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Nonlinear Vibrations of Doubly Curved Cross-Ply Shallow Shells

Khaled Alhazza

(ABSTRACT)

The objective of this work is to study the local and global nonlinear vibrations of isotropic

single-layered and multi-layered cross-ply doubly curved shallow shells with simply supported

boundary conditions. The study is based-on the full nonlinear partial-differential equations

of motion for shells. These equations of motion are based-on the von Kármán-type geometric

nonlinear theory and the first-order shear-deformation theory, they are developed by using

a variational approach. Many approximate shell theories are presented.

We used two approaches to study the responses of shells to a primary resonance: a direct

approach and a discretization approach. In the discretization approach, the nonlinear

partial-differential equations are discretized using the Galerkin procedure to reduce them

to an infinite system of nonlinearly coupled second-order ordinary-differential equations. An

approximate solution of this set is then obtained by using the method of multiple scales for

the case of primary resonance. The resulting equations describing the modulations of the

amplitude and phase of the excited mode are used to generate frequency- and force-response

curves. The effect of the number of modes retained in the approximation on the predicted

responses is discussed and the shortcomings of using low-order discretization models are

demonstrated. In the direct approach, the method of multiple scales is applied directly to

the nonlinear partial-differential equations of motion and associated boundary conditions for

the same cases treated using the discretization approach. The results obtained from these

two approaches are compared.

For the global analysis, a finite number of equations are integrated numerically to calculate

the limit cycles and their stability, and hence their bifurcations, using Floquet theory. The

use of this theory requires integrating 2n + (2n)2 nonlinear first-order ordinary-differential

equations simultaneously, where n is the number of modes retained in the discretization. A



convergence study is conducted to determine the number of modes needed to obtain robust

results.

The discretized system of equation are used to study the nonlinear vibrations of shells to

subharmonic resonances of order one-half. The effect of the number of modes retained in the

approximation is presented. Also, the effect of the number of layers on the shell parameters

is shown.

Modal interaction between the first and second modes in the case of a two-to-one internal

resonance is investigated. We use the method of multiple scales to determine the modulation

equations that govern the slow dynamics of the response. A pseudo-arclength scheme is used

to determine the fixed points of the modulation equations and the stability of these fixed

points is investigated. In some cases, the fixed points undergo Hopf bifurcations, which result

in dynamic solutions. A combination of a long-time integration and Floquet theory is used to

determine the detailed solution branches and chaotic solutions and their stability. The limit

cycles may undergo symmetry-breaking, saddle node, and period-doubling bifurcations.
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Chapter 1

Introduction

1.1 Linear Shell Theory

Shells are used in many structural parts of various modern vehicles and civil engineering

structures. A significant number of historical and modern buildings contains shell-type

structures. These structures were designed long before the advent of modern engineering

analysis. Examples include the Dome of the Rock Mosque, Fig. 1.1, which stood for almost

one thousand years, the Pantheon of Ancient Rome, Fig. 1.2, which stood for about two

thousand years, and the United States Capital Dome, Fig. 1.3. The static and dynamic

studies of these and many other structures give us a better understanding of their behaviors.

A shell can be defined as a curved, thin-walled surface. It can be made from a single

layer or multilayers of isotropic or anisotropic materials. Shells can be classified according to

their curvatures: plates (where both curvatures are zero), cylindrical (where one curvature

is zero), spherical (where both curvatures are equal), conical (where one of the curvatures

is zero and the other changes linearly with the axial length), and doubly curved (where the

two curvatures are different).

Linear isotropic shell theory was first developed by Germaine (1821). She neglected the

1
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in-plane deflection of a cylindrical shell, but her equations contained some errors. Aron

(1874) derived five equations expressed in curvilinear coordinates to describe shell behav-

iors. He showed that these equations reduce to the plate equations when the curvatures

are set equal to zero. Love (1888) introduced a simplification for both of the in-plane and

transverse motions. The equations of Love started the basic development of the theory of

vibration of continuous structures with small thickness, such as those of Galerkin (1934,1942)

and Timoshenko and Woinowsky-Krieger (1959). In particular, Galerkin (1934) developed

a method to obtain all of the shell equations from the general theory of elasticity. His

work was widely used by Lur’ye (1940), Vlasov (1949), Novozhilov (1953), Vorovich (1956),

Mushtari and Galimov (1957), Mushtari and Teregulov (1959), Gol’denveiser (1961, 1979),

and Gol’denveiser et al. (1993). Their work laid the fundamental principles for the linear

and nonlinear theories of isotropic and anisotropic shells.

Anisotropic shells were studied in the 1920’s by Shtaerman (1924), Flügge (1934, 1962),

Mushtari and Galimov (1957), and Mushtari and Teregulov (1959). However, the complete

theory of anistropic shells was presented by Ambartsumian (1974). He also developed the

theory of multi-layered orthotropic shells with an arbitrary layer lay-up through the thick-

ness. Grigolyuk (1953) and Grigolyuk and Chulkov (1964) developed the theory of sandwich

shells as well as general multi-layered shells, including viscoelastic multi-layered shells.

1.2 Nonlinear Shell Theory

A shell is said to behave nonlinearly if the deflection at any point is not proportional to the

magnitude of the applied load. There are two types of nonlinearities: geometric and material.

The geometric nonlinearity is the result of nonlinear strain-displacement relations, and the

material nonlinearity is the result of nonlinear stress-strain relations. Most of the work

done on nonlinear shells takes into account the geometric nonlinearity because traditional

engineering materials, such as steel and aluminum, behave linearly when the principal strains
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Figure 1.1: The Dome of the Rock Mosque.

remain small. An attempt was made by Zerna (1960) to formulate nonlinear material shell

theories.

Mushtari and Galimov (1957), Mushtari and Teregulov (1959), and Galimove (1977) made

outstanding contributions to the nonlinear geometric shell theory based on the general non-

linear theory of elasticity and Kirchhoff-Love’s hypotheses. Novozhilov (1953, 1964) devel-

oped a general approach to the problem of nonlinear deformation of flexible bodies and the

nonlinear equations of thin shells in orthogonal coordinates. Some important results on the

nonlinear equations were made by Donnell (1933), Chien (1943, 1944a, 1944b), Grigolyuk

(1953), Sokolnikoff (1956), Sanders (1959, 1963), Zerna (1960), Naghdi and Berry (1964),

Grigolyuk and Chulkov (1964), Koiter (1966), and Grigolyuk and Mamai (1974).

Relatively, a small number of papers addressed the nonlinear theory of laminated shells.

Prusakov (1971) developed a nonlinear theory of shallow laminated shells and Gershtein

(1971) and Kulikov (1979) developed nonlinear equations for multi-layered shells in tensor
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Figure 1.2: The Pantheon of Ancient Rome.

form. Many contributions and reviews were made by Libai and Simmonds (1988), Vorovich

(1990), Bogdanovich (1991), Mirza (1991), Qatu (1992), Leissa (1993), Pshenichnov (1993),

Soedel (1993), Liew et al. (1997), and Gould (1998).

1.3 Methods of Solution

There are three methods for solving the nonlinear equations of motion: numerical methods

such as Galerkin, Rayleigh-Ritz, finite elements, and finite differences (Meirovitch, 1997); an-

alytical methods such as perturbation techniques (Nayfeh, 1981, 1993); and a combination

of both. In the Rayleigh-Ritz method, the vibration modes are expressed as a linear combi-

nation of a set of assumed shape functions, which satisfy the geometric boundary conditions.

In the combined approach, the partial-differential equations of motion and the associated

boundary conditions are first discretized into a set of nonlinear ordinary-differential equa-
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Figure 1.3: The United States Capital dome.

tions. One of the most commonly used methods for discretization is the Galerkin approach

in which the weighting functions are the linear spatial mode shapes. These equations are

truncated into a finite number of equations and then solved analytically in time domain.

Most researchers retain one or two modes in the approximation. As a result, the obtained

responses may be quantitatively and/or qualitatively erroneous (Raouf, 1989; Nayfeh and

coworkers, 1988, 1992, 1996, 1997; Troger and Steindl, 1991).

1.4 Equations of Motion

To study the elastic deformation of plates and shells, one needs a complete and consistent

theory. During the last three decades, composite materials have received considerable at-

tention. Most of the work was done on plates and cylindrical shells. Nash and Modeer

(1959) derived approximate equations governing the nonlinear behavior of plates with finite
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amplitudes. Delpak et al. (1986) developed a simplified energy method for studying the

geometric nonlinear behavior of elastic structures. Gol’denveizer et al. (1993) discussed

linear Timoshenko-Reissner theories for isotropic plates and shells. These theories take into

account the shear deformation and the rotational inertia.

The ring problem attracted some attention. Simmonds (1979, 1985) derived a set of

geometric nonlinear equations for the in-plane motion of an elastic homogeneous circular

ring and developed the equations of motion for shells of revolution. Maganty and Bickford

(1987) derived an accurate set of geometric nonlinear equations of motion for circular rings.

Efstathiadis (1971) derived the equations of motion governing the free undamped vibrations

of nonuniform circular plates.

Large deflections of initially flat isotropic plates have been proposed by Berger (1955). He

neglected the second invariant of the middle surface strains in the potential energy. This

approximation is also used by Nowinski (1958a, 1958b, 1959). A great summary on the

mechanics of laminated plates is presented in the book by Reddy (1997).

The nonlinear behavior of isotropic shells was studied by Sathyamoorthy (1994, 1997).

He presented a geometric nonlinear theory of moderately thick isotropic spherical shells.

Connor (1962) derived the equations of motion for axisymmetric nonlinear isotropic shallow

spherical shells.

A small number of works is dedicated to the derivation of the nonlinear equations of

motion of multi-layered and anistropic shells. Reddy and Liu (1985) developed a higher-

order shear-deformation theory for elastic shells with laminated orthotropic layers. Librescu

(1987) used a Lagrangian formulation to refine the geometric nonlinear theory of anisotropic

laminated shells of arbitrary shape. Leissa and Qatu (1991) derived equations of motion for

laminated composite shallow shells in terms of arbitrary-oriented shell coordinates. Pai and

Nayfeh (1992) developed a general nonlinear theory for the dynamics of elastic anistropic

circular cylindrical shells.
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1.5 Plates

A large number of publications has been devoted to the linear vibrations of plates. The

Galerkin procedure, the Raylegh-Ritz method, and the finite element method have been

widely used in the analysis.

Free vibrations were studied by Alfonso and Hinton (1995), Barik and Mukhopadhyay

(1998), Farag and Pan (1998), and Ghazi (1998). Ding (1996) used a static beam function

as a shape function to study the vibration characteristics of thin, isotropic rectangular plates

using the Rayleigh-Ritz method. Cheung and Zhou (1999) studied the free vibrations of a

wide range of nonuniform rectangular plates.

Large-amplitude vibrations of rectangular plates were studied by Cummings (1964), Chia

(1980), and Prathap and Varadan (1997). Hui (1983a, 1985) investigated the effects of

geometric imperfections on the large-amplitude vibrations of circular plates. He found out

that geometric imperfections may significantly raise the linear vibration frequencies and may

cause a qualitative change in the behavior of plates.

Free vibrations of composite plates have been studied by Anderson and Nayfeh (1996),

Chai (1996), Cunha (1997), and De Almeida and Hansen (1997). Fan and Ye (1990) intro-

duced an exact solution for laminated plates. Qatu and Leissa (1991) used the Ritz method

to determine the vibration frequencies of completely free laminated plates and shallow shells.

Anderson and Nayfeh (1996) built and tested composite plates in cantilever, free-free, and

clamped configurations. The experimental results were in agreement with their finite element

results. They showed that, for the same accuracy, the Ritz method requires fewer degrees of

freedom when compared with the finite element method. Rajalingham et al. (1996) studied

the vibration of rectangular plates using the plate characteristic functions as the deflection

shapes in the Rayleigh-Ritz method. Lee et al. (1997) analyzed the free vibrations of sym-

metrically laminated composite rectangular plates using the Rayleigh-Ritz and Kantorovich

methods. Chandrashekhara and Kolli (1997) used the finite element method to study the
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free vibration characteristics of laminated plates.

The nonlinear dynamic behavior of plates was studied by Tenneti and Chandrashekhara

(1994), Young and Chen (1995), and Harichandran and Naja (1997). Sridhar et al. (1975,

1978) studied the nonlinear behavior of uniform circular plates to harmonic excitations.

Ramesh and Krishnamoorthy (1995) investigated the application of the dynamic relaxation

method to analyze the geometric nonlinear behavior of plates and shells. Abe et al. (1998a)

used a single-mode Galerkin procedure to reduce the equations of motion of a laminated

plate to a Duffing-type equation in terms of the transverse displacement. They analyzed

solutions of the resulting equation using the method of multiple scales. They investigated

the influence of the lamination sequence, the thickness ratio, the number of layers, and the

in-plane boundary conditions on the subharmonic resonance response.

Multi-mode responses of plates were studied by Sridhar et al. (1975), Zhu et al. (1995)

and Oh and Nayfeh (1998). Maganty and Bickford (1987) derived an accurate set of geomet-

rically nonlinear equations of motion of circular rings. They concluded that, for nonresonant

motions, the initial out-of-plane amplitude has a marginal effect on the initial in-plane os-

cillations, whereas the effect of the initial in-plane amplitude on the out-of-plane oscillations

is significant. For resonance motions, they indicated that there is an exchange of energy

between the in-plane and out-of-plane motions. Hadian and Nayfeh (1990) used the method

of multiple scales to study the responses of circular plates to a harmonic external excitation.

They found out that the multi-mode response loses stability through a Hopf bifurcation,

resulting in harmonically and chaotically modulated motions of the plate. Leung and Mao

(1995) used Galerkin method to study the dynamics of beams and plates. They compared

their results with those obtained by using Runge-Kutta integration for an undamped sys-

tem. Abe et al. (1998b, 1998c) investigated two-mode and three-mode responses of simply

supported laminated plates to harmonic excitations by using a combination of the Galerkin

procedure and the method of multiple scales. They compared their analytical results with

numerical integration results and found good agreement.
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1.6 Cylindrical Shells

Cylindrical shells received considerable attention due to their importance. A rich bibliog-

raphy on the dynamics of cylindrical shells has been presented by Grigolyuk and Kabanov

(1967, 1978) and Bert (1969). Linear vibrations were studied by Nowacki (1963). He pre-

sented analytical solutions for the vibrations of simply supported cylindrical shallow shells

with a rectangular planform. Khdeir (1993) constructed a closed-form solution for the dy-

namic response of cross-ply laminated circular cylindrical shells using state variables. Suzuki

et al. (1994) presented an exact solution for the free vibration of laminated noncircular cylin-

drical shells using a power-series expansion. Timarci and Soldates (1995) investigated the

linear free vibrations of cross-ply laminated cylindrical shells subjected to different boundary

conditions. Ip et al. (1996) developed an analytical model to predict the modal character-

istics of thin-walled circular cylindrical laminated shells with free ends by Rayleigh-Ritz

method. Zenkour (1998) studied the free vibrations of axisymmetric shear-deformable lami-

nated cylindrical shells. He developed a third-order shear deformation theory of elastic shells

with orthotropic layers.

Fluid loaded cylindrical shells were studied by Ahmed and Lee (1975). They developed

a mathematical theory to study the nonlinear flexural response of an elastic, infinitely long,

thin cylindrical shell submerged in an acoustic medium. Amabili et al. (1998) studied

the nonlinear free and forced vibrations of a simply supported circular cylindrical Donnell

shallow shell in contact with a fluid. They presented the results numerically and by using

the normal forms (Nayfeh 1993). In another paper (1999), they investigated the nonlinear

dynamics and stability of simply supported circular cylindrical shells containing a fluid.

Nonlinear free vibrations of cylindrical shells have been studied by a number of researchers.

Moussaoui et al. (2000) studied the nonlinear free vibrations of an infinitely long circular

cylindrical shell. They showed that the nonlinearity can significantly affect the stress in the

shell. Killian et al. (1983) used the method of composite expansions to obtain approxima-

tions to the natural frequencies of prestressed, clamped cylindrical shells.
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Investigations have been conducted into the forced nonlinear vibrations of cylindrical

shells. Mente (1973) numerically studied the nonlinear elastic response of thin cylindri-

cal shells to a time-dependent asymmetric pressure loading. Andianov and Kholod (1993)

used an asymptotic method to study the nonlinear vibrations of shallow cylindrical shells.

Andrianov and Kholod (1996) used an asymptotic procedure to study the dynamics of geo-

metrically nonlinear thin circular cylindrical shells. Foale et al. (1998) numerically studied

the nonlinear vibrations of a shallow cylindrical shell to a periodic axial forcing using the

inertial manifold approximation. The influence of geometric imperfections on the dynamics

of cylindrical shells was studied by Watawala and Nash (1983) and Hui (1984).

Nowinski (1963) studied the transverse vibrations of elastic orthotropic cylindrical shells

using a single-mode Galerkin approximation. Bieniek et al. (1966) studied the dynamic

stability of a cylindrical shell subjected to a uniform radial pressure. They used a combi-

nation of the Galerkin procedure and perturbation methods to analyze the dynamics. Chen

and Babcock (1975) analyzed the large-amplitude vibrations of thin-walled cylindrical shells.

They used a single-mode approximation and a perturbation method to solve for the steady-

state forced vibrations. They indicated that the response contains a frequency that is twice

that of the fundamental mode.

Recently, modal interactions in cylindrical shells have attracted some attention. McIvor

(1966) and McIvor and Lovell (1968) analyzed the stability of the breathing mode of finite-

length isotropic cylindrical shells under a uniform radial impulse. Atluri (1972) studied the

nonlinear free vibrations of circular cylindrical shells using the Galerkin method. Fu and Chia

(1993) studied the nonlinear free vibrations of generally laminated circular and cylindrical

shells, including shear deformations, rotatory inertia, and geometrical initial imperfections

using a multi-mode Galerkin approximation and the method of harmonic balance. They

found out that the rotatory inertia has a very small effect on the frequency-response curve

(Nayfeh and Mook, 1979) whereas, the transverse shear has a significant effect. Raouf

and Palazotto (1994) studied the nonlinear free vibrations of a curved simply supported

orthotropic panel using a combination of the Galerkin method and the Lindstédt-Poincaré
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perturbation technique. They concluded that modes with even indeces do not affect the

nonlinear vibration of the shell. Popov et al. (1998) studied the nonlinear vibrations of

parametrically excited cylindrical shells. They used a continuation technique to study the

interaction between modes.

1.7 Spherical and Conical Shells

A relatively small number of publications has studied the vibrations of spherical and con-

ical shells. Sinharay and Banerjee (1985) studied large deflections of elastic spherical and

cylindrical shells. Mukherjee and Chakraborty (1985) developed an exact solution for large-

amplitude free and forced oscillations of spherical shells using finite-deformation theory.

Alwar and Narasimhan (1991) studied the static deflections of laminated orthotropic spher-

ical shells subjected to nonaxisymmetric loadings. They used a combination of a Fourier

series and the Chebyshev-Galerkin spectral method.

Connor (1962) studied the nonlinear axisymmetric vibrations of shallow spherical shells.

Evenson and Fulton (1965) studied the nonlinear dynamic responses of spherical shells.

Grossman et al. (1969) studied axisymmetric vibrations of isotropic spherical caps with

various boundary conditions. Leissa and Kadi (1971) studied the large-amplitude vibrations

of spherical shells. They showed that the nonlinearity of spherical shells is of the soften-

ing type. Hui (1983) studied the effect of geometric imperfections on the large-amplitude

vibrations of shallow spherical shells. He found out that the presence of geometric imper-

fections of the order of a fraction of the shell thickness may significantly raise the vibration

frequencies and may produce a qualitative difference in the frequency-response curves. Hui

and Leissa (1983) investigated the effect of initial geometric uni-directional imperfections on

the nonlinear vibrations of a pressurized spherical shell. They showed that the imperfec-

tions significantly reduce the natural frequencies of the shell. Yasuda and Kushida (1984)

studied axisymmetric forced oscillations of a shallow spherical shell subjected to harmonic
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excitations. They concluded that the character of the oscillations is greatly influenced by

internal resonances. Cheung and Fu (1995) studied the nonlinear vibrations of symmetric

cross-ply spherical shallow shells with a circular hole, including shear deformation, by using

the orthogonal collection method. They concluded that shear deformation does not alter

the nature of the nonlinear static and dynamic behaviors of the shell, but it decreases the

buckling load and increases the amplitude of vibration.

Very little work exists on the vibration of conical shells. Stricklin et al. (1971) studied the

nonlinear dynamic behavior of shells of revolution under symmetric and asymmetric loads

using the matrix displacement method. Chandrashekhara and Karekar (1992) studied the

vibrations of conical shell subjected to asymmetric loads. Ye (1997) studied numerically

the nonlinear vibrations and dynamic instability of thin shallow spherical and conical shells

subjected to periodic transverse and in-plane loads by using a single-mode Galerkin approx-

imation. He determined the nonlinear vibration frequencies and instability regions. Liew

and Feng (2000) studies the three-dimentional linear vibration characteristics of on conical

shell panels.

1.8 Doubly Curved Shells

Doubly curved shells are considered to be one of the most difficult type of shells to analyze

due to the presence of both curvatures in the nonlinear equations of motion. The work done

on this type of shells is small compared to the work done on cylindrical shells. Free vibrations

have constituted most of this work. Singh and Kumar (1996) investigated numerically the

linear free vibrational characteristics of doubly curved laminated shells. They compared the

Ritz method with the finite-element method and found out that the Ritz method produces

more accurate results. Liew and Lim (1996) studied the natural frequencies and linear vi-

bratory characteristics of doubly curved shallow shells using the Ritz minimization method

and taking into account high-order shear deformation. Stavridis (1998) studied the linear
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dynamic responses of thin shallow shells with a rectangular layout. He used beam eigen-

functions and assumed the shell to be a system of two independent plates in the context

of a Galerkin solution procedure. He showed that the series solution obtained in this way

converges rapidly and provides acceptable results.

El-Zaouk and Dym (1973) used a single-mode Galerkin approximation to evaluate the

effect of the curvatures, the material orthotropicity, and an internal pressure on the non-

linear vibrations of shallow shells. Chia (1988) used the method of harmonic balance and

a generalized double Fourier series with time-dependent coefficients to study the nonlinear

free vibrations of doubly curved symmetrically laminated shallow shells with rectangular

planform. They used a single-mode approximation. Their numerical results show that the

harmonic amplitudes of modes higher than the fourth are negligibly small. Abe et al. (2000)

studied the nonlinear free-vibration characteristics of the first and second vibration modes of

laminated shallow shells with rigidly clamped edges. They used the Ritz method to obtain

the first and second vibration modes. Then, the Galerkin procedure was used to derive two

nonlinearly coupled ordinary-differential equations. They showed that the motion of the first

mode affects the vibrations of the second mode.

