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Abstract: Carbon nanotubes (CNTs) have wide-ranging applications due to their excellent mechanical
and electrical properties. However, there is little research on the nonlinear mechanical properties of
thermal-electro-mechanical coupling. In this paper, we study the nonlinear vibrations of CNTs by
a thermal-electro-mechanical coupling beam theory. The Galerkin method is used to discretize the
partial differential equation and obtain two nonlinear ordinary differential equations that describe
the first- and second-order mode vibrations. Then, we obtain the approximate analytical solutions
of the two equations for the primary resonance and the subharmonic resonance using the multi-
scale method. The results indicate the following three points. Firstly, the temperature and electric
fields have a significant influence on the first-mode vibration, while they have little influence on the
second-mode vibration. Under the primary resonance, when the load amplitude of the second mode
is 20 times that of the first mode, the maximal vibrational amplitude of the second is only one-fifth of
the first. Under the subharmonic resonance, it is more difficult to excite the subharmonic vibration
at the second-order mode than that of the first mode for the same parameters. Secondly, because
the coefficient of electrical expansion (CEE) is much bigger than the coefficient of thermal expansion
(CTE), CNTs are more sensitive to changes in the electric field than the temperature field. Finally,
under the primary resonance, there are two bifurcation points in the frequency response curves
and the load-amplitude curves. As a result, they will induce the jump phenomenon of vibrational
amplitude. When the subharmonic vibration is excited, the free vibration term does not disappear,
and the steady-state vibration includes two compositions.

Keywords: carbon nanotubes; thermal-electro-mechanical coupling beam model; Galerkin method;
nonlinear vibration; multi-scale method

1. Introduction

In 1991, carbon nanotubes (CNTs) were discovered by Iijima [1], and their excellent
mechanical, chemical, electrical properties have since, extensively attracted the attention
of researchers [2–6]. CNTs are formed by the crimping of graphene sheets in a particular
direction. Moreover, researchers observed the flexoelectric effect in CNTs [7]. The lattice
of graphene is symmetrical, and the uniform deformation of graphene will not lead to
polarization. When graphene is curling into CNTs, the symmetry of the lattice may break
and may induce the piezoelectric effect. The second-order flexible electric effect in graphene
can be caused by the strain gradient. In fact, the strain gradient changes the position
of ions, leading to the asymmetric redistribution of electron density [8,9]. Ahmadi has
described in detail the zigzag and armchair γ-graphene-acetylene nanotubes using the
Density functional theory function and non-equilibrium Green’s function methods. He
also reported the application prospect of these devices in nano transistors and switching
memory circuits [10–12]. At the same time, CNTs also have technical potential in field
emission, nano-electronic devices, micro-electro-mechanical system, biosensing, high-
frequency nanoelectronics, and so on [13–17]. These applications are used in many physical
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fields, such as temperature and electrostatic fields. Tombler’s results show that, when
CNTs are deformed under a transverse concentrated load, their conductivity decreases
greatly [18]. This experiment is of great significance, showing that the coupling effect should
be specially considered [19]. CNTs can be employed in a variety of technical applications
when combined with a polymer composite material to create carbon nanotube-reinforced
composites [20]. In these applications, the influence of the temperature field is usually
accompanied. However, it is necessary to comprehensively research the thermal-electro-
mechanical coupling of CNTs [21]. Because CNTs are curled by graphene and the thickness
of graphene is uncertain, the stiffness of CNTs cannot be determined by the classical
beam model. This means that the bending and stretching stiffness must be considered
separately [22–24]. For example, Huang established a thermal-electro-mechanical coupling
nanobeam model of CNTs with independent bending and stretching stiffness [23]. This
nanobeam model describes the axial load and radial load of the beam. Generally, when the
beam is subjected to axial load and radial load, curvature and axial strain will occur [25].

From the above discussion, one can find that CNTs have extensive applications. How-
ever, their mechanical properties under the multi-field coupling conditions have received
little attention. For example, the deformations of CNTs when the ambient temperature
and the applied voltage at both ends of the beam change have not been studied in depth
thus far. However, this is common in nanoelectromechanical systems. In fact, Huang [23]
proposed a beam model for the first time to describe the mechanical properties of a CNT
under thermal and electric fields.

