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NONLINEAR VISCOELASTIC ANALYSIS OF ADHESIVELY BONDED JOINTS

S. Roy and J. N. Reddy
Department of Engineering Science and Mechanics

Virginia Polytechnic Institute and State University

Blacksburg, VA 24061

INTRODUCTION

Adhesive bonding is increasingly used to fasten structural

components together. This is because in many present day applications,

conventional fasteners such as bolts, rivets, welds etc., are

unsuitable, specially if the components are made of polymeric or

composite material. Penetration methods (i.e., drilling holes, etc.)

cause high stress concentrations and, in the case of composites, sever
0I

the fiber reinforcement which in turn reduces the strength of the

joint. On the other hand, bonded joints tend to be damage-tolerant due

to the high damping behavior of the adhesive layer and less expensive0
due to lower fabrication cost.

',

Most polymeric adhesives are rate sensitive material and hence

exhibit viscoelasticity. Furthermore, certain types of epoxy resins

have been found to be nonlinearly viscoelastic in character. The

nonlinear viscoelastic behavior is typified by a stress-enhanced

creep. Basically, at elevated stresses the material moduli seem to

soften and the creep progresses at accelerated rates.

At present there are numerous computer programs available for

analyzing bonded joints. However, most of these computer codes

incorporate linearly elastic material behavior, and some allow for

nonlinearly elastic and plastic behavior. Computer programs which

incorporate viscoelastic material behavior are quite often limited to

the simple spring-dashpot type of model for linear materials. Such

.
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inaccurate modelling of the constitutive behavior of the structure can

seriously compromise the accuracy of the analytical predictions.

Ir 4his paper we are conerned with the development of a

computational procedure which is capable of accurately modelling the

linear and nonlinearly viscoelastic behavior of an adhesive layer within

a bonded joint. The adherends can be modeled as a linearly elastic

material which can undergo large rotations and displacements. The

theory and computer implementation of the geometrically nonlinear

elastic response has been presented in a previous work [i1 and shall not

be included here. The rest of the presentation will primarily involve

the description and the implementation of a general constitutive law for

nonlinear viscoelastic materials.

A general single integral constitutive law for nonlinear

viscoelastic materials systems was proposed by Schapery [2]. The law

can be derived from fundamental principles using the concepts of

irreversible thermodynamics. A comprehensive review of the

thermodynamics basis of Schapery's theory has been presented by Hiel et

al. [31.

The present study deals with the development of a finite element

model that is based on Schapery's single integral constitutive law.

First, a stress operator that defines uniaxial strain as a function of

current and past stress is developed. Extension to multi-axial stress

state is accomplished by incorporating Poisson's effects, resulting in a

constitutive matrix that consists of instantaneous compliance, Poisson's

ratio and a vector of hereditary strains. The constitutive equation

thus obtained are suitable for non-linear finite element analysis.

Plane stress, plane strain and axisymmetric formulations are included.
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A brief review of literature is presented in the next section to give

the background for the present study.

0w

BACKGROUND LITERATURE

An analysis of adhesive stresses in bonded joints was first

performed by Goland and Reissner [4] for two limiting cases: (i) the

case in which the adhesive layer is so thin and stiff that its

deformation can be neglected; and (ii) the case in which the adhesive

layer is soft and flexible and the joint flexibility is mainly due to

the deformation of the adhesive layer. In the first case, the peel

stress is found to be very high at the edge of the joint, while the

V shear stress is zero. In the second case, the maximum values of the

peel and shear stresses occur at the edges of the joint. The Goland-

Reissner analysis is limited to identical adherends, the joint-edge

* loads are not in equilibrium, and the stresses across the adhesive layer

are constant.

Erdogan and Ratwani [51 developed a one-dimensional analytical

* model for calculating stresses in a stepped lap joint. One adherend was

assumed to consist of an isotropic material and the second of an

orthotropic material. Linear elastic conditions for the materials were

* assumed. The thickness variation of the stresses in both the adherends

and in the adhesive was neglected.

Wooley and Carver [61 investigated the stress distributions in a

* simple lap joint using the finite element method. They assumed that the

total length of the adherends beyond the overlap is long and a plane

stress condition exists. The constant strain quadrilateral element

* (obtained by combining four constant strain triangular elements) was

used. One end of the adherend was assumed to be hinged and other end

3
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was allowed to move freely in the direction parallel to the original

bond line. The study dealt with the influence of Young's moduli ratios

and geometries on the peel and shear stress distributions. The results

compared favorably with the results of Goland and Reissner.

Hart-Smith 17] improved upon the approach of Goland and Reissner by

considering a third free-body-diagram for the adherend outside the joint

in addition to the two free-body-diagrams from each of the upper and

lower halves of the joint. With three separate sections to consider,

three relations between displacements and bending moments were

obtained. Additional boundary conditions involving displacements and

their first derivatives, not considered by Goland and Reissner, were

imposed in order to solve for the additional unknowns. In addition to

the improvement on the analysis of Goland and Reissner, Hart-Smith [71

also estabished the quantitative influence of adhesive plasticity in

shear. The elastic-plastic theory used by Hart-Smith predicts an

increase in joint strength and was shown to be capable of explaining

premature failure predictions found when using linear elastic

analyses. The quantitative effects of stiffness imbalance were also

accounted for.

A finite-element stress analysis for adhesive lap joints using

linear elasticity and elasto-plasticity theories was reported by Liu

18). Stress distributions and concentrations in the adhesive layer for

different joint parameters (geometry, material properties, and loading

conditions) were studied and compared.

