given problem formulation.

To obtain the expressions for backbone curves, we

substitute zero values on the excitation, damping, and

control gains in Eq. (37). Then, we get the final expres-

sion

b4 +
(

c1σv + c2�
2
)

b2 + c3σ
2
v + c4σv�

2 + c5�
4 = 0

(45)

where σv = ω0v − ω0. The individual coefficients are

• c1 = −29.345, c2 = 2.129, c3 = 215.282,

c4 = −31.236, c5 = 1.133 and

• c1 = 0.014, c2 = −2.30×10−3, c3 = 4.94×10−5,

c4 =−1.628 × 10−5, c5 = 1.33 × 10−6

for the first and second flexural modes, respectively.

When analyzing the relation (45), one observes the

presence of terms involving the rotor angular velocity

� in power 2 and 4.

The plotted shape of the backbone curve correspond-

ing to fundamental vibration mode and zero angular

velocity (non-rotating structure) is presented in Fig. 6a.

The curve reveals the evident hardening nature. If the

angular speed � is increased, the curve gets shifted

right toward higher frequencies, and its hardening-like

property is maintained (Fig. 6b). The linear natural fre-

quency increases as a parabolic function of rotor angu-

lar speed � which is presented in Fig. 6c.

In contrast to the first mode, the backbone curve

for second flexural mode exhibits a softening (Fig. 7a)

behavior for non-rotating structure. This nature of the

curve is preserved also for rotating system—cases of

� = 2, � = 3, � = 5 presented in Fig. 7b. It is

interesting to note that the inherent softening behavior

is strong enough to prevail the stiffening effect due to

centrifugal loadings.

The proposed analytical model of the structure and

obtained approximate solutions show that both modes

exhibit opposite characteristics. This fact is in an agree-

ment with results published by Thomas [38] consider-
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(c)

(b)(a)

Fig. 6 Backbone curves for selected angular velocities a � = 0 and b � = 0 (black), � = 1 (blue), � = 2 (red), and c effect of

angular velocity on natural vibrations frequency; first flexural vibration mode. (Color figure online)

Fig. 7 Backbone curves for

selected angular velocities a

� = 0 and b � = 0 (black),

� = 2 (blue), � = 3 (red),

and � = 5 (green); second

flexural vibration mode.

(Color figure online)

(a) (b)
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ing relatively small rotations, but in contrast to Arvin et

al. [2] where the introduced so-called equivalent non-

linearity coefficient depends on the rotor angular speed

as well. Based on the analytical results, we may con-

clude the angular velocity does not affect neither hard-

ening nor softening features of the backbone curves but

just shifts them toward higher frequencies. This means

the linear part of the stiffness matrix gets larger if rota-

tion increases. But the nonlinear effect resulting from

large amplitude oscillations maintains the same magni-

tude revealing stiffening/softening features depending

on mode order. The first and the second modes having

opposite nature will be studied for excited vibrations

and structural control.

4.2 Forced vibrations

Forced vibrations of the rotating beam structure are

studied assuming the excitation is imposed in the trans-

verse direction only. Presuming steady-state vibrations

and neglecting excitation in axial direction in Eq. (37),

the last two formulas yield

Cv p2b(t2) +
[
gvp p3 +

1

4
gvc p6b2(t2)

]
b(t2) sin τv

= 2p1ξv sin γb(t2)

σvb(t2) −
(

p7 + p8 Rh + p9 cos2 θ
)

�2b(t2)

−
1

4
p5b3(t2) = 2p1ξv cos γb(t2)

+
[
gvp p3 +

1

4
gvc p6b2(t2)

]
b(t2) cos τv

(46)

Eliminating phase angle γb(t2) and after mathematical

transformations, we get

α1b(t2)
6 + α2b(t2)

4 + α3b(t2)
2 − 2p2

1ξ
2
v = 0 (47)

where

α1 =
1

32

(
p2

5 + g2
vc p2

6 + 2gvc p5 p6 cos τv

)