Leissa and Narita (1984) studied the free vibrations of shallow shells using the Ritz method.

Li et al. (1990) analyzed the free vibrations of doubly curved shells using the spline finite-

strip method. Fan and Luah (1995) developed a spline finite-element technique to study the

free vibrations of arbitrary thin shell structures. Kobayashi and Leissa (1995) studied the

effect of the thickness and the curvature on the large-amplitude free-vibrations of shallow

shells using the Galerkin procedure.

A small number of publications has dealt with the forced vibrations of doubly curved shells.

Leissa et al. (1983) studied the vibrations of cantilevered doubly curved shallow shells using

the Ritz method. Jiashen and Lei (1991) studied the behavior of a shell under an earthquake

loading using a Fourier series. Qatu and Leissa (1991) used the Ritz method to study the

effect of shell parameters on its natural frequencies. In another paper, Qatu and Leissa (1993)
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investigated the vibrations of shallow shells with two adjacent edges clamped and the others

free by using the Ritz method. Fan and Zhang (1992) established an analytical solution for

the static and dynamic behavior of doubly curved shells with orthotropic layers using the

Cayley-Hamilton theorem. Wu and Liu (1994) used a Fourier series expansion to study the

displacement and stresses in thick doubly curved laminated shells. Masunaga (1999) studied

the effects of high-order shear deformations on the natural frequencies and buckling loads of

thick shallow shells with rectangular planform and subjected to uniaxial and biaxial in-plane

stresses. He concluded that a nine-mode approximation was accurate enough for extremely

thick shallow shells. Wu and Chi (1999) developed an analytical solution for doubly curved

laminated shells with various boundary conditions by using an asymptotic method.

Maewal (1978) solved the equations of motion by using an asymptotic analysis without

going through the Galerkin method and indicated a correction to the frequency-response

curves reported in the literature. Zhang et al. (2001) used a single-mode Galerkin approxi-

mation to study the nonlinear dynamics and stability of doubly curved orthotropic shallow

shells with simply supported boundary conditions under impact.

1.9 Reduced-Order Models

Recently, multi-mode approximation has attracted a great attention due to their effect on the

accuracy of the predicted response. Many papers and a book (Nayfeh, 2000) were published

by Nayfeh and his co-workers on the effects of multi-mode approximation on the stability of

continuous systems. They showed the shortcomings of using a single-mode discretization in

the analysis of different continuous systems with quadratic and cubic nonlinearities.

Nayfeh and Raouf (1987) used the Galerkin procedure to study the nonlinear forced re-

sponses of infinitely long cylindrical shells in the case of one-to-one internal resonance. In

another paper, they (1990) studied the nonlinear responses of infinitely long cylinders to a

primary resonance excitation. Pakdemirli et al. (1995) showed that treatment of a low-order
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discretized system may lead to different responses compared to those obtained by the direct

approach for the nonlinear vibrations of cables.

Chin and Nayfeh (1996) studied the nonlinear vibrations of infinitely long cylindrical shells.

They compared the results obtained using a two-mode discretization with those obtained by

directly attacking the governing partial-differential equations of motion. They showed that

a two-mode discretization approach may produce erroneous results. In another paper, Chin

and Nayfeh (2001) investigated the nonlinear response and stability of an infinitely long

circular cylindrical shell to a primary resonance excitation involving one-to-one and two-to-

one internal resonances.

Nayfeh and Lacarbonara (1997) compared the results obtained by low-order Galerkin

approximations with those obtained by directly attacking the partial-differential equations

governing the dynamics of an Euler-Bernoulli beam resting on a nonlinear foundation. They

showed that a single-mode approximation leads to erroneous qualitative and quantitative

predictions. Lacarbonara et al. (1998) demonstrated experimentally that a single-mode

Galerkin approximation of the dynamics of a buckled beam may produce quantitative and

qualitative errors in the frequency-response curves. Nayfeh (1998) developed a procedure

to produce reduced-order models that overcome the shortcomings of the Galerkin method.

The results obtained by analyzing these reduced-order systems are in agreement with those

obtained experimentally and by directly attacking the partial-differential equations and as-

sociated boundary conditions. Lacarbonara (1999) studied the nonlinear vibrations of non-

linear spatially continuous systems with general quadratic and cubic nonlinearities using the

direct approach and low-order Galerkin discretization. He showed that a low-order Galerkin

discretization may produce inadequate qualitative and quantitative responses. Abe et al.

(1998) studied two-mode responses of thin rectangular laminated plates to harmonic exci-

tations using the Galerkin procedure and the method of multiple scales. They concluded

that the two-mode approximation may predict a behavior different from that predicted by

a single-mode approximation. Kobayashi et al. (1999) used single-mode and two-mode ap-

proximations to analyze the nonlinear responses of doubly-curved shells to primary-resonance
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excitations. Rega et al. (1999) studied the nonlinear three-dimensional responses of an elas-

tic suspended shallow cable to a harmonic excitation. They showed that a low-order Galerkin

approximation produces qualitative and quantitative differences in the frequency-response

curves compared with those produced by the direct approach. Abe et. al. (2001) studied

the responses of cross-ply laminated shallow shells. They used an improved displacement

function to overcome the shortcomings of the Galerkin approximation.

Emam and Nayfeh (2002) investigated the nonlinear vibrations of a clamped-clamped

buckled beam subjected to a harmonic excitation. They showed that a single-mode approx-

imation may lead to quantitative and qualitative errors in the static and dynamic behaviors

of the beam. Nayfeh and Arafat (2002) investigated the nonlinear forced vibrations of shal-

low suspended cables. They compared between the results obtained by using the direct and

discretization approaches. They found out that using a low-order discretization may lead to

significant quantitative and qualitative errors in the effective nonlinearity.



Chapter 2

Equations of Motion

There are many theories of shells which can be classified depending on the assumptions made

in each of them. Next, we present an introduction of them. For more comprehensive details,

we refer the reader to Leissa (1993), Soedel (1993), Bogdanovich (1990), Novozhilov (1953),

Pshenichnov (1993), and Reddy (1997).

2.1 Infinitesimal Distance in Shell Layers

The derivation of the equations of motion is based on two assumptions. The first assumption

is that the shell has small deflections. The second assumption is that the shell thickness is

small compared to its radii of curvature. The theoretical approach presented here is based

on the works of Love (1888, 1944) and Reissner (1941).

With these assumptions, any location on the neutral surface can be defined by two-

dimensional curvilinear surface coordinates α1 and α2 instead of three-dimensional Cartesian

coordinates. We choose α1 and α2 along the principal curvatures, Fig. 4. The location of

point P on the neutral surface can be expressed as

x1 = f1(α1, α2), x2 = f2(α1, α2), x3 = f3(α1, α2) (2.1)

17
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or in vector form as

r̄(α1, α2) = f1(α1, α2)ē1 + f2(α1, α2)ē2 + f3(α1, α2)ē3 (2.2)

Next, we consider a point P ′ close to P on the neutral surface. Then, the location of P ′ can

be expressed in terms of that of P as

r̄ + dr̄ (2.3)

where the differential change in the vector r̄ can be written as

dr̄ =
∂r̄

∂α1
dα1 +

∂r̄

∂α2
dα2 (2.4)

Hence, the magnitude ds of dr̄ is obtained from

(ds)2 = dr̄ · dr̄ (2.5)

Expanding this equation in orthogonal curvilinear coordinates leads to

(ds)2 =
∂r̄

∂α1
· ∂r̄

∂α1
(dα1)

2 +
∂r̄

∂α2
· ∂r̄

∂α2
(dα2)

2 (2.6)

or

(ds)2 = A2
1(dα1)

2 + A2
2(dα2)

2 (2.7)

where A1 and A2 are called Lame parameters and defined as

A2
1 =

∂r̄

∂α1
· ∂r̄

∂α1
(2.8)

A2
2 =

∂r̄

∂α2
· ∂r̄

∂α2
(2.9)

To define the distance between two points on the shell, we take a point P1 along the normal

to the neutral surface through point P and at a distance α3 from P , and we take another
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Figure 2.1: Stresses in a shell element.

point P ′

1 along the normal to the neutral surface through P ′ and at a distance α3 +dα3 from

P ′. Therefore, the location of P1 can be expressed as

R̄(α1, α2, α3) = r̄(α1, α2) + α3n̄(α1, α2) (2.10)

where n̄ is a unit vector normal to the neutral surface through P . Then, dR̄ can be expressed

as

dR̄ = dr̄ + α3dn̄ + n̄dα3 (2.11)

where

dn̄ =
∂n̄

∂α1
dα1 +

∂n̄

∂α2
dα2 (2.12)

Next, we calculate the magnitude dS of dR̄ by taking the dot product of the vector dR̄ with

itself. The result is

(dS)2 =dR̄ · dR̄ = dr̄ · dr̄ + α2
3dn̄ · dn̄ + (dα3)

2 + 2α3dr̄ · dn̄

+ 2dα3(dr̄ · n̄) (2.13)



Khaled A. Alhazza Chapter 2. Equations of Motion 20

where (Soedel, 1993)

dr̄ · dr̄ = A2
1(dα1)

2 + A2
2(dα2)

2 (2.14)

dn̄ · dn̄ =
A2

1

R2
1

(dα1)
2 +

A2
2

R2
2

(dα2)
2 (2.15)

dr̄ · dn̄ =
A2

1

R1
(dα1)

2 +
A2

2

R2
(dα2)

2 (2.16)

and R1 and R2 are the radii of curvature along the α1 and α2 axes, respectively.

Substituting Eqs. (2.14)-(2.16) into Eq. (2.13) gives

(dS)2 = A2
1

(

1 +
α3

R1

)2

(dα1)
2 + A2

2

(

1 +
α3

R2

)2

(dα2)
2 + (dα3)

2 (2.17)

2.2 Stress-Strain Relationships

Most engineering materials have linear stress-strain relationships. These relationships can

be expressed as

σii = Eεii (2.18)

σij = Gεij (2.19)

These relationships are known as Hooke′s Law, after the English mathematician Robert

Hooke (1635-1703), where E is the modulus of elasticity, the εii are the normal strains, the

σii are the normal stresses, G is the modulus of rigidity, the σij are the shearing stresses,

and the εij are the shearing strains. In order to express the strain components εij in terms of

the stress components σij, we use the principle of superposition, which states that the effect

of a given combined loading on a structure can be obtained by determining separately the

effects of the various loads and combining the results. Assuming that each effect is linearly
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related to the load which produces it and that the deformation resulting from any given

load is small, the relations provided by these assumptions are referred to as the generalized

Hooke Law, which can be expressed mathematically as

ε11 =
1

E
[σ11 − ν(σ22 + σ33)] (2.20)

ε22 =
1

E
[σ22 − ν(σ11 + σ33)] (2.21)

ε33 =
1

E
[σ33 − ν(σ11 + σ22)] (2.22)

ε12 =
1

G
σ12 (2.23)

ε13 =
1

G
σ13 (2.24)

ε23 =
1

G
σ23 (2.25)

where ν is Poisson’s ratio.

2.3 Strain-Displacement Relationships

The strain-displacement relationships in orthogonal curvilinear coordinates based on the

three-dimensional theory of elasticity can be written as (Sokolnikoff, 1956)

εii =
∂

∂αi

(

Ui√
gi

)

+
1

2gi

3
∑

k=1

∂gi

∂αk

Uk√
gk

i = 1, 2, 3 (2.26)

εij =
1

√
gigj

[

gi
∂

∂αj

(

Ui√
gi

)

+ gj
∂

∂αi

(

Uj√
gj

)]

i, j = 1, 2, 3 i �= j (2.27)
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where g1, g2, and g3 are defined as

g1 =

[

A1

(

1 +
α3

R1

)]2

(2.28)

g2 =

[

A2

(

1 +
α3

R2

)]2

(2.29)

g3 = 1 (2.30)

and the Ui are the deflections along the αi directions. Substituting Eqs. (2.28)-(2.30) into

Eqs. (2.26) and (2.27) leads

ε11 =
1

1 + α3

R1

(

1

A1

∂U1

∂α1
+

U2

A1A2

∂A1

∂α2
+

U3

R1

)

(2.31)

ε22 =
1

1 + α3

R2

(

1

A2

∂U2

∂α2
+

U1

A1A2

∂A2

∂α1
+

U3

R2

)

(2.32)

ε33 =
∂U3

∂α3
(2.33)

ε12 =
A1

(

1 + α3

R1

)

A2

(

1 + α3

R2

)

∂

∂α2





U1

A1

(

1 + α3

R1

)



 +
A2

(

1 + α3

R2

)

A1

(

1 + α3

R1

)

∂

∂α1





U2

A2

(

1 + α3

R2

)



 (2.34)

ε13 =
1

A1

(

1 + α3

R1

)

∂U3

∂α1

+ A1

(

1 +
α3

R1

)

∂

∂α3





U1

A1

(

1 + α3

R1

)



 (2.35)

ε23 =
1

A2

(

1 + α3

R2

)

∂U3

∂α2
+ A2

(

1 +
α3

R2

)

∂

∂α3





U2

A2

(

1 + α3

R2

)



 (2.36)

Next, we classify different theories used to derive the equations of motion.
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2.4 Classical Theories and Assumptions

2.4.1 Love’s Approximations

Love (1888) made four approximations in the classical theory of small displacements of thin

shells, referred to as the first approximation. These approximations have been accepted

by almost all of the following researchers. These approximations can be summarized as:

1. The shell thickness h is small compared with the radii of curvature; that is,

h

R1
and

h

R2
<< 1 (2.37)

2. The transverse normal stress can be neglected compared to the other stresses; that is,

σ33 = 0 (2.38)

3. The displacements and strains are very small so that the second-order terms in the

strain-displacement relations can be neglected.

4. The normals to the undeformed middle-surface of the shell remain straight through

out the deformation and suffer no extension. This assumption is known as Kirchhoff’s

hypothesis. This set of approximations leads to the rules

ε13 = ε23 = ε33 = 0

σ13 = σ23 = 0 (2.39)

In order to satisfy Kirchhoff’s hypothesis, we assume that the displacements along the α1

and α2 directions change linearly through the shell thickness, whereas the displacements in

the α3 direction are independent of the shell thickness. These assumptions can be expressed

as

U1(α1, α2, α3) = u1(α1, α2) + α3β1(α1, α2) (2.40)
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U2(α1, α2, α3) = u2(α1, α2) + α3β2(α1, α2) (2.41)

U3(α1, α2, α3) = u3(α1, α2) (2.42)

where β1 and β2 are the rotations of the normals to the middle surface during deformation

about α1 and α2, respectively. Substituting Eqs. (2.40)-(2.42) into Eqs. (2.35) and (2.36)

leads to the following relations:

β1 =
u1

R1

− ∂u3

A1∂α1

(2.43)

β2 =
u2

R2
− ∂u3

A2∂α2
(2.44)

2.4.2 Flügge, Gol’denveizer, Novozhilov, Byrne, and Lur’ye Equa-

tions

The strain-displacement equations used by Flügge, Gol’denveizer, Novozhilov, Byrne, and

Lur’ye can be derived by substituting Eqs. (2.40)-(2.42) into Eqs. (2.31)-(2.34) and obtaining

ε11 =
1

1 + α3

R1

(ǫ11 + α3κ11) (2.45)

ε22 =
1

1 + α3

R2

(ǫ22 + α3κ22) (2.46)

ε12 =
1

(1 + α3

R2

)(1 + α3

R1

)

[(

1 − α2
3

R1R2

)

ǫ12 + α3τ

(

1 +
α3

2R1
+

α3

2R2

)]

(2.47)

where the ǫii are the normal strain in the middle surface in the αi directions, ǫ12 is the shear

strain in the middle surface, τ is the middle surface twist, and κ11 and κ22 are the changes

in the curvature in the middle surface. These quantities can written as

ǫ11 =
1

A1

∂u1

∂α1
+

u2

A1A2

∂A1

∂α2
+

u3

R1
(2.48)
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ǫ22 =
1

A2

∂u2

∂α2
+

u1

A1A2

∂A2

∂α1
+

u3

R2
(2.49)

ǫ12 =
A1

A2

∂

∂α2

(

u1

A1

)

+
A2

A1

∂

∂α1

(

u2

A2

)

(2.50)

κ11 =
1

A1

∂β1

∂α1
+

β2

A1A2

∂A1

∂α2
(2.51)

κ22 =
1

A2

∂β2

∂α2
+

β1

A1A2

∂A2

∂α1
(2.52)

τ =
A1

A2

∂

∂α2

(

β1

A1

)

+
A2

A1

∂

∂α1

(

β2

A2

)

+
1

R1

(

1

A2

∂u1

∂α2
− u2

A1A2

∂A2

∂α1

)

+
1

R2

(

1

A1

∂u2

∂α1
− u1

A1A2

∂A1

∂α2

)

(2.53)

2.4.3 Love and Timoshenko Equations

Love and Timoshenko assumed that the terms α3

R1

and α3

R2

are small in Eqs. (2.45)-(2.47).

Hence,

ε11 = ǫ11 + α3κ11 (2.54)

ε22 = ǫ22 + α3κ22 (2.55)

ε12 = ǫ12 + α3τ (2.56)

2.4.4 Reissner, Naghdi, and Berry Equations

Reissner, Naghdi, and Berry used the same simplification as Love and Timoshenko, α3/R1

and α3/R2 << 1, but they used it earlier in the derivation, Eqs. (2.31), (2.32), and (2.34),

which gives the following set of equations:

ε11 =
1

A1

∂U1

∂α1
+

U2

A1A2

∂A1

∂α2
+

U3

R1
(2.57)
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ε22 =
1

A2

∂U2

∂α2
+

U1

A1A2

∂A2

∂α1
+

U3

R2
(2.58)

ε12 =
A1

A2

∂

∂α2

(

U1

A1

)

+
A2

A1

∂

∂α1

(

U2

A2

)

(2.59)

Consequently, the midsurface twist τ can be expressed as

τ =
A1

A2

∂

∂α2

(

β1

A1

)

+
A2

A1

∂

∂α1

(

β2

A2

)

(2.60)

2.4.5 Vlasov Equations

Assuming that the terms α3/R1 and α3/R2 << 1, Vlasov expanded the term (1 + α3/Ri)
−1

in a geometric series as

1

1 + α3/Ri

=
∞

∑

n=1

(

−α3

Ri

)n

(2.61)

Substituting Eqs. (2.40)-(2.61) into Eqs. (2.31), (2.32), and (2.34) gives

ε11 = (ǫ11 + α3κ11)
∞

∑

n=1

(

−α3

R1

)n

(2.62)

ε22 = (ǫ22 + α3κ22)
∞

∑

n=1

(

−α3

R2

)n

(2.63)

ε12 =
A1

A2

(

1 +
α3

R1

) ∞
∑

n=1

(

−α3

R2

)n
{

∂

∂α2

[

u1 + α3β1

A1

∞
∑

m=1

(

−α3

R1

)m
]}

+
A2

A1

(

1 +
α3

R2

) ∞
∑

n=1

(

−α3

R1

)n
{

∂

∂α1

[

u2 + α3β2

A2

∞
∑

m=1

(

−α3

R2

)m
]}

(2.64)

Considering only n = 1 and m = 1, a linear relationships in α3, one can write Eqs.

(2.62)-(2.64) as

ε11 = ǫ11 + α3κ11 − α3
ǫ11

R1
(2.65)
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ε22 = ǫ22 + α3κ22 − α3
ǫ22

R2
(2.66)

ε12 = ǫ12 + τα3 (2.67)

where

τ =

(

1

R1
− 1

R2

) [

A1

A2

∂

∂α2

(

u1

A1

)

− A2

A1

∂

∂α1

(

u2

A2

)]

− 2

A1A2

(

∂2u3

∂α1∂α2
− 1

A2

∂A2

∂α1

∂u3

∂α2
− 1

A1

∂A1

∂α2

∂u3

∂α1

)

(2.68)

2.4.6 Donnell and Mushtari Equations

Donnell and Mushtari neglected the effect of the tangential displacement in their derivation.

They obtained the strains equations

ε11 = ǫ11 + α3κ11 (2.69)

ε22 = ǫ22 + α3κ22 (2.70)

ε12 = ǫ12 + α3τ (2.71)

where ǫ11, ǫ22, and ǫ12 are given by Eqs. (2.48)-(2.50). The middle surface change in the

curvatures and twist, κ11, κ22, and τ , are

κ11 = − 1

A1

∂

∂α1

(

1

A1

∂u3

∂α1

)

− 1

A1A2
2

∂A1

∂α2

∂u3

∂α2
(2.72)

κ22 = − 1

A2

∂

∂α2

(

1

A2

∂u3

∂α2

)

− 1

A2
1A2

∂A2

∂α1

∂u3

∂α1
(2.73)

τ = −A2

A1

∂

∂α1

(

1

A2
2

∂u3

∂α2

)

− A1

A2

∂

∂α2

(

1

A2
1

∂u3

∂α1

)

(2.74)
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Figure 2.2: Forces resultants in shell coordinates.

2.5 Energy Expressions

The equations of motion can be derived by calculating the strain and kinetic energies stored

in an infinitesimal element. The strain energy produced by the stresses σij can be expressed

as

dU =
1

2
(σ11ε11 + σ22ε22 + σ11ε11 + σ13ε13 + σ23ε23 + σ33ε33) dV (2.75)

Using Love assumptions, we can neglect the effect of the last term in Eq. (2.75). Integrating

Eq. (2.75) over the volume

dV = A1A2

(

1 +
α3

R1

) (

1 +
α3

R2

)

dα1dα2dα3 (2.76)

gives

U =

∫

α1

∫

α2

∫

α3

1

2
(σ11ε11 + σ22ε22 + σ11ε11 + σ13ε13 + σ23ε23) dV (2.77)
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For an infinitesimal element, the kinetic energy K is given by

dK =
1

2
ρ
(

U̇2
1 + U̇2

2 + U̇2
3

)

dV (2.78)

where ρ is the density and the overdot indicates the time derivative. Substituting Eqs.

