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Abstract. The stall behavior of an empennage is a crucial and conditioning 

factor for its design. Thus, the preliminary design of empennages requires a 

fast low-order method which reliably computes the stall behavior and which 

must be sensitive to the design parameters (taper, sweep, dihedral, airfoil, 

etc.). Handbook or semi-empirical methods typically have a narrow scope 

and low fidelity, so a more general and unbiased method is desired. This 

paper presents a nonlinear vortex lattice method (VLM) for the stall 

prediction of generic fuselage-empennage configurations which is able to 

compute complete aerodynamic polars up to and beyond stall. The method 

is a generalized form of the van Dam algorithm, which couples the potential 

VLM solution with 2.5D viscous data. A novel method for computing 2.5D 

polars from 2D polars is presented, which extends the traditional infinite 

swept wing theory to finite wings, relying minimally on empirical data. The 

method has been compared to CFD and WTT results, showing a satisfactory 

degree of accuracy for the preliminary design of empennages.  

1 Introduction 

The core of the methodology is a vortex lattice method coupled with viscous aerodynamic 
polars. This is achieved with a generalized version of the α-method presented by van Dam 
[1]. The vortex lattice method implementation employed is described in section 2. The 
viscous coupling algorithm is presented in section 3, under the assumption that the section 
polars are available. Section 4 presents a methodology for computing section polars from 2D 
polars. Finally, some results obtained with the present method are shown in section 5. 

This project has been supported entirely by the Clean Sky 2 program. 

2 Vortex lattice method 

There are several possible implementations of vortex lattice methods (VLM). Katz and 
Plotkin [2] present a thorough explanation of the method. For this implementation, a strip 
method with horseshoe elements is chosen. As the chordwise information will be provided 
by the viscous polars, there is no benefit to increasing the number of chordwise panels. 

A wing is described by its origin position and a set of parameters as a function of its local 
spanwise coordinate 𝑦𝑦�, namely the chord 𝑐𝑐(𝑦𝑦�), the 𝑥𝑥 and 𝑧𝑧 offset 𝑥𝑥���(𝑦𝑦�) and 𝑧𝑧���(𝑦𝑦�), the 
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geometric twist 𝜃𝜃(𝑦𝑦�), and the local airfoil. The wing is discretized into 𝑁𝑁 spanwise panels. 
The discrete geometrical parameters are taken from the center of the panel in the local  𝑦𝑦� 
direction. For each panel, the relevant local parameters are the chord 𝑐𝑐𝑖, the dihedral 𝜙𝜙𝑖, the 
geometric quarter-chord sweep Λ𝑖�𝑒�𝑚, and the twist 𝜃𝜃𝑖. The normal vector of each panel 𝒏𝒏𝒊𝒊 
is computed and a control point 𝐶𝐶𝑃𝑃𝑖  is placed at the 3𝑐𝑐/4 line, in the middle of the panel, as 
shown in Figure 1. 

 

Fig. 1. Diagram of the vortex lattice method with 5-segment horseshoe vortices as the singularity 
elements. The legs of the HSVs lie on the wing surface and, outside of the wing, in the direction of the 
free-stream velocity. 

Horseshoe vortices (HSV) are used as singularity elements. The HSV head is placed at 
the quarter-chord line, and each leg extends chordwise downstream over the wing, then in 
the direction of the free stream towards infinity (Figure 1). Thus, the effect of a HSV can be 
computed as the sum of five vortex filament segments. The solution for a vortex filament, as 
well as a code subroutine, can be found in Katz and Plotkin [3]. 