The existence of stress gradients through the thickness of the

adhesive layer, close to the joint edges, was observed by Adams and

Peppiatt [9]. They subsequently performed a linear elastic finite
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element analysis on adhesively bonded lap joints employing more than one

element through the thickness of the adhesive layer, close to the joint

edges. Adams and Peppiatt [101 also studied the adhesive yielding using

an iterative elastic-plastic finite element program and the double lap,

bevel and scarf joints. The adhesive was assumed to be elastic-

perfectly plastic.

A nonlinear analysis of single and double lap joints was presented

by Humphreys and Herakovich [111 using the finite element method. The

nonlinear stress-strain response was represented by a Ramberg-Osgood

approximation. Mechanical and thermal loadings were considered but only

one element through the thickness of the adhesive layer was used.

Allman [12] presented an elastic stress analysis based on the

strain energy density of a particular joint. The effects of bending,

stretching and shearing of the adherends were included, and the shearing

and tearing action in the adhesive was accounted for. All conditions of

stress equilibrium in the joint and stress-free surface conditions were

satisfied. It was assumed, however, that the axial stress varies

linearly through the adherend thicknesses and that the shear stress is

constant through the adhesive thickness. Allman obtained solutions for

the single lap joint, although the method also appears to be applicable

to other joint configurations. He found that the average shear stress

concentration is 11% higher than that of Goland and Reissner's first

analysis, while the average peel stress at the joint edge is 67%

lower. Compared with the second analysis of Goland and Reissner,

Allman's method yielded a shear stress concentration of 15% and 31% less

for metal and composite adherends, respectively, while the average peel

5



-- L

stress at the joint edge was 27% higher and 36% lower for the same types

of adherends, respectively.

Phenomenological considerations were discussed by Hart-Smith [131

which greatly improve our understanding of the sources of non-uniform

load transfer, viz., adherend extensitivity, stiffness imbalance and

thermal mismatch. He also explained how the lightly loaded central area

of the joint, away from the joint edges, restricts cumulative creep

damage, and suggests that this region is vital for long term

durability. The amount of lightly loaded central area is a function of

the overlap length.

Yuceoglu and Updike [141 developed a numerical method for

determining peel and shear stresses in the adhesive of double lap,

double strap and stiffner plate joints. Bending and transverse shear

were included in the analytical model. Shear stresses were not required

to drop to zero at the joint edges after reaching peak values close to

the edges. Yuceoglu and Updike maintained that an analytical model

which would allow the shear stresses to drop to zero at the joint edges

would give approximately the same or slightly lower peak values of shear

and peel stresses. Their method also reveals that adherend bending has

a significant effect on both adhesive shear and peel stresses,

especially the latter.

Delale and Erdogan [15,161 performed a plate analysis simiar to

that of Goland and Reissner on the single lap joint assuming linear

elastic adherends and a linear viscoelastic adhesive. Separate stress

distributions were calculated for membrane loading, bending, and

transverse shear loading. They further extended their viscoelastic

6
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analysis of the single lap joint to include time-dependent temperature

variations.

Gali and Ishai [171 performed a finite element analysis on a

symmetric doubler model with linear elastic adherends and the adhesive

obeying a nonlinear effective-stress-strain relationship. The

effective-stress-strain relationship was derived from stress-strain

curves obtained by tensile and shear test data, and based on the Von

Mises deviatoric energy yield criterion. An iteration procedure was

applied to the linearly elastic finite element problem using a specific

secant modulus for each element separately. The secant modulus was

found from the corresponding effective strain of the previous solution

and the corresponding effective stress was found from the experimental

stress-strain curves. Gali and Ishai analyzed the symmetric doubler

model using both plane stress and plane strain and found that the plane

strain solutions converged faster and yielded less conservative results

(i.e., lower stresses) than the plane stress solutions. Nonlinear

solutions were also found to be considerably lower than the linear

solutions, the difference being more pronounced in the plane stress

case. The problem was also solved with the adhesive following an

elastic-perfectly-plastic effective-stress-strain law. The difference

between these results and those of the continuous nonlinear effective-

stress-strain case was found to be very small.

Nagaraja and Alwar [181 analyzed a tubular lap joint with the

finite element method assuming linear elastic adherends and a nonlinear

biaxial stress-strain law in the adhesive. They demonstrated that for

low stress levels, of the order of 12% of the fracture stress, the

nonlinear stresses were as much as 15% lower in shear and 8% lower in

7 7
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peel than the linear stresses. Nagaraja and Alwar [191 also performed a

finite element analysis on a single lap joint, treating the adherends as

linear elastic materials but the adhesive as a linear viscoelastic

material. The relaxation modulus was assumed to be equal to the inverse

of the creep compliance, the latter being obtained experimentally.

Francis et al. [201 discussed the effects of a viscoelastic

adhesive layer, geometry, mixed mode fracture response, mechanical load

history, environmental history and processing variations on the fracture

processes of adhesively bonded joints. However, their finite element

analysis is based on linear elastic fracture mechanics.

Dattaguru, et al. [211 studied the crack lap specimen and performed

analyses with a finite element program, GAMNAS, developed in-house at

NASA-Langley. The program GAMNAS accounts for geometric and material

nonlinearities but does not include viscoelastic capability. Also,

fracture is modeled using the linear elastic fracture mechanics but no

failure law is included.