This paper will further analyze the model proposed by Huang [23]. Because it is
difficult to solve partial differential equations, the Galerkin method [26] is used to discretize
the partial differential equation into ordinary differential equations. The accuracy of the
Galerkin truncation depends on the order of truncation. Therefore, the first-order and
second-order mode vibration equations of the partial differential equation are used in this
paper. We will solve the two vibration equations using the multi-scale method [27,28]. The
steady-state solutions response to the primary resonance and the subharmonic resonance
are obtained. The effect of temperature and electric fields on steady-state motion can
be discovered by the analytical solutions. The accuracy of the solutions is checked by
numerical calculations.

The main motivation of this paper is to study the nonlinear vibrations of carbon
nanotubes with thermal-electro-mechanical coupling. In Section 2, the Galerkin method is
used to obtain the reduced-order model of nanobeam. In Section 3, the multi-scale method
is used to obtain approximate solutions of the main resonance and subharmonic resonance
of nanobeam. In Section 4, the influence of the temperature and electric field on the system
is discussed by the approximate solutions. We summarize the results in Section 5.

2. Materials and Methods
Thermal-Electro-Mechanical Coupling Beam Model of CNTs

In Reference [23], Huang expanded the deformation energy in extensional stiffness,
bending stiffness, the CEE, and the CTE. Then, using the Hamiltonian principle, he obtained
a partial differential equation that models the dynamical properties of CNTs with thermal-
electro-mechanical coupling. The equation can be shown as:

m ∂2w
∂t2 + kS(kUU + kTT) ∂2w

∂x2 + kB
∂4w
∂x4 −

kS(1+kUU+kT T)
2l2

∂2w
∂x2

l∫
0

(
∂w
∂x

)2
dx

−kB

{
12 ∂w

∂x
∂2w
∂x2

∂3w
∂x3 + 3

(
∂w
∂x

)2
∂4w
∂x4 +3

(
∂2w
∂x2

)3
}

= f (x, t).
(1)

Here m is the mass per unit length of CNTs; l is the length of CNTs; kS is the extensional
stiffness; kB is the bending stiffness; kU is the CEE; and kT is the CTE. Normally, there is no
piezoelectric effect in isotropic materials [29]. However, if graphene is curled into CNTs,
its hexagonal symmetry will be distorted and may cause the piezoelectric effect of tubes.
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This causes strain due to the external electric field, and the strain is proportional to the
field strength [30].

Equation (1) is the plane motion equation of CNTs. If a CNT is treated as a beam with
two hinged ends, its boundary conditions are:

w =
∂2w
∂x2 = 0, at x = 0, l. (2)

We can add a linear damping term C∂5w/∂t∂x4 to Equation (1) to obtain the equation
of motion with damping dissipation as:

m ∂2w
∂t2 + C ∂5w

∂t∂x4 + kS(kUU + kTT) ∂2w
∂x2

+kB
∂4w
∂x4 −

kS(1+kUU+kT T)
2l2

∂2w
∂x2

l∫
0

(
∂w
∂x

)2

dx

−kB

{
12 ∂w

∂x
∂2w
∂x2

∂3w
∂x3 + 3

(
∂w
∂x

)2
∂4w
∂x4 +3

(
∂2w
∂x2

)3
}

= f (x, t).

(3)

Sakharova used molecular dynamics calculations to obtain the following parame-
ters: extensional stiffness ks = α(d− d0) and bending stiffness kB = β(d− d0)

3, where
α = 1128.15nN/nm, and β = 142.54nN/nm [2]. In this paper, we will take (10, 10) sin-
gle walled carbon nanotubes (SWCNTs) as an example. Therefore, the tube’s diame-
ter is d = 1.356nm, and the parameter d0 = 2.7 × 10−7nm. Because the d0 is much
smaller than tube’s diameter d, we use d0 = 0. This makes kS = 1.53 × 103nN and
kB = 0.355× 103nN · nm2. The CTE is kT = 6.0× 10−6K−1 from Reference [31], and the
CEE is kU = 0.025nm/V, which is obtained through the linear fitting FDT calculations [30].