For a flight condition given by the angles of attack and sideslip 𝛼𝛼 and 𝛽𝛽, the free-stream 
velocity is 𝑼𝑼� = 𝑈𝑈�(cos𝛼𝛼 cos𝛽𝛽 𝒊𝒊+ cos𝛼𝛼 sin𝛽𝛽 𝒋𝒋 + sin𝛼𝛼 𝒌𝒌) (1) 

The velocity induced by the HSV of panel 𝑛𝑛 on the CP of panel 𝑚𝑚 is 𝒗𝒗𝒎𝒎,𝒏𝒏. Since the 
intensity of the HSVs at this stage is unknown, it is useful to use 𝒗𝒗�𝒎𝒎,𝒏𝒏 = 𝒗𝒗𝒎𝒎,𝒏𝒏/Γ𝑛. The total 
velocity on the CP of panel 𝑚𝑚 is 𝑼𝑼𝒎𝒎 = �𝒗𝒗�𝒎𝒎,𝒏𝒏Γ𝑛𝑁

𝑛=1 +𝑼𝑼� (2) 

The Neumann boundary conditions arise from the fact that the flow cannot penetrate the 
wing surface, so a zero normal velocity is imposed at the CPs, 𝑼𝑼𝑚 ⋅ 𝒏𝒏𝑚 = 0, yielding: �(𝒗𝒗�𝑚,𝑛 ⋅ 𝒏𝒏𝑚) Γ𝑛𝑁

𝑛=1 = −𝑼𝑼� ⋅ 𝒏𝒏𝑚 (3) 

Writing equation 3 for each panel yields a linear system of 𝑁𝑁 equations where the 
unknowns are the HSV intensities. The system can be written in matrix form as [𝐴𝐴𝐴𝐴𝐶𝐶][Γ] =
[𝐵𝐵], where the RHS column vector [𝐵𝐵] contains the terms −𝑼𝑼� ⋅ 𝒏𝒏𝒎𝒎 and is a function of the 
flow angles 𝛼𝛼 and 𝛽𝛽 seen by each panel. The HSV circulations are computed solving the 
linear system, and the 𝐶𝐶� of each panel is found with the Kutta-Joukowski theorem. 

[Γ] = [𝐴𝐴𝐴𝐴𝐶𝐶]−1[𝐵𝐵] (4) 𝐿𝐿𝑖� = 𝜌𝜌𝑈𝑈�Γ𝑖 =
12𝜌𝜌𝑈𝑈�2 𝑐𝑐𝑖𝐶𝐶�𝑖  →  𝐶𝐶�𝑖 =

2Γ𝑖𝑐𝑐𝑖𝑈𝑈� (5) 
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intensity of the HSVs at this stage is unknown, it is useful to use 𝒗𝒗�𝒎𝒎𝒏𝒏 𝒗𝒗𝒎𝒎𝒏𝒏 Γ𝑛. The total 
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𝑛=1 𝑼𝑼�  

The Neumann boundary conditions arise from the fact that the flow cannot penetrate the 
wing surface, so a zero normal velocity is imposed at the CPs, 𝑼𝑼𝑚 ⋅ 𝒏𝒏𝑚 , yielding: � 𝒗𝒗�𝑚𝑛 ⋅ 𝒏𝒏𝑚 Γ𝑛𝑁

𝑛=1 −𝑼𝑼� ⋅ 𝒏𝒏𝑚  

Writing equation 3 for each panel yields a linear system of 𝑁𝑁 equations where the 
unknowns are the HSV intensities. The system can be written in matrix form as 𝐴𝐴𝐴𝐴𝐶𝐶 Γ𝐵𝐵 , where the RHS column vector 𝐵𝐵  contains the terms −𝑼𝑼� ⋅ 𝒏𝒏𝒎𝒎 and is a function of the 
flow angles 𝛼𝛼 and 𝛽𝛽 seen by each panel. The HSV circulations are computed solving the 
linear system, and the 𝐶𝐶� of each panel is found with the Kutta-Joukowski theorem. Γ 𝐴𝐴𝐴𝐴𝐶𝐶 −1 𝐵𝐵   𝐿𝐿𝑖� 𝜌𝜌𝑈𝑈�Γ𝑖 12𝜌𝜌𝑈𝑈�2 𝑐𝑐𝑖𝐶𝐶�𝑖 → 𝐶𝐶�𝑖 Γ𝑖𝑐𝑐𝑖𝑈𝑈�  