α2 =
1

4

{
p5

[
�2

(
p7 + p8 Rh + p9 cos2 θ

)
− σv

]

+gvp p3(gvc p6 + p5 cos τv)

+Cv p2 p6gvc sin τv + p6gvc

[
�2

(
p7 + p8 Rh

+p9 cos2 θ
)

− σv

]
cos τv

}

α3 =
1

2

{
C2

v p2
2 + g2

vp p2
3 +

[
σv − �2

(
p7

+p8 Rh + p9 cos2 θ
)]2

}

+gvp p3

{
Cv p2 sin τv −

[
σv − �2

(
p7

+p8 Rh + p9 cos2 θ
)]

cos τv

}

In the above equation, we can distinguish terms

dependent on angular velocity �, hub radius Rh, exter-

nal excitation ξv , and related to linear gvp and nonlinear

gvc control laws and time delay τv . Equating to zero

the control parameters, we get equations of the reso-

nance curves around the first and the second resonance

zones as a function of the angular velocity and the pre-

set angle θ . For the following analysis, we assume that

the preset angle is equal zero (θ = 0). This corre-

spond for the beam oscillating in the rotor plane (see

Fig. 5). Modal damping is approximated on the base

of experimental tests as 2% of first natural frequency

value: Cv = 0.07032 and 1% for the second mode

Cv = 0.22035. Amplitude of excitation ξv is varied as

reported in figure captions.

Resonance curves around the first flexural frequency

are presented in Fig. 8. Despite that large oscillations in

the system just a very faint stiffening effect is observed

for this mode (Fig. 8a), much too small for the jump

phenomenon to occur. This feature is observed for zero

angular velocity and also for rotating structure—cases

� = 2, � = 3 and � = 5 corresponding to blue,

red and green curves, respectively (Fig. 8b). Again the

results are similar to the backbone curves, the so-called

stiffening effect due to rotation leads solely to the right

shift of the curves without a change of the stiffening

effect caused by the nonlinear beam oscillations.

For the second resonance zone, nonlinear softening

is rather strong. In Fig. 9a, computed for � = 0, the

softening behavior is observed for amplitudes below of

8% of the beam length. As it is demonstrated in Fig. 9b

the increased angular speed (cases � = 2, � = 3,

� = 5) does not change the intensity of softening phe-

nomenon but just shifts the resonance zone. Stability

of frequency response curves is studied by computing

eigenvalues of Jacobian matrix (41); dashed line repre-

sents unstable part of the solution and solid line defines

stable solution in the following Figures.

The results presented in this section shall be used

in the next steps when the proportional and cubic con-

trol strategies are engaged in order to reduce vibrations

123



Nonlinear vibrations and time delay control 3271

Fig. 8 Resonance curves

for selected angular

velocities a � = 0 and b

� = 0 (black), � = 2

(blue), � = 3 (red), and

� = 5 (green); first flexural

vibration mode; ξv = 0.1,

Cv = 0.07032. (Color

figure online)

(a) (b)

Fig. 9 Resonance curves

for selected angular

velocities a � = 0 and b

� = 0 (black), � = 2

(blue), � = 3 (red), and

� = 5 (green); second

flexural vibration mode;

ξv = 0.4, cv = 0.220345.

(Color figure online)

(a) (b)

around the discussed resonance zones. The outcomes

obtained in this section are consistent with authors pre-

vious work in [42].

5 Controlled forced vibrations

The derived analytical model of the active blade and

approximate solutions to governing equations enable

analysis of the system under assumed control law. This

involves additional terms present in the boundary con-

ditions Eq. (35) and later modulation equations—see

terms with gup, guc, and gvp, gvc in formulas (37).