For convenience, we reduce Equation (3) to a dimensionless form. Letting
w̃ = w/l, x̃ = x/l, t̃ = ω0t, we obtain:

P ∂2w̃
∂x̃2 + Q ∂4w̃

∂x̃4 + C ∂5w̃
∂t̃∂x̃4 + R ∂2w̃

∂x̃2

l∫
0

(
∂w̃
∂x̃

)2

dx

−S
{

12 ∂w̃
∂x̃

∂2w̃
∂x̃2

∂3w̃
∂x̃3 + 3

(
∂w̃
∂x̃

)2
∂4w̃
∂x̃4 +3

(
∂2w̃
∂x̃2

)3
}

= f (x, t),
(4)

Here,
P = kS(kUU+kT T)

mω2
0 l2 , R = kS(1+kUU+kT T)

2mω2
0 l2 ,

Q = kB
mω2

0 l4 , S = kB
mω2

0 l6 , C = C
mω0l4 .

(5)

To reveal the load’s influence on the second-order mode, we consider a linear load
F(l − x), as shown in Figure 1:
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Figure 1. Load on a CNT.

In this paper, we will focus on the nonlinear mechanical properties of (10, 10) SWCNT
with thermal-electro-mechanical coupling. Dimensionless Equation (4) is a partial differen-
tial equation. It is difficult to find an accurate analytical solution for the equation. Therefore,
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we use the Galerkin method [26] to obtain an approximate solution. We assume that the
solution of the equation is:

w̃ =
n

∑
j=1

ηj(t) sin(jπx). (6)

For the analysis of the first and second order mode, we take n = 2 in Equation (6)
and substitute it into Equation (4). Then, we multiply sin(πx) on the two sides of the
equation and the interval integral in [0, 1] (the Galerkin integral [26,32]) to obtain the
vibrational equation of the first mode. That of the second mode can be obtained by
multiplying sin(2πx) on the two sides, then, the integral in [0, 1]. Therefore, we obtain the
following equations:

..
η1 + c1

.
η1 + k11η1 + k12η1η2

2 + k13η3
1 = F1,

..
η2 + c2

.
η2 + k21η2 + k22η2

1η2 + k23η3
2 = F2.

(7)

In Equation (7), the dot on the letter indicates the derivative in time. The parameters
of Equation (7) are:

k11 = 1− π2kS(kUU+kT T)
mω2

0 l2 , k12 = π4kS(1+kUU+kT T)
mω2

0 l4 − 30π6kB
mω2

0 l6 ,

k13 = π4kS(1+kUU+kT T)
4mω2

0 l4 − 3π6kB
2mω2

0 l6 , F1 = 4
mlω2

0π
f ,

k21 = 16− 4π2kS(kUU+kT T)
mω2

0 l2 , k22 = π4kS(1+kUU+kT T)
mω2

0 l4 − 30π6kB
mω2

0 l6 ,

k23 = 4π4kS(1+kUU+kT T)
mω2

0 l4 − 96π6kB
mω2

0 l6 , F2 = 2
mlω2

0π
f ,

c1 = C
mω0l4 , c2 = 16C

mω0l4 , c2 = 16c1.

(8)

From the buckling theory of elastic columns, one can know that the CNTs will lose
stability if k11 = 0. This case means that the critical temperature is a function of the critical
electric field and critical length, as shown in Figure 2.

Appl. Sci. 2023, 13, 2031 5 of 18 
 

( ) ( )

( )

( ) ( )

( )

π π π
ω ω ω

π π
ω ω ω π

π π π
ω ω ω

π
ω

+ + +
= − = −

+ +
= − =

+ + +
= − = −

+ +
= −

2 4 6

11 122 2 2 4 2 6
0 0 0

4 6

13 12 4 2 6 2
0 0 0

2 4 6

21 222 2 2 4 2 6
0 0 0

4

23 2 4
0

1 30
1 , ,

1 3 4, ,
4 2

4 1 30
16 , ,

4 1 9

S U T S U T B

S U T B

S U T S U T B

S U T

k k U k T k k U k T k
k k

m l m l m l
k k U k T k

k F f
m l m l ml
k k U k T k k U k T k

k k
m l m l m l

k k U k T
k

m l
π
ω ω π

ω ω

=

= = =

6

22 6 2
0 0

1 2 2 14 4
0 0

6 2, ,

16, , 16 .