3 Viscous coupling 

The VLM can be coupled with 2.5D viscous polars to model the nonlinear behavior of 
the wing. In this section, it will be assumed that the 2.5D polars for each wing section are 
available (see section 4 for a method for computing 2.5D polars from the airfoil geometry). 
In practice, the 2.5D polars are computed for certain key sections (such as the root and the 
tip) and the rest are linearly interpolated. The coupling is achieved by introducing a local 
angle of attack correction for each panel Δ∆𝛼𝛼𝑖�, such that the flow angles seen by each panel 
are modified. This alters the [𝐵𝐵] vector in equation 6 and, consequently, the HSV intensities 
[Γ] and 𝐶𝐶� distribution. The flow angles 𝛼𝛼 and 𝛽𝛽 seen by a given panel 𝑖𝑖 are related to the 
local angle of attack 𝛼𝛼𝑖� and the local dihedral 𝜙𝜙𝑖 through: 𝛼𝛼𝑖 = 𝛼𝛼𝑖� cos𝜙𝜙𝑖 (6) 𝛽𝛽𝑖 = 𝛼𝛼𝑖� sin𝜙𝜙𝑖  (7) 

The modified van Dam algorithm is as follows (where the subindex 𝑖𝑖 indicates that the 
computation must be done for each panel): 
a) Set Δ∆𝛼𝛼𝑖 = 0 
b) Find the corrected flow angles 𝛼𝛼𝑖∗ and 𝛽𝛽𝑖∗, and compute [𝐵𝐵] with the corrected angles: 𝛼𝛼𝑖∗ = 𝛼𝛼 − �Δ∆𝛼𝛼𝑖 + 𝛼𝛼0𝑖� cos𝜙𝜙𝑖 (8) 𝛽𝛽𝑖∗ = 𝛽𝛽 − �Δ∆𝛼𝛼𝑖 + 𝛼𝛼0𝑖� sin𝜙𝜙𝑖 (9) 

c) Solve the VLM. The resulting lift coefficient of each panel is 𝐶𝐶��𝐿𝑀𝑖 . 
d) Find the effective and induced angles of attack of each strip: 𝛼𝛼𝑖𝑛�𝑖 = 𝛼𝛼 cos𝜙𝜙𝑖 + 𝛽𝛽 sin𝜙𝜙𝑖 − �𝐶𝐶��𝐿𝑀𝑖

2𝜋𝜋 + 𝛼𝛼0𝑖 + Δ∆𝛼𝛼𝑖�� − Δ∆𝛼𝛼𝑖� + 𝜃𝜃𝑖  (10) 

e) Interpolate the 𝛼𝛼��𝑐𝑖 in the 2.5D polar of the corresponding panel to find 𝐶𝐶�𝑒��𝑖  and 𝐶𝐶�𝑒��𝑖 . 
f) Perform an axes transformation to find the lift and drag coefficients in the local flow axes. 𝐶𝐶��𝑖𝑠𝑐𝑖 = 𝐶𝐶�𝑒��𝑖 cos𝛼𝛼𝑖𝑛�𝑖 − 𝐶𝐶�𝑒��𝑖 sin𝛼𝛼𝑖𝑛�𝑖  (11) 

g)  Update the value of Δ∆𝛼𝛼𝑖 . The introduction of a smoothing factor 𝜁𝜁 is not strictly necessary 
but beneficial in practice to aid numerical convergence. Δ∆𝛼𝛼𝑖 ← Δ∆𝛼𝛼𝑖 +

𝐶𝐶��𝐿𝑀𝑖 − 𝐶𝐶��𝑖𝑠𝑐𝑖
2𝜋𝜋 ⋅ 𝜁𝜁 (12) 

h) Find the maximum error from all panels: 

 𝑅𝑅𝑒𝑒𝑒𝑒 = max ��𝐶𝐶��𝐿𝑀𝑖 − 𝐶𝐶��𝑖𝑠𝑐𝑖�� (13) 

i) If the error is below a certain tolerance 𝜀𝜀, take 𝐶𝐶��𝐿𝑀𝑖 as the converged value for each panel; 
otherwise, repeat from step b). 