They represent loads generated by control unit accord-

ing to the boundary control method approach adopted

in this research. In a real set-up structural control can

be achieved by the controlled voltage supplied to active

elements. The mathematical model of the combined

blade-control unit structure considers also a time delay

τv which may occur due to inherent properties of actual

devices or can be added intensionally to enhance sys-

tem’s performance.

It was decided to study two control strategies,

namely the linear control (P) and cubic control (C). In

the linear control method, the input signal is multiplied

by a gain coefficient gp and supplied to the actuators.

In the case of nonlinear C control the signal is raised

to power 3 and gained by gc factor.

Remembering that dynamics of the beam close to its

first natural frequency is almost linear, we apply P con-

trol with time delay. Based on the Eq. (47), substituting

gvc = 0 we get
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b6 + b4
(

c1pσv + c2p�
2 + c3pgvp cos τv

)

+ b2
[
c4p + c5pg2

vp + c6pσ
2
v + c7p�

4

+ c8pgvpσv cos τv

+ �2
(
c9pσv + c10pgvp cos τv

)

+c11pgvp sin τv

]
+ c12pξ

2
v = 0,

(48)

where

c1p = −29.345, c2p = 2.12886,

c3p = −22.9769, c4p = 0.266137,

c5p = 131.984, c6p = 215.282,

c7p = 1.13302, c8p = 337.128,

c9p = −31.2357, c10p = −24.4573,

c11p = −11.8534, c12p = −10.6763.

Equation (48) depends on controller gain, time delay

τv , angular velocity �, and amplitude and frequency of

excitation, ξv and σv , respectively. Therefore, we can

evaluate the effectiveness of the controller at various

combinations of excitation conditions.

The response of the system for fixed amplitude of

excitation ξv = 0.1 and activated linear controller is

shown in Fig. 10. The figures present an overview of

the response for fixed gain value gvp = 0.2 with respect

to detuning frequency σv and time delay τv varied in

〈−2π , 2π〉 interval. The computed 3D surface shows

periodically repeated peaks where the applied control

does not work properly. However, there are also val-

leys corresponding to small amplitudes and effective

vibrations suppression. Comparing graphs for � = 0

(Fig. 10a) and � = 2 (Fig. 10b), we observe the con-

troller works in a very similar way. The only difference

is the shift of the response surface toward higher fre-

quencies. This is visible by localization of peaks along

σv axis (note that scales for σv are different on both

plots). Studying these plots, one may also conclude

about the influence of the time delay. It is evident the

proper tuning of the τv parameter with respect to time

delay the effective suppression of vibrations may be

achieved.

The selected cross sections of these 3D surfaces are

presented in Fig. 11a and b for the stationary and rotat-

ing configuration, respectively. In Fig. 11a the reso-

nance curve of the system without control is sketched

by the grey line. If the P controller is engaged and the

input signal is supplied with zero time delay then the

curve is just shifted toward lower frequencies without

any amplitude change (black line). However, if the time

delay is introduced, then we may simultaneously shift

the resonance curve and reduce vibrations. As it is seen

in Fig. 11a the amplitude can be decreased even over

three times for τv = 2.0 (orange curve).

In the case of the rotating beam (Fig. 11b), the res-

onance curve without control due to rotation is shifted

toward higher frequencies (magenta line with respect

to grey curve as copied from (a)). Then if the P con-

troller is operational without time delay (τv = 0) the

curve is shifted back toward lower frequencies (black

continuous line). Similar to the stationary configuration

case, the proper selection of time delay τv may signif-

icantly reduce vibration amplitudes—see, e.g., orange

curve corresponding to τv = 2.0. However, the opti-

mal delays are different than for non-rotating system.

It should be also noted the response amplitude can be

not only reduced, but also magnified to large values

if the time delay is tuned improperly. Meanwhile, the

characteristics are shifted toward higher or lower fre-

quencies as it is presented in Fig. 11c for τv = 3 (blue)

and τv = 6.5 (red) in Fig. 11d, respectively.