(2.40)-(2.42) and (2.76) into Eq. (2.78) gives

K =
1

2
ρ

∫

α1

∫

α2

∫

α3

[u̇2
1 + u̇2

2 + u̇2
3 + α3(α3β̇2

1 + α3β̇2
2 + 2β̇1u̇1 + 2β̇2u̇2)]

×A1A2

(

1 +
α3

R1

) (

1 +
α3

R2

)

dα1dα2dα3 (2.79)

For small deflections, we can neglect the terms α3

R2

and α3

R2

. Integrating Eq. (2.79) over the

thickness α3 from 1
2
h to −1

2
h yields,

K =
1

2
ρh

∫

α1

∫

α2

[u̇2
1 + u̇2

2 + u̇2
3 +

1

12
h2(β̇2

1 + β̇2
2)]A1A2dα1dα2 (2.80)

Now, we calculate the variation of the energy due to the forces q1, q2, and q3 acting on the

neutral surface of the shell as

δEL =

∫

α1

∫

α2

(q1δu1 + q2δu2 + q3δu3)A1A2dα1dα2 (2.81)

Variation of the energy due to the boundary forces along α1 and α2, Fig. 2.2, can be expressed

as

δEB =

∫

α1

(δu2N
∗

22 + δu1N
∗

21 + δu3Q
∗

23 + δβ2M
∗

22 + δβ1M
∗

21)A1dα1

+

∫

α2

(δu1N
∗

11 + δu2N
∗

12 + δu3Q
∗

13 + δβ1M
∗

11 + δβ1M
∗

12)A2dα2 (2.82)

where the N∗

ii are the boundary forces acting normal to the surface, the N∗

ij are the shear

forces acting in the tangent plane, the M∗

ii are the moments in the α∗

i directions, the M∗

ij are

the twisting moments in the α∗

j directions, and the Q∗

ij are the shear forces.

2.6 Hamilton’s Principle

There are several ways in which we can derive Lagrange’s equations, such as the generalized

principle of d’Alembert and using Hamilton’s principle. Hamilton’s principle is a minimiza-
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Figure 2.3: Moment resultants in shell coordinates.

tion principle, which seems to apply to all problems of mechanics and most classical physics.

It states that, while there are more than one path along which a dynamic system may move

from one point to another in space and time, the system actually follows the path that

minimizes the time integral of the difference between the kinetic and potential energies. In

the derivation of the equations of motion using Hamilton’s principle, there are two steps

that must be done. First, one uses integration by parts to eliminate the generalized virtual

velocities. Second, one sets the coefficients of the generalized virtual displacements equal to

zero. The mathematical version of this principle, developed by Euler and Bernoulli in the

eighteenth century, can be written as

δ

∫ t1

t0

(U − K − EL − EB)dt = 0 δr̄i = 0 (2.83)

where the δr̄i are variations of the displacement and δ is the variational symbol, which is

treated mathematically like a differential symbol. Taking the variational operator inside the
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integral in Eq. (2.83) leads to

∫ t1

t0

(δU − δK − δEL − δEB)dt = 0 (2.84)

We start with δK from Eq. (2.80); that is,

∫ t1

t0

δK dt = ρh

∫ t1

t0

∫

α1

∫

α2

[

u̇1δu̇1 + u̇2δu̇2 + u̇3δu̇3 +
h2

12
(β̇1δβ̇1 + β̇2δβ̇2)

]

A1A2dα1dα2dt

(2.85)

We integrate each term in Eq. (2.85) by parts. As an example,

∫ t1

t0

u̇1δu̇1dt = [u̇1δu1]
t1
t0
−

∫ t1

t0

ü1δu1dt (2.86)

Knowing that the virtual displacements are zero at t0 and t1, we rewrite Eq. (2.85) as

∫ t1

t0

δK dt = −ρh

∫ t1

t0

∫

α1

∫

α2

[

ü1δu1 + ü2δu2 + ü3δu3 +
h2

12
(β̈1δβ1 + β̈2δβ2)

]

A1A2dα1dα2dt

(2.87)

Neglecting the influence of the rotatory inertia β̈1 and β̈2 and following the classical Bernoulli-

Euler beam theory, we reduce Eq. (2.87) to

∫ t1

t0

δK dt = −ρh

∫ t1

t0

∫

α1

∫

α2

[ü1δu1 + ü2δu2 + ü3δu3)] A1A2dα1dα2dt (2.88)

Evaluating the variation of the energy due to the external load δEL from Eq. (2.81), we

have

∫ t1

t0

δELdt =

∫ t1

t0

∫

α1

∫

α2

(q1δu1 + q2δu2 + q3δu3)A1A2dα1dα2dt (2.89)

Next, we evaluate variation of the energy due to the boundary energy δEB from Eq. (2.82)

and obtain

∫ t1

t0

δEB =

∫ t1

t0

∫

α1

(δu2N
∗

22 + δu1N
∗

21 + δu3Q
∗

23 + δβ2M
∗

22 + δβ1M
∗

21)A1dα1dt

+

∫ t1

t0

∫

α2

(δu1N
∗

11 + δu2N
∗

12 + δu3Q
∗

13 + δβ1M
∗

11 + δβ1M
∗

12)A2dα2dt (2.90)
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Finally, we evaluate the integral of the variation of the strain energy δU from Eq. (2.77)

and obtain

∫ t1

t0

δUdt =

∫ t1

t0

∫

α1

∫

α2

∫

α3

δF dV dt (2.91)

where

F =
1

2
(σ11ε11 + σ22ε22 + σ12ε12 + σ13ε13 + σ23ε23) (2.92)

Applying the differential operator and using the chain rule on F leads to

δF =
∂F

∂ε11
δε11 +

∂F

∂ε22
δε22 +

∂F

∂ε12
δε12 +

∂F

∂ε13
δε13 +

∂F

∂ε23
δε23 (2.93)

Expanding the first term in Eq. (2.93) yields,

∂F

∂ε11
δε11 =

1

2

(

∂σ11

∂ε11
ε11 + σ11 +

∂σ22

∂ε11
ε22

)

δε11 (2.94)

Considering the Love simplification σ33=0 and solving for the stresses in the generalized

Hooke law gives

σ11 =
E

1 − ν2
(ε11 + νε22) (2.95)

σ22 =
E

1 − ν2
(ε22 + νε11) (2.96)

σ12 = Gε12 (2.97)

Substituting Eqs. (2.95)-(2.97) into Eq. (2.94) gives

∂F

∂ε11
δε11 = σ11δε11 (2.98)

Thus, Eq. (2.91) can be written as

∫ t1

t0

δUdt =

∫ t1

t0

∫

α1

∫

α2

∫

α3

(σ11δε11 + σ22δε22 + σ12δε12 + σ13δε13 + σ23δε23)

× A1A2

(

1 +
α3

R1

)(

1 +
α3

R2

)

dα1dα2dα3 dt (2.99)
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Now, we substitute the Love and Timoshenko strain-displacement equations, Eqs. (2.54)-

(2.56), into Eqs. (2.95)-(2.97) and obtain

σ11 =
E

1 − ν2
[ǫ11 + νǫ22 + α3(κ11 + νκ22)] (2.100)

σ22 =
E

1 − ν2
[ǫ22 + νǫ11 + α3(κ22 + νκ11)] (2.101)

σ12 = G(ǫ12 + α3τ ) (2.102)

The total force acting on an element dα2 in the α1 direction can be expressed as

∫ α3=h/2

α3=−h/2

σ11A2

(

1 +
α3

R2

)

dα2dα3 (2.103)

Hence, the force per unit length N11 acting on the A2 surface can be expressed as

N11 =

∫ h/2

−h/2

σ11A2

(

1 +
α3

R2

)

dα3 (2.104)

Neglecting the term α3

R2

in Eq. (2.104) yields

N11 =

∫ h/2

−h/2

σ11A2dα3 (2.105)

Substituting Eq. (2.100) into Eq. (2.105) gives

N11 = K̄(ǫ11 + νǫ22) (2.106)

where the membrane stiffness K̄ can be written as

K̄ =
Eh

1 − ν2
(2.107)

Similarly, one can write N22 and N12 as

N22 = K̄(ǫ22 + νǫ11) (2.108)

N12 = N21 =
1

2
K̄(1 − ν)ǫ12 (2.109)
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The total bending moments acting on an element dα2 in the α1 direction is
∫ α3=h/2

α3=−h/2

σ11α3A2

(

1 +
α3

R2

)

dα2dα3 (2.110)

Hence, the total bending moment per unit length M11 acting on the A2 surface is

M11 =

∫ h/2

−h/2

σ11α3A2

(

1 +
α3

R2

)

dα3 (2.111)

Neglecting the terms containing α3

R2

in Eq. (2.111) gives

M11 =

∫ h/2

−h/2

σ11α3A2dα3 (2.112)

Substituting Eq. (2.100) into Eq. (2.112) yields,

M11 = D(κ11 + νκ22) (2.113)

where D is the bending rigidity, which can be expressed as

D =
Eh3

12(1 − ν2)
(2.114)

Similarly, one can write M22 and M12 as

M22 = D(κ22 + νκ11) (2.115)

M12 = M21 =
1

2
D(1 − ν)κ12 (2.116)

The transverse shear forces are

Q13 =

∫ h/2

−h/2

σ13dα3 (2.117)

Q23 =

∫ h/2

−h/2

σ23dα3 (2.118)

Using Eqs. (2.106), (2.108), (2.109), (2.113), (2.115), and (2.116) to solve for the strains

and substituting the results into Eqs. (2.100)-(2.102) gives

σ11 =
N11

h
+

12M11

h3
α3 (2.119)
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σ22 =
N22

h
+

12M22

h3
α3 (2.120)

σ12 =
N12

h
+

12M12

h3
α3 (2.121)

Next, we neglect the terms α3/R1 and α3/R2, substitute the Love and Timoshenko strain-

displacement relations into Eq. (2.99), and integrate the result with respect to α3. The first

term in the resulting equation is

∫ t1

t0

∫

α1

∫

α2

∫

α3

σ11δε11A1A2 dα1 dα2 dα3 dt =

∫ t1

t0

∫

α1

∫

α2

∫

α3

[

σ11

(

A2
∂(δu1)

∂α1
+ δu2

∂A1

∂α2
+

A1A2

R1
δu3

)

+ α3σ11

(

A2
∂(δβ2)

∂α1
+ δβ2

∂A1

∂α2

)]

· dα1 dα2 dα3 dt

(2.122)

Substituting Eqs. (2.106) and (2.113) into Eq. (2.122) gives

∫ t1

t0

∫

α1

∫

α2

∫

α3

σ11δε11A1A2 dα1 dα2 dα1 dt =

∫ t1

t0

∫

α1

∫

α2

[

N11

(

A2
∂(δu1)

∂α1
+ δu2

∂A1

∂α2
+

A1A2

R1
δu3

)

+ M11

(

A2
∂(δβ1)

∂α1
+ δβ2

∂A1

∂α2

)]

· dα1 dα2 dt

(2.123)

Integrating the first term by parts leads to

∫

α1

∫

α2

N11A2α1
∂(δu1)

∂α1
dα1 dα2 =

∫

α2

N11A2δu1dα2 −
∫

α1

∫

α2

∂(N11A2)

∂α1
δu1 dα1 dα2 (2.124)
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Integrating by parts all of the terms in Eq. (2.99) gives

∫ t1

t0

δU dt =

∫ t1

t0

∫

α1

∫

α2

[(

−∂(N11A2)

∂α1
− ∂(N21A1)

∂α2
− N12

∂A1

∂α2
+ N22

∂A2

∂α1
− Q13

A1A2

R1

)

δu1

+

(

−∂(N12A2)

∂α1
− ∂(N22A1)

∂α2
+ N11

∂A1

∂α2
− N21

∂A2

∂α1
− Q23

A1A2

R2

)

δu2

+

(

N11
A1A2

R1

+ N22
A1A2

R2

− ∂(Q13A2)

∂α1

− ∂(Q23A1)

∂α2

)

δu3

+

(

−∂(M21A1)

∂α2
− M12

∂A1

∂α2
+ M22

∂A2

∂α1
− ∂(M11A2)

∂α1
+ Q13A1A2

)

δβ1

+

(

−∂(M12A2)

∂α1
− M21

∂A2

∂α1
+ M11

∂A1

∂α2
− ∂(M22A1)

∂α2
+ Q23A1A2

)

δβ2

]

dα1dα2dt

+

∫ t1

t0

∫

α2

(N11δu1 + M11δβ1 + N12δu2 + M12δβ2 + Q13δu3)A2dα2dt

+

∫ t1

t0

∫

α1

(N22δu2 + M22δβ2 + N21δu1 + M21δβ1 + Q23δu2)A1dα1dt

(2.125)
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Substituting Eqs. (2.79) and (2.88)-(2.90) into Eq. (2.125) gives

∫ t1

t0

∫

α1

∫

α2

[(

∂(N11A2)

∂α1
+

∂(N21A1)

∂α2
+ N12

∂A1

∂α2
− N22

∂A2

∂α1
+ Q13

A1A2

R1

+ (q1 − ρhü1)A1A2

)

δu1 +

(

∂(N12A2)

∂α1

+
∂(N22A1)

∂α2

− N11
∂A1

∂α2

+ N21
∂A2

∂α1

+ Q23
A1A2

R2

+ (q2 − ρhü2)A1A2

)

δu2

+

(

−N11
A1A2

R1
− N22

A1A2

R2
+

∂(Q13A2)

∂α1
+

∂(Q23A1)

∂α2
+ (q3 − ρhü3)A1A2

)

δu3

+

(

∂(M21A1)

∂α2
+ M12

∂A1

∂α2
− M22

∂A2

∂α1
+

∂(M11A2)

∂α1
− Q13A1A2

)

δβ1

+

(

∂(M12A2)

∂α1
+ M21

∂A2

∂α1
− M11

∂A1

∂α2
+

∂(M22A1)

∂α2
− Q23A1A2

)

δβ2

]

dα1dα2dt

+

∫ t1

t0

∫

α2

[

(N∗

11 − N11)δu1 + (M∗

11 − M11)δβ1 + (N∗

12 − N12)δu2 + (M∗

12 − M12)δβ2

+ (Q∗

13 − Q13)δu3

]

A2dα2dt +

∫ t1

t0

∫

α1

[

(N∗

22 − N22)δu2 + (M∗

22 − M22)δβ2 + (N∗

21 − N21)δu1

+ (M∗

21 −M21)δβ1 + (Q∗

23 − Q23)δu2

]

A1dα1dt

(2.126)

To satisfy Eq. (2.126) requires that each double and triple integral must equal to zero

individually. Also, each integral equation can not be satisfied unless the coefficients of the

variational displacement are zero. Setting the triple integrals equal to zero gives

∂(N11A2)

∂α1

+
∂(N21A1)

∂α2

+ N12
∂A1

∂α2

− N22
∂A2

∂α1

+ Q13
A1A2

R1

+ (q1 − ρhü1)A1A2 = 0 (2.127)

∂(N12A2)

∂α1
+

∂(N22A1)

∂α2
− N11

∂A1

∂α2
+ N21

∂A2

∂α1
+ Q23

A1A2

R2
+ (q2 − ρhü2)A1A2 = 0 (2.128)

−N11
A1A2

R1

− N22
A1A2

R2

+
∂(Q13A2)

∂α1

+
∂(Q23A1)

∂α2

+ (q3 − ρhü3)A1A2 = 0 (2.129)

∂(M21A1)

∂α2
+ M12

∂A1

∂α2
− M22

∂A2

∂α1
+

∂(M11A2)

∂α1
− Q13A1A2 = 0 (2.130)
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∂(M12A2)

∂α1
+ M21

∂A2

∂α1
− M11

∂A1

∂α2
+

∂(M22A1)

∂α2
− Q23A1A2 = 0 (2.131)

Equations (2.127)-(2.131) are known as Love’s equations; they define the motion of a

shell due to any type of load. These equations of motion can be also obtained by taking a

differential element of the shell having a thickness h and set the summation of the forces, Fig.

2.2, and summation of the moments, Fig. 2.3, equal to zero. Summation of the forces gives

the first three equations of motion, Eqs. (2.127)-(2.129), while summation of the moments

in the α1 and α2 directions leads to the remaining two equations, Eqs. (2.130) and (2.131).

2.7 Shallow Shell Theory

A shallow shell can be defined as a slightly curved plate or a shell whose smallest radius

of curvature at every point is large compared with the greatest length measured along the

middle surface of the shell. In shallow shell theory, the terms Q13 and Q23 are neglected, the

tangential loads q1 and q2 are zero, only the transverse load q3 �= 0, and the tangentional

accelerations ü1 and ü2 are neglected.

2.8 Classical Laminate Theory

The classical laminate theory is based on the following assumptions:

1. The layers are perfectly bonded together.

2. The material of each layer is linearly elastic.

3. The material has two planes of material symmetry (orthotropic).

4. The strains and displacements are small.

5. The transverse shear stresses on the top and bottom surfaces are zero.



Chapter 3

Response of a Shallow Shell to a

Primary Resonance

We consider nonlinear forced vibrations of a doubly curved cross-ply laminated shallow shell

with simply supported boundary conditions. We investigate its response to a primary reso-

nance of its fundamental mode (i.e., Ω ≈ ω11). The nonlinear partial-differential equations

governing the motion of the shell are based on the von Kármán-type geometric nonlinear

theory and the first-order shear-deformation theory.

Due to the complexity of the nonlinear partial-differential equations, relatively a limited

number of papers has been presented on the nonlinear vibrations of doubly curved shells. A

common approach for analyzing the problem is to use the Galerkin method. Accordingly, the

weighted functions are chosen as the eigenfunctions of the linearized problem. In particular,

if the shell is excited near the natural frequency of a specific linear mode, only that mode

is used in the analysis. Such an approach is referred to as a single-mode discretization.

Using such an approach may lead to quantitative and in some cases qualitative errors in the

predicted response.

An approximation based on the Galerkin method is used to reduce the partial-differential

39
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Figure 3.1: A doubly curved shell with three layers (k = 3).

equations of motion and associated boundary conditions to an infinite system of nonlinearly

coupled second-order ordinary-differential equations. These equations are solved by using

the method of multiple scales. Numerical results for isotropic and single-layered shells are

obtained. The influence of the number of modes retained in the discretization on the pre-

dicted shell response is investigated. We found that symmetric modes do not have any effect

on the predicted response for the case of primary resonance of the fundamental mode of vi-

bration. It is shown that using a single-mode approximation can lead to quantitatively and

in some cases to qualitatively erroneous results. A multi-mode approximation that includes

as many modes as needed for convergence is used to study the shell responses. Furthermore,

we identify the regions in the parameter space in which the nonlinearity of the shell is of the

hardening or softening type as well as the regions in which two-to-one internal resonances

may be activated.
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3.1 Formulation

The equations of motion for the doubly curved cross-ply shallow shell, shown in Fig. 3.1,

in Cartesian coordinates are obtained from Eqs. (2.127)-(2.131) by changing the transverse

displacement u3 to w, changing the shell coordinates α1 and α2 to x and y, setting the shell

curvatures as kx = 1/Rx and ky = 1/Ry , changing the forces N11, N12, and N22 to Nx,

Nxy, and Ny, changing the moments M11, M12, and M22 to Mx, Mxy, and My, and setting

A1 = A2 = 1. Furthermore, for a shallow shell, N12 = N21 and M12 = M21. Also, the terms

Q13 and Q23 are neglected and the tangential accelerations ü1 and ü2 are set equal to zero.

Substituting these quantities into the equations of motion leads to

∂Nx

∂x
+

∂Nxy

∂y
= 0 (3.1)

∂Nxy

∂x
+

∂Ny

∂y
= 0 (3.2)

∂

∂x

(

Nx
∂w

∂x
+ Nxy

∂w

∂y

)

+
∂

∂y

(

Nxy
∂w

∂x
+ Ny

∂w

∂y

)

+
∂2Mx

∂x2
+

∂2My

∂y2
+ 2

∂2My

∂y∂x

− kxNx − kyNy = ρh
∂2w

∂t2
+ C

∂w

∂t
+ F cos(Ωt) (3.3)

where ρ is the mass density and C is the linear viscous damping coefficient. The moment

resultants are related to the transverse displacement w(x, y, t) for cross-ply composites by

(Reddy, 1997)
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(3.4)

For a cross-ply laminate composed of k layers which are symmetrically distributed about the

midplane,

Dij =
1

3

N
∑

k=1

Qk
ij(z

3
k+1 − z3

k) (3.5)
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where

Qk
11 =

Ek
1

1 − νk
12ν

k
21

, Qk
12 =

νk
21E

k
1

1 − νk
12ν

k
21

,

Qk
22 =

Ek
2

1 − νk
12ν

k
21

, Qk
16 = Qk

26 = 0,

Qk
66 = Gk

12, Qk
44 = Gk

23, Qk
55 = Gk

13 (3.6)

We introduce the stress function Φ(x, y, t) such that

Nx = Φyy , Ny = Φxx, Nxy = −Φxy (3.7)

As a result, Eqs. (3.1) and (3.2) are satisfied exactly and Eq. (3.3) becomes

D11
∂4w

∂x4
+ 2 (D12 + 2D66)

∂4w

∂y2∂x2
+ D22

∂4w

∂y4
+ kx

∂2Φ

∂y2
+ ky

∂2Φ

∂x2
+ C

∂w

∂t
+ ρh

∂2w

∂t2

=
∂2Φ

∂y2

∂2w

∂x2
+

∂2Φ

∂x2

∂2w

∂y2
− 2

∂2Φ

∂y∂x

∂2w

∂y∂x
+ F cos(Ωt)

(3.8)

A second equation is obtained from the compatibility conditions for cross-ply shells as (Bog-

danovich, 1990)

−K11
∂4Φ

∂x4
− (2K12 + K66)

∂4Φ

∂y2∂x2
− K22

∂4Φ

∂y4
+ kx

∂2w

∂y2
+ ky

∂2w

∂x2

= −
(

∂2w

∂y∂x

)2

+
∂2w

∂x2

∂2w

∂y2
(3.9)

where

[K]ij = [A]−1
ij and Aij =

N
∑

k=1

Qk
ij(zk+1 − zk) (3.10)

We nondimensionalize the governing equations using the following:

ŵ =
w

h
, x̂ =

x

lx
, ŷ =

y

ly
, Ω̂ = l2x

√

ρh

D∗
Ω,

D∗ =
E2h

3

12(1 − ν12ν21)
, t̂ =

1

l2x

√

D∗

ρh
t,

Φ̂ = ΦD∗, F̂ = − l4x
D∗h

F , Ĉ =
l4x

D∗h
C (3.11)
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where lx and ly are the shell lengths in the x and y directions, respectively. In what follows,

we drop the hat for convenience.