Bk
F f

m l ml
C Cc c c c

m l m l

 

(8)

From the buckling theory of elastic columns, one can know that the CNTs will lose 
stability if =11 0k . This case means that the critical temperature is a function of the criti-
cal electric field and critical length, as shown in Figure 2. 

 
Figure 2. Critical temperature of the buckling as a function of critical electric field and critical length. 

We can find from Figure 2 that the electric field has a greater impact on the thermal-
electro-mechanical coupling model of CNTs than the temperature field due to U Tk k . 
This means that the electric field has an outstanding influence on the stiffness of CNTs. 
From the data of quantum calculations, the CEE is always bigger than the CTE. For exam-
ple, using Hartree-Fock and density functional quantum mechanics simulations [30], Guo 
obtained a CEE of about = 0.025nm / VUk . However, Jiang obtained a CTE of about 

6 16.0 10 K− −×  [31] through the nonequilibrium Green’s function method. In fact, the 
source of thermal or electrical expansion may require further theoretical and experimental 
research. 

  

Figure 2. Critical temperature of the buckling as a function of critical electric field and critical length.

We can find from Figure 2 that the electric field has a greater impact on the thermal-
electro-mechanical coupling model of CNTs than the temperature field due to kU � kT .
This means that the electric field has an outstanding influence on the stiffness of CNTs. From
the data of quantum calculations, the CEE is always bigger than the CTE. For example,
using Hartree-Fock and density functional quantum mechanics simulations [30], Guo
obtained a CEE of about kU = 0.025 nm/V. However, Jiang obtained a CTE of about
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6.0× 10−6 K−1 [31] through the nonequilibrium Green’s function method. In fact, the source
of thermal or electrical expansion may require further theoretical and experimental research.

3. Results
3.1. Primary Resonance of SWCNTs

When Ω is close to ωj and there is no internal resonance between the two modes,
vibrations of the two model are uncoupled. Therefore, the coupling term of Equation (7)
can be removed [28] and the equation is rewritten as:

..
η j + cj

.
η j + k j1ηj + k j3η3

j = Fj cos Ωt, j = 1, 2. (9)

For the study of primary resonance, we introduce ε for perturbation, where ε is a small
parameter. Here, ε = 0.01 is used, and Equation (9) is rewritten as

..
η j + ω2

j ηj + 2εcj
.
η j + εkj3η3

1 = ε f j cos ωt, j = 1, 2. (10)

Here, ω2
j = k j1, and Equation (10) will be solved by the multi-scale method [32]. We

expand ηi as follows:
ηj = ηj0(T0, T1) + εηj1(T0, T1) + · · · . (11)

In Equation (11), T0 = ε0t, T1 = εt, and here, it is

d
dt

= D0 + εD1,
d2

dt2 = D2
0 + 2εD0D1 + ε2D2

1. (12)

Substituting Equations (11) and (12) into Equation (10), and making the coefficients of
the same order ε equal, we obtain [32]

ε0 : D2
0ηj0 + ω2

j ηj0 = 0. (13)

ε : D2
0ηj1 + ω2

j ηj1 = −2D0D2ηj0 − 2cjD0ηj0 − kj3η3
j0 +

1
2

f j cos(ΩT0). (14)

Let the solution of the equation of order ε0 be:

ηj0 = A(T1) exp
(
iωjT0

)
+ cc. (15)

where cc is the complex conjugate terms of the previous terms and A1 is a real function of
T1. Substituting Equation (15) into Equation (14), we obtain

D2
0ηj1 + ω2

j ηj1 =
[
−2iωj

(
A′ + cj A

)
− 3kj3 A2 A

]
exp

(
iωjT0

)
−kj3 A3 exp

(
3iωjT0

)
+ 1

2 f j exp[i(ΩT0)] + cc.
(16)

where the apostrophe represents the derivative with respect to T1. The dimensionless
detuning parameter σ is introduced to make the excitation frequency Ω = ωj + εσ. We
eliminate the secular term and obtain:

2iωj
(

A′ + cj A
)
+ 3kj3 A2 A =

1
2

f j exp
(
iσTj

)
. (17)

Introducing a polar form for A, we obtain:

A =
1
2

a exp(iβ). (18)