Direct comparison of P control effectiveness around

the first resonance zone for fixed excitation amplitude

and frequency is presented in Fig. 12. The detuning

of excitation frequency σv is selected close to the first

resonance and time delay is varied within 〈−2π, 2π〉

interval. As reported above, the proper selection of time

delay results in a large reduction of vibration ampli-

tudes both for stationary (Fig. 12a) and rotating beam

(Fig. 12b). Furthermore, one observes the zones of

effective vibrations suppression are significantly wider

for the rotating beam case.

As the second option, we propose to apply the non-

linear cubic C controller. Thus the P control is switched

off by setting gvp = 0. Substituting the condition to

equations (47) we get

b6
(

c1c + c2cg2
vc + c3cgvc cos τv

)

+ b4
{

c4cσv + c5c�
2 − gvc

[(
c6cσv

+ c7c�
2
)

cos τv + c8c sin τv

]}

+ b2
(

c9c + c10cσ
2
v + c11cσv�

2

+ c12cσv�
4
)

+ c13cξ
2
v = 0,

(49)
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Fig. 10 Amplitude of system response for P control against detuning frequency σv and time delay τ for a � = 0 and b � = 2; first

flexural vibration mode; gvp = 0.2, ξv = 0.1, cv = 0.07032

where:

c1c = 0.00232254, c2c = 0.172428,

c3c = 0.0400235, c4c = −0.0681548,

c5c = 0.00494436, c6c = −0.587244,

c7c = 0.0426023, c8c = 0.0206475,

c9c = 0.000618113, c10c = 0.5,

c11c = −0.0725461, c12c = 0.00263147,

c13c = −0.0247961.

Solutions of Eq. (49) enable to determine impact of

C control on the system response. The idea of this con-

troller is to influence mainly the fundamental property

of the structure characteristics that is represented by

the slope of the backbone curve. In fact, setting time

delay τv = 0 and varying gain gvc we may modify the

properties of the system from hardening to softening

(Fig. 13a) behavior. For the gain gvc = 0.12, we may

obtain linear-like response (red curve in Fig. 13a).

Results of the rotating system analysis are presented

in Fig. 13b. The introduced rotation does not affect the

controller performance apart from the fact that the res-

onance curves are shifted and their slopes are modified

around the shifted linear natural frequency value.

The effectiveness of the C controller as well as com-

bined P − C control we demonstrate for the second

natural frequency. Due to its strong nonlinear soften-

ing effect, the comparison of nonlinear versus linear

control strategy is more appealing.
The analysis of the second-mode dynamics is started

from P control governed by Eq. (48). The coefficients
for the second mode take values

c1p = 0.0140511, c2p = − 0.00230271,

c3p = 0.00609727, c4p = 5.99109 × 10−7,

c5p = 9.29417 × 10−6, c6p = 0.0000493582,

c7p = 1.32562 × 10−6, c8p = 0.0000428366,

c9p = − 0.0000161778, c10p = − 7.02012 × 10−6,

c11p = − 4.71942 × 10−6, c12p = − 1.91428 × 10−8

Since vibrations amplitudes around this resonance

zone are much smaller then for the first resonance the

gain gvp need to be adjusted to higher values. Based

on experimental data, we accept gvp = 1 as a reference

value. The second-mode response surface plots are pre-

pared keeping the excitation amplitude fixed ξv = 0.4

and varying detuning parameter σv (excitation fre-

quency) and time delay τv . The amplitudes of oscilla-

tions for the stationary and the rotating beam configura-

tion � = 5 are presented in Fig. 14a and b, respectively.