Using the Galerkin procedure, we express the transverse displacement and the stress func-

tion in the form

w =
∞

∑

m=1

∞
∑

n=1

sin(nπx) sin(mπy)Wnm(t) (3.12)

Φ =
∞

∑

m=1

∞
∑

n=1

sin(nπx) sin(mπy)Φnm(t) (3.13)

which satisfies the boundary conditions. The first four antisymmetric modes are shown in

Fig 3.2. Substituting Eqs. (3.12) and (3.13) into Eqs. (3.8) and (3.9), multiplying the

resulting equations by sin(ηπx) sin(νπy), and integrating over the domain, we obtain the

following system of nonlinear ordinary-differential equations:

Φην(t) =
A2ην

A1ην
Wην(t) +

A3

A1ην

∞
∑

n,m

∞
∑

l,j

(

nlmjḠηνnmlj − n2j2Gηνnmlj

)

· Wnm(t)Wlj(t) (3.14)

C1ηνWην(t) + C2ηνΦην(t) + C3ηνẆην(t) + C4Ẅην(t) + C5

·
∞

∑

n,m

∞
∑

l,j

[

(

n2j2 + m2l2
)

Gηνnmlj − 2mnljḠηνnmlj

]

Wnm(t)Φlj(t) = Fην cos(Ωt) (3.15)

where the A′s and the C ′s are defined in Appendix A. Using Eq. (3.14) to eliminate the

Φην(t) from Eq. (3.15), we obtain

Ẅην + 2µην Ẇην + ω2
ην Wην +

∞
∑

n,m=1

∞
∑

l,j=1

PηνnmljWnmWlj

+
∞

∑

n,m=1

∞
∑

l,j=1

∞
∑

p,q=1

∞
∑

r,s=1

SηνnmljpqrsWnmWrsWpq = Fην cos(Ωt) (3.16)

where the Pηνnmlj and Sηνnmljpqrs are given in Appendix A.
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(a) First mode n = 1 and m = 1
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(b) Second mode n = 3 and m = 1
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(c) Third mode n = 1 and m = 3
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(d) Fourth mode n = 3 and m = 3

Figure 3.2: The first four antisymmetric mode shapes for a doubly curved shallow shell with

kx = 0.1, ky = 0.1, lx = 1, and ly = 1.
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3.2 Perturbation Solution

An approximate solution for the system of weakly nonlinear equations, Eqs. (3.16), can be

obtained by a number of perturbation techniques. Here, we use the method of multiple scales

(Nayfeh, 1973, 1981). Accordingly, we express the solution in terms of different time scales

as

W11(t; ǫ) = ǫW
(1)
11 (T0, T2) + ǫ2W

(2)
11 (T0, T2) + ǫ3W

(3)
11 (T0, T2) + · · · (3.17)

Wnm(t; ǫ) =ǫ2W (2)
nm(T0, T2) + · · · , n, m �= 1 (3.18)

where T0 = t and T2 = ǫ2t. Because in the presence of damping the homogeneous solution

of every mode that is not directly or indirectly excited by an internal resonance decays

with time, the long-time response of the shell does not contain these homogeneous solutions.

Therefore, we scale W11 at O(ǫ) and Wnm for n �= 1 and m �= 1 at O(ǫ2). In the present

analysis, we consider the case in which the fundamental mode is not involved in an internal

resonance with any other mode.

To express the nearness of the excitation frequency Ω to the fundamental natural frequency

ω11, we introduce the detuning parameter σ defined as

Ω = ω11 + ǫ2σ (3.19)

Furthermore, we scale the damping and the excitation amplitude as

µην → ǫ2µην and Fην → ǫ3fην (3.20)

Substituting Eqs. (3.17)-(3.20) into Eq. (3.16) and equating coefficients of like powers of ǫ,

we obtain

Order ǫ1

D2
0W

(1)
11 + ω2

11W
(1)
11 = 0 (3.21)
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Order ǫ2

D2
0W

(2)
nm + ω2

nmW (2)
nm = −Pnm1111

(

W
(1)
11

)2

(3.22)

Order ǫ3

D2
0W

(3)
11 + ω2

11W
(3)
11 = −2D0D2W

(1)
11 −

N,M
∑

n,m=1

P11nm11W
(1)
11 W (2)

nm −
N,M
∑

l,k=1

P1111lkW
(2)
lk W

(1)
11

−
N,M
∑

i,j=1

S1111ij1111

(

W
(1)
11

)3

− 2µ11D0W
(1)
11 + f11 cos(ω11T0 + σT2) (3.23)

where Dn = ∂
∂Tn

. One can show that Pηνnmlk = 0 if any of the indices η, ν, n, m, l, k is an

even number. Thus, the even modes do not influence the response of the fundamental mode

to a primary-resonance excitation.

The solution of Eq. (3.21) can be expressed as

W
(1)
11 = a(T2) cos [ω11T0 + β(T2)] (3.24)

where a(T2) and β(T2) are determined by eliminating the secular terms from the higher-order

approximations. Substituting Eq. (3.24) into Eq. (3.22) and solving for W
(2)
nm gives

W (2)
nm = −Pnm1111a

2

{

1

2(ω2
nm − 4ω2

11)
cos [2ω11T0 + 2β(T2)] +

1

2ω2
nm

}

(3.25)

Then, substituting Eqs. (3.24) and (3.25) into Eq. (3.23) leads to

D2
0W

(3)
11 + ω2

11W
(3)
11 = 2ω11a

′ sin(ω11T0 + β) + 2ω11aβ ′ cos(ω11T0 + β)
{

N,M
∑

i,j

(P11ij11 + P1111ij)

[

Pij1111

8ω11(ω2
ij − 4ω2

11)
+

Pij1111

4ω11ω2
ij

]

−
N,M
∑

i,j

3S1111ij11

8ω11

}

× cos(ω11T0 + β) + 2µ11ω11 sin(ω11T0 + β)

+ f11 [cos (ω11T0 + β) cos (σT2 − β)− sin (ω11T0 + β) sin (σT2 − β)] + NST (3.26)

where NST stand for nonsecular terms. Eliminating the terms that produce secular terms

from Eq. (3.26) yields

a′ = −1

2
µ11a +

f11

2ω11
sin(γ) (3.27)
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2ω11aβ ′ + f cos(γ) + 2ω11αea
3 = 0 (3.28)

where αe is the effective nonlinearity given by

αe =

N,M
∑

i,j

(P11ij11 + P1111ij)

[

Pij1111

8ω11(ω2
ij − 4ω2

11)
+

Pij1111

4ω11ω2
ij

]

−
N,M
∑

i,j

3S1111ij11

8ω11
(3.29)

and

γ = σT2 − β (3.30)

Using Eq. (3.30) to eliminate β(T2) from Eq. (3.28) gives

aγ′ = σa + αea
3 +

f11

2ω11

cos γ (3.31)

It follows from Eq. (3.29) that αe → ∞ if any ωij → 2ω11, which corresponds to a two-to-one

internal resonance.

3.3 Numerical Results

Next, we use Eqs. (3.27) and (3.31) to investigate the influence of the number of terms

retained in the Galerkin approximation on the accuracy of the calculated response and the

effect of the curvatures, kx and ky, on the dynamics of simply supported isotropic, single-

layered, and multi-layered shallow shells.

3.3.1 Isotropic Shells

We consider an isotropic shell with the following parameters:

ν12 = 0.3, lx = 1, ly = 1, f = 10,

E1 = 21 × 109,
G12

E1
= 0.79 (3.32)
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We start with investigating the influence of the number of terms retained in the approxima-

tion on the accuracy of the predicted response. In Fig. 3.3, we show the frequency-response

curves obtained for a spherical isotropic shell using 1, 2, 3, 4, and 16-mode approximations.

All of the curves are bent to the left, indicating a softening-type nonlinearity. However, the

extent of the bending depends on the number N of modes retained in the approximation.

Increasing N from 1 to 2 increases the bending of the curve. Increasing N from 2 to 3 also

increases the bending of the curve. However, increasing N beyond 4 has a small effect. In

fact, the results obtained with N = 4 are very close to those obtained with N = 16. To

get a better picture of the influence of the number of modes retained in the approximation

on the effective nonlinearity, we use Eq. (3.29) to calculate the variation of αe with N ; the

results are shown in Fig. 3.4. Increasing N from 1 to 2 leads to a change in αe from -5.2 to

-6.3. However, increasing N from 2 to 3 leads to a similar change in αe from -6.3 to -7.44.

Increasing N from 3 to 4 leads to a small change (from -7.44 to -7.56) in αe, and increasing

N to 6 leads to a slight decrease in αe to -7.58. Increasing N beyond 6 has a negligible

effect on αe. It is clear from Figs. 3.3 and 3.4 that using a one-mode approximation, as

usually done, would lead to a quantitative error in the predicted response. Hence, one needs

to check the convergence of the predicted results as the number of modes retained in the

approximation is increased.

Next, we consider two examples for which low-order Galerkin approximations predict not

only quantitatively but also qualitatively erroneous results. In the first example, we consider

a cylindrical isotropic shell with the curvatures kx = 0 and ky = 0.05588. It follows from

Fig. 3.5 that retaining one mode in the approximations produces a frequency-response curve

that is bent to the right, indicating a hardening-type nonlinearity. Retaining two modes in

the approximation produces a linear-like frequency-response curve. However, retaining three

modes in the approximation yields a frequency-response curve bent to the left, indicating

a softening-type nonlinearity. Increasing the number of retained modes further leads only

to quantitative rather than qualitative changes in the predicted response. In Fig. 3.6, we

show variation of the effective nonlinearity αe with the number N of retained modes in the
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Figure 3.3: Frequency-response curves of an isotropic spherical shell when kx = 0.1 and

ky = 0.1.

approximation. When N = 1, αe > 0, indicating a hardening-type behavior. When N = 2,

αe ≈ 0, indicating a linear-like behavior. When N ≥ 3, αe < 0, indicating a softening-type

behavior. In fact, αe ≈ 0 when N = 2 whereas αe ≈ −0.092 when N = 3 and αe ≈ −0.106

when N = 4. The value of αe converges to -0.113 as N approaches 11.

In the second example, we consider a doubly-curved isotropic shell with the curvatures

kx = −0.2 and ky = 0.2553. Again, it follows from Fig. 3.7 that retaining one, two, or three

modes in the approximation predicts frequency-response curves bent to the right, whereas

retaining four or more modes in the approximation predicts frequency-response curves bent

to the left. It follows from Fig. 3.8 that αe changes from 0.006 when N = 3 to −0.0075 when

N = 4. As N increases, the predicted αe continues to decrease, indicating a softening-type

behavior, and finally converges to −0.013 as N approaches 11.

In Figs. 3.9 and 3.10, we show three-dimensional plots of the variation of the effective non-

linearity of a doubly curved shell with the curvatures kx and ky when using single-mode and
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Figure 3.4: Effective nonlinearity for an isotropic spherical when kx = 0.1 and ky = 0.1.
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Figure 3.5: Frequency-response curves of an isotropic cylindrical shell when kx = 0.0 and

ky = 0.05588.
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Figure 3.6: Effective nonlinearity for an isotropic cylindrical shell when kx = 0.0 and ky =

0.05588.
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Figure 3.7: Frequency-response curves of an isotropic doubly-curved shell when kx = −0.2

and ky = 0.2553.
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Figure 3.8: Effective nonlinearity for an isotropic doubly-curved shell when kx = −0.2 and

ky = 0.2553.

nine-mode approximations, respectively. Clearly, the value and sign of the effective nonlinear-

ity depend on the curvature values and the number of retained modes in the approximation.

In Fig. 3.10, we can see that the shell has a harding-type nonliearity when kx/ky = −1.

In Fig 3.11, we show the hardening and softening regions in the kx and ky plane. Between

these regions, there are ranges of curvatures where the one-mode approximation predicts a

positive αe, indicating a hardening-type nonlinearity, whereas the nine-mode approximation

predicts a negative αe, indicating a softening-type nonlinearity. Moreover, the results in Fig.

3.10 show spikes, which correspond to the case of a two-to-one internal resonance involving

the fundamental mode of the shell and a higher-order mode, as mentioned in Section 3.2.

In Fig 3.12, we show the possible activation of two-to-one internal resonance involving the

second, third, and fourth modes. The behavior of shells having two-to-one internal resonace

is treated in Chapter 5.
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Figure 3.9: Effective nonlinearity for an isotropic shell using a single-mode approximation.
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Figure 3.10: Effective nonlinearity for an isotropic shell using a nine-mode approximation.



Khaled A. Alhazza Chapter 3. Response of a Shallow Shell to a Primary Resonance 54

Figure 3.11: The softening and hardening regions in the isotropic shell using a nine-mode

approximation.
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Figure 3.12: Conditions for the activation of a two-to-one internal resonance in the dynamics

of an isotropic shell.
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3.3.2 Single-Layered Shells

Next, we use Eqs. (3.27) and (3.31) to investigate the dynamic behavior of a single-layered

shell and the influence of the number of terms retained in the Galerkin approximation on the

accuracy of the calculated response. We consider a graphite/epoxy shell with the following

parameters:

ν12 = 0.3, lx = 1, ly = 1, f11 = 30,

E1

E2
= 15.4,

G12

E2
= 0.79,

G23

E2
= 0.5 (3.33)

In Fig. 3.13, we show the frequency-response curves obtained for a spherical single-layered

shell with kx = ky = 0.1 using 1, 2, 3, 4, and 16-mode approximations. All of the curves are

bent to the left, indicating a softening-type nonlinearity. However, the extent of the bending

depends on the number N of modes retained in the approximation. Increasing N from 1 to 2

has a small effect on the bending of the curve. However, increasing N from 2 to 3 has a large

effect. Increasing N beyond 3 has a small effect. In fact, the results obtained with N = 4

are very close to those obtained with N = 16. To get a better picture of the influence of

the number of modes retained in the approximation on the effective nonlinearity, we use Eq.

(3.29) to calculate the variation of αe with N ; the results are shown in Fig. 3.14. Increasing

N from 1 to 2 leads to a small decrease in αe. However, increasing N from 2 to 3 leads to

a large decrease in αe from -2.8 to -4.8. Increasing N from 3 to 4 leads to a small decrease

(from -4.8 to -4.9) in αe, and increasing N to 6 leads to a slight decrease in αe to -4.92.

Increasing N beyond 6 has a negligible effect on αe. It is clear from Figs. 3.13 and 3.14 that

using a one-mode approximation, as usually done, would lead to a quantitative error in the

predicted response.

Next, we consider a cylindrical single-layered shell with the curvatures kx = 0 and

ky = 0.0935. It follows from Fig. 3.15 that retaining one or two modes in the approxima-

tions produces frequency-response curves that are bent to the right, indicating a hardening-

type nonlinearity. However, retaining three modes in the approximation yields a frequency-
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response curve bent to the left, indicating a softening-type nonlinearity. Increasing the

number of retained modes further leads only to quantitative rather than qualitative changes

in the predicted response. In Fig. 3.16, we show variation of the effective nonlinearity αe

with the number N of the retained modes in the approximation. When N = 1 or 2, αe > 0,

indicating a hardening-type behavior. When N ≥ 3, αe < 0, indicating a softening-type

behavior. In fact, αe ≈ 0.068 when N = 2 whereas αe ≈ −0.55 when N = 3 and αe ≈ −0.58

when N = 4. The value of αe converges to −0.62 as N approaches 11.

In another example, we consider a doubly-curved single-layered shell with the curvatures

kx = −0.194 and ky = 0.1. Again, it follows from Fig. 3.17 that retaining one or two

modes in the approximations predicts frequency-response curves bent to the right, whereas

retaining three or more modes in the approximation predicts frequency-response curves bent

to the left. It follows from Fig. 3.18 that αe changes from 0.11 when N = 2 to −0.26 when

N = 3. As N increases, the predicted αe continues to decrease, indicating a softening-type

behavior, and finally converges to −0.29 as N approaches 11.

To have a better understanding of the behavior of a single-layered shell, we show three-

dimensional plots, Figs. 3.19 and 3.20, of the variation of the effective nonlinearity of a

doubly curved shell with the curvatures kx and ky by using single-mode and nine-mode

approximations, respectively. As in the case of isotropic shells, the value and sign of the

effective nonlinearity depend on the curvature values and the number of retained modes in

the approximation. In Fig 3.21, we show the softening and hardening regions in the kx and

ky plane for a single-layered shell. The harding region is larger than that for an isotropic

shell, Fig 3.11, which indicates that the nonlinear behavior of the shell also depends on its

lay-up. Again, there are ranges of curvatures between the two regions where the one-mode

approximation predicts a positive αe, indicating a hardening-type nonlinearity, whereas the

nine-mode approximation predicts a negative αe, indicating a softening-type nonlinearity.

As in the case of isotropic shells, the results in Fig. 3.20 show spikes, corresponding to the

case of a two-to-one internal resonance involving the fundamental mode. A projection of the

internal-resonance curves is shown in Fig 3.22.
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Figure 3.13: Frequency-response curves of a single-layered spherical shell when kx = 0.1 and

ky = 0.1.

3.3.3 Multi-Layered Shells

In the analysis of single-layered shells, we can see a large change in the effective nonlinearity

by increasing the number of retained modes from 2 to 3, Figs 3.13-3.18, while increasing

the number of retained modes in isotropic shells from 1 to 2 and from 2 to 3 have a similar

effect due to symmetry, Figs 3.3 and 3.4. This large change in the behavior of single-layered

shells is due to the different stiffnesses along the x and y directions caused by the laminated

composite. In Fig. 3.23, we plot the effective nonlinearity for a 13-layerd spherical shell with

kx = ky = 1. We can see that increasing the number of modes retained from 1 to 2 and from

2 to 3 produce similar changes in the effective nonlinearty. These results show that increasing

the number of layers reduces the effect of the third mode because of the difference between

the stiffnesses along the x and y directions is reduced as the number of layers increases.

Next, we study the effect of changing the number of layers on the shell dynamics. In

Fig. 3.24, we show the variation of ω11 with the curvature kx when ky = 0. We can see
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Figure 3.14: Effective nonlinearity for a single-layered spherical when kx = 0.1 and ky = 0.1.
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Figure 3.15: Frequency-response curves of a single-layered cylindrical shell when kx = 0.0

and ky = 0.0935.
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Figure 3.16: Effective nonlinearity for a single-layered cylindrical shell when kx = 0.0 and

ky = 0.0935.
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Figure 3.17: Frequency-response curves of a single-layered doubly-curved shell when kx =

−0.194 and ky = 0.1.
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Figure 3.18: Effective nonlinearity for a single-layered doubly-curved shell when kx = −0.194

and ky = 0.1.
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Figure 3.19: Effective nonlinearity for a single-layered shell using a single-mode approxima-

tion.
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Figure 3.20: Effective nonlinearity for a single-layered shell using a nine-mode approximation.

Figure 3.21: The softening and hardening regions in a single-layered shell using a nine-mode

approximation.
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Figure 3.22: Conditions for the activation of a two-to-one internal resonance between the

second and first modes of a single-layered shell.
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Figure 3.23: Effective nonlinearity for a 13-layered shell when kx = 0.1 and ky = 0.1.
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that changing the number of layers from 1 to 3 leads to a relatively large change in ω11,

while increasing the number of layers more ( to 5,7, or 9) has a negligible effect on ω11. Also,

increasing the absolute value of kx results in a large influence on ω11. In Fig. 3.25, we can see

that changing the number of layers from 1 to 3 reduces the value of ω31 from approximately

355 to 349. Increasing the number of layers from 3 to 5 results in a relatively large change in

ω31 from 349 to 320. Increasing the number of layers to 7 and 9 reduces ω31 to 305 and 298.

Thus, we conclude that increasing the number of layers reduces ω31. In Fig. 3.26, we show

the effect of changing the number of layers on ω13. Increasing the number of layers from 1

to 3 results in increasing ω13 when −0.28 < kx < 0.28 and decreasing ω13 when |kx| > 0.28.

Increasing the number of layers beyond 3 increases ω13. In Fig. 3.27, we show the effect of

increasing the number of layers on ω33. Increasing the number of layers from 1 to 3 results

in a recognizable change in ω33, while increasing the number of layers beyond 3 results in a

very small change in ω33.

In Fig. 3.28, we show the influence of changing the number of layers on the possible

two-to-one internal-resonance curves. It is clear that increasing the number of layers from

1 to 3 changes qualitativaly the internal resonance curves, while increasing the number of

layers beyond 3 results only in a quantitative change, causing the internal-resonance curves

to move away from the center.

In Fig. 3.29, we show variation of the effective nonlinearity with kx by using a nine-mode

approximation when ky = 0. Increasing the number of layers from 1 to 3 results in a relativily

large change in the effective nonlinearity. The effective nonlinearity for a multi-layered shell

has a larger value compared with the single-layered shell when −0.063 < kx < 0.063 and a

smaller value elsewhere. Increasing the number of layers beyond 3 has a small effect on the

effective nonlinearity. In all of the results, we can see a recognizable change in the natural

frequencies and the effective nonlinearity when the number of layers increases from 1 to 3

due to the change in the modulus of elasticity along the y direction.
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Figure 3.24: Variation of the natural frequency ω11 with kx when ky = 0.
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Figure 3.25: Variation of the natural frequency ω31 with kx when ky = 0.
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Figure 3.26: Variation of the natural frequency ω13 with kx when ky = 0.

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4
398

400

402

404

406

408

410

412

414

416

k
x

N
a
tu

ra
l 
F

re
q
u
e
n
c
y
  
 ω

3
3

NOL=1 NOL=3,5,7,9

Figure 3.27: Variation of the natural frequency ω33 with kx when ky = 0.
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Figure 3.28: Two-to-one internal resonance conditions for a multi-layerd shell.
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Figure 3.29: Variation of the effective nonlinearity for a cylindrical shell with kx when ky = 0

using a nine-mode approximation.
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3.4 Global Dynamics

In this section, we use a multi-mode Galerkin discretization to calculate periodic responses

of doubly curve cross-ply shallow shells to a primary-resonance excitation and determine

their stability and bifurcations. A combination of a shooting technique and Floquet theory

is used to locate periodic solutions and investigate their bifurcations. Numerical results

are shown for single-mode and four-mode approximations. We show that, for certain shell

parameters, a single-mode approximation misses some important dynamics, such as period-

doubling bifurcations.

3.4.1 Numerical Results

In the preceding section, we used the method of multiple scales to determine a second-

order uniform expansion of the solution of Eqs. (3.16) when the excitation frequency Ω is

close to the natural frequency of the fundamental mode of the shell. We investigated how

the effective nonlinearity depends on the number of modes retained in the discretization.