Botha, Jones and Brinson [22], Henriksen [231, Becker, et al. [241, •

and Yadagiri and Papi Reddy [251 reported results of the viscoelastic,

finite-element analysis of adhesive joints. Henriksen used Schapery's

[21 nonlinear viscoelastic model to verify the experimental results of

Peretz and Weitsman [26] for an adhesive layer. Becker et al. [241

developed a finite-element stress analysis program, called VISTA, for

adhesively bonded joints. The program uses the nonlinear viscoelastic

.4 model of Knauss and Emri [271. No illustrative or validation problems

are presented to demonstrate the two-dimensional nonlinear viscoelastic

capabilities of VISTA. The works of Botha, et al., and Yadagiri and

Papi Reddy are limited to linear viscoelastic analysis.

8



Pickett and Hollaway [281 presented both classical and finite

element solutions for elastic-plastic adhesive stress distributions in

bonded lap joints. Single, double and tubular lap configurations having

both similar and dissimilar adherends were considered. The results show

how the development of adhesive yielding as the joints are loaded to a

failure condition. The detrimental effect of adherend-stiffness-

imbalance on the adhesive stress distributions was also shown.

An approximate method to analyze viscoelastic problems has been

outlined by Schapery [291. In this method, the solution to a

viscoelastic problem is approximated by a corresonding elasticity

solution wherein the elastic constants have been replaced by time

dependent creep or relaxation functions. The method may be applied to

linear as well as nonlinear problems. Weitsman [301 used Schapery's

quasi-elastic approximation to investigate the effects of nonlinear

viscoelasticity on load transfer in a symmetric double lap joint.

Introducing a stress-dependent shift factor, he observed that the

enhanced creep causes shear stress relief near the edges of the adhesive

joint.

Schaffer and Adams [311 carried out a nonlinear viscoelastic

analysis of a unidirectional composite laminate using the finite element

method. The nonlinear viscoelastic constitutive law proposed by

Schapery [21 was used in conjunction with elastoplastic constitutive

relations to model the composite response beyond the elastic limit.

Ghoneim and Yu Chen 1321 developed a viscoelastic-viscoplastic law

based on the assumption that the total strain rate tensor can be

decomposed into a viscoelastic and a viscoplastic comporent. A linear

viscoelasticity model is used in conjunction with a modified plasticity

S 9



model in which hardening is assumed to be a function of viscoplastic

strains as well as the total strain rate. The resulting finite element

algorithm is then used to analyze the strain rate and pressure effects

on the mechanical behavior of a viscoelastic-viscoplastic material.

Analysis of crack growth in viscoelastic media are mainly limited

to linear isotropic, homogeneous materials. Schaper) [331 proposed the

use of parameters similar to the J integral for quasi-static crack

growth in a class of nonlinear viscoelastic materials subject to finite

strains.

Czarnocki and Piekarski 1341 used a nonlinear elastic stress-strain

law for three-dimensional failure analysis of a symmetric lap joint.

Taking into account the variation of Poisson's ratio with strain within

the adhesive, the authors concluded that the failure of the adhesive

layer originates in the central plane of a joint (at the front edge).

It was also observed that the joint width does not have any effect on

the stress peaks in the central plane and that the application of a

weaker but more flexible adhesive results in higher load carrying

capacity and lower stress concentrations in the adherends.

NONLINEAR VISCOELASTIC FORMULATION

The uniaxial single integral constitutive equation can be stated

as,

E(t) g (t)o(t)D ° + gl(t) Dc( t sd) d 1g2 (s)o(s)Ids (1)

In Eq. (1), E(t) represents uniaxial kinematic strain at current time

t, c(t) is the Cauchy stress at time t, Do is the elastic compliance and

o (o) is a transient creep compliance function. The factor g (t)
c o

defines stress and temperature effects on elastic compliance and is a

i0
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measure of state dependent reduction (or increase) in stiffness.

Transient (or creep) compliance factor g1 (t) has similar meaning,

operating on the creep compliance component. The factor g2 (s) accounts

for the influence of load rate on creep, and depends on stress and

temperature. The functions wt and s are reduced times at t and s,

respectively, and are defined by,

t 1
( ds (2)

0 aT

where, as is a time 'shift factor'. This function modifiesC T

viscoelastic response as a function of temperature and stress.

5
Mathematically, aT shifts the creep data parallel to the time axis

relative to a master curve for creep strain versus time.

The constitutive law in Eq. (1) can be expressed in the following

operational form:

E = F(o) (3)

where F(o) is a stress operator, defined by, V.

F(o) = DI + E (4)

The detailed derivation of Eq. (4) from Eq. (1) is given below.

The transient creep compliance, D (v), can be expressed in the
c

following exponential form,

-Xr
r

Dc(I) = Z D l - e (5)

r

Substituting (5) in (1), gives,

tU
t - (t - ) d

= gDoa + gl f cr1' - e r I g2(s)o(s)lds (6)Or r

Letting the product g2a be expressed as G and simplifying the

integrand on the right hand side of Eq. (6) yields,

1i
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g-t e r ( Pt 4 s  dG s) ds

t
eg0O~o~g 1 d 4 G(s)dsg 1 D e

0 0 1 r r i0 ds r " ds
r 0r 0(7)

The third integration term on the right hand side of Eq. (7) is

now separated into two parts, the first part having limits from 0 to

to (t - At) and the second integral spanning only the current load step,

i.e., from (t - At) to t. Hence,

e r dG(s) ds = e r dG( ) ds
o ds 0 ds

t _ ( t s)