The darker blue surfaces represent the desired con-

troller performance with just a few hills corresponding

to slightly increased amplitudes. Studying the plots it

may be concluded for the given excitation frequency

one may adjust the time delay to maximize the effec-
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Fig. 11 Resonance curves

of the system with P control

with various time delay; a

for � = 0, τv = 0 (black),

τv = 0.5 (blue), τv = 1.0

(green), τv = 1.5 (pink),

τv = 2.0 (orange), τv = 2.5

(magenta), b � = 2,

gvp = 0 (magenta), τv = 0

(black), τv = 0.5 (blue),

τv = 1.0 (green), τv = 1.5

(pink), c � = 0, τv = 3.0

(blue), τv = 3.5 (green),

and d � = 0, τv = 6

(black), τv = 6.5 (red); grey

line denotes resonance

curve for � = 0 and no

control; first flexural

vibration mode; gvp = 0.2,

ξv = 0.1, cv = 0.07032.

(Color figure online)

(a) (b)

(c) (d)

Fig. 12 Response of the

system with P control and

various detuning parameter;

a for � = 0, σv = −0.2

(blue), σv = 0 (black),

σv = 0.1 (red), σv = 1.5

(green), and b � = 2,

σv = −0.2 (blu2), σv = 0

(black), σv = 0.1 (red),

σv = 0.15 (green); first

flexural vibration mode;

gvp = 0.2, ξv = 0.1,

cv = 0.07032. (Color figure

online)

(a) (b)
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Fig. 13 Resonance curves

of the system with C control

and fixed time delay τv = 0

for a � = 0 and b � = 2;

gvc = 0.2 (blue), gvc = 0.5

(green), gvc = 0.12 (red),

gvc = −0.5 (orange),

gvc = −1.0 (magenta); grey

line: gvc = 0 and � = 0;

first flexural vibration mode;

ξv = 0.1, cv = 0.07032.

(Color figure online)

(a) (b)

Fig. 14 Amplitude of system response for P control against detuning frequency and time delay for a � = 0 and b � = 5; second

flexural vibration mode; gvp = 1.0, ξv = 0.4, cv = 0.220345

tiveness of the controller and retain possibly lowest

vibration amplitudes. The summits of pale blue hills are

located right at the second natural frequency (i.e., for

σv = 0) in the case of the non-rotating beam or shifted

toward higher frequencies to about σv = 4 for the

� = 5 rotating beam. This offset results purely from the

centrifugal stiffening effect. Nevertheless, the inherent

strong nonlinear behavior (softening type see Fig. 9)

of the second mode brings additional large amplitudes

solutions represented by orange surfaces in Fig. 14 even

if P controller is on.

The individual response curves for selected time

delays are clearly presented in Fig. 15. The resonance

curve of the system without control is marked by grey

line. When the control is triggered, the overall perfor-

mance of the system is quite similar to the first mode.

Increase in time delay first shifts the curves slightly

toward lower frequencies (Fig. 15a), but next the trend

is reversed and peaks are shifted a bit to the right

(Fig. 15b). By proper tuning of the time delay param-

eter τv , we can decrease amplitudes of the response

while keeping the natural frequency almost unchanged.

Meanwhile, the softening type of the characteristics
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Fig. 15 Resonance curves

of the system with P control

for � = 0 and various time

delay; a τv = 0 (green),

τv = 0.5 (black), τv = 1.0

(red), τv = 1.5 (blue) and b

τv = 2.0 (black), τv = 2.5

(blue), τv = 3.0 (green),

τv = 3.5 (red); grey line

denotes resonance curve for

� = 0 and no control;

second flexural vibration

mode; gvp = 1.0, ξv = 0.4,

cv = 0.220345. (Color

figure online)

(a) (b)

is maintained. On the other hand the poor choice of

time delay causes the dramatic increase in vibrations

amplitudes and enhances nonlinearity of the system as

presented in Fig. 15a for τv = 0.5 and Fig. 15b for

τv = 3.0. These cases correspond to orange areas in

Fig. 14. Possible consequences of the poorly tuned P

control are presented also in Fig. 16. Adjusting time

delay, we may get low amplitude oscillations but mean-

while above these low amplitude sections there are iso-

lated closed loops representing large amplitude oscil-

lations with unstable bottom part of the “isola.” For

specific time delays where the “isolas” exist the basins

of attractions of all possible solutions have to be care-

fully checked.