Appl. Sci. 2023, 13, 2031 6 of 15

where a and β are real functions of T1. Substituting Equation (18) into Equation (17), and
separating the real part and imaginary part, we obtain: a′ = −cja + 1

2ωj
f j sin γ

aβ′ = 3
8

kj3
ωj

a2 − 1
2ωj

f j cos γ.
(19)

where γ = σT1 − β. When a′ = β′ = 0, the steady state motion appears; therefore: 0 = −cja + 1
2ω1

f j sin γ

aσ = 3
8

kj3
ωj

a3 − 1
2ωj

f j cos γ.
(20)

From Equation (20), we obtainc2
j +

(
σ− 3

8
kj3

ωj
a2

)2
a2

j =
f 2
j

4ω2
j

. (21)

Equation (21) indicates that the response amplitude a is a function of σ and the excitation
amplitude f j. Substituting Equation (18) into Equation (15), and then substituting the result into
Equation (11), one can obtain the first order approximate solution of Equation (10).

u = a cos(Ωt− γ) + O(ε) = a cos
(
ωjt + εσt− γ

)
+ O(ε). (22)

Here, a and σ are given by Equation (21), and ω2
j = k j1(j = 1, 2).Therefore, from

Equation (21), we can draw Figures 3–9.
Appl. Sci. 2023, 13, 2031 8 of 18 
 

 

Figure 3. Frequency−response curves of the first mode with ( ) ( )=1 1, 5, 4.95c f . 

 

Figure 4. Frequency−response curves of the second mode with ( ) ( )=2 2, 5,15c f . 

 

Figure 5. Frequency−Response curves of the first mode with ( ) ( )=1 1, 5, 4.95c f  and the sec-

ond mode with ( ) ( )=2 2, 80, 100c f . 

a
a

a

Figure 3. Frequency−response curves of the first mode with (c1, f1) = (5, 4.95).

Appl. Sci. 2023, 13, 2031 8 of 18 
 

 

Figure 3. Frequency−response curves of the first mode with ( ) ( )=1 1, 5, 4.95c f . 

 

Figure 4. Frequency−response curves of the second mode with ( ) ( )=2 2, 5,15c f . 

 

Figure 5. Frequency−Response curves of the first mode with ( ) ( )=1 1, 5, 4.95c f  and the sec-

ond mode with ( ) ( )=2 2, 80, 100c f . 

a
a

a

Figure 4. Frequency−response curves of the second mode with (c2, f2) = (5, 15).



Appl. Sci. 2023, 13, 2031 7 of 15

Appl. Sci. 2023, 13, 2031 8 of 18 
 

 

Figure 3. Frequency−response curves of the first mode with ( ) ( )=1 1, 5, 4.95c f . 

 

Figure 4. Frequency−response curves of the second mode with ( ) ( )=2 2, 5,15c f . 

 

Figure 5. Frequency−Response curves of the first mode with ( ) ( )=1 1, 5, 4.95c f  and the sec-

ond mode with ( ) ( )=2 2, 80, 100c f . 

a
a

a

Figure 5. Frequency−Response curves of the first mode with (c1, f1) = (5, 4.95) and the second
mode with (c2, f2) = (80, 100).

Appl. Sci. 2023, 13, 2031 9 of 18 
 

 

Figure 6. Frequency−response curves of the first mode with ( ) ( )=1 1, 5, 4.95c f . 

 

Figure 7. Frequency−response curves of the second mode with ( ) ( )=2 2, 5, 18c f . 

 

Figure 8. Excitation amplitude response curves of the first mode with ( ) ( )σ =1 , 5,15c . 

a
a

a

Figure 6. Frequency−response curves of the first mode with (c1, f1) = (5, 4.95).

Appl. Sci. 2023, 13, 2031 9 of 18 
 

 

Figure 6. Frequency−response curves of the first mode with ( ) ( )=1 1, 5, 4.95c f . 

 

Figure 7. Frequency−response curves of the second mode with ( ) ( )=2 2, 5, 18c f . 

 

Figure 8. Excitation amplitude response curves of the first mode with ( ) ( )σ =1 , 5,15c . 

a
a

a

Figure 7. Frequency−response curves of the second mode with (c2, f2) = (5, 18).