4 Aerodynamic polars: 2D to 2.5D  

The main difficulty of the described method is computing the 2.5D polars. They can be 
can be obtained from CFD results or wind-tunnel tests, though when the results of such cost- 
and time-extensive methods are available, the present method is evidently redundant. On the 
other hand, 2D polars can be easily computed with a number of airfoil solvers, such as XFOIL 
[4], MSES [5] or 2D CFD codes. This section presents a novel method for transforming the 
2D polars into the 2.5D polars given the wing geometry. 
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The difference between the 2.5D and 2D polars arises from the sweep, which produces a 
spanwise boundary layer flow (from root to tip if the sweep is backwards, as shown in Figure 
2). The main consequence of this is that the BL is thinner at the root (higher effective 
Reynolds, delaying stall and achieving a higher 𝐶𝐶�𝑚�𝑥) and thicker at the tip (having the 
opposite effect). Thus, backwards sweep promotes stall from the tip, and forward sweep 
promotes stall from the root, as can be seen in the tuft studies from NACA TN 2445 [6]. 

 

Fig. 2. Diagram of outer and boundary-layer flow over a backwards-swept wing. 

In the general case of arbitrarily large sideslip and dihedral angles, calculating the sweep 
angle of a wing or wing section becomes nontrivial. The local sweep of a wing section is a 
factor of both the wing geometry –a combination of geometrical sweep and dihedral– and the 
flow angles. The relevant sweep angle considered here is that formed between the projection 
of 𝑼𝑼� onto the panel surface and the perpendicular to the quarter-chord line. The projection 
of a generic vector 𝒗𝒗 onto a plane defined by its normal vector 𝒏𝒏 can be written as: 

 𝒗𝒗𝒕𝒕 = 𝒗𝒗 − 𝒗𝒗𝒏𝒏 = 𝒗𝒗 − (𝒗𝒗 ⋅ 𝒏𝒏)𝒏𝒏 (14) 

where 𝒗𝒗� and 𝒗𝒗𝑛 are the tangential and normal components of 𝒗𝒗 with respect to the plane. 
Thus, the projection of the free-stream velocity 𝑼𝑼� onto the 𝑖𝑖th panel with normal vector 𝒏𝒏𝑖 is 𝑼𝑼�𝒕𝒕 𝒊𝒊 = 𝑼𝑼� − (𝑼𝑼� ⋅ 𝒏𝒏𝑖)𝒏𝒏𝑖 (15) 

Using the local 𝑥𝑥∗ axis unitary vector 𝒊𝒊∗, the local sweep seen by panel 𝑖𝑖 is (Figure 3a) Λ��𝑐𝑖 = Λ�𝑒�𝑚𝑖 + Λ𝑖∗ = Λ�𝑒�𝑚𝑖 + cos−1 � �𝑼𝑼�𝒊𝒊𝒕𝒕 �𝑼𝑼�𝒊𝒊𝒕𝒕 ⋅ 𝒊𝒊∗� (16) 

In the case of an infinite swept wing, the 2D airfoil polar can be transformed into the wing 
section 2.5D polar with the classical sweep theory, as shown in the ESDU methodology [7]. 
Mariens et al. [8] present a method for the transformation of 𝐶𝐶� due to sweep. In practice, 
and especially at low Mach numbers, some simplifications can be taken, which greatly speed 
up the computation process without significantly compromising the results. 