To eliminate the presented above drawbacks of P-

control we propose to apply C strategy which—as it has

been demonstrated earlier—allows to modify the slope

of the resonance curve. The coefficients of the govern-

ing equation Eq. (49) for the second mode take values

c1c = 324161.0, c2c = 1.6947,

c3c = −1482.37, c4c = 4554.81,

c5c = −746.448, c6c = −10.4145,

c7c = 1.70674, c8c = 1.14739,

c9c = 0.194208, c10c = 16,

c11c = −5.2442, c12c = 0.429713,

c13c = −0.00620533.

First it should be noted the value of the cubic control

gain gvc may get even two orders higher values than its

counterpart applied for the first mode. This is related to

the fact that the second mode dimensionless amplitudes
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Fig. 16 Response of the system with P control and various

detuning parameters for � = 5, σv = 2.5, σv = 3.0, σv = 3.5,

σv = 4.0,σv = 4.5, σv = 5.0, σv = 5.5; second flexural vibra-

tion mode; gvp = 1.0, ξv = 0.4, cv = 0.220345

are much smaller than the first mode ones. Since these

values are put to the power 3 the difference must be

“compensated” by higher magnitudes of gain at second

mode. Accordingly, the second mode cubic gain may

approach values of about 1500 but we decided to take a

smaller value setting gvc = ± 500 as a reference level.

In contrast to the first-mode analysis now, we show

that the C-control strategy applied to mode 2 can mod-

ify the slope of the response characteristics by tuning

the time delay. The original resonance curve (grey line

in Fig. 17a) can be modified in terms of amplitudes and

also its slope can be changed from softening to harden-

ing. Moreover, the further increase in time delay results

in reduced amplitudes combined with amplified soften-

ing behavior evidenced by increased slope (Fig. 17b).

However, for negative time delays, the reduction of
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Fig. 17 Resonance curves

of the system with C control

at fixed gain and varied time

delay a τv = 0 (black);

τv = 0.2 (blue), τv = 0.5

(green), τv = 1.0 (red); b

τv = 2.0 (black); τv = 2.5

(blue), τv = 3.0 (green),

τv = 3.5 (red), and c

τv = −2.0 (black);

τv = −2.5 (blue),

τv = −3.0 (green),

τv = −3.5 (red); second

flexural vibration mode;

gvc = −500, ξv = 0.4,

cv = 0.220345; grey line

denotes resonance curve for

�=0 and no control. (Color

figure online)

(a) (b)

(c)

response is not so evident. Furthermore, the double

nonlinearities, namely the structural and control ones

result in presence of additional solutions observed by

isolated curves (Fig. 17c) of high amplitude. The spot-

ted additional solutions are adverse events in terms of

vibration reduction but they may be interesting while

designing the energy harvesters.

Having above results now we apply mixed P − C

control for the nonlinear second mode resonance. To

benefit from advantages of both controllers, we apply

cubic controller to get a pseudo-linear system and then

the linear controller to reduce vibrations. Therefore, we

set gvc = −500 and τv = 1 for the analysis which cor-

respond to linear-like response in Fig. 17 (red curve).

Next, we are to adjust the settings of the additional P

controller. The response surface in Fig. 18 presents the

characteristics of the beam against detuning parameter

σv and gain gvp. Obviously, for gvp = 0 we get purely Fig. 18 Amplitude of system response for P −C control against

detuning frequency and gain gvp; � = 0; second flexural vibra-

tion mode; gvc = −500, ξv = 0.4, cv = 0.220345
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Fig. 19 Resonance curves

of system for P − C

control; second flexural

vibration mode; a � = 0,

gvp = −1, τv = 1 (black),

gvp = 1, τv = −1.5 (red),

and b � = 5, gvp = −1,

τv = 1; gvc = −500,

ξv = 0.4, cv = 0.220345.