We found out that the results obtained with a single-mode discretization may lead to an

incorrect characterization of the effective nonlinearity. We presented cases in which a single-

mode discretization predicts a hardening-type effective nonlinearity, whereas a multi-mode

discretization predicts a softening-type effective nonlinearity and vice versa.

In this section, we investigate the influence of the number of modes retained in the dis-

cretization on the predicted periodic motions and their bifurcations for the case in which

the excitation frequency Ω is close to the fundamental natural frequency of the shell. We

consider a graphite/epoxy shell with the following parameters:

ν12 = 0.3, lx = 1, ly = 1,
E1

E2
= 15.4,

G12

E2
= 0.79,

G23

E2
= 0.5, µ11 = 0.30 (3.34)
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Figure 3.30: Frequency-response curve for a single-layer shell obtained using a single-mode

discretization when kx = 0.129, ky = 0.129, and F11 = 405.

With these parameters, the lowest six antisymmetric natural frequencies are

ω11 = 73.66, ω13 = 155.38, ω15 = 300.10,

ω31 = 356.42, ω33 = 402.96, ω51 = 974.07 (3.35)

Using a perturbation method, such as the method of multiple scales or averaging, one

can derive the equations describing the modulation of the amplitude and phase of the shell

on a slow time scale. Using the modulation equations to determine the stability of periodic

motions yields their stability to a special class of disturbances, which have the same period as

the predicted motions. Consequently, such an approach would not be able to predict period-

doubling bifurcations of periodic motions of the shell because the period of the disturbances

would be twice that of the predicted motions. Furthermore, the perturbation solution is

valid only for small but finite-amplitude motions.

To investigate the influence of the truncation on the periodic motions of the shell and
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Figure 3.31: Frequency-response curves for a single-layered spherical shell obtained by using

a four-mode discretization when kx = 0.129, ky = 0.129, and F11 = 405.

their stability and hence their bifurcations, we use a combination of a shooting technique

and Floquet theory. To this end, we truncate equations (3.16) and write the resulting

equations in state-space form as

η̇ = f (η; F, Ω) (3.36)

where η and f are 2n×1 vectors and N is the number of modes retained in the discretization.

For a given F and Ω, we seek an initial condition vector η0 such that

η

(

2π

Ω
; η0

)

= η0 (3.37)

The procedure is detailed by Nayfeh and Balachandran (1995). We start with a single-

mode discretization. For a given F and Ω, once a periodic motion is calculated, we determine

the maximum of W11 as a function of Ω. Then, we keep F fixed, vary Ω slightly, and repeat
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Figure 3.32: Phase portrails of chaotic motions of a single-layered spherical shell for the first,

second, third, and fourth modes, when kx = ky = 0.129, σ = −5.18, and F11 = 405.
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Figure 3.33: Frequency-response curves for a single-layered shell near the two-to-one internal

resonance.
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Figure 3.34: Limit cycles near the two-to-one internal resonance.

the process. In Fig. 3.30, we show the results obtained for a single-layer shell. Starting

with a σ = Ω − ω11 = −9.0 and increasing it, we find that the periodic motion (limit cycle)

deforms smoothly and increases in size, with all of the Floquet multipliers being inside the

unit circle and one of them increasing towards unity. As σ increases beyond −5.8, the limit

cycle loses stability through a cycle-fold bifurcation as a consequence of one of the Floquet

multipliers exiting the unit circle through +1. The post-bifurcation is a jump to a larger

limit cycle. Increasing σ further leads to a decrease in the size of the limit cycle. Starting

from σ = 9 and decreasing it, we find that the limit cycle increases in size and remains

stable with all of the Floquet multipliers being inside the unit circle until σ = −8.9. As σ

decreases further, the limit-cycle loses stability through a cyclic-fold bifurcation as a result

of one Floquet multiplier exiting the unit circle through +1. Consequently, the response

jumps down to a small limit cycle. As σ decreases further, the limit cycle deforms smoothly

and decreases in size.

Next, we increase the number retained modes to four so that Eqs. (3.16) represent an

8-degree-of-freedom dynamical system and repeat the process of calculating the limit cycles
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and investigating their stability and bifurcations. The calculation and stability investigation

of a limit cycles using the shooting method requires the integration of a system of 72 first-

order equations. The results are shown in Fig. 3.31. Starting with σ = −10 and increasing

it, we find that the limit cycle increases slightly in size until σ reaches −5.2 where it suffers

a cyclic-fold bifurcation, leading to a jump to a larger limit cycle. Comparing these results

with those in Fig. 3.30 obtained with a one-mode discretization, we conclude that the latter

may overpredict or underpredict the size of the limit cycles and underpredicts the cyclic-fold

bifurcation frequency. Starting from σ = −8.9 on the higher curve and decreasing it, we find

that the limit cycle smoothly decreases in size until σ = −5.63, where the limit cycle loses

stability through a period-doubling bifurcation, with a Floquet multiplier leaving the unit

circle through −1. Decreasing the value of σ further results in a sequence of period-doubling

bifurcations leading to chaos, as shown in Fig. 3.32. Chaos bifurcates to a stable limit cycle

at σ = 5.02 through a reverse sequence of period-doubling bifurcations. After that, all of the

limit cycles remain stable until σ = 3.08, where they lose stability when one of the Floquet

multipliers leaves the unit circle through +1. Finally, the limit cycle remains stable, but

initially it increases slightly in size and then smoothly decreases in size.

In Fig. 3.33, we show that the amplitude of the second mode, which is usually neglected, is

larger than the amplitude of the first mode at σ = 3.05. In Fig. 3.34, we show the distortion

in the limit cycles near the bifurcation point. Increasing the number of modes retained over

four, in this case, did not influence the qualitative or quantitative dynamic behavior of the

shell. We used six modes and nine modes in checking for convergence.

3.5 Direct Approach

In this section, we use the method of multiple scales and directly attack the governing

partial-differential equations, Eqs. (3.8) and (3.9), and associated simply supported bound-

ary conditions. We repeat these equations below for convenience:
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D11wxxxx + 2(D12 + 2D66)wxxyy + D22wyyyy + kxΦyy + kyΦxx + Cwt + ρhwtt

= Φyywxx + Φxxwyy − 2Φxywxy + F cos(ωt) (3.38)

−K11Φxxxx − (2K12 + K66)Φxxyy − K22Φyyyy + kxwyy + kywxx = wyywxx −w2
xy (3.39)

As in the preceding section, we nondimensionalize the governing system using the following

parameters:

ŵ =
w

h
, x̂ =

x

lx
, ŷ =

y

ly
, Ω̂ = l2x

√

ρh

D∗
Ω , D∗ =

E2h
3

12(1 − ν12ν21)
,

Φ̂ = D∗Φ , F̂ =
l4x

D∗h
F , C =

l4x
D∗h

c , t̂ =
1

l2x

√

D∗

ρh
t (3.40)

In what follows, we drop the hat for convenience.

We use the method of multiple scales to obtain a second-order uniform approximate so-

lution of Eqs. (3.38) and (3.39) in the case of simply supported boundary conditions. Ac-

cordingly, we express the solution in terms of the two time scales T0 = t and T2 = ǫ2t

as

w(x, y, T0, T2; ǫ) = ǫw(1)(x, y, T0, T2) + ǫ2w(2)(x, y, T0, T2)

+ ǫ3w(3)(x, y, T0, T2) + · · · (3.41)

Φ(x, y, T0, T2; ǫ) = ǫΦ(1)(x, y, T0, T2) + ǫ2Φ(2)(x, y, T0, T2)

+ ǫ3Φ(3)(x, y, T0, T2) + · · · (3.42)

where ǫ is a small nondimensional bookkeeping parameter. To express the nearness of the

excitation frequency Ω to the fundamental natural frequency ω11, we introduce the detuning



Khaled A. Alhazza Chapter 3. Response of a Shallow Shell to a Primary Resonance 74

parameter σ defined as

Ω = ω11 + ǫ2σ (3.43)

We scale the damping and the excitation amplitude as

C = ǫ2C and f = ǫ2f (3.44)

Substituting Eqs. (3.41)-(3.44) into Eqs. (3.38) and (3.39) and equating coefficients of

like powers of ǫ, we obtain

Order ǫ1

D11h

l2x
w(1)

xxxx +
2(D12 + 2D66)h

l2xl
2
y

w(1)
xxyy +

D22h

l4y
w(1)

yyyy +
kxD

∗

lxl2y
Φ(1)

yy +
kyD

∗

l3x
Φ(1)

xx +
D∗h

l4x
w

(1)
T0T0

= 0

(3.45)

−K11D
∗

l4x
Φ(1)

xxxx −
(2K12 + K66)D

∗

l2xl
2
y

Φ(1)
xxyy −

K22D
∗

l4y
Φ(1)

yyyy +
kxh

l2ylx
w(1)

yy +
kyh

l3x
w(1)

xx = 0 (3.46)

Order ǫ2

D11h

l2x
w(2)

xxxx +
2(D12 + 2D66)h

l2xl
2
y

w(2)
xxyy +

D22h

l4y
w(2)

yyyy +
kxD

∗

lxl2y
Φ(2)

yy +
kyD

∗

l3x
Φ(2)

xx +
D∗h

l4x
w

(2)
T0T0

=
D∗h

l2yl
2
x

(Φ(1)
yy w(1)

xx + Φ(1)
xx w(1)

yy − 2Φ(1)
xy w(1)

xy ) (3.47)

−K11D
∗

l4x
Φ(2)

xxxx −
(2K12 + K66)D

∗

l2xl
2
y

Φ(2)
xxyy −

K22D
∗

l4y
Φ(2)

yyyy +
kxh

l2ylx
w(2)

yy +
kyh

l3x
w(2)

xx

=
h2

l2xl
2
y

[

w(1)
yy w(1)

xx − (w(1)
xy )2

]

(3.48)
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Order ǫ3

D11h

l2x
w(3)

xxxx +
2(D12 + 2D66)h

l2xl
2
y

w(3)
xxyy +

D22h

l4y
w(3)

yyyy +
kxD

∗

lxl2y
Φ(3)

yy +
kyD

∗

l3x
Φ(3)

xx

+
D∗h

l4x
w

(3)
T0T0

+ lx

√

1

ρhD∗
CwT0

= 2
D∗h

l4x
wT0T2

+
D∗h

l2yl
2
x

(Φ(1)
yy w(2)

xx + Φ(2)
yy w(1)

xx + Φ(1)
xx w(2)

yy + Φ(2)
xx w(1)

yy − 2Φ(1)
xy w(2)

xy − 2Φ(2)
xy w(1)

xy )

+ F cos(ω11T0 + σT2) (3.49)

−K11D
∗

l4x
Φ(3)

xxxx −
(2K12 + K66)D

∗

l2xl
2
y

Φ(3)
xxyy −

K22D
∗

l4y
Φ(3)

yyyy +
kxh

l2ylx
w(3)

yy +
kyh

l3x
w(3)

xx

=
h2

l2xl
2
y

(

w(1)
yy w(2)

xx + w(2)
yy w(1)

xx − 2w(2)
xy w(1)

xy

)

(3.50)

The solutions of Eqs. (3.45) and (3.46) can be expressed as

w(1) = a1(T2) sin(πx) sin(πy) cos [ω11T0 + β(T2)] (3.51)

Φ(1) = a2(T2) sin(πx) sin(πy) cos [ω11T0 + β(T2)] (3.52)

Substituting Eqs. (3.51) and (3.52) into Eqs. (3.45) and (3.46), we solve for ω11 and express

a2(T2) as a function of a1(T2) as

a2(T2) = ζa1(T2) (3.53)

ω2
11 = −π2(−D11 hπ2 l4y − 2hπ2 l2x l2y D12 − 4hπ2 l2x l2y D66 − D22 hπ2 l4x (3.54)

+ l2y l3x ζ D∗ kx + l4y lx ζ D∗ ky)
/

(D∗ h l4y) (3.55)

where



Khaled A. Alhazza Chapter 3. Response of a Shallow Shell to a Primary Resonance 76

ζ = −
h lx l2y (kx l2x + ky l2y)

D∗ π2 (K11 l4y + 2 l2x l2y K12 + l2x l2y K66 + K22 l4x)
(3.56)

Next, we substitute Eqs. (3.51)-(3.53) into Eqs. (3.47) and (3.48) and obtain

D11h

l2x
w(2)

xxxx +
2(D12 + 2D66)h

l2xl
2
y

w(2)
xxyy +

D22h

l4y
w(2)

yyyy +
kxD

∗

lxl2y
Φ(2)

yy +
kyD

∗

l3x
Φ(2)

xx +
D∗h

l4x
w

(2)
T0T0

=
π4a2

1ζD∗h

l2yl
2
x

[

sin2(πx) sin2(πy)− cos2(πx) cos2(πy)
]

× [cos(2ω11T0 + 2β) + 1] (3.57)

−K11D
∗

l4x
Φ(2)

xxxx −
(2K12 + K66)D

∗

l2xl
2
y

Φ(2)
xxyy −

K22D
∗

l4y
Φ(2)

yyyy +
kxh

l2ylx
w(2)

yy +
kyh

l3x
w(2)

xx

=
a2

1π
4h2

2l2xl
2
y

[

sin2(πx) sin2(πy)− cos2(πx) cos2(πy)
]

× [cos(2ω11T0 + 2β) + 1] (3.58)

The solution of Eqs. (3.57) and (3.58) can be expressed in the form

w(2) = a2
1(T2)U1(x, y) cos [2ωnmT0 + 2β(T2)] + a2

1(T2)U2(x, y) (3.59)

Φ(2) = a2
1(T2)P1(x, y) cos [2ωnmT0 + 2β(T2)] + a2

1(T2)P2(x, y) (3.60)

where the Ui and Pi are expanded in Fourier series as

U1(x, y) =

∞
∑

n=1

∞
∑

m=1

Qnm sin(nπx) sin(mπy) (3.61)

P1(x, y) =
∞

∑

n=1

∞
∑

m=1

Lnm sin(nπx) sin(mπy) (3.62)



Khaled A. Alhazza Chapter 3. Response of a Shallow Shell to a Primary Resonance 77

U2(x, y) =
∞

∑

n=1

∞
∑

m=1

Q1nm sin(nπx) sin(mπy) (3.63)

P2(x, y) =
∞

∑

n=1

∞
∑

m=1

L1nm sin(nπx) sin(mπy) (3.64)

We note that w(2) and Φ(2) satisfy the boundary conditions. Next, we substitute Eqs. (3.59)-

(3.64) into Eqs. (3.57) and (3.58) and obtain

∞
∑

m=1

∞
∑

n=1

{

(

C1nmQnm + C2nmLnm − 4C4ω2
11Qnm

)

cos(2ωnmT0 + 2β(T2))

+ (C1nmQ1nm + C2nmLnm)

}

sin(nπx) sin(mπy)

= −ζC5

2

[

sin2(πx) sin2(πy)− cos2(πx) cos2(πy)
]

[cos(2ω11T0 + 2β) + 1] (3.65)

∞
∑

m=1

∞
∑

n=1

{

[−A1nmLnm + A2nmQnm] [cos(2ωnmT0 + 2β(T2))] − A1nmL1nm + A2nmQ1nm

}

× sin(nπx) sin(mπy) =
A3

2

[

sin2(πx) sin2(πy)− cos2(πx) cos2(πy)
]

× [cos(2ω11T0 + 2β) + 1] (3.66)

Multiplying Eqs. (3.65) and (3.66) by sin(nπx) sin(mπy), integrating over the domain, and

solving for Qnm, Lnm, Q1nm, and L1nm, we find

Qnm = − 1

ω2
nm − 4ω2

11

[

1

2

C2nmA3(Ḡnm1111 − Gnm1111)

A1nmC4
+

ζC5(Gnm1111 − Ḡnm1111)

C4

]

(3.67)

Lnm =
A2nm

A1nm
Qnm +

A3(Ḡnm1111 − Gnm1111)

2A1nm
(3.68)

Q1nm = − 1

ω2
nm

[

1

2

C2nmA3(Ḡnm1111 − Gnm1111)

A1nmC4
+

ζC5(Gnm1111 − Ḡnm1111)

C4

]

(3.69)

L1nm =
A2nm

A1nm
Q1nm +

A3(Ḡnm1111 − Gnm1111)

2A1nm
(3.70)
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where the A’s, C ’s and the G’s are defined in Appendix A.

Substituting Eqs. (3.51), (3.52), (3.59), and (3.64) into Eqs. (3.49) and (3.50) and applying

the solvability conditions, we find that the modulation equations governing the amplitude

and phase can be expressed as

a′ = −1

2
Ca +

F

2ω11
sin(γ) (3.71)

aγ′ = σa + αea
3 +

F

2ω11
cos γ (3.72)

where

γ = σT2 − β (3.73)

and

αe =
1

2ω11

NM
∑

lj

{

A3C211

A111C4

[

(l2 + j2)G11lj11 − ljḠ11lj11

]

(

Qlj

2
+ Q1lj

)

− C5ζ

C4

[

(

(l2 + j2)G11lj11 − 2ljḠ11lj11

)

(

Qnm

2
+ Q1nm

)]

− C5

C4

[

(

(l2 + j2)G11lj11 − 2ljḠ11lj11

)

(

Lnm

2
+ L1nm

)] }

(3.74)

3.6 Numerical Results

Next, we use Eqs. (3.71)-(3.73) to compare the results obtained by the direct approach

with the single-mode and multi-mode Galerkin approximations obtained in Section 3.3.2.

In Fig. 3.35, we consider a cylindrical single-layered shell with the curvatures kx = 0.0 and

ky = 0.0935. Clearly, retaining one or two modes in the approximation predicts harding-type

nonlinear response, whereas using the direct approach or 16 modes in the approximation

predicts a softening-type nonlinear response. It is also shown that the results of the 16-

mode Galerkin approximation is in excellent agreement with that obtained with the direct

approach.
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Figure 3.35: Comparison between the effective nonlinearity predicted for cylindrical single-

layered shell by using the direct approach with that predicted by using a multi-mode Galerkin

approximation when kx = 0.0 and ky = 0.0935.

In another example, we compare in Fig. 3.36 the effective nonlinearity of a doubly cureved

single-layered shell with kx = 0.1 and ky = −0.194 obtained by using a multi-mode discretiza-

tion approximation with the one obtained by using the direct approach. It is clear that, as

the number of modes retained in the approximation increases, the difference between the

two predicted values decreases.
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Figure 3.36: Comparison between the effective nonlinearity predicted for a doubly curved

single-layered shell by using the direct approach with that predicted by using a multi-mode

Galerkin approximation when kx = 0.1 and ky = −0.194.



Chapter 4

Response of a Shallow Shell to a

Subharmonic Resonance Excitation

We consider the nonlinear forced vibrations of a doubly curved cross-ply laminated shallow

shell with simply supported boundary conditions. We investigate its responses to a sub-

harmonic resonance (i.e., Ω ≈ 2ω11). The nonlinear partial-differential equations governing

the motion of the shell are based on the von Kármán-type geometric nonlinear theory and

the first-order shear-deformation theory. An approximation based on the Galerkin method

is used to reduce the partial-differential equations of motion to an infinite system of non-

linearly coupled second-order ordinary-differential equations. These equations are solved

by using the method of multiple scales. Numerical results for isotropic, single-layered, and

multi-layered shells are obtained. The influence of the number of modes retained in the

discretization and the number of layers on the shell response to a subharmonic resonance

excitation is investigated.

81
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4.1 Analysis

The discritized equations of motion for simply supported shallow shells can be expressed as

Ẅνζ + 2µνζẆνζ + ω2
νζWνζ +

∞
∑

n,m

∞
∑

l,j

PνζnmljWnmWlj +
∞

∑

n,m

∞
∑

l,j

∞
∑

o,p

SνζnmljopWnmWljWop

= Fνζ cos(Ωt)

(4.1)

where Pνζnmlj and Sνζnmljop are defined in Appendix A. To examine the subharmonic reso-

nance Ω ≈ 2ω11, we need to order the response of the first mode W11 as

W11 = ǫW
(1)
11 (T0, T1, T2) + ǫ2W

(2)
11 (T0, T1, T2) + ǫ3W

(3)
11 (T0, T1, T2) + · · · (4.2)

where ǫ is a bookkeeping parameter, T0 = t is a fast time scale, and T1 = ǫt and T2 = ǫ2t are

slow time scales describing the time evolution of the amplitudes and phases of the response.

The derivatives with respect to time can be expressed as

∂

∂t
= D0 + ǫD1 + ǫ2D2 + · · · (4.3)

∂2

∂t2
= D2

0 + 2ǫD0D1 + ǫ2(D2
1 + 2D0D2) + · · · (4.4)

where Di = ∂
∂Ti

. Since no other mode is assumed to be excited, either directly or indirectly

through an internal resonance, the contributions of all of the other modes are of higher order,

so we scale them as

Wνζ = ǫ2W
(2)
νζ (T0, T2) + ǫ3W

(3)
νζ (T0, T2) + · · · ν and ζ �= 1 (4.5)

In addition, we scale the damping and the forcing such that their influence balances the

influence of the nonlinearities, and thus we let

µνζ = ǫ2µνζ (4.6)
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Fνζ = ǫ3fνζ (4.7)

Substituting Eqs. (4.2)-(4.7) into Eq. (4.1) and equating coefficients of like powers of ǫ leads

to

Order ǫ

D2
0W

(1)
11 + ω2

11W
(1)
11 = 0 (4.8)

Order ǫ2

D2
0Wνζ

(2) + ω2
νζW

(2)
νζ = −Pνζ1111

(

W
(1)
11

)2

+ fνζ cos (ΩT0) (4.9)

Order ǫ3

D2
0W

(3)
11 + ω2

11W
(3)
11 = − 2D0D2W

(1)
11 − 2µνζD0W

(1)
11

−
∞

∑

nm

P1111nmW
(1)
11 W (2)

nm −
∞

∑

nm

P11nm11W
(1)
11 W (2)

nm − S11111111

(

W
(1)
11

)3

(4.10)

The solution of equation (4.8) can be expressed as

W
(1)
11 = A(T1, T2)e

iω11T0 + cc (4.11)

where cc stands for the complex conjugate of the preceding terms and A(T1, T2) is a complex-

valued function determined by eliminating the secular terms from the higher approximations.

Substituting Eq. (4.11) into Eq. (4.9) yields

D2
0W

(2)
νζ + ω2

νζW
(2)
νζ = −Pνζ1111

(

A2e2iω11T0 + AĀ + cc
)

+ fνζ cos (ΩT0) (4.12)

Since there are no secular terms at this level of approximation, the complex-valued amplitude

A(T1, T2) is a function of T2 only.