Appl. Sci. 2023, 13, 2031 8 of 15

Appl. Sci. 2023, 13, 2031 9 of 18 
 

 

Figure 6. Frequency−response curves of the first mode with ( ) ( )=1 1, 5, 4.95c f . 

 

Figure 7. Frequency−response curves of the second mode with ( ) ( )=2 2, 5, 18c f . 

 

Figure 8. Excitation amplitude response curves of the first mode with ( ) ( )σ =1 , 5,15c . 

a
a

a

Figure 8. Excitation amplitude response curves of the first mode with (c1, σ) = (5, 15).

Appl. Sci. 2023, 13, 2031 10 of 18 
 

 

Figure 9. Excitation amplitude response curves of the second mode with ( ) ( )σ =2 , 5, 20c . 

3.2. Subharmonics Resonance of SWCNTs 

When Ω  is far away from ω j , a large vibrational amplitude requires a large excit-

ing amplitude. In this paper, we will study the subharmonic resonant. Therefore, we re-
write Equation (9) as: 

η ω η ε η ε η ω+ + + = = 2 3
3 12 cos , 1,2.j j j j j j jc k f t j  (23)

The seeking form of the solution is: 

( ) ( )η η εη+1 0 1 2 0 1= , ,j j jT T T T  (24)

Substituting Equation (24) into Equation (23) and aking the coefficients of order ε  
equal, we obtain [32]: 

( )ε η ω η τ+ = Ω +0 2 2
0 1 1 0: cosj j j j jD f T  (25)

ε η ω η η η η+ = − − −2 2 3
0 2 2 0 1 1 0 1 3 1: 2 2j j j j j j j jD D D c D k  (26)

The form of the solution of Equation (25) is: 

( ) ( ) ( ) ( )η ω= + Λ Ω +1 1 0 1 0exp expj jA T i T T i T cc  (27)

where cc  stands for the complex conjugate of the preceding terms and 

( )ω
−

Λ = − Ω
12 21

2 j jf . When Equation (27) is brought into Equation (26), we can obtain: 

a

Figure 9. Excitation amplitude response curves of the second mode with (c2, σ) = (5, 20).

3.2. Subharmonics Resonance of SWCNTs

When Ω is far away from ωj, a large vibrational amplitude requires a large exciting
amplitude. In this paper, we will study the subharmonic resonant. Therefore, we rewrite
Equation (9) as:

..
η j + ω2

j ηj + 2εcj
.
η j + εkj3η3

1 = f j cos ωt, j = 1, 2. (23)

The seeking form of the solution is:

ηj = ηj1(T0, T1) + εηj2(T0, T1) (24)

Substituting Equation (24) into Equation (23) and aking the coefficients of order ε
equal, we obtain [32]:

ε0 : D2
0ηj1 + ω2

j ηj1 = f j cos
(
ΩT0 + τj

)
(25)

ε : D2
0ηj2 + ω2

j ηj2 = −2D0D1ηj1 − 2cjD0ηj1 − kj3η3
j1 (26)

The form of the solution of Equation (25) is:

ηj1 = A(T1) exp
(
iωjT0

)
+ Λ(T1) exp(iΩT0) + cc (27)
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where cc stands for the complex conjugate of the preceding terms and Λ = 1
2 f j

(
ω2

j −Ω2
)−1

.
When Equation (27) is brought into Equation (26), we can obtain:

D2
1ηj2 + ω2

j ηj2 = −
[
2iωj

(
A′ + cj A

)
+ 6kj3 AΛ2 + 3kj3 A2 A

]
exp

(
iωjT0

)
−kj3

{
A3 exp

(
3iωjT0

)
+ Λ3 exp (3iΩT0) + 3A2Λ exp

(
i
(
2ωj + Ω

)
T0
)

+3A2Λ exp
(
i
(
Ω− 2ωj

)
T0
)
+ 3AΛ2 exp

(
i
(
ωj + 2Ω

)
T0
)

+3AΛ2 exp
(
i
(
ωj − 2Ω

)
T0
)}
−Λ

[
2icjΩ + 3kj3Λ2 + 6kj3 AA

]
exp(iΩT0) + cc

(28)

Introducing a dimensionless detuning parameter σ, the exciting frequency can be
written as Ω = 3ωj + εσ, and eliminating the duration terms of exp