S- dG(s) ds (8)

t-t ds

Now, the first term on the right hand side of Eq. (8) can be rewritten

as,

t-At e- x r(t- dG(s) ds

ds
0

t-tt t srA

S e r e r e r ds
0 ds

t A t le r t  e r 4t - t e r Ps e kr p t - -t d ~ )

0 ds

t t-At t-At s
t-At - - t - r(' - d dr rs

e e 00 ds

er e r 'd(s) ds
-0 ds

- r t  t - t

=e qr (9)

12
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where,

60 t t - Lt-At (10)

r -A e -xr( -t )ds ds (1
r0 d

The second integral on the right hand side of Eq. (8) is now

integrated by parts. To carry out the integration, it is assumed

that G Varies linearly over the current time step At. Hence,

Ae r(t5 dG(s) ds

C-A ts tt

_dG(s) e dX(4 G~s e xr1I- ds
ds kG 2 x

r t-A t-At ds2  r

dG___ I_ dG(t-At) e__x_____t_______

dt) x dtx
dt xr r

t

* - dG(t) 11 -eXr'1 (12)
At r

In arriving at the second step, the fact that G(s) is assumed to be

* linear, hence its second derivative is zero, is used. Since G(t) has

been assumed to be a linear function of time over the current load-

step At, and the reduced time is proportional to t, we can write,

0 dG(t) -G(t) - G(t-At)
dt 0t t-At

or, dG(t) -G(t) - G(t-At) (13)

13



Substituting (13) into (12), gives,

t -Xr( td)  -*xratt
t e dG ds = [G(t) - G(t-At)][ -e x

t-At s rAf t

or, t e r -s ds = [G(t) - G(t-At)JBr (14)
at-At d

where

t 1 -e xA t
r (15) 

r

Substituting (11) and (14) back into (7) and writing G = g2a

= g0 D 0  gl Drg2o
r -xr  t-At

- 1  Dre qr-At + [g2(t)a(t) - g2 (t-At)O(t-At)I8t} (16)
rr

Collecting those terms in Eq. (16) that are multiplied by current

stress a yields,

S [gD+ gg 2 r Dr - gg 2 r DrBr I

+ gl{) Drg(t-At)B G(t-At) - e r q } (17)
+ r11 Dr2 rott r

Defining instantaneous compliance DI as the compliance term

multiplying the instantaneous stress a, and the remaining terms in Eq.

(17) as hereditary strains E, yields,

= Dio + E (18)

where,

~D gD Dt(19)
DI =goo 0 9192 ! r 919l2 ' rer(9

r r

14
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t 
r

E g1{ D rg 2 (t-at)a(t-at) - e qr ]} (20)

Hence, Eq. (18) expresses Schapery's single integral constitutive

law in terms of a stress operator that includes instantaneous compliance

* and hereditary strains.

t-At tIt is to be noted that the term q rtin Eq. (20) is the rth

component of the hereditary integral series at the end of the previous

• load step (i.e. at time equals t - At). The expression for the

hereditary integral at the end of the current load step (i.e. at time t)

can be derived in the form of a recurrence formula as shown below.

By definition [see. Eq. (11)],

0 ds..

f
-t dXr s )  tG

q e ds +  d

e - d+ e rs ds
0 t-At ds

Using the results from Eqs. (11) and (14), the above equation reduces

to,

t
t r t-At t

qr e qr + [g2 (t)aij(t) g2 (t-At)G(t-tt)lBr (21)

where is defined by Eq. (15).
h re

MULTIAXIAL STRESS FORMULATION

As mentioned earlier, the constitutive law derived in the preceding

section holds true for uniaxial state of stress. In order to formulate

a stress strain relationship for a multiaxial stress state each strain

0 component is assumed to be a linear function of the stress operators.

Therefore, as in linear elastic analysis, Poisson's effect is

15
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incorporated. Hence, the multiaxial stress strain law is fully defined

by the matrix relationship,

{e} = DI[N]{o} + [N]{E} (22)

In Eq. (22), {e} is a vector containing the algebraic difference of

kinematic strains {E} and thermal strains t6 ij e},

{e}T = {(EIi - e) - e) 9 Y12 -(33 e)} (23)

while, (of contains four components of Cauchy stress,

{0}T = {1' 022' a129 0331 (24)

and {E} is a vector of hereditary strains, components of which are

defined by the equation,

{E}T = [Eli, E2 2 , E1 2 , E3 3} (25)

Note that all quantities are functions of current time, t.

The matrix [NJ is a 4x4 matrix given by,

-, 0 -v

[NJ 1 0 -V (26)
0 0 2(1+) 0

-v -v 0

where v = v(t) is the Poisson's ratio at time t.

It is to be noted that the definitions (22) through (26)

incorporate possible states of plane stress, plane strain and rotational

symmetry.

1K:16 *



Inversion of Eq. (22) gives a constitutive relationship which,

written in a matrix form, is,

{a} = [MIf{e} - __ {E} (27)

DI

where [MI is,

i-V V 0 v

[M] = 1i l [ -v 0 j1 (28)
DI(I+v)(I-2,,)  0 0 (1-2v)/2 0

Equations (27) and (28) provide a general constitutive law and can

be applied to either plane stress, plane strain or axisymmetric

problems. For plane strain, kinematic strain component 3 is

identically zero. Hence, corresponding stresses may be computed by

setting E33 = 0. Since for plane stress, 033 is identically zero, the

kinematic strain e33 can then be evaluated from Eq. (27) and (28) as,

(1 + v)(1 - 2v) E (V - )( -

33 : (1 t) 33 1 - 1 iE22

(29)

FINITE ELEMENT SOLUTION ALGORITHM

Basic Formulation

The principle of virtual work states that for a system to be in

equilibrium (see [1,351),

6W =6W
internal external

or, 6Wint 6Wext =0 (30)

17
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For any elastic structure,

6W int = f o6cdv (31) S
v

where, 6e is the variation in the strain caused by the virtual

displacement 6u.