Given an infinite-span wing of constant sweep Λ flying at Mach number 𝑀𝑀 and Reynolds 
number 𝐴𝐴𝑅𝑅, the proposed simplified methodology is the following: 
a) Extract the airfoil geometry from the wing section.  
b) Compute the airfoil polar with a 2D aerodynamic solver at Mach number 𝑀𝑀 and Reynolds 

number 𝐴𝐴𝑅𝑅, obtaining 𝐶𝐶�2�(𝛼𝛼2�) and 𝐶𝐶�2�(𝛼𝛼2�). 
c) The 2.5D polar is 𝐶𝐶�2.5� = 𝐶𝐶�2� cos2 Λ 𝛼𝛼2.5� = (𝛼𝛼2� − 𝛼𝛼0) cosΛ+ 𝛼𝛼0 (17) 

where 𝛼𝛼0 the zero-lift angle of attack of the 2D polar. 
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Mariens et al. [8] present a method for the transformation of 𝐶𝐶� due to sweep. In practice, 
and especially at low Mach numbers, some simplifications can be taken, which greatly speed 
up the computation process without significantly compromising the results. 

Given an infinite-span wing of constant sweep Λ flying at Mach number 𝑀𝑀 and Reynolds 
number 𝐴𝐴𝑅𝑅, the proposed simplified methodology is the following: 
a) Extract the airfoil geometry from the wing section.  
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The effect of wing sweep, as well as the correlation with the simplified methodology, is 
shown in Figure 3b. It can be observed that, despite the errors in the original XFOIL polar 
(especially in the negative stall region) the proposed transformation is adequate. 

  
(a) (b) 

Fig. 3. (a) Relevant angles related to sweep in a generic wing in a free stream of velocity 𝑼𝑼�, in the 
local coordinates of the wing plane. (b) Comparison of 2.5D polar for an infinite wing with a NACA 
4416 profile and sweeps Λ = 0∘, Λ = 30∘ and Λ = 60∘, at 𝑀𝑀 = 0.2 and 𝐴𝐴𝑅𝑅 = 6 ⋅ 106 as computed by 
CFD (TAU2D) and with the described methodology starting from a 2D polar computed with XFOIL. 

In a finite swept wing, the 2.5D polars vary along the span, having a higher 𝐶𝐶�𝑚�𝑥at the 
root than at the tip. This behavior is discussed in a paper by Hosangadi et al. [9] using the 
CFD results from [10]. We propose a method for modelling the 2.5D polars of finite wings 
based on assigning an effective (i.e. artificial) sweep to each spanwise section, then applying 
the sweep correction described in section 4. The effective sweep for the 𝑖𝑖th panel is Λ𝑒��𝑖 = Λ��𝑐𝑖 ⋅ 𝜅𝜅Λ𝑖  (18) 

where the effective sweep correction 𝜅𝜅Λi is hypothesized to be a function of only the spanwise 
position and aspect ratio. To account for the possibility of an increase in 𝐶𝐶�𝑚�𝑥  as occurs at 
the wing root, equation 26 is replaced by 𝐶𝐶�2.5� = 𝐶𝐶�2�𝐹𝐹Λ2 𝛼𝛼2.5� = (𝛼𝛼2� − 𝛼𝛼0)𝐹𝐹Λ + 𝛼𝛼0 (19) 

where  𝐹𝐹Λ = �2 − cosΛ𝑒�� , Λ𝑒�� < 0

cosΛ𝑒�� , Λ𝑒�� ≥ 0
 (20) 

A small set of wings of various aspect ratios and sweep angles, including those presented 
in Hosangadi et al. [9], has been studied. The spanwise distribution of the 𝐶𝐶�𝑚�𝑥  of these 
wings indicate that the hypothesized 𝜅𝜅Λ function does indeed exist. Assuming that the effect 
of the root and the tip are independent and can be superimposed, the proposed sweep 
correction function is modelled as 𝜅𝜅Λ(𝑦𝑦) = 1 + 𝜅𝜅𝑟���(𝜂𝜂𝑟���� ) + 𝜅𝜅�𝑖�(𝜂𝜂�𝑖�� ) (21) 

where 𝜂𝜂𝑟����  and 𝜂𝜂�𝑖��  are nondimensional spanwise positions normalized with the mean 
geometric chord. They are defined as 𝜂𝜂𝑟���� (𝑦𝑦) =