[
i
(
Ω− 2ωj

)
T0
]
, we

obtain:
2iωj

(
A′ + cj A

)
+ 6kj3 AΛ2 + 3kj3 A2 A + 3kj3ΛA2 exp(iσT1) = 0 (29)

Introducing the polar form of A, hawse obtain:

A =
1
2

a exp (iβ), (30)

where a and β are real functions. Substituting Equation (30) into Equation (29) and separat-
ing the real part and imaginary parts, we obtain:

a′ = −cja−
3kj3Λ
4ωj

a2 sin(σT1 − 3β)

aβ′ =
3kj3
ω1

(
Λ2 + 1

8 a2
)

a +
3kj3Λ
4ωj

a2 cos(σT1 − 3β).
(31)

The equations can be transformed into an autonomous system, if we assume:

γ = σT1 − 3β. (32)

The result is: 
a′ = −cja−

3kj3Λ
4ωj

a2 sin γ

aγ′ =

(
σ− 9kj3Λ2

ωj

)
a− 9kj3

8ωj
a3 − 9kj3Λ

4ωj
a2 cos γ.

(33)

If a′ = γ′ = 0, the steady state motion will occur. This corresponds to the solution of
the following equation:

cja = − 3kj3Λ
4ωj

sin γ(
σ− 9kj3Λ2

ωj

)
a− 9kj3

8ωj
a3 =

9kj3Λ
4ωj

a2 cos γ.
(34)

Taking the squares of the two equations, then adding them to delete γ, we obtain:9c2
j +

(
σ−

9kj3Λ2

ωj
−

9kj3

8ωj
a2

)2
a2 =

81k
2
j3Λ6

16ω2
j

a4. (35)

According to Equation (35), We know a = 0 or:

9c2
j +

(
σ−

9kj3Λ2

ωj
−

9kj3

8ωj
a2

)2

=
81k

2
j3Λ6

16ω2
j

a2. (36)
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The equations are a quadratic function solution of a2, and their solution is:

a2 = p±
(

p2 − q2
)1/2

, (37)

Here,

p =
8ωjσ

kj3
− 6Λ2, q =

64ω2
j

81k
2
j3

9c2
j +

(
σ−

9kj3Λ2

ωj

)2
. (38)

We notice that q is always positive; therefore, there is a nontrivial free vibration

amplitude if p > 0 and p2 ≥ q. This means Λ2 <
4ωjσ

27kj3
and

kj3Λ2

ωj

(
σ− 63kj3Λ2

8ωj

)
− 2c2

j ≥ 0.

Because kj3 > 0, σ is positive, we can write the first-order approximation solution as:

u = a cos
[

1
3
(Ωt− γ)

]
+ f j

(
ω2

j −Ω2
)−1

cos Ωt + O(ε). (39)

In Equation (39), a and γ are given by Equation (34). There, j = 1 means the first mode
and j = 2 means the second mode.

4. Discussion
4.1. Primary Resonance

We can obtain the visible pattern of the relationship between the vibration amplitude
and the parameters from Equation (21), as shown in Figures 3–9. These Figures reveal the
influence of the temperature field and the electric field on vibrations for the primary resonance.
For the first mode (Figure 3), the initial value of the numerical solutions for the low branch
is
(
η1,

.
η1
)
= (0.6, 0), and, at the high branch, it is

(
η1,

.
η1
)
= (0.6, 0). For the second mode

(Figure 4), the initial value of the numerical solutions at the low branch is
(
η1,

.
η1
)
= (0.012, 0),

and, at the high branch it is
(
η1,

.
η1
)
= (0.36, 0). From Figures 3 and 4, it can be found that

the multi-scale method is accurate. Figure 5 shows that the second mode is hardly excited
when the first mode is excited. For example, when the load amplitude of the second mode
is 20 times that of the first mode, the maximal vibrational amplitude of the second is only
one-fifth of the first, as shown in Figure 5. It is found from Figure 6 that the maximum
amplitudes with detuning parameters will increase when the temperature field and electric
field increase, and the region being in multi values will also become larger. This rule agrees
also with the second mode; however, the temperature field and electric field have a smaller
effect than the first, as shown in Figure 7.