Equation (31) can be written in matrix form as,

6W int : {6} T {o}dv (32)
V

The strain-displacement relations can be expressed as,

6E1 = [BJf6u (33)

where [B) is the transformation matrix relating strains to displacements
a 0•
ax 0

LBI = 0 a (34)ay

a a
Lay ax J

Needless to mention, the above relationship holds only for

geometrically linear strain-displacement equations. Substituting Eq.

(33) in Eq. (32) gives,

6Win t = I {su}T [BT{}dv (35) 0

V

The variation in external work due to virtual displacement {6u} is

given by, -i

juT

a'ext = {6u}'{Fext}dv (36)
v

Substituting appropriate finite-element interpolation of the

displacements (see [361) into Eqs. (35) and (36), and substituting the

result into Eq. (30), we obtain the finite-element equations,

6u 1 81TI fctldv - {F 1 fl(7Uu}T ext = (37)

18
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where {6u} is a vector of virtual displacements, and {Fext} is a vector

of externally applied forces at the boundary.

If the stress vector {a} in Eq. (37) is now replaced by the multi-

axial constitutive law, Eq. (27) derived previously, then Eq. (37) can

be expanded as,

{6u}T{f [BIT[MI{E}dv - f [B]T[M]{e}dv
v v

f L [BIT{E}dv - {F = '0} (38)
v DI

or simply,

16u}T{R} = {j0}

TII where

{R} = f [BIT o}dv - {F 1 (40)
extv

is the residual force vector.

Inspection of Eq. (36) reveals that it is a function of the

instantaneous compliance DI at the current time step. But from Eq. (19)

it is observed that DI is a function of go, g1, g2, and the reduced time

and therefore dependent on the stress and temperature at the current

time step. Hence, Eq. (38) is nonlinear and cannot be solved by the

direct method. The solution must be obtained by means of an iterative

method which is presented in the following section.

Iterative Scheme

* In determining the solution to Eq. (38) at any time step t, the

following approach is adopted. If IR is the vector of unbalanced

forces at iteration i + 1 for time t, then, I
iR Ri + TK

-i+ = [+KI{u
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where [KTI is the tangent stiffness matrix,

[KTI = dfRI (42)

d {u}

in which (u} is a vector of nodal displacements at time t. It can be

shown from Eq. (38) that IKTI is given by,

[KTI f IBIT[MI[BIdv (43)
T v

Since we seek for a solution in which {Ri+1} = (0}, incremental

displacements {Aui} are evaluated from,

{Aui} = - [KTF-{Ri} (44)

The displacement is updated after each iteration by,

{ui+ = {ui} + fAu i} (

As can be perceived, the above solution scheme is essentially the

Newton-Raphson iterative solution algorithm.

Solution Algorithm

The complete solution procedure for each individual time step is

presented in a logical step-wise fashion and can be used directly for

programming purposes:

1. At the beginning of each time step, the stress vector

{} from the previous time step is accessed. Note that for

the initial or starting time step, the stress vector

o(t - At) denotes the initial stress state at t = 0, given

by tool. Since it is customary to assume a stress free state
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to exist at the start of the solution, {o} is usually set to

be zero.

2. Temperature T at time t is computed from T = f(t) which is

supplied by the user for problems involving thermal loads.

3. The parameters go(t), g1(t), g2(t), and a T which are known

functions of temperature and stress, are evaluated next, using

the stress vector obtained from previous load step.

4. Assuming at to be a linear function of time over the timeJT

step At, the average value of shift factor is given as
t  = . t - t

at g (aT + a T)/2 and the change in reduced time A-t
avg t

is computed as A t = At/at . In order for this assumption* oTavg"

to be valid At should be made sufficiently small.

5. Hereditary integral {qt} is computed using the recursive

formula given by Eq. (21).

6. Fet = x[F } where x is the load factor that corresponds

to the time step under consideration.

7. The residual vector {R} is computed for each element as,

{Re =F - f [BIT{o}edv
ve

8. The tangent stiffness matrix [KTIe = f [B]T[M[B]dv.
ve

9. Incremental displacement {Au} [K I .

10. Total displacement {u}. = {u}i_1 + Au}i where the subscript i

denotes the number of iterations.

11. The strains and stresses are computed using the known

displacement.

I {Aui}llI
12. Steps 3 through 12 are repeated till 1< Tolerance.

I i tu }Il
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13. Solution proceeds to the next time step for which steps 1

through 12 are repeated.

SAMPLE PROBLEMS

Validation of Linear Viscoelastic Model

The nonlinear constitutive law due to Schapery may be linearized by

assuming that the nonlinearizing parameters go, gi, and g2 have a value

of unity. In addition, the stress dependent part of the exponent in the

definition of the shift function is set to zero. Consequently, the

constitutive law reduces to the hereditary integral form commonly used

to describe a linear viscoelastic material.