𝑦𝑦 − 𝑦𝑦𝑟���𝑐𝑐̅ = 𝐴𝐴𝐴𝐴(𝜂𝜂(𝑦𝑦) − 𝜂𝜂𝑟���) = 𝐴𝐴𝐴𝐴 𝜂𝜂 (22) 𝜂𝜂�𝑖�� (𝑦𝑦) =
𝑦𝑦 − 𝑦𝑦�𝑖�𝑐𝑐̅ = 𝐴𝐴𝐴𝐴�𝜂𝜂(𝑦𝑦) − 𝜂𝜂�𝑖�� = 𝐴𝐴𝐴𝐴(𝜂𝜂 − 1) (23) 
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where 𝜂𝜂 is the standard nondimentional spanwise position 2𝑦𝑦/𝑏𝑏. The variables 𝜂𝜂𝑟����  and 𝜂𝜂�𝑖��  
measure how many chords away a spanwise position is from the root or the tip. The functions 𝜅𝜅𝑟���(𝜂𝜂𝑟���� ) and 𝜅𝜅�𝑖�(𝜂𝜂�𝑖�� ) (Figure 4a) have been designed with Bézier curves to best fit the 
data gathered from the aforementioned set of wings. The resulting 𝜅𝜅Λ(𝜂𝜂) function is plotted 
in Figure 4b for several aspect ratios. Note that for large aspect ratios, the solution for the 
infinite swept wing (𝜅𝜅Λ = 1) is recovered for an area in the middle of the wing. The 
formulation of 𝜅𝜅Λ is valid for approximately 𝐴𝐴𝐴𝐴 > 5; for smaller aspect ratios, the effect of 
the root overpowers that of the tip and the result is nonphysical. 

 

  
(a) (b) 

Fig. 4. (a) Values of 𝜅𝜅𝑟��� and 𝜅𝜅�𝑖� as a function of the nondimensional parameters 𝜂𝜂𝑟����  and 𝜂𝜂�𝑖�� , 
respectively. (b) Effective sweep correction function 𝜅𝜅Λ as a function of the nondimensional spanwise 
position 𝜂𝜂 = 2𝑦𝑦/𝑏𝑏, for various aspect ratios. 

5 Results 

The lift curves of the set of wings from Hosangadi et al. [9] as computed by CFD and the 
present method are shown in Figure 5a. It may be observed that the present method has the 
proper sensitivity to the wing sweep. Figure 5b shows the comparison between the present 
method and NACA wind tunnel tests for a swept wing of 𝐴𝐴𝐴𝐴 = 8. The result for the van Dam 𝛼𝛼-method using 2D polars has also been plotted, to demonstrate the effect of the sweep 
correction function 𝜅𝜅Λ. Figure 5c presents the lift curve for an isolated wing with a geometry 
which is representative of a modern HTP. It is compared to CFD results from the Selena 
project [12]. The correlation between the present method and the CFD results are good, which 
suggests the validity of the sweep correction function 𝜅𝜅Λ for aspect ratios as low as 𝐴𝐴𝐴𝐴 = 5. 

In the scope of aircraft design, the interest is generally in the analysis of wing-fuselage or 
tail-fuselage geometries, rather than isolated lifting surfaces. Our proposed method for 
accounting for the effect of the fuselage on the tailplane consists on modelling the fuselage 
as a cylindrical surface of vortex rings, removing all internal wing panels. The cylindrical 
surface must extend a length of at least ~3𝑐𝑐 ̅in front and behind the lifting surface to avoid 
unphysical effects. The following results use the present method to replicate a CFD analysis 
of a body-tail geometry representative of a modern airliner. Figure 6a shows the VLM 
representation of the geometry. The spanwise loading is shown in Figure 6b. The present 
method correlated well to the CFD result. The 3-dimensional lift curve of the body-tail 
configuration presented in Figure 5d shows an acceptable correlation of the present method 
to wind tunnel tests and CFD computations. This indicates a strong potential of the method 
for analyzing complex configurations and interactions between lifting surfaces and bodies. 
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The lift curves of the set of wings from Hosangadi et al. [9] as computed by CFD and the 
present method are shown in Figure 5a. It may be observed that the present method has the 
proper sensitivity to the wing sweep. Figure 5b shows the comparison between the present 
method and NACA wind tunnel tests for a swept wing of 𝐴𝐴𝐴𝐴 . The result for the van Dam 𝛼𝛼-method using 2D polars has also been plotted, to demonstrate the effect of the sweep 
correction function 𝜅𝜅Λ. Figure 5c presents the lift curve for an isolated wing with a geometry 
which is representative of a modern HTP. It is compared to CFD results from the Selena 
project [12]. The correlation between the present method and the CFD results are good, which 
suggests the validity of the sweep correction function 𝜅𝜅Λ for aspect ratios as low as 𝐴𝐴𝐴𝐴 . 