Solving Eq. (4.12) for W
(2)
νζ leads to

W
(2)
νζ = −Pνζ1111

(

A2e2iω11T0

ω2
νζ − 4ω2

11

+
AĀ

ω2
νζ

)

+
fνζe

iΩT0

2(ω2
νζ −Ω2)

+ cc (4.13)
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To describe the nearness of Ω to 2ω11, we introduce the detuning parameter σ defined by

Ω = 2ω11 + ǫ2σ (4.14)

Substituting Eqs. (4.11), (4.13) and (4.14) into (4.10) and eliminating the terms that lead

to secular terms, we obtain

2iω11(A
′ + µ11A) +

∞
∑

nm

(P1111nm + P11nm11)

[

− Pnm1111A
2Ā

(

1

ω2
nm − 4ω2

11

+
2

ω2
nm

)

+
fnmĀeiσT2

2(ω2
nm − 4ω2

11)

]

+ 3S11111111A
2Ā = 0 (4.15)

Next, we express A(T2) in polar form as

A =
1

2
a(T2)e

iβ(T2) (4.16)

where a(T2) is the amplitude and β(T2) is the phase of the response. Differentiating A(T2)

with respect to T2 leads to

A′ =
1

2
a′(T2)e

iβ(T2) +
1

2
ia(T2)β

′(T2)e
iβ(T2) (4.17)

Substituting Eqs. (4.16) and (4.17) into Eq. (4.15) yields

(ia′ − aβ ′ + iµ11a) + αea
3 + feaei(σT2−2β) = 0 (4.18)

where

αe =

∞
∑

nm

1

8ω11
(P1111nm + P11nm11)

[

Pnm1111

(

1

ω2
nm − 4ω2

11

+
2

ω2
nm

)]

− 3

8ω11
S11111111 (4.19)

fe =

∞
∑

nm

(P1111nm + P11nm11)

[

fnm

4ω11(ω2
nm − 4ω2

11)

]

(4.20)

Next, we let

γ = σT2 − 2β (4.21)

Substituting Eq. (4.21) into Eq. (4.18) and separating real and imaginary parts yields

a′ = −µa + fea sin(γ) (4.22)

1

2
aγ′ =

1

2
σa + αea

3 + fea cos(γ) (4.23)
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4.2 Numerical Results

The effective nonlinearity, Eq. (4.19), is the same as Eq. (3.29) obtained in the case of

primary resonance. The effect of the number of retained modes and the number of layers is

discussed in the preceding chapter. Next, we use Eq. (4.20) to investigate the influence of the

number of terms retained in the Galerkin approximation on the accuracy of the calculated

effective forcing.

4.2.1 Effective Forcing

We consider an isotropic shell with the following parameters:

ν12 = 0.3, lx = 1, ly = 1,

E1 = 21 × 109,
G12

E1

= 0.79 (4.24)

In Fig. 4.1, we show the normalized effective forcing, f̄e = fe(multi − mode)/fe(single −
mode), for an isotropic shell with ky = 0. It is clear that the contribution of the second

mode is very small when |kx| < 0.1. This contribution increases as |kx| increases above 0.1.

In fact the value of the normalized effective forcing is almost 1.3 when |kx| = 0.24, which

indicates that using a single mode underestimates the forcing by about 30%. Increasing |kx|
further results in a larger contribution of the second mode. Due to the singularity resulting

from the two-to-one internal resonance, shown in Fig. 3.12, the effective forcing increases

very rapidly near |kx| = 0.35. Increasing the number of modes retained in the approximation

to three and four, plotted in * and · · ·, respectively, we find that the normalized effective

forcing remains below 1.3 when |kx| < 0.16. Increasing |kx| beyond 0.16 increases f̄e further.

These solutions have another singularity near kx = 0.23 because of the ω31 = 2ω11 internal

resonance.

Now, we investigate the effect of the number of modes on the effective forcing for a single-
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Figure 4.1: Normalized effective forcing for an isotropic shell with ky = 0 using two, three,

and four modes.
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Figure 4.2: Normalized effective forcing for a single-layered shell with ky = 0 using two,

three, and four modes.
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layered shell with the following parameters:

E1

E2
= 15.4,

G12

E2
= 0.79,

G23

E2
= 0.5 (4.25)

In Fig. 4.2, we plot the normalized effective forcing for a single-layered shell as a function

of kx with ky = 0 using two, three, and four modes in the approximation. Using two modes

produces a very small change in the effective forcing. This change in the effective forcing

increases slowly as |kx| increases and reaches a maximum value of 1.06 when kx = 0.4 and

−0.4. Increasing the number of modes retained in the approximation to three produces a

large jump in the effective forcing. The normalized effective forcing has a value of 1.32 when

kx = 0, which indicates that using a single-mode approximation underestimates the effective

forcing by 32.5%. Increasing |kx| reduces the normalized effective forcing to a minimum

value of 1.175 at |kx| = 0.28. Increasing |kx| further leads to an increase of f̄e to 1.95 at

|kx| = 0.4. Increasing the number of modes retained to four modes has a small effect on the

value predicted using three modes. This difference is negligible when |kx| < 0.22. Increasing

the number of modes beyond four has a negligible effect.

Since a single-layered shell is asymmetric due to the difference in the stiffnesses in the

x and y directions, we plot the normalized effective forcing for a single-layered shell as a

function of ky with kx = 0 using two, three, and four modes, Fig. 4.3. It is clear that using

two modes in the approximation, as in the previous case, produces a very small change in the

predicted effective forcing. The value of the effective forcing increases slightly as the value of

|ky| increases until it reaches 1.05 when kx = 0.4 and -0.4. Increasing the number of modes

retained in the approximation further produces a recognizable difference in the behavior. The

normalized effective forcing equals approximately 1.3 when ky = 0. Increasing the absolute

value of ky increases the normalized effective forcing until ky = 0.16, where a singularity

occurs due to an internal resonance. When |ky| = 0.4, the value of the normalized effective

forcing is 0.86. Reducing |ky| decreases the normalized effective forcing. We can see that a

single-mode approximation may underestimate or overestimate the effective forcing. As in

the previous case, increasing the number of modes beyond four has a negligible effect.
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Figure 4.3: Normalized effective forcing for a single-layered shell with kx = 0 using two,

three, and four modes.
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Figure 4.4: Effective forcing of a single-layered shell using a single-mode approximation.
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Figure 4.5: Normalized effective forcing obtained using a nine-mode approximation for a

multi-layered shell with ky = 0.

To have a better understanding of the behavior of the effective forcing, we plot in Fig. 4.4

the effective forcing for a single-layered shell obtained by using a single-mode approximation

in terms of both curvatures, kx and ky. It is clear from the figure that the effective forcing

depends on the values of the curvatures. The value of the effective forcing is equal to zero

along the line kx/ky = −1. Moving along the line kx/ky = 1 away from zero results in an

increase in fe to a maximum value of 5 × 10−4 and then a decrease in fe until it reaches

2 × 10−5.

Next, we study the effect of changing the number of layers on the calculated effective

forcing as a function of kx when ky = 0. In Fig. 4.5, we plot the normalized effective forcing

using nine modes for a shell with 1,3,5,7, and 9 layers. We can see from Fig. 3.28 that

increasing the number of layers shifts the internal-resonance singularity. For a single-layered

shell, the normalized effective forcing increases as |kx| increases until it encounters the sin-

gularity at kx ≈ 0.16. Starting from |kx| = 0.4, we find that the normalized effective forcing

decreases as |kx| is decreased. Increasing the number of layers to 3 shifts the singularity to
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Figure 4.6: Normalized effective forcing obtained using a nine-mode approximation for a

multi-layered shell with kx = 0.

kx = 0.172 while the behavior stays the same. Increasing the number of layers further does

not change the general behavior of the normalized effective forcing.

Now, we plot in Fig. 4.6 the normalized effective forcing obtained by using nine modes

in terms of ky when kx = 0. For a single-layered shell, the normalized effective forcing has

a maximum value of 1.32 at ky = 0. Increasing the value of |ky| reduces f̄e until it reaches

1.175 at |ky| = 0.28, where it starts to increase once again. Increasing the number of layers

to 3 changes the behavior of the normalized effective forcing. The value of the normalized

effective forcing has a minimum value of 1.15 when ky = 0. As |ky| increases, the normalized

effective forcing increases and reaches 1.37 when ky = 0.4 and -0.4. Increasing the number

of layers to 5 does not change the behavior, but it reduces the minimum value of f̄e to 1.06

when ky = 0. As |ky| increases, f̄e increases and reaches 1.36 at ky = 0.4 and -0.4. Increasing

the number of layers to 7 and 9 slightly changes f̄e while its behavior remains the same. We

can see a change in f̄e as the number of layers increases from 1 to 3. This change is due to

the large change in the stiffness.
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Figure 4.7: Frequency-response curves of a single-layered shell when : (a) single-mode ap-

proximation and (b) nine-mode approximation.

4.2.2 Shell Dynamics

Next, we use Eqs. (4.19), (4.20), (4.22), and (4.23) to investigate influence of the number

of modes on the predicted shell dynamics. We consider an isotropic shell with the following

parameters:

ν12 = 0.3, lx = 1, ly = 1, f11 = 300,

E1 = 21 × 109,
G12

E1
= 0.79, kx = 0.0, ky = 0.05588 (4.26)

In Fig. 4.7(a), we plot the frequency-response curves obtained by using a single-mode

approximation. The curves are bent to the right, indicating a hardening-type behavior. The

solid lines in the figure represent stable solutions, while the dashed lines indicate unstable

solutions. When σ < −0.94, there is only one solution, the trivial solution, which is stable.



Khaled A. Alhazza Chapter 4. Response of a Shallow Shell to a Subharmonic Resonance 92

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

Forcing f
e

D
is

p
la

ce
m

en
t 

a

Stable  

Unstable  

P.F. 

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.5

1

1.5

Forcing f
e

D
is

p
la

ce
m

en
t 

a

Stable  

Unstable  

P.F. 

S.N. 

(b)

Figure 4.8: Force-response curves of a single-layered shell when kx = 0.0 and ky = 0.05588

using a single-mode approximation: (a) σ = −1 and (b) σ = 1.

When −0.94 < σ < 0.94, there are two possible solutions, the trivial solution, which is

unstable, and a nontrivial solution, which is stable,. When σ > 0.94, there are three possible

solutions: a trivial, which is stable, and two nontrivial solutions, the larger of which is

stable and the smaller is unstable. In this interval, the response may be trivial or nontrivial,

depending on the initial conditions. At large values of σ, the response homes on the trivial

solution for small initial conditions. Decreasing σ below the subcritical pitchfork bifurcation

at σ = 0.94 results in a jump in the response to the upper stable solution. A further decrease

in σ results in a decrease in the response amplitude a until the left bifurcation point ( a

supercritical pitchfork bifurcation) is reached , where a homes on the trivial solution.

In Fig. 4.7(b), we increase the number of modes retained in the approximation to 9. Now,

the frequency-response curves are bent to left, indicating a softening-type behavior. As

in the case of primary resonance, the low-order discretization approach produces erroneous

qualitative and quantitative frequency-response curves in the case of subharmonic resonance.
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Figure 4.9: Force-response curves of a single-layered shell when kx = 0.0 and ky = 0.05588

using a nine-mode approximation: (a) σ = −1 and (b) σ = 1.

Next, we show in Fig. 4.8(a) typical force-response curves for the same shell using a single-

mode approximation when σ = 1. There are two bifurcations: a saddle-node bifurcation at

fe = 0.05 and a subcritical pitchfork bifurcation at fe = 0.5. In the interval 0.05 < fe < 0.5,

there are three solutions: a trivial, which is stable and two nontrivial solutions, the larger

of which is stable. In this interval, the response may be trivial or nontrivial, depending on

the initial conditions. When fe > 0.5, there are two solutions, the trivial solution, which is

unstable and a nontrivial solution, which is stable. when fe < 0.05, the response is always

trivial.

Now, we plot in Fig. 4.8(b) the force-response curve when σ = −1. There are two branches

of solutions: trivial and nontrivial. The trivial solution is stable when fe < 0.5 and unstable

when fe > 0.5. The nontrivial solution starts from the supercritical pitchfork bifurcation at

σ = 0.5. When fe < 0.5, the response homes on the trivial solution. Increasing fe beyond

the bifurcation point results in a smooth increase in the amplitude a. When fe > 0.5, the

response homes on the nontrivial solution. Decreasing fe results in a decrease in a. At the
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Figure 4.10: Frequency-response curves for a multi-layered shell when kx = 0 and ky = 0.075.

bifurcation point, the response transfers smoothly to the trivial solution. In this case, the

system does not experience any jumps in either the backward or forward sweeps of fe.

In Figs. 4.9(a) and 4.9(b), we plot the force-response curves obtained using nine modes in

the approximation. These figures are qualitatively similar to Figs. 4.8(a) and 4.8(b) except

that the curve with negative detuning is similar to the curve with negative detuning. In Fig.

4.9, the pitchfork bifurcation occurs at fe = 0.544 and the saddle-node bifurcation occurs at

fe = 0.055. This shift in the position of the bifurcation points is the result of the predicted

effective forcing.

Next, we study the effect of the number of layers on the shell dynamics obtained using

nine-mode approximation. In Fig. 4.10, we plot the frequency-response curves for a multi-

layered shell when kx = 0 and ky = 0.075 with 1, 3, 5, 7, and 9 layers. The single-layered

frequency response curve is bent to the left, indicating a hardening-type behavior. Increasing

the number of layers to 3 results in a quantitative change in the behavior. Increasing the

number of layers to 5, 7, 9 results in another quantitative change in the behavior. This



Khaled A. Alhazza Chapter 4. Response of a Shallow Shell to a Subharmonic Resonance 95

quantitative change in the behavior is due to the change in the stiffness.



Chapter 5

Two-to-One Internal Resonance

In this chapter, we consider the nonlinear vibrations of a doubly curved cross-ply shallow

shell with simply supported boundary conditions in the case of two-to-one internal resonance

ω13 ≈ 2ω11. We investigate its responses for two cases of primary resonance: Ω ≈ ω13 and

Ω ≈ ω11. We use the Galerkin procedure to discretize the governing nonlinear partial-

differential equations of motion and obtain a reduced-order system of coupled nonlinear

ordinary-differential equations. We apply the method of multiple scales to the discretized

system to obtain the modulation equations governing the slow dynamics of the shell. A

pseudo-arclength scheme is used to determine the fixed points of the modulation equations

and then determine the stability of these points. We investigate the effect of the number of

modes retained in the approximation on the predicted responses. A combination of a shooting

technique and Floquet theory is used to determine the detailed solution branches and their

stability. We found that, in some cases, the fixed points undergo Hopf bifurcations, which

result in dynamic solutions. We use long-time integration to calculate chaotic solutions. The

limit cycles may undergo symmetry-breaking, saddle-node, and period-doubling bifurcations.

Furthermore, we found that neglecting the effect of the modes not involved in the internal

resonance may produce erroneous dynamic responses.

96
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5.1 Analysis

The discretized equations of motion for a simply supported shell can be expressed as

Ẅην + 2µηνẆην + ω2
ηνWην +

∞
∑

n,m

∞
∑

l,j

PηνnmljWnmWlj +
∞

∑

n,m

∞
∑

l,j

∞
∑

o,p

SηνnmliopWnmWljWop

= Fην cos(Ωt)

(5.1)

Because of the presence of a two-to-one internal resonance, we need to carry out the expansion

to second order to account for the nonlinear shifts in the frequencies. Applying the method

of multiple scales to the second-order system, such as Eq. (5.1), can lead to modulation

equations not derivable from a Lagrangian in the absence of damping and excitation. This

problem can be overcome by transforming the system to a first-order form and then treating

it with the method of multiple scales (Nayfeh, 2000). Then, the method of reconstitution

(Nayfeh, 1985) is used to derive the modulation equations. Thus, we let

Ẇij = vij (5.2)

Substituting Eq. (5.2) into Eq. (5.1) gives

vην − Ẇην = 0 (5.3)

v̇ην + 2µηνvην + ω2
ηνWην +

∞
∑

n,m

∞
∑

l,j

PηνnmljWnmWlj +

∞
∑

n,m

∞
∑

l,j

∞
∑

o,p

SηνnmliopWnmWljWop

= Fην cos(Ωt) (5.4)

To examine the two-to-one internal resonance ω13 ≈ 2ω11, we seek an approximation of

the interacting modes W11 and W13 and the noninteracting modes (modes not involved in

the internal resonance) as

W11 = ǫW
(1)
11 (T0, T1, T2) + ǫ2W

(2)
11 (T0, T1, T2) + ǫ3W

(3)
11 (T0, T1, T2) + · · · (5.5)



Khaled A. Alhazza Two-to-One Internal Resonance 98

v11 = ǫv
(1)
11 (T0, T1, T2) + ǫ2v

(2)
11 (T0, T1, T2) + ǫ3v

(3)
11 (T0, T1, T2) + · · · (5.6)

W13 = ǫW
(1)
13 (T0, T1, T2) + ǫ2W

(2)
13 (T0, T1, T2) + ǫ3W

(3)
13 (T0, T1, T2) + · · · (5.7)

v13 = ǫv
(1)
13 (T0, T1, T2) + ǫ2v

(2)
13 (T0, T1, T2) + ǫ3v

(2)
13 (T0, T1, T2) + · · · (5.8)

Wην = ǫ2W (2)
ην (T0, T1, T2) + ǫ3W (3)

ην (T0, T1, T2) + · · · η �= 1, ν �= 1, 3 (5.9)

vην = ǫ2v(2)
ην (T0, T1, T2) + ǫ3v(2)

ην (T0, T1, T2) + · · · η �= 1, ν �= 1, 3 (5.10)

where ǫ is a bookkeeping parameter, T0 = t is a fast time scale, and T1 = ǫt and T2 = ǫ2t are

slow time scales describing the time evolution of the amplitudes and phases of the response.

The derivative with respect to time can be expressed as

∂

∂t
= D0 + ǫD1 + ǫ2D2 + · · · (5.11)

where Di = ∂
∂Ti

. We scale the forcing and damping terms as

µην = ǫ2µην (5.12)

F11 = ǫ2f11 (5.13)

F13 = ǫ2f13 (5.14)

Fην = ǫ3fην η �= 1, ν �= 1, 3 (5.15)

Substituting Eqs. (5.5)-(5.15) into Eqs. (5.3) and (5.4) and equating coefficients of like

powers of ǫ leads to

Order ǫ

D0W
(1)
11 − v

(1)
11 = 0 (5.16)

D0v
(1)
11 − ω2

11W
(1)
11 = 0 (5.17)

D0W
(1)
13 − v

(1)
13 = 0 (5.18)

D0v
(1)
13 − ω2

13W
(1)
13 = 0 (5.19)
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Order ǫ2

D0W
(2)
11 − v

(2)
11 = −D1W

(1)
11 (5.20)

D0v
(2)
11 − ω2

11W
(2)
11 = −D1v

(1)
11 −

3
∑

m,j=1

P111m1jW
(1)
1mW

(1)
1j + f11 cos(ΩT0) (5.21)

D0W
(2)
13 − v

(2)
13 = −D1W

(1)
13 (5.22)

D0v
(2)
13 − ω2

13W
(2)
13 = −D1v

(1)
13 −

3
∑

m,j=1

P131m1jW
(1)
1mW

(1)
1j + f13 cos(ΩT0) (5.23)

D0W
(2)
ην − v(2)

ην = 0 (5.24)

D0v
(2)
ην − ω2

ηνW
(2)
ην = −

∞
∑

n,m=1

∞
∑

l,j=1

PηνnmljW
(1)
nmW

(1)
lj η �= 1, ν �= 1, 3 (5.25)

Order ǫ3

D0W
(3)
11 − v

(3)
11 = −D1W

(2)
11 − D2W

(1)
11 (5.26)

D0v
(3)
11 − ω2

11W
(3)
11 = −D1v

(2)
11 − D2v

(1)
11 − 2µ11D0v

(1)
11

−
3

∑

m=1

∞
∑

l,j=1

P111mljW
(1)
1mW

(2)
lj −

3
∑

m=1

3
∑

j=1

3
∑

p=1

S111m1j1pW
(1)
1mW

(1)
1j W

(1)
1p

(5.27)

D0W
(3)
13 − v

(3)
13 = −D1W

(2)
13 − D2W

(1)
13 (5.28)

D0v
(3)
13 − ω2

13W
(3)
13 = −D1v

(2)
13 − D2v

(1)
13 − 2µ13D0v

(1)
13

−
3

∑

m=1

∞
∑

l,j=1

P131mljW
(1)
1mW

(2)
lj −

3
∑

m=1

3
∑

j=1

3
∑

p=1

S131m1j1pW
(1)
1mW

(1)
1j W

(1)
1p

(5.29)

The solution of Eqs. (5.16)-(5.19) can be expressed as

W
(1)
11 = A11(T1, T2)e

iω11T0 + cc (5.30)

W
(1)
13 = A13(T1, T2)e

iω13T0 + cc (5.31)
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v
(1)
11 = iω11A11(T1, T2)e

iω11T0 + cc (5.32)

v
(1)
13 = iω13A13(T1, T2)e

iω13T0 + cc (5.33)

where cc stands for the complex conjugate of the preceding terms and A1(T1, T2) and

A2(T1, T2) are complex-valued functions determined by eliminating the secular terms at the

higher levels of approximation.

