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Abstract 

Nonlinear processes associated with the generation process of whistler-mode chorus emissions are summarized. 

The nonlinear dynamics of energetic electrons interacting with a coherent whistler-mode wave and the formation of 

electromagnetic electron holes or hills in the velocity phase space are described. The condition for resonant electrons 

to be free from the anomalous trapping at low pitch angles is obtained. In the presence of the inhomogeneity due 

to the frequency variation and the gradient of the magnetic field, the electron holes or hills result in resonant cur-

rents generating rising-tone emissions or falling-tone emissions, respectively. After formation of a coherent wave 

at a frequency of the maximum linear growth rate, triggering of the nonlinear wave growth takes place when the 

wave amplitude is above the threshold amplitude. The wave grows to a level close to the optimum wave amplitude 

as an absolute instability near the magnetic equator. The nonlinear growth rate at a position away from the equator 

is derived for a subtracted Maxwellian momentum distribution function with correction to the formulas in the past 

publications. The triggering process is repeated sequentially at progressively higher frequencies in the case of a rising-

tone emission, generating subpackets forming a chorus element. With a higher plasma density as in the plasmas-

phere, the triggering of subpackets takes place concurrently over a wide range of frequency forming discrete hiss ele-

ments with varying frequencies. The mechanism of nonlinear wave damping due to quasi-parallel propagation from 

the equator is presented, which results in the formation of a gap at half the electron cyclotron frequency, separating a 

long rising-tone chorus emission into the upper-band and lower-band chorus emissions. The theoretical formulation 

of an oblique whistler mode wave and its interaction with energetic electrons at the n-th resonance is also presented 

along with derivation of the inhomogeneity factor.
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1 Introduction
Whistler-mode chorus emissions have been studied for 

more than half a century, and their generation mecha-

nism has not been clarified completely yet. However, 

there has been a substantial progress in our under-

standing of whistler-mode chorus emissions, thanks 

to successful reproduction of rising-tone and falling-

tone emissions by particle simulations where nonlinear 

dynamics of resonant electrons are solved by combining 

Maxwell’s equations and relativistic equations of motion 

for many energetic electrons (Katoh and Omura 2007, 

2013; Katoh et al. 2018; Hikishima et al. 2009; Tao 2014; 

Ke et  al. 2017; Lu et  al. 2019; Nogi et  al. 2020). While 

chorus emissions grow from thermal noise with the lin-

ear growth rate driven by high temperature anisotropy, 

triggered rising-tone emissions are excited by a coherent 

wave packet injected into the equatorial magnetosphere 

(Omura et  al. 1991). �e rising-tone emissions show 

nearly the same features of chorus emissions, and they 

have been reproduced by particle simulations (Hikishima 
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et al. 2010; Hikishima and Omura 2012). A set of equa-

tions describing the frequency sweep rate and the non-

linear growth rate from the analysis of resonant currents 

formed by the nonlinear trapping potential of a coherent 

wave (Omura et al. 2008, 2009) have been derived. Non-

linear wave growth as an absolute instability becomes 

possible when the wave amplitude is higher than the 

threshold wave amplitude. �e simple integration of the 

equations cannot reproduce some features of chorus 

emissions. Close examination of chorus emissions has 

revealed that a chorus rising-tone element with a wide 

frequency variation consists of many sub-packets with 

short and intense rising-tone emissions (Santolik et  al. 

2014). It is found that the resonant current parallel to 

the wave magnetic field also plays an important role in 

inducing variation of the frequency from that of the trig-

gering wave (Omura and Nunn 2011). �e wave growth is 

due to the frequency variation, which is controlled by the 

wave amplitude. �e optimum wave amplitude has been 

derived based on the optimum condition for the nonlin-

ear wave growth. Waves cannot grow much beyond the 

optimum wave amplitude.

Fine structure consisting of short rising and falling 

tones is also found in plasmaspheric hiss (Summers et al. 

2014). �ere have been two different scenarios of the 

generation process. One is to assume external source of 

waves in the form of chorus emissions generated outside 

the plasmasphere (Bortnik et al. 2008). �is mechanism 

was necessary to compensate for the small linear growth 

rate in the plasmasphere. �e linear growth rates are too 

small to account for the large amplitude of the hiss emis-

sions. It has not been explained, however, how the dis-

crete chorus elements turn into the nearly continuous 

waves with very dense spectra filling the plasmasphere. 

As shown in Summers et al. (2014) and Nakamura et al. 

(2016, 2018), hiss emissions have fine structure with clear 

polarization, ellipticity, and wave normal angles close to 

those of the parallel propagation. �e nonlinear wave 

growth theory for chorus emissions is applied to explana-

tion of the fine structure, and a good agreement is found 

between the theory and the observation (Omura et  al. 

2015a) regarding the frequency ranges and wave ampli-

tudes of hiss emissions.

Chorus emissions generated near the equator propa-

gate to higher latitudes and their wave normal angles 

deviate to oblique directions. In the oblique propaga-

tion, there occurs the Landau resonance, and nonlinear 

trapping of energetic electrons takes place in addition to 

the cyclotron resonance trapping. Especially, trapping of 

energetic electrons due to the Landau resonance occurs 

effectively near half the cyclotron frequency, where the 

group velocity and the phase velocity become equal in 

the quasi-parallel propagation (Omura et al. 2009, 2019). 