Two test cases are used to validate the linear viscoelastic

analysis capability implemented in the present finite element program

named NOVA. In the first case, the tensile creep strain in a single

eight noded quadrilateral element was computed for both the plane stress

and plane strain cases using the program NOVA. The results were then

compared to the analytical solution for the plane strain case presented

in [371. A uniform uniaxial tensile load of 13.79 MPa was applied on

the test specimen. A three-parameter solid model was used to represent

the tensile compliance of the adhesive. The Poisson's ratio was assumed

to remain constant with time. The following time dependent functions

were used in [371 (see 1381 for additional experimental data on FM-73)

to represent the tensile compliance and the Poisson's ratio for FM-73M

at 720C: 
0

Go GIe/O8

0(t) = 2[l+1(t)] + 2[+t(t) - 8

~~[3K~t)_1

V(t) 2G t£J13K t +13Kt +11

G t
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where G(t) and K(t) are the shear and bulk modulus (mm/mm/MPA)

respectively. The analytical solution to the creep problem for the

plane strain case is given in [371 as:

e(t) = 2.728 x 10- + 1.334 x 10- 2 e - t/ 0 8 5 _ 2.659 x 10
-4 e-t/0 392 1

It is to be noted that for the three-parameter solid charac-

terization of FM-73M the value of the Poisson's ratio increases

significantly with :ime. Consequently, the prony series coefficients

for the tensile compliance also change with time. In the present

formulation compliance coefficients are assumed to be independent of

time. Hence two discrete values of the Poisson's ratio are used to

match the exact solution for few initial time steps and final time

steps. The values of the Poisson's ratio chosen for this purpose

are = Lim v(t) = 0.32 and v = Lim v(t) = 0.417. Figure la shows
0*

ar o t O t.-I.'

the creep curve for v = 0.417 for both plane strain and plane stress

finite-element analyses. As expected, the plane strain results exhibit

close agreement with the exact solution for large values of time,

followed by progressive deterioration of predicted value as one moves

towards smaller values of time. The finite element results for the

plane stress case points to the fact that the strains are higher for

plane stress than for plane strain.

Figure lb shows the creep curve corresponding to 0.32. In this

case the finite element predictions are accurate only for first few time

steps and deviates more and more from the analytical solution as time

increases. This is not surprising since the choice of Poisson's ratio

for this case makes the comparison meaningful only when t is small.

The above results indicate that the program NOVA provides

reasonably accurate results in regions where the input parameters are
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accurate, and that the variation of Poisson's ratio during the period of

analysis may cause significant deviations from the actual solution.

Next, the Model Joint analysis problem presented in [371 was used

as the second validation example. In this case, a linear viscoelastic

finite element analysis was carried out on a model joint under a

constant applied load of 4448 N giving an average adhesive shear stress

of 13.79 MPa. The specimen geometry, discretization and boundary

conditions are shown in Fig. 2. The thickness of the adhesive layer is

taken to be 0.254 mm. A nine parameter solid model was used to

represent the tensile creep compliance of FM-73 at 72C and is given by:

D(t) = 0.5988 x 10
-3 + 1.637 x i0-5 (1 - e-t/0.01

+ 0.6031 x 10. (1 - t/ '

+ 0.9108 x 10 4 (1 - e-t/1.0)

+ 2.6177 x 10
-4 G - e-t/10.0

The Poisson's ratio is assumed to have a value of 0.417 and remains

constant with time.

Figures 3 and 4 contain plots of the bond normal and shear

stresses, respectively for t = 50 secs. and t = 60 min. of loading.

These stresses represent the value at 1/16 the thickness from the upper

. adhesive adherend interface. The sharp peak at the left hand edge is

due to the singularity caused by the presence of a re-entrant corner in

the vicinity of the edge. These results are in good agreement with the

results presented in [371 which uses the linear viscoelastic finite

element Lode, MARC.
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Validation of Nonlinear Viscoelastic Model

In order to validate the nonlinear viscoelastic model, three

uniaxial test cases are analyzed. The results are compared with the

laboratory tests conducted on similar specimens by Peretz and Weitsman

[261. The material properties used in the verification analysis are

those reported in [231. The creep data, together with other relevant

material properties, are given in Table 1. A constant value for the

Poisson ratio is assumed for the adhesive. The results from a linear

viscoelastic analysis are also presented for comparison.

In the first verification test, a uniaxial stress of 10 MPa is

applied to the adhesive coupon for 1200 secs., followed by a step -

increase to 26.6 MPa for a further 1200 secs. The temperature of the

specimen is held constant at 500C and is assumed to be uniform

everywhere. The finite element predictions for this test are plotted

together with the experimental data in Fig. 5. The predictions are in

good agreement with the experimental results of Peretz and Weitsman [261.

The second test involves creep predictions under simultaneously

varying stress and temperature, both increasing linearly with time. The

temperature is again assumed to be uniform throughout the test

specimen. The finite element predictions (linear and nonlinear) and

experimental data are compared in Fig. 6. There is a good agreement

between the two sets of data.

The third test involves creep under a constant stress of 10 MPa

with a linearly varying temperature as a function of time. Figure 7

shows the strain vs. time curves obtained in the experiments and finite

element analysis. Satisfactory agreement between the experimental

results and the analysis is observed.
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Stress Anaisis of a Bonded Plate

After the successful validation of linear and nonlinear

viscoelastic models, the program is used to investigate stresses and

strains in a bonded cantilever plate undergoing bending due to a

uniformly distributed transverse load (see in Fig. 8). The aluminum 0

plates are bonded together by means of a thin layer of adhesive. The

material properties used for aluminum are given in Table 2. The creep

data used for the adhesive is the same as the one employed for the

verification tests. The finite element mesh used for the problem is

*also shown in Fig. 8. A non-uniform mesh is used in anticipation of a

large stress gradient near the clamped end. Eight-noded quadrilateral

isoparametric plane strain elements are used for the analysis. The

aluminum plates are assumed to be linearly elastic but undergoing large

displacements, and the adhesive is assumed to be a nonlinearly

viscoelastic material. Both the applied load and the temperature are

assumed to be constant with time.