From Equation (21), we also obtain the curves of vibration amplitudes and loads
for the first and second modes, as shown in Figures 8 and 9. The two figures show that
the temperature and electric fields impact outstandingly the vibration amplitudes of the
first mode, while the influence is weak on the second mode. Furthermore, there are two
bifurcation points in the frequency-response curves and the load-amplitude curves. They
will induce the jump phenomenon of vibrational amplitude. These details of the jump have
been discussed in reference [28].

4.2. Subharmonics

Through Equation (36)we can draw the vibration amplitude with the model frequency
as a function of other parameters (as shown in Figures 10–18). These figures reveal the
relationship between subharmonic amplitude, temperature field, and electric field. These
figures support the following main conclusions.
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Figure 10. Amplitude excitation curves of the first mode with (c1, σ) = (0.25, 80) and the second
order mode with (c2, σ) = (4, 80).
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Figure 11. Effect of temperature and electric fields on the amplitude of first mode for (c1, σ) = (5, 80).

Appl. Sci. 2023, 13, 2031 14 of 18 
 

 

Figure 10. Amplitude excitation curves of the first mode with ( ) ( )σ =1 , 0.25,80c  and the sec-

ond order mode with ( ) ( )σ =2 , 4, 80c . 

 
Figure 11. Effect of temperature and electric fields on the amplitude of first mode for 

( ) ( )σ =1 , 5,80c . 

 
Figure 12. Effect of temperature and electric fields on the amplitude of second mode for 

( ) ( )σ =2 , 5,80c . 

a
a

a

Figure 12. Effect of temperature and electric fields on the amplitude of second mode for (c2, σ) = (5, 80).
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Figure 13. Amplitude detuning curves of the first mode with c1 = 5.
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Figure 14. Amplitude detuning curves of the second mode with c2 = 5.
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Figure 15. Numerical solution of first mode with (c1, f1, σ) = (5, 3.5, 80).
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Figure 16. Phase diagram of the first mode with (c1, f1, σ) = (5, 3.5, 80).
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Figure 17. Numerical solution of the second mode with (c2, f2, σ) = (5, 40, 80).
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Figure 18. Phase Diagram of Second Order Mode with (c2, f2, σ) = (5, 40, 80).

First, it is more difficult to excite the subharmonic vibration at the second-order mode
than that of the first mode for the same parameters, as shown in Figure 10.

Second, the first mode is more sensitive to temperature and electric fields than the
second mode, as shown in Figures 11–14.
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Finally. The numerical simulations of Equation (9) are operated using the Runge–
Kutta method for the first mode with the initial value

(
η1,

.
η1
)
= (0.012, 0) and the second

mode with the initial value
(
η1,

.
η1
)
= (0.2, 0). These simulations show that the analytical

solutions are accurate, as shown in Figures 15–18.

5. Conclusions

In this paper, the nonlinear vibrations of a (10, 10) SWCNT are studied by a thermal-
electro-mechanical coupling nanobeam theory for the primary resonance and subharmonic
resonance. This model includes independent extensional stiffness and bending stiffness.
We obtain nonlinear ordinary differential equations for the first and second modes by the
Galerkin method. Then, their approximate analytical solutions are obtained by the multiple
scale method for the primary resonance and subharmonic resonance. The solutions are
used to discuss the influences of the electric and temperature fields on the vibrations of the
structure. Moreover, we check the accuracy of the approximate analytical solutions using
the Runge–Kutta method. The main conclusions are as follows.

(1) Under the primary resonance and subharmonics, the nonlinear vibrations of the first
mode are more sensitive to the temperature and electric fields than the second mode.
For the primary resonance, when the load amplitude of the second mode is 20 times
of the first mode, the maximal vibrational amplitude of the second is only one-fifth of
the first. For the subharmonics, it is more difficult to excite the subharmonic vibration
at the second-order mode than at the first mode.

(2) Since the CEE is far greater than the CTE, the electric field has more outstanding
influence on an SWCNT’s vibration than the temperature.

(3) There is only one vibrational component with the model frequency in the primary reso-
nance, in which the jump of vibrational amplitude may be induced by changes in the load’s
frequency or amplitude. Further, there are two vibrational components in the subharmonic
resonance, and the two components have approximate vibrational amplitude.
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