(Color figure online)

(a) (b)

cubic control strategy. To get more reduction, we have

to avoid the peak and select value out of this zone.

The resonance curve with activated P −C controller

at time delay τv = 1 is presented in Fig. 19a by the black

line. The vibrations amplitude is reduced and the only

one solution exists. For comparison we study control

setting τv = −1.5 (red line) where the greater reduction

of the amplitude can be achieved. However, in this case,

additional isolated solutions exist (red isola), and they

are of large amplitude. Such situation requires a care-

ful detection of their basins of attraction to guarantee

safe system dynamics. The parameters of the combined

P − C controller can be applied for rotating beam as

well. The only difference is that the resonance curve

is shifted toward higher frequencies, as presented in

Fig. 19b.

6 Conclusions

The presented mathematical model of the rotating can-

tilever beam structure with active elements enables

analysis of free and forced oscillations of the struc-

ture corresponding to moderate-large amplitudes. The

partial differential equations and associated boundary

conditions are derived considering longitudinal and

transversal vibrations of the beam rotating with fixed

angular velocity � and preset to the hub at any arbitrary

angle. The performance of active elements has been

represented by non-homogenous terms in BCs. These

involved linear and nonlinear (cubic) control signals

with time delay. The set of partial differential equations

and associated BCs have been solved directly by the

multiple timescales method up to the third-order pertur-

bation. The physical parameters of the model including

electromechanical parameters of the active elements

have been determined within the laboratory tests.

The analytically derived modulation equations of

the beam dynamics include most important structural

parameters and control gains that may be considered

as bifurcation parameters. The performed analysis of

the solutions revealed hardening for the first mode

and softening of the second vibration bending mode.

These effects are maintained also if angular velocity

is increased. It has been shown the rotation does not

change the curve slope (hardening or softening) but

just shifts the resonance zones toward higher frequen-

cies which is in an agreement with results presented in

paper [38] if angular velocity is not high.

To reduce vibrations of the system the linear pro-

portional P controller, nonlinear cubic C controller

and finally mixed P − C controller is proposed. It has

been shown for the weakly nonlinear system around the

first resonance the P controller is effective both for the

stationary as well as rotating beam. For the moderate

or strongly nonlinear system behavior corresponding

to second natural frequency multiple solutions occur

and thus more advanced control techniques are applied.

The suggested strategy is based on the cubic or mixed

linear-cubic control results. It has been shown these two

approaches are capable to significantly reduce nonlin-

earities and to eliminate multiple solutions. By a proper

tuning of control gains and time delay we can determine

analytically domains of system parameters correspond-

ing to unique (single) solution and zones with safe con-

troller performance. Therefore, it is possible to adjust
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controller parameters for safe operation of the system

at large oscillations and various angular speeds of the

beam.

The additional nonlinearity coming from controller

combined with beam’s second mode structural nonlin-

earity may lead to additional isolated solutions corre-

sponding to large amplitudes. That specific operation

of the system can be exploited in terms of energy har-

vesting when nonlinear oscillations are much desired

effect. The obtained analytical results will be tested in

the laboratory for actual implementations.
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Appendix A

For the coefficients presented in the Eq. (34) the first

longitudinal mode has coefficient φu = 0.5π , while

the flexural modes have ratios

• First mode:

φ = 1.8751, r1 = 0.367048, r2 = 0.5,

r3 = −0.367048, r4 = −0.5,

• Second mode:

φ = 4.69409, r1 = 0.509234, r2 = −0.5,

r3 = −0.509234, r4 = 0.5,

Fig. 20 Functions r5-r12

for the first flexural mode
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Fig. 21 Functions r5-r12

for second flexural mode

and graphical representation of functions r5-r12 get the

forms shown in Figs. 20 and 21, respectively.
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