Figures 9 to 12 depict the results of this analysis over a period

of 600 secs. Figure 9 contains plots of axial stresses, in aluminum and

adhesive, plotted along the beam axis. Figures 10 and 11 contain the

variation of the shear stresses and strains, respectively, along the

axis of the beam. It can be seen that, the strains in the adhesive are

an order of magnitude larger than the strains at a corresponding axial

location in the aluminum. Furthermore, these strains increase in

magnitude with an increase in time. While the stresses and strains

within the aluminum plate (approximately) conform to the pred' t' ;ns i

elementary beam theory, the corresponding strains and sesses h S

the adhesive layer exhibit significantly different rehaor. 'P i,
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stress within the adhesive change from compressive to tensile along the
5%

beam axis away from the clamped end. In the neighborhood of the free

edge, the axial stress reaches a peak, followed by a sharp drop to zero '.,

at the free edge. The axial and shear stresses within the adhesive

exhibit a certain amount of relaxation as time progresses.

Figure 12 shows through-the-thickness variation of the shear stress

at two different locations, x = 13 mm and 89 mm, along the beam axis.

The area under each curve is obtained by means of numerical integration

to verify the equilibrium. The total vertical force at each section did

not change with time and was reasonably close to the actual applied

force in the transverse direction. It is clear from the results that

the adhesive layer experiences the largest shear stress close to the

free end than near the clamped end.

Linear and Nonlinear Analysis of a Model Joint:

The loading, boundary conditions and specimen geomtry used in this

analysis is the same as the one used in the earlier model joint (see

Fig. 1). In addition, the same nine parameter solid model was used in

this analysis. A linear viscoelastic finite element analysis was

carried out over a period of one hour at a constant applied load of N

3336 N. The results for the linear analysis are shown in Figs. 13-14.

The sharp peak at the left hand edge is due to the singularity caused by
'S.%

the presence of a re-entrant corner. All stress plots show the same

basic trend in that the stresses are attempting to redistribute

themselves to achieve a more uniform distribution.

For the nonlinear viscoelastic analysis of the model joint, the

same specimen geometry and material properties were employed. However,

the noriinearizing parameters and the shift function were no longer held
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constant, but were allowed to change with the current stress state

within the adhesive layer. The results from this analysis are presented

in Figs. 15-16. It is immediately apparent that the effect of the

nonlinearity causes a 'softening' of the adhesive, leading to a response

that is less stiff compared to the linear case. Hence, even though the

applied load is the same, the shearing strain for the nonlinear case is

significantly larger as compared to the linear case (Figs. 14 and 16).

Moreover, the increment in creep strain for the nonlinear case is 0.0058

as compared to 0.0041 for the linear case over the same period of

time. This is exactly what is expected since the nonlinear model takes

into account the acceleration of creep caused by the stresses within the

adhesive.

The effect of the nonlinearity on the stress curves (Figs. 13 and

15) is to create a more uniform stress distribution by reducing the

stress peaks near the edges while increasing the stresses at the mid-

section of the overlap. The significant reduction of the stress peaks

effected by the nonlinear model is very important from a design point of

view since the reduction of stress levels at the critically stressed

regions results in an improved joint efficiency.

Stress Analysis of a Thick Adherend Lap Shear Specimen

The geometry, boundary conditions and finite element mesh of the

thick adherend lap shear specimen are shown in Fig. 17. The load and

the temperature are kept constant with time. The material used for the

adherend is aluminum, and the adhesive is FM-73. The properties of

these materials have been 1 ted in Tables 1 and 2. The aluminum is

assumed to be linearly elastic and the adhesive is nonlinearly

viscoelastic.
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The analysis is carried out for a time period of 1200 secs. The

results are shown in Figs. 18-21. At the free edge corresponding to x/c

= -1, there appears to be the same kind of relaxation mechanism at work

since the stresses at that location tend to decrease with time. Almost

all stresses and strains exhibit a sharp peak at x/c = 1, and this peak

becomes more dominant with time. The re-entrant corner and the

associated singularity in the vicinity of the right hand edge is the

cause for this unsymmetric behavior.

At the center of the bond, the axial and peel strains do not change

appreciably with time. The shear strain on the other hand increases by

24% over the first 600 secs. followed by a further increase of 4% over

the next 600 secs. Hence the shear strain increases asymptotically with

time under a constant shear stress, which is typical for a viscoelastic

material. Numerical integration of the areas under the shear stress

plot at each time step yielded the same value for the total shear force

to within 0.5% accuracy. A plot of the axial displacement of points

along the lower bondline at different time steps is shown in Fig. 21.

The displacement of the upper bondline, shown at the bottom of the

figure, does not change with time. The average shear strain at any

point along the bond is given by the difference in the axial

displacement between upper and lower bondline divided by the distance

separating the two bondlines. The values of the average shearing strain

obtained from the displacement plot are in good agreement with the

results displayed in the strain plot.