Substituting Eqs. (5.30)-(5.33) into Eqs. (5.20)-(5.25) yields

D0W
(2)
11 − v

(2)
11 = −D1A11e

iω11T0 + cc (5.34)

D0v
(2)
11 − ω2

11W
(2)
11 = − iω11D1A11e

iω11T0

−
3

∑

m,j=1

P111m1j

[

A1mA1je
i(ω1m+ω1j )T0 + A1mĀ1je

i(ω1m−ω1j )T0

]

+
f11

2
eiΩT0 + cc (5.35)

D0W
(2)
13 − v

(2)
13 = − D1A11e

iω13T0 + cc (5.36)

D0v
(2)
13 − ω2

13W
(2)
13 = − iω13D1A13e

iω13T0

−
3

∑

m,j=1

P131m1j

[

A1mA1je
i(ω1m+ω1j )T0 + A1mĀ1je

i(ω1m−ω1j )T0

]

+
f13

2
eiΩT0 + cc (5.37)

D0W
(2)
ην − v(2)

ην =0 (5.38)

D0v
(2)
ην − ω2

ηνW
(2)
ην = −

∞
∑

n,m=1

∞
∑

l,j=1

Pηνnmlj

[

AnmAlje
i(ωnm+ωlj )T0 + AnmĀlje

i(ωnm−ωlj )T0

]

+ cc η �= 1, ν �= 1, 3 (5.39)

Next, we consider two cases: Ω ≈ ω13 and Ω ≈ ω11.
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5.2 Primary Resonance of the Higher-Frequency Mode

We introduce the detuning parameters σ1 and σ2 defined by

ω13 = 2ω11 + ǫσ1 (5.40)

Ω = ω13 + ǫσ2 (5.41)

Substituting Eqs. (5.40) and (5.41) into Eqs. (5.34)-(5.39) and eliminating the terms that

produce secular terms, we obtain

2iω11D1A11 = −(P111113 + P111311)Ā11A13e
iσ1T1 (5.42)

2iω13D1A13 = −P131111A
2
11e

−iσ1T1 +
f13

2
eiσ2T1 (5.43)

Then, the solution of the second-order equations (5.20)-(5.25) can be written as

W
(2)
11 =

1

ω2
11

[

− 1

4
Ā13A11P111113e

i(ω11−ω13)T0 − 1

4
Ā13A11P111311e

−i(ω13−ω11)T0

+
1

8
A13A11P111113e

i(ω13+ω11)T0 +
1

8
A13A11P111311e

i(ω13+ω11)T0 − 1

6
f13e

iΩT0 − 1

6
e−iΩT0f11

− 2P111111Ā11A11 +
1

3
e2iω11T0P111111A11

2 +
1

15
e−2iω13T0P111313Ā

2
13 +

1

15
e2iω13T0P111313A13

2

+
1

3
e−2iω11T0P111111Ā

2
11 +

1

8
Ā13Ā1P111113e

−i(ω13+ω11)T0 +
1

8
Ā13Ā11P111311e

−i(ω13−ω11)T0

− 2P111313Ā13A13 −
1

4
A13Ā11P111113e

i(ω13−ω11)T0 − 1

4
A13Ā11P111311e

i(ω13−ω11)T0

]

(5.44)

v
(2)
11 =

i

ω11

[

− 2

3
e−2iω11T0P111111Ā

2
11 +

1

3
e−iΩT0f13 +

1

4
A13Ā11P111113e

i(ω13−ω11)T0

+
1

4
A13Ā11P111311e

i(ω13−ω1)T0 − 1

3
f13e

iΩT0 − 4

15
e−2iω13T0P111313Ā

2
13

− 1

4
Ā13A11P111113e

−i(ω13+ω11)T0 − 1

4
Ā13A11P111311e

−i(ω13−ω11)T0 +
4

15
e2iω13T0P111313A13

2

+
3

8
A13A11P111113e

i(ω13+ω11)T0 +
3

8
A13A11P111311e

i(ω13+ω11)T0 +
2

3
e2iω11T0P111111A11

2

− 3

8
Ā13Ā11P111113e

−i(ω13+ω11)T0 − 3

8
Ā13Ā11P111311e

−i(ω13+ω11)T0

]

(5.45)
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W
(2)
13 =

1

ω2
11

[

− 1

16
e2iω11T0P131111A11

2 − 1

16
e−2iω11T0P131111Ā

2
11 +

1

12
e−2iω13T0P131313Ā

2
13

+
1

12
e2iω2T0P131313A13

2 +
1

5
A13A11P131311e

i(ω13+ω11)T0 +
1

5
A13A11P131113e

i(ω13+ω11)T0

− 1

3
A13Ā11P131311e

i(ω13−ω11)T0 − 1

3
A13Ā11P131113e

i(ω13−ω11)T0 +
1

5
Ā13Ā11P131311e

−i(ω13+ω11)T0

+
1

5
Ā13Ā11P131113e

−i(ω13+ω11)T0 − 1

2
P131111Ā11A11 −

1

2
P131313Ā13A13

− 1

3
Ā13A11P131311e

−i(ω13−ω11)T0 − 1

3
Ā13A11P131113e

−i(ω13−ω11)T0 +
1

32
f13e

iΩT0

+
1

32
f13e

−iΩT0

]

(5.46)

v
(2)
13 =

i

ω11

[

1

3
Ā13A11P131311e

−i(ω13−ω11)T0 +
1

3
Ā13A11P131113e

−i(ω13−ω11)T0

+
1

3
e2iω13T0P131313A

2
13 −

1

3
A13Ā11P131113e

i(ω13−ω11)T0 − 3

5
Ā13Ā11P131311e

−i(ω13+ω11)T0

− 3

5
Ā13Ā11P131113e

−i(ω13+ω11)T0 − 1

3
e−2iω13T0P131313Ā

2
13 +

3

5
A13A11P131311e

i(ω13+ω1)T0

+
3

5
A13A11P131113e

i(ω13+ω11)T0 − 1

3
A13Ā11P131311e

i(ω13−ω11)T0

]

+

i

ω2
11

[

1

16
e2iω11T0ω13P131111A11

2 − 1

32
ω13f13e

iΩT0 +
1

32
f13ω13e

−iΩT0

− 1

16
e−2iω11T0ω13P131111Ā

2
11

]

(5.47)

W (2)
ην = −

3
∑

n,m=1

3
∑

l,j=1

Pηνnmlj

[

AnmAlje
i(ωnm+ωlj )T0

ω2
ην − (ωnm + ωlj)2

+
AnmĀlje

i(ωnm−ωlj )T0

ω2
ην − (ωnm − ωlj)2

]

+ cc η �= 1, ν �= 1, 3 (5.48)

Substituting Eqs. (5.30)- (5.33) and (5.44)-(5.48) into Eqs. (5.26)-(5.29) and eliminating

the terms that produce secular terms, we obtain

2iω11D2A11 = iΞ1A11 + Ξ2A11
2Ā11 + Ξ3A1A13Ā13 + Ξ4e

i(σ1+σ2)T1Ā11 (5.49)

2iω13D2A13 = ξ1A11Ā11A13 + iξ2A13 + ξ3A
2
13Ā13 (5.50)
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where the ξi and Ξj are defined as

ξ1 =
1

15ω2
13

ε2(60P131313P131111 + 15P111311P131111 + 15P111113P131111 + 120P131311P111111

+ 8P 2
131311 − 30S13131111ω

2
13 − 30S2112ω

2
13 − 30S13111311ω

2
13 + 8P 2

131113

+ 16P131311P131113 + 120P131113P111111)

−
∞

∑

n,m

[

2Pnm1111(P13nm11 + P1311nm)

ω2
nm

+
(P13nm11 + P1311nm)(Pnm1113 + Pnm1311)

ω2
nm + (ω11 − ω13)2

+
(P13nm13 + P1313nm)(Pnm1113 + Pnm1311)

ω2
nm − (ω11 + ω13)2

]

(5.51)

ξ2 = −2ω13µ2ε
2 (5.52)

ξ3 =
1

15ω2
13

ε2(116P111313P131311 − 45S13131313ω
2
13 + 50P 2

131313 + 116P111313P131113)

+
∞

∑

nm

(P13nm13 + P1313nm)
˙[

− Pnm1313

(

2

ω2
nm

+
1

ω2
nm − 4ω2

11

) ]

(5.53)

Ξ1 = −2ω11µ1ε
2 (5.54)

Ξ2 =
1

48ω2
11

ε2(−144S11111111ω
2
11 + 27P111311P131111 + 27P111113P131111 + 160P 2

111111)

+

∞
∑

n,m

(P11nm11 + P1111nm)
˙[

− Pnm1111

(

2

ω2
nm

+
1

ω2
nm − 4ω2

11

) ]

(5.55)

Ξ3 =
1

120ω2
11

ε2(32P111313P131113 − 240S11131311ω
2
11 + 60P111113P131313 + 32P111313P131311

+ 480P111111P111313 + 60P111311P131313 + 15P 2
111311 − 240S13131113ω

2
11

− 240S11111313ω
2
11 + 30P111311P111113 + 15P 2

111113)

−
∞

∑

n,m

[

2(P11nm13 + P1113nm)Pnm1313

ω2
nm

+
(P11nm13 + P1113nm)(Pnm1113 + Pnm1311)

ω2
nm − (ω11 − ω13)2

+
(P11nm13 + P1113nm)(Pnm1113 + Pnm1311)

ω2
nm − (ω11 + ω13)2

]

(5.56)
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Ξ4 = − 1

96ω2
11

ε2(3P111113f13 − 32P111111f13 + 3P111311f13) (5.57)

Now, we use the method of reconstitution (Nayfeh, 1985) to derive the modulation equa-

tions. We combine Eqs. (5.42) and (5.43) with (5.49) and (5.50) as

Ȧ11 = εD1A11 + ε2D2A11 (5.58)

Ȧ13 = εD1A13 + ε2D2A13 (5.59)

Hence,

2iω11Ȧ11 = iΞ1A11 + Ξ2A
2
11Ā11 + Ξ3A11A13Ā13 + Ξ4e

i(σ1+σ2)εtĀ11 + Ξ5e
iσ1εtĀ11A13 (5.60)

2iω13Ȧ13 = ξ4e
iσ2εt + ξ5e

−iσ1εtA2
11 + ξ1A11Ā11A13 + iξ2A13 + ξ3A

2
13Ā13 (5.61)

where

Ξ5 = −ε(P111113 + P111311) (5.62)

ξ4 =
1

2
εf13 (5.63)

ξ5 = −εP131111 (5.64)

To express the modulation equations in polar form, we substitute

A11 =
1

2
a1e

iβ1 (5.65)

A13 =
1

2
a2e

iβ2 (5.66)

into Eqs. (5.60) and (5.61), separate real and imaginary parts, and obtain

ȧ1 =
1

4ω11
[a1Ξ5 sin(γ1 − γ2)a2 + 2a1Ξ1 + 2a1Ξ4 sin(γ1)] (5.67)
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ȧ2 =
1

4ω13

[

−ξ5 sin(γ1 − γ2)a
2
1 + 4ξ4 sin(γ2) + 2ξ2a2

]

(5.68)

γ̇1 =
1

4ω11

[

a2
1Ξ2 + Ξ3a

2
2 + 2Ξ5 cos(γ1 − γ2)a2 + 4σ1ω11 + 4σ2ω11 + 4Ξ4 cos(γ1)

]

(5.69)

γ̇2 =
1

8ω13a2

[

ξ1a
2
1a2 + 2a2

1ξ5 cos(γ1 − γ2) + ξ3a
3
2 + 8a2σ2ω13 + 8ξ4 cos(γ2)

]

(5.70)

where

γ1 = σ2εt − 2β1 + σ1εt (5.71)

γ2 = −β2 + σ2εt (5.72)

The Cartesian form of the modulation equations can be obtained by expressing the Aij as

A11 =
1

2
(p1 − iq1)e

iλ1(t;ε) (5.73)

A13 =
1

2
(p2 − iq2)e

iλ2(t;ε) (5.74)

where

λ1 =
1

2
σ1εt +

1

2
σ2εt − nπ (5.75)

λ2 = σ2εt − 2nπ + 2mπ (5.76)

Substituting Eqs. (5.73)-(5.76) into Eqs. (5.60) and (5.61) and letting ε = 1 leads to

ṗ1 = − 1

8ω11
(4q1ω11σ1 + 4q1ω11σ2 − 4Ξ1p1 + Ξ2p

2
1q1 + Ξ2q

3
1 + Ξ3q1p

2
2

+ Ξ3q1q
2
2 − 4Ξ4q1 + 2Ξ5p1q2 − 2Ξ5q1p2) (5.77)

q̇1 =
1

8ω11
(4p1σ1ω11 + 4p1σ2ω11 + 4Ξ1q1 + Ξ2p

3
1 + Ξ2p1q

2
1 + Ξ3p1p

2
2

+ Ξ3p1q
2
2 + 4Ξ4p1 + 2Ξ5p1p2 + 2Ξ5q1q2) (5.78)
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ṗ2 = − 1

8ω13

(8σ2q2ω13 + 4ξ5p1q1 + q2p
2
1ξ1 + q2q

2
1ξ1 − 4p2ξ2

+ q2p
2
2ξ3 + q3

2ξ3) (5.79)

q̇2 =
1

8ω13
(8σ2p2ω13 + 8ξ4 + 2ξ5p

2
1 − 2ξ5q

2
1 + ξ1p

2
1p2 + ξ1q

2
1p2

+ 4ξ2q2 + ξ3p
3
2 + ξ3p2q

2
2) (5.80)

We note that the modulation equations, Eqs. (5.77)-(5.80), are invariant under the trans-

formation (p1, q1, p2, q2) ⇐⇒ (−p1,−q1, p2, q2). This implies that the projection of a solution

of the modulation equations onto the p1 − q1 plane remains unaffected by rotation through

180◦ around the origin. Hence, the fixed points, trajectories, limit cycles, and attractors

occur in duplicate if they are not transformed onto themselves by the symmetry.

The fixed points of the modulation equations can be obtained by setting the ȧi and γ̇i = 0

in Eqs. (5.67)-(5.70) or the ṗi and q̇i = 0 in Eqs. (5.77)-(5.80) and then solving for the roots.

These roots correspond to periodic vibrations of the shell. The stability of these fixed points

depend on the real parts of the eigenvalues of the Jacobian matrix of Eqs. (5.67)-(5.70)

or Eqs. (5.77)-(5.80). A given fixed point is asymptotically stable if and only if all of the

eigenvalues lie in the left-half of the complex plane and unstable if at least one eigenvalue

lies in the right-half of the complex plane. When a1 = 0 and a2 �= 0, the shell vibrates

periodically with only one frequency (single-mode response). On the other hand, when

a1 �= 0 and a2 �= 0 the shell vibrates with two frequencies (two-mode response). For stability

analysis, the polar form is not convenient whenever one or more of the state variables of the

system have a zero value. This condition causes the corresponding fixed-point equations to

become identities. In such case, it is not straightforward to determine the stability of the

fixed point from the polar form of the modulation equations (Nayfeh and Mook, 1979). For

this reason, it is more convenient to determine the stability of such a fixed point from the

Cartesian form of the modulation equations.
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Figure 5.1: Frequency-response curves for a single-layered shell when kx = 0.33, ky = 0.398,

σ1 = −1.8, and f11 = 350 for the case Ω ≈ ω13.
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Figure 5.2: An enlargement of the frequency-response curves in Fig. 5.1 near the subcritical

pitchfork bifurcation at σ2 = 2.66.
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Figure 5.3: Bifurcation diagram for p1 corresponding to q1 = 0 when kx = 0.33, ky = 0.398,

σ1 = −1.8, and f11 = 350 for the case Ω ≈ ω13.

5.2.1 Two-Mode Case

In this section, we investigate the two-to-one internal resonance by considering only the

interacting modes W11 and W13. We consider a single-layered graphite/epoxy shell with the

following parameters:

ν12 =0.3, lx = 1, ly = 1,
E1

E2

= 15.4,

G12

E2

=0.79,
G23

E2

= 0.5, µ1 = 0.35,

kx =0.33, ky = 0.398, f1 = 350 (5.81)

With these parameters, the lowest four anti-symmetric nondimensional natural frequencies

are

ω11 = 171.909, ω13 = 343.818,

ω31 = 373.601, ω33 = 431.868 (5.82)
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and ω13 ≈ 2ω11. Next, we use the detuning parameter σ2 as a bifurcation parameter to study

the behavior of the fixed points and dynamic solutions of the modulation equations.

Typical frequency-response curves are shown in Fig. 5.1. There are two possible equilib-

rium solutions: single-mode and two-mode solutions. In the first solution, the driven second

mode responds with an amplitude a2, whereas the first-mode amplitude a1 is zero. This

solution is stable for large positive and negative values of σ2. In addition, it is bent to the

left, indicating a softening-type effective nonlinearity. Starting on the stable single-mode

branch and decreasing σ2, we find that one of the eigenvalues of the Jacobian matrix of Eqs.

(5.77)-(5.80) crosses the imaginary axis along the real axis at σ2 = 2.66, resulting in a jump

to the two-mode solution through a subcritical pitchfork bifurcation, as shown in greater

detail in Fig. 5.2. The single-mode solution loses stability and its amplitude increases as

σ2 decreases until σ2 = −8.875. At that point, a turning point occurs and the amplitude

of the single-mode solution starts to decrease as σ2 increases until σ2 = −1.896, where it

encounters another pitchfork bifurcation and regains stability. Moreover, unstable two-mode

solutions are born at that point.

Starting near the first pitchfork bifurcation and tracking the two-mode solution as we

decrease σ2, we find that the two-mode solution loses stability through a Hopf bifurcation

at σ2 = 0.106 (as a result of two complex conjugate eigenvalues crossing the imaginary axis

transversely from the left to the right half of the complex plane), resulting in the creation

of dynamic solutions. To predict the dynamic behavior of the system, we integrate the

modulation equations numerically and calculate the values of p1 corresponding to q1 = 0.

The result is the bifurcation diagram shown in Fig. 5.3. Another Hopf bifurcation occurs

at σ2 = −1.2, leading to a stable two-mode equilibrium solution. The stable fixed points

continue until σ2 = −9.26, where the system suffers a saddle-node bifurcation, resulting in

a jump to the lower branch of stable single-mode solutions.

To analyze the dynamic solutions, we use a combination of a shooting technique and Flo-

quet theory to locate periodic solutions and investigate their stability. We start at σ2 = 0.106,
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Figure 5.4: The symmetric period-one limit cycle obtained at σ2 = 0.1: (a) phase portrait

and (b) frequency spectrum.
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Figure 5.5: The unsymmeric period-one limit cycle obtained at σ2 = −0.2: (a) phase portrait

and (b) frequency spectrum.
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Figure 5.6: The period-two limit cycle obtained at σ2 = −0.6: (a) phase portrait and (b)

frequency spectrum.
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Figure 5.7: The period-four limit cycle obtained at σ2 = −0.608: (a) phase portrait and (b)

frequency spectrum.
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where a small symmetric period-one limit cycle is born due to the right Hopf bifurcation,

as shown in Fig. 5.4(a). The FFT for this limit cycle in Fig. 5.4(b) shows a spike at the

normalized frequency 1. The presence of only odd peaks is an indication of a symmetric limit

cycle. As σ2 decreases, the limit cycle increases smoothly in size and then loses symmetry

as a consequence of one of the Floquet multipliers exiting the unit circle through +1. The

limit cycle is shown in Fig. 5.5(a) and the FFT is shown in Fig. 5.5(b). The presence of

spikes at 1 and 2, both odd and even harmonics, indicates an unsymmetric limit cycle. This

unsymmetric limit cycle increases in size until σ2 = 0.56, where a period-doubling bifurcation

occurs as a consequence of one of the Floquet multiplies exiting the unit circle through −1.

In Fig. 5.6(a), we show the period-two limit cycle obtained at σ2 = −0.6. The FFT for this

limit cycle is shown in Fig. 5.6(b) and the period-two motion is indicated by the presence

of peaks at the normalized frequencies 1/2, 3/2, 5/2, and 7/2. This limit cycle smoothly

increases in size as σ2 decreases until −0.607, where another period-doubling bifurcation

occurs. The phase portrait and FFT of a period-four limit cycle are shown in Figs. 5.7(a)

and 5.7(b). The FFT shows the presence of peaks at 1/4, 3/4, 5/4, and (2n − 1)/4, which

affirms that attractor is a period-four. Shortly after the second period-doubling bifurcation,

the system goes into a chaotic motion. At σ2 = −0.634, a window of symmetric period-one

limit cycle appears within the chaos. The corresponding phase portrait and FFT are shown

in Figs. 5.8(a) and 5.8(b). After this window, the chaos, shown in Fig. 5.9, resumes until it

undergoes an interior crisis, resulting in its disappearance and the creation of a new period-

one solution at σ2 = −0.79, as illustrated by the Poincaré map in Fig. 5.3. The presence of

a broadband spectrum in the FFT in Fig. 5.9(b) is a mark of a chaotic response.

The new period-one solution, shown in Fig. 5.10(a), has a new shape and period. It is clear

from the FFT in Fig. 5.10(b) that the motion is symmetric. This solution loses symmetry

and then suffers a period-doubling bifurcation at σ2 = −0.92, Figs. 5.11(a) and 5.11(b).

Another period-doubling bifurcation occurs at σ2 = −0.938, Fig. 5.12, and shortly after this

period-doubling sequence, a chaotic solution appears. Inside this chaotic solution, one can

find multiple windows of limit cycles. At σ2 = −1.029 and σ2 = −1.07, symmetric period-
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Figure 5.8: The period-one limit cycle obtained at σ2 = −0.636: (a) phase portrait and (b)

frequency spectrum.

one solutions are found, as shown in Figs. 5.13 and 5.14. At σ2 = −1.088, an unsymmetric

limit cycle appears, as shown in Fig. 5.15. Lastly, a window of symmetric limit cycles exists

at σ2 = −1.141, as shown in Fig. 5.16.

To enhance our understanding of the system dynamics, we plot in Fig. 5.17 the force-

response curves obtained for σ1 = −1.8 and σ2 = 0.0. We can see that, as the forcing

increases, a2 increases while a1 remains zero, a single-mode solution. At f11 = 59.8, the

system suffers a supercritical pitchfork bifurcation, which causes the single-mode solution

to lose stability and generates a new stable two-mode solution. As we increase the forcing

further, a1 starts to increase while a2 remains almost constant at 0.72. This phenomenon

is known as saturation (Nayfeh and Mook, 1979). This two-mode solution suffers a Hopf

bifurcation at f11 = 144, leading to dynamic solutions. These solutions terminate through a

reverse Hopf bifurcation at f11 = 447.

Next, we plot in Fig. 5.18 the force-response curves obtained for σ1 = −1.8 and σ2 = −1.8.