In the scope of aircraft design, the interest is generally in the analysis of wing-fuselage or 
tail-fuselage geometries, rather than isolated lifting surfaces. Our proposed method for 
accounting for the effect of the fuselage on the tailplane consists on modelling the fuselage 
as a cylindrical surface of vortex rings, removing all internal wing panels. The cylindrical 
surface must extend a length of at least 𝑐𝑐 ̅in front and behind the lifting surface to avoid 
unphysical effects. The following results use the present method to replicate a CFD analysis 
of a body-tail geometry representative of a modern airliner. Figure 6a shows the VLM 
representation of the geometry. The spanwise loading is shown in Figure 6b. The present 
method correlated well to the CFD result. The 3-dimensional lift curve of the body-tail 
configuration presented in Figure 5d shows an acceptable correlation of the present method 
to wind tunnel tests and CFD computations. This indicates a strong potential of the method 
for analyzing complex configurations and interactions between lifting surfaces and bodies. 

  
(a) (b) 

  
(c) (d) 

Fig. 5. Comparison of 𝐶𝐶𝐿-𝛼𝛼 as computed by CFD or wind tunnel testing and the present method, for (a) 
three wings from [10] (𝐴𝐴𝐴𝐴=12, 𝑇𝑇𝐴𝐴=1, NACA 4416 profiles, 𝐴𝐴𝑅𝑅=3·106, 𝑀𝑀=0.2), (b) the NACA TR1208 
wing [11] (𝐴𝐴𝐴𝐴=8, 𝜆𝜆=0.45, Λ=45°, NACA 631A012 profiles, 𝐴𝐴𝑅𝑅=4·106), (c) the Selena project geometry 
(𝐴𝐴𝐴𝐴=5, 𝜆𝜆=0.35, Λ=28°, 𝐴𝐴𝑅𝑅=4·106, 𝑀𝑀=0.2), and (d) the body-tail configuration. 

 
 

(a) (b) 
Fig. 6. (a) VLM model of a conventional empennage and fuselage rear end. (b) Spanwise aerodynamic 
loading on the exposed HTP surface, at two different angles of attack in the linear region. 
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6 Conclusions and Way Forward 

The present method has been implemented as a Python library with a simple user interface 
which enables the user to generate wing and fuselage geometries, read 2D input polars from 
XFOIL, MSES and Tau2D, and compute complete 3-dimensional lift curves. Typical 
computation times for an isolated wing are ~4𝑠𝑠 (~25𝑠𝑠 for a wing-fuselage configuration) on 
a single core. Given this low computational cost, the present method has great potential for 
use in the preliminary design process. The comparison cases shown in this report suggest that 
the method is able to predict the onset of stall with reasonable accuracy for a wide design 
space of isolated wings and wing-body configurations with proper sensitivity to the design 
parameters. Notably, the method is predominantly physically-based, scarcely relying on 
empirical data. Only the 𝜅𝜅Λ function –which is indirectly a loose model for the evolution of 
the boundary layer thickness due to sweep– relies on empirical data. A full validation of the 
method is still pending. In order to achieve this, an extensive set of wind tunnel test results 
of a large design space of wing geometries are required. Moreover, the cases for which the 
3D stall behavior cannot be derived by augmenting the 2D data must still be identified to find 
the limits of applicability of the present method. 
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