The stress relaxation mechanism near the free edge is not very

effective at the right hand edge due to the presence of the

aforementioend singularity which causes the stresses to increase with
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time. This is certainly true for the relatively short time span under

consideration. The durability of the bond over longer time spans is

likely to depend upon which one of these two effects dominate.

Stress Analysis of a General Scarf Joint

The last example deals with the stress analysis of a scarf joint

(see Fig. 22a). The adhesive is FM-73 while the adherends are of

aluminum. The analysis is restricted to a constant load over a period

of 900 sec. under isothermal conditions. The finite element meshes used

in these analyses for a = 0' and a = 450 are shown in Figs. 22b and c,

respectively.

The results for the butt joint (i.e. a = 0°) are shown in Figs. 23

and 24. Stresses and strains are plotted along with the width of the

joint for the adhesive and the adherend. The stresses in the adhesive

normal to the bondline are the same as those in the adherend and their

magnitudes remain constant with time. Hence axial equilibrium is

satisfied at all times. On the other hand, the normal strain in the

adhesive is two orders of magnitude higher than 
that in the aluminum,

and it shows a 21% increase in magnitude over the selected time span.

Such large normal strain in the adhesive gives rise to fairly large

tensile stress in the transverse direction, even though the transverse

strain is negative. The shear stresses and strains are zero everywhere

within the butt joint, except near the free edge.

The results for the scarf joint, for a = 45', are shown in Figs. 25

and 26. The normal and transverse stresses follow a pattern similar to

the stresses in a butt joint. The reduction in the magnitude of these

stresses is due to the 450 inclination of the bond to the load

direction. The most notable difference between the results of the butt

30
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joint and the scarf joint is that the shear stresses and strains in the

scarf joint have large positive values within the adhesive. In fact,

the shear stress is equal in magnitude to the normal stress while the

shear strain is an order of magnitude larger than the normal strain.

The normal strain for the scarf joint increases by 38% over 900 seconds,

while the shear strain increases by 16% over the same period of time.

The large shear stress present in the scarf bond over a period of

time, causes the adherends to slide past one another. Hence, while it

may be advantageous to use a scarf joint over a butt joint due to

reduced stress levels, long term loading of a scarf joint may lead to

serious misalignment due to bending of the adherends.

SUMMARY AND CONCLUSIONS r

A nonlinear viscoelastic computational model is developed,

validated and applied to the stress analysis of adhesively bonded

joints. The nonlinear viscoelastic model used is that of Schapery. The
S.

finite element formulation is based on the updated, incremental

Lagrangian formulation. The program is validated by comparing the

present results with available analytical and experimental results.

Additional results for bonded cantilever plate, thick adherend specimen

and scarf joint are also presented. In general, the computer program

developed herein, called NOVA, is believed to provide accurate nonlinear

viscoelastic analysis capability.

The program will be further generalized to account for laminated

composite (or anisotropic) adherends, moisture effects, and crack

initiation and growth in nonlinear viscoelastic media in our future

work.
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TABLE 1

Material Data for FM-73 Unscrimmed
(At Ref. Temp. 303'K)

Elastic Compliance, Do: 360 x 10-6/MPa

Creep Compliance, Dc: 29 x 10-6/MPa

Power Law Exponent, n: 0.12

Poisson's Ratio, v: 0.38

-Coefficient of Thermal Expansion, a: 6.6 x 10-5 m/m/OK

Table 2

Material Data for Aluminum

Young's Modulus, El: 70 x 13MPa

Poisson's Ratio, v: 0.34

Coefficient of Thermal Expansion, a: 7.17 x 10-6 mm
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* of a linear viscoelastic coupon characterized by three-oarameter
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Fig. 5 Strain versus time for FM-73 adhesive for step loadina
at constant temperature.
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Fig. 7 Stress versus strain for FM-73 adhesive layer under
linear temperature and constant stress.
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(a) Axial stress in aluminum at y=4.96rn
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(a) Shear stress in aluminum at y=4.96 mm

0 - 0 Time, t=600 sec.

0.050.0t0o t o o 62.50 75.00 tso 100.00

Distance, x (m117)

(b) Shear stress in adhesive at Y=5.01 mm

0 Fig. 10 Variation of shear stresses in the adherend and adhesive

near the interface for qo=2.5 N/nii.
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Distance, x (mm)

"(a) Shear strain in aluminum at y=4.96 mm

0

(A

"T x Time, t=5 sec.

' 0 "Time, t=600 sec.

tS. so .00 62.SO t. 00  8.50 1

Distance, x (mm)

(b) Shear strain in the adhesive at y=5.01 mm

Fig. 11 Shear strain variation along the plate length in the
adherend and adhesive for transverse load, qo=2.5 N/mm.
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(b)

Fig. 13 Linear viscoelastic plane strain analysis of a model joint

(variation of shear and peel stresses along theinterface).
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Fig. 14 Linear viscoelastic plane strain analysis of a model joint
(variation of the shear strain along the interface).
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Fig. 16 Nonlinear viscoelastic analysis of a model joint (variation of
shear strain along the interface).
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(b) Axial strain

*Fig. 18 Variation of axial stress and strain along the ord -e P

line for the thick adherend lap shear specimren oroo'pri.
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Fig. 21 Variation of the axial displacement with the bond centerline
for the thick adherend lap shear specimen. 
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Fig. 25 Variation of the nornial strain and stress along the
depth of the scarf joint (for-t= 451; see Fig, 22 for
the angle and normal direction).
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Fig. 26 Variation of shear strain and stress along the adhesive '
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