Starting from zero, we can see that, as we increase the forcing f11, a2 increases while a1
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Figure 5.9: Chaotic solution obtained at σ2 = −0.7: (a) phase portrait and (b) frequency

spectrum.
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Figure 5.10: The period-one limit cycle obtained at σ2 = −0.8: (a) phase portrait and (b)

frequency spectrum.
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Figure 5.11: The period-two limit cycle obtained at σ2 = −0.93: (a) phase portrait and (b)

frequency spectrum.
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Figure 5.12: The period-four limit cycle obtained at σ2 = −0.939: (a) phase portrait and

(b) frequency spectrum.
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Figure 5.13: A symmetric period-one limit cycle within chaos obtained at σ2 = −1.029: (a)

phase portrait and (b) frequency spectrum.
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Figure 5.14: A symmetric period-one limit cycle within chaos obtained at σ2 = −1.07: (a)

phase portrait and (b) frequency spectrum.
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Figure 5.15: An unsymmetric period-one limit cycle within chaos obtained at σ2 = −1.088:

(a) phase portrait and (b) frequency spectrum.
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Figure 5.16: A symmetric period-one limit cycle within chaos obtained at σ2 = −1.141: (a)

phase portrait and (b) frequency spectrum.
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Figure 5.17: Force-response curves for a single-layered shell using two-mode approximation

when kx = 0.33, ky = 0.398, σ1 = −1.8, and σ2 = 0 for the case Ω ≈ ω13.

remains zero. This persists until f11 = 322.5, where a subcritical pitchfork bifurcation

occurs. The single-mode solution loses stability through this bifurcation and a new unstable

two-mode solution is created. At this point, the system response jumps to another coexisting

branch of stable two-mode solutions. Increasing the forcing to 540, the two-mode solution

loses stability through a Hopf bifurcation. On the other hand, decreasing the forcing leads to

a saddle-node bifurcation at f11 = 133.7, which results in a jump to the single-mode solution.

We can see from Figs. 5.17 and 5.18 that changing one of the parameters, such as σ2, can

induce a new dynamic behavior. In the shell problem, we have a relatively large number of

parameters, which may produce different dynamic behaviors.
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Figure 5.18: Force-response curves for a single-layered shell using a two-mode approximation

when kx = 0.33, ky = 0.398, σ1 = −1.8, and σ2 = −1.8 for the case Ω ≈ ω13.

5.2.2 Multi-Mode Case

In this section, we investigate the effect of the noninteracting modes on the predicted shell

dynamics. We include seven noninteracting modes. We consider the same shell parameters

defined in (5.81). Again, we use the detuning parameter σ2 as a bifurcation parameter to

generate the frequency-response curves. The frequency-response curves are shown in Fig.

5.19. We can see that, the effect of the noninteracting modes on the two-mode response is

small. However, their effect on the single-mode response is relatively large. To demonstrate

this, we plot a1 and a2 in Figs. 5.20 and 5.21, respectively. We can see clearly in Fig. 5.20

that using only the interacting modes W11 and W13 shifts the bifurcation points and dynamic

solutions and underestimates or overestimates the response amplitude. Furthermore, using

only the interacting modes may miss some of the dynamics and bifurcations, such as the

stable single-mode solution in −0.828 < σ2 < −1.65, as shown in Fig 5.21.

In another example, we plot in Fig. 5.22 the force-response curves when σ1 = −1.8 and
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Figure 5.19: Frequency-response curves for a single-layered shell generated by using a nine-

mode approximation when kx = 0.33, ky = 0.398, σ1 = −1.8, and f13 = 350 for the case

Ω ≈ ω13.

σ2 = −1.8. Compared with Fig. 5.18, we can see that using nine modes in the approximation

shifts the subcritical pitchfork bifurcation to f11 = 370 and the saddle-node bifurcation to

f11 = 140. Furthermore, the nine-mode approximation predicts a stable single-mode solution

when f11 > 366. Again as in the preceding case, the two-mode approximation fails to predict

the correct dynamics.

To check the convergence, we increased the number of modes retained in the approximation

to 16. We found out that the additional modes have a negligible effect.
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Figure 5.20: Frequency-response curves for a1 calculated by using two- and nine-mode ap-

proximations for the case Ω ≈ ω13.

5.3 Primary Resonance of the Lower-Frequency Mode

We introduce the detuning parameters σ1 and σ2 defined by

ω13 = 2ω11 + ǫσ1 (5.83)

Ω = ω11 + ǫσ2 (5.84)

Substituting Eqs. (5.83) and (5.84) into Eqs. (5.34)-(5.39) and eliminating the terms that

produce secular terms, we obtain

2iω11D1A11 = −(P111113 + P111311)Ā11A13e
iσ1εt +

f11

2
eiσ2εt (5.85)

2iω13D1A13 = −P131111A
2
1e

−iσ1εt (5.86)
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Figure 5.21: Frequency-response curves for a2 calculated by using two modes and nine modes

in the approximation for the case Ω ≈ ω13.

Then, the solution of the second-order equations can be expressed as

W
(2)
11 =

1

ω2
11

[

− 1

4
Ā13A11P111113e

−i(ω13−ω11)T0 − 1

4
Ā13A11P111311e

−i(ω2−ω11)T0

+
1

8
A13A11P111113e

i(ω13+ω11)T0 +
1

8
A13A11P111311e

i(ω13+ω11)T0 +
1

8
f13e

iΩT0 +
1

8
f13e

−iΩT0

− 2P111111Ā11A11 +
1

3
e2iω11T0P111111A

2
11 +

1

15
e−2iω13T0P111313Ā

2
13 +

1

15
e2iω13T0P111313A

2
13

+
1

3
e−2iω11T0P111111Ā

2
11 +

1

8
Ā13Ā1P111113e

−i(ω13+ω11)T0 +
1

8
Ā13Ā11P111311e

−i(ω13+ω11)T0

− 2P111313Ā13A13 −
1

4
A13Ā11P111113e

i(ω13−ω11)T0 − 1

4
A13Ā11P111311e

i(ω13−ω11)T0

]

(5.87)
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Figure 5.22: Force-response curves for a single-layered shell using a nine-mode approximation

when kx = 0.33, ky = 0.398, σ1 = −1.8, and σ2 = −1.8 for the case Ω ≈ ω13.
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Ā13A11P131311e

−i(ω13−ω11)T0 +
1

3
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2
13 +

3

5
A13A11P131311e

i(ω13+ω11T0)

+
3

5
A13A11P131113e

i(ω13+ω11)T0 − 1

3
A13Ā11P131311e

i(ω13−ω11)T0 +
1

6
f13e

iΩT0 − 1

6
f13e

−iΩT0

]

+
i

ω2
11

[

1

16
e2iω11T0ω13P131111A11

2 − 1

16
e−2iω11T0ω13P131111Ā

2
11

]

(5.90)

W (2)
ην = −

3
∑

n,m=1

3
∑

l,j=1

Pηνnmlj

[

AnmAlje
i(ωnm+ωlj )T0

ωην − (ωnm + ωlj)2
+

AnmĀlje
i(ωnm−ωlj )T0

ωην − (ωnm − ωlj)2

]

+ cc η �= 1, ν �= 1, 3 (5.91)

Substituting Eqs.(5.30)-(5.33) and (5.87)-(5.91) into Eqs. (5.26)-(5.29), eliminating the

terms that lead to secular terms, and using the method of recontitution, we obtain

2iω11Ȧ11 = Λ1e
iσ2εt + iΞ1A11 + Ξ2A

2
11Ā11 + Ξ3A11A13Ā13 + Ξ5e

iσ1εtĀ11A13

+ Λ2e
iεt(σ1−σ2)A13 (5.92)
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2iω13Ȧ13 = Λ3e
−iεt(σ1−σ2)A11 + ξ5e

−iσ1εtA2
11 + ξ1A11Ā11A13 + iξ2A13 + ξ3A

2
13Ā13 (5.93)

where the Λi are defined as

Λ1 =
1

2
εf11 (5.94)

Λ2 = − 1

24ω2
11

ε2(8P111313f13 + 3P111311f11 + 3P111113f11) (5.95)

Λ3 = − 1

3ω2
13

ε2(2P131113f13 + 3P131111f11 + 2P131311f13) (5.96)

The Cartesian form of the modulation equations can be obtained by expressing the Ai as

A11 =
1

2
(p1 − iq1)e

iλ1(t;ε) (5.97)

A13 =
1

2
(p2 − iq2)e

iλ2(t;ε) (5.98)

where

λ1 = σ2εt − 2nπ (5.99)

λ2 = 2σ2εt − σ1εt + 2mπ − 4nπ (5.100)

Substituting Eqs. (5.97)-(5.100) into Eqs. (5.92) and (5.93), letting ε = 1 and separating

real and imaginary parts leads to

ṗ1 = − 1

8ω11
(8σ2q1ω11 − 4Ξ2p1 + Ξ3p

2
1q1 + Ξ3q

3
1 + Ξ4q1p

2
2 + Ξ4q1q

2
2

+ 2Ξ5p1q2 − 2Ξ5q1p2 + 4Ξ6q2) (5.101)

q̇1 =
1

8ω11
(8σ2p1ω11 + 8Ξ1 + 4Ξ2q1 + Ξ3p1

3 + Ξ3p1q1
2 + Ξ4p1p2

2 + Ξ4p1q2
2

+ 2Ξ5p1p2 + 2Ξ5q1q2 + 4Ξ6p2) (5.102)
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ṗ2 = − 1

8ω13

(−8q2ω13σ1 + 16q2ω13σ2 + 4q1ξ1 + 4q1p1ξ2

+ q2p1
2ξ3 + q2q1

2ξ3 − 4p2ξ4 + q2p2
2ξ5 + q2

3ξ5) (5.103)

q̇2 =
1

8ω13
(16p2σ2ω13 − 8p2σ1ω13 + 4ξ1p1 + 2ξ2p

2
1 − 2ξ2q

2
1

+ ξ3p1
2p2 + ξ3q1

2p2 + 4ξ4q2 + ξ5p2
3 + ξ5p2q2

2) (5.104)

To express the modulation equation in polar form, we let

A11 =
1

2
a1e

iβ1 (5.105)

A13 =
1

2
a2e

iβ2 (5.106)

Substituting Eqs. (5.105) and (5.106) into Eqs. (5.92) and (5.93) and separating real and

imaginary parts, we obtain

ȧ1 =
1

4ω11

[a2Ξ5 sin(γ1 + γ2)a1 + 2a2Ξ6sin(γ1) + 2Ξ2a1 + 4Ξ1sin(γ2)] (5.107)

ȧ2 =
1

4ω13
[2ξ4a2 − ξ2 sin(γ1 + γ2)a

2
1 − 2ξ1 sin(γ1)a1] (5.108)

a1γ̇1 =
1

8ω11ω13a2
[a2

3ω13Ξ4a1 − ξ5a2
3a1ω11 + 2a2

2ω13Ξ5cos(γ1 + γ2)a1

+ 4a2
2ω13Ξ6cos(γ1) + a2ω13Ξ3a1

3 − ξ3a1
3a2ω11 + 8a2σ1ω13a1ω1

− 8a2σ2ω2a1ω11 + 8a2ω13Ξ1cos(γ2) − 2a1
3ω11ξ2cos(γ1 + γ2)

− 4ξ1a1
2cos(γ1)ω11] (5.109)

a2γ̇2 =
1

8ω11a1
[a2

3Ξ4a1 + 2a2
2Ξ5cos(γ1 + γ2)a1 + 4a2

2Ξ6cos(γ1) + a2Ξ3a1
3

+ 8a2a1σ2ω11 + 8a2Ξ1cos(γ2)] (5.110)
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where

γ1 = −β1 + σ1εt − σ2εt + β2 (5.111)

γ2 = −β1 + σ2εt (5.112)

5.3.1 Numerical Results

We consider the shell parameters defined in (5.81). In Fig. 5.23, we show typical frequency-

response curves for a single-layered shell with kx = 0.33 and ky = 0.398 obtained by using a

nine-mode approximation. Starting with σ2 = 3 and decreasing its value, we find that the

amplitudes a1 and a2 increase until a1 reaches a maximum at σ2 = 2.1 where this solution

loses stability through a Hopf bifurcation. Decreasing σ2 further results in a decrease in a1

and an increase in a2 until σ2 = −0.4, an enlarged picture for these bifurcations are shown

in Fig. 5.24,. The system gains stability through another Hopf bifurcation at σ2 = −1.17.

This stable solution continues as we decrease σ2 until it loses stability through a saddle-node

bifurcation, causing a jump to the lower branch of stable solutions. Starting on the lower

branch and increasing σ2 increases the values of a1 and a2. This solution loses stability at

σ2 = −3.79 through a saddle-node bifurcation, causing a jump to the upper branch.

In Fig. 5.25, we plot the force-response curves for the shell parameters defined in (5.81)

by using only the two interacting modes. We can see that, as we increase the forcing from

zero, both a1 and a2 increase. At f11 = 48 the system loses stability through a saddle-

node bifurcation. Tracking this unstable solution as the forcing is decreased both a1 and a2

increase. The system gains stability through another saddle-node bifurcation at f11 = 41.

Increasing f11 to 91, the system loses stability through a Hopf bifurcation generating a

dynamic solution. At f2 = 560 the system gains stability through a Hopf bifurcation. We

can see that the value of a2 is larger that a1 when the value of f2 is larger than 430.

To see the effect of multi-mode analysis on the force-response curves, we plot in Fig.

5.26 the force-response curves obtained by using nine modes in the approximation. We can
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Figure 5.23: Frequency-response curves for a single-layered shell when kx = 0.33, ky = 0.398,

σ1 = −1.8, and f11 = 350 for the case Ω ≈ ω11.
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Figure 5.24: An enlagment of the frequency-response curves in Fig. 5.23 near the Hopf

bifurcations.
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Figure 5.25: Force-response curves for a single-layered shell using a two-mode approximation

when kx = 0.33, ky = 0.398, σ1 = −1.8, and σ2 = −1.8 for the case Ω ≈ ω11.
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Figure 5.26: Force-response curves for a single-layered shell using a nine-mode approximation

when kx = 0.33, ky = 0.398, σ1 = −1.8, and σ2 = −1.8 for the case Ω ≈ ω11.
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see that, as we increase the forcing from zero, both a1 and a2 increase. At f11 = 78, the

system loses stability through a saddle-node bifurcation. Tracking this unstable solution as

the forcing is decreased, we find that both a1 and a2 increase. The system gains stability

through another saddle-node bifurcation at f11 = 67. Increasing f11 further increases a1 and

a2. From Figs 5.25 and 5.26, we can see that using only the two interacting modes shifts the

bifurcation points, underestimates or overestimates the amplitudes, and predicts erroneous

behaviors.

In this analysis, both the frequency- and force-response curves have only two-mode so-

lutions, while in the case of primary resonance of the higher-frequency mode both single-

and two-modes solutions can be activated. To study the effect of changing σ1 on the shell

dynamics, we plot in Fig. 5.27 the force-response curves when σ2 = 0. Starting from zero,

we see that a1 and a2 increase with increasing f11. At f11 = 123, the system suffers a Hopf

bifurcation, which generates dynamic solutions. At f11 = 200.3, the amplitude of the second

mode becomes larger than that of the first mode.
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Figure 5.27: Force-response curves for a single-layered shell when kx = 0.33, ky = 0.398,

σ1 = −1.8, and σ2 = 0 for the case Ω ≈ ω11.



Chapter 6

Conclusions

6.1 Summary

We analyzed the nonlinear vibrations of a doubly curved cross-ply shallow shell in the cases

of primary resonance, subharmonic resonance of order one-half, and two-to-one internal reso-

nance. We used the Galerkin procedure to reduce the governing nonlinear partial-differential

equations of motion and associated boundary conditions to an infinite system of nonlinearly

coupled second-order ordinary-differential equations. We used the method of multiple scales

to determine a second-order approximate solution of the discretized equations. We derived

a system of first-order nonlinear equations governing the modulation of the amplitudes and

phases and obtained expression for the effective nonlinearity. The modulation equations were

then used to generate frequency-response curves for a varying number of modes retained in

the approximation. Also, the effect of the number of layers on the predicted responses was

investigated.

132
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6.1.1 Response of a Shallow Shell to a Primary Resonance Exci-

tation

We analyzed the nonlinear vibrations of a doubly curved cross-ply shell in the case of a pri-

mary resonance excitation of its fundamental mode of vibration. We found that even modes

do not effect the response of the fundamental mode to a primary-resonance excitation. Fur-

thermore, we found that a single-mode approximation, and even a two-mode approximation,

fails to predict the dynamics of the shell. In fact, we found that, for some parameters,

the single-mode and two-mode approximations lead not only to quantitatively but also to

qualitatively erroneous frequency-response curves. The number of modes that needed to be

retained for convergence depends on the shell parameters; a twelve-mode approximation is

sufficient for most cases. The second-order approximate solution predicts, for some shell

parameters, that the fundamental mode of vibration is involved in a two-to-one internal res-

onance with another mode. The two-to-one internal resonance manifests itself in a singular

value for the effective nonlinearity.

We analyzed the effect of the number of layers on the predicted response. It was shown

that increasing the number of layers from 1 to 3 has a great effect on the shell characteristics.

This large effect is due to the large change in the stiffness in one direction. It was also shown

that, as the number of layers increases, the change in the shell characteristics decreases. Due

to the change in shell parameters, such as the natural frequencies, the two-to-one internal

resonance is shifted in the kx and ky plane.

6.1.2 Global Dynamics

We investigated the vibrations and stability of doubly curved cross-ply laminated shallow

shells in the case of primary resonance. We used the reduced-order model to investigate

numerically the effect of the number of modes on the predicted responses. We used a

combination of a shooting technique and Floquet theory to calculate limit cycles and their
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stability. We showed that a single-mode approximation may miss important dynamical

responses, underestimate the location of bifurcations, and provide an inaccurate solution

for the vibration amplitude. On the other hand, using a multi-mode approximation, we

found period-doubling bifurcations, chaos, saddle-node bifurcations and a two-to-one internal

resonance. Increasing the number of modes retained over four, in this case, did not affect

either the qualitative or the quantitative dynamic behavior of the shell. We used six modes

and nine modes in checking for convergence.

6.1.3 Direct Approach

We applied the method of multiple scales directly to the governing partial-differential equa-

tions of motion and associated boundary conditions to obtain a second-order uniform ap-

proximate solution. We used a Fourier series expansion to satisfy the boundary conditions

at second order. The obtained modulation equations were derived and compared with those

obtained by using a multi-mode Galerkin approximation. We found that both methods give

the same results if the number of terms used in the approximation is large enough. Results

were obtained by using 32 terms in the Fourier series expansion.

6.1.4 Responses of a Shallow Shell to a Subharmonic Excitation

We considered the nonlinear forced vibrations of a doubly curved cross-ply laminated shal-

low shell with simply supported boundary conditions. We investigated its response to a

subharmonic resonance of the form Ω ≈ 2ω11. An approximate solution of the reduced-order

equations was obtained. These equations were solved by using the method of multiple scales.

Numerical results for isotropic, single-layered, and multi-layered shells were obtained. The

influence of the number of modes retained in the discretization and the number of layers

was investigated. We foundout that a single-mode approximation may underestimate or

overestimate the effective forcing. For a single-layered shell, we foundout a large change in
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the behavior of the shell as the number of modes is increased from 2 to 3. We foundout

that increasing the number of modes beyond 4 has a negligible effect. We also studied the

influence of the number layers on the response. We found that changing the number of layers

from 1 to 3 produces a large change in the effective forcing.

6.1.5 Two-to-One Internal Resonance

We investigated modal interactions between the first and second modes in the case of the

two-to-one internal resonance ω13 = 2ω11. We investigated the shell responses and stability

for two cases of primary resonance: Ω ≈ ω13 and Ω ≈ ω11. We used the method of multiple

scales to determine the modulation equations that govern the slow dynamics of the response.

A pseudo-arclength scheme was then used to determine the fixed points and the stability of

these points was investigated. We studied the effect of changing the driving frequency and

the forcing amplitude on the predicted response. In some cases, we found that the fixed

points may undergo Hopf bifurcations, which result in dynamic responses. A combination of

a long-time integration and Floquet theory was used to determine detailed branches of limit

cycles and chaotic solutions and their stability. We found that the limit cycles may undergo

symmetry-breaking, saddle node, and period-doubling bifurcations. Furthermore, we found

that neglecting the effect of the modes not involved in the internal resonance may produce

erroneous dynamic responses.

6.2 Recommendations for Future Work

The work presented in this work can be expanded and enhanced by undertaking the following

tasks:

1. During our study, we considered simply supported boundary conditions. Other bound-

ary conditions are also important to be considered.
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2. When the excitation is direct, combination resonances may occur. These types of

resonances should be investigated.

3. The effect of heat on the nonlinear vibrations of shells is of great practical importance

and should be studied.

4. Throughout our analysis, we only considered cross-ply shallow shells. This work should

be expanded to include angle-ply composite shells.

5. Experimental work needs to be conducted to validate our results.
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Appendix A

Definition of the Coefficients

A1nm =
D∗π4

4l4xl
4
y

[

K11n
4 l4y + n2 m2 l2x l2y (2K12 + K66) + K22m

4 l4x
]

(6.1)

A2nm = −
hπ2

(

kx m2 l2x + ky n2 l2y
)

4l2x l2y
(6.2)

A3 =
h2 π4

l2x l2y
(6.3)

C1nm =
hπ4

4l4xl
4
y

[

D11n
4l4y + 2n2 m2l2xl

2
y(D12 + 2D66) + D22 m4l4x

]

(6.4)

C2nm =

(

−kxD
∗m2 π2

4l2y
− ky D∗ n2 π2

4l2x

)

(6.5)

C3nm =
h
√

D∗

ρh

l2x

∫ 1

0

∫ 1

0

C sin2(nπx) sin2(mπy)dxdy (6.6)

C4 =
D∗ h

4l4x
(6.7)

C5 = −D∗hπ4

l2xl
2
y

(6.8)

fnm =
−l3x
D∗h

∫ 1

0

∫ 1

0

Fnmsin(nπx) sin(mπy)dxdy (6.9)

Gηνnmlj =

∫ 1

0

∫ 1

0

[

sin(πηx) sin(πνy) sin(πnx)

sin(πmy) sin(πlx) sin(πjy)

]

dxdy (6.10)
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Ḡηνnmlj =

∫ 1

0

∫ 1

0

[

sin(πηx) sin(πνy) cos(πnx)

cos(πmy) cos(πlx) cos(πjy)

]

dxdy (6.11)

2µnm =
C3nm

C4
(6.12)

ω2
nm =

A1nmC1nm + C2nmA2nm

C4A1nm
(6.13)

Pηνnmlj =
C2ηνA3(mnljḠηνnmlj − n2j2Gηνnmlj )

A1ηνC4

+
A2ljC5[(n2j2 + m2l2)Gηνnmlj − 2nmljḠηνnmlj ]

A1ljC4
(6.14)

Sηνnmljpqrs =
A3C5

(

pqrsḠljpqrs − p2s2Gljpqrs

)

A1ljC4

.[(n2j2 + m2l2)Gηνnmlj − 2nmljḠηνnmlj ] (6.15)
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