Along with the gradient of the background magnetic 

field, the trapped electrons are accelerated by the paral-

lel and perpendicular electric fields of the wave, while 

the waves near half the cyclotron frequency undergo 

damping giving energy to the electrons. �is results in 

the formation of a gap separating chorus elements into 

the lower-band and upper-band emissions. Another fac-

tor to separate the lower-band and upper-band chorus is 

the propagation effect. �ere exists the Gendrin angle, at 

which the group velocity of oblique whistler-mode waves 

becomes parallel to the background magnetic field, for 

the lower band, while the Gendrin angle does not exist 

for the upper-band. �erefore, the propagation paths of 

the lower-band and upper-band chorus emissions are 

different.

�is article is not intended to review all recent devel-

opments of studies on chorus and hiss emissions. Review 

papers on chorus emissions (Tao et al. 2020) and on con-

trolled excitation of nonlinear wave-particle interactions 

(Golkowski et al. 2019) were published recently. �anks to 

these comprehensive review papers, I can focus on provid-

ing a consistent summary of the nonlinear wave growth 

theory developed in recent years in an attempt to under-

stand results of simulations and observations of whistler-

mode chorus and hiss emissions. Section 2 summarizes the 

dynamics of resonant electrons interacting with whistler-

mode waves propagating parallel to the parabolic magnetic 

field near the magnetic equator. �e condition for reso-

nant electrons to be free from the anomalous trapping at 

low pitch angles is also derived. Derivation of the nonlinear 

growth rate, threshold wave amplitude, and optimum wave 

amplitude for chorus and hiss emissions are presented in 

Sect. 3. Some inconsistencies of formulas found in the pre-

vious papers are corrected. �e nonlinear growth rate at a 

position away from the equator is first obtained for a sub-

tracted Maxwellian momentum distribution function. �e 

dynamics of electrons interacting with an oblique whistler 

mode wave is described in Sect. 4. �e inhomogeneity fac-

tor Sn for the n-th resonance is also obtained for the first 

time as a function of the frequency sweep rate and the gra-

dient of the background magnetic field. Section  5  gives a 

summary and discussion.

2  Dynamics of resonant electron interacting 
with parallel whistler-mode waves

2.1  Coherent waves

We assume a whistler-mode wave propagating parallel 

to the static magnetic field B0 . Its property as a wave is 

given by an amplitude Bw and the phase ψ . Based on the 
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derivatives in space and time, we define the wave number 

and the frequency as

and

where h is a distance along the magnetic field line. We 

define the magnetic equator at h = 0 . �e frequency and 

and the wave number satisfy the dispersion relation of 

whistler-mode wave propagating in the parallel direction, 

which is given for a cold plasma as (e.g., Stix (1992))

Here, c, �e , and ωpe are the speed of light, electron cyclo-

tron frequency, and electron plasma frequency of the 

background cold plasma with a density nc , respectively. 

We simplify the dispersion relation by introducing the 

dimensionless parameters ξ and χ (> 0) satisfying the fol-

lowing relations:

and

�en, the dispersion relation (3) is written as

�e phase velocity is conveniently expressed by a simple 

relation:

�e group velocity is also given by

From the definitions of k and ω given by (1) and (2), we 

have

Taking partial derivative of (3) in time and using (8) and 

(9), we obtain

(1)k = −

∂ψ

∂h
,

(2)ω =

∂ψ

∂t
,

(3)c
2
k
2

= ω
2
+

ωω
2
pe

�e − ω
.

(4)ξ2 =

ω(�e − ω)

ω2
pe

,

(5)χ
2

= 1 −

ω
2

c2k2
.

(6)χ2
=

1

1 + ξ2
.

(7)Vp =

ω

k
= cχξ .

(8)Vg =
∂ω

∂k
=

cξ

χ

[

ξ2 +
�e

2(�e − ω)

]

−1

.

(9)
∂k

∂t
= −

∂ω

∂h
.

�is equation implies that the wave frequency is con-

stant in the frame of reference moving with the group 

velocity. �erefore, the frequency of a wave packet does 

not change through propagation (Omura et al. 2008). As 

we will see later, the wave frequency only changes at the 

time of new wave packet formation through the absolute 

instability that takes place near the magnetic equator.

Figure 1 shows variation of the phase velocity Vp and 

the group velocity Vg as functions of frequency. At 

ω = 0.5�e , both velocities become equal. Namely, in 

the frame of reference moving with the group veloc-

ity, the wave phase becomes stationary. �is property 

is very important for wave-particle interaction through 

Landau resonance, resulting in formation of upper-

band and lower-band chorus emissions as discussed in 

Sect. 4.

2.2  Wave particle interaction with a coherent wave

For simplicity, we assume only a single wave packet 

whose wave phase as observed by a particle is smoothly 

changing in space and time. We can call the wave as 

coherent, and under the coherent wave with a finite 

wave amplitude, the trajectories of resonant electrons 

undergo nonlinear motion as described by the relativis-

tic equations of motion:

(10)
∂ω

∂t
+ Vg

∂ω

∂h
= 0.

Fig. 1 Variation of Vg , Vp , and VR . Group velocity Vg in black solid line, 

phase velocity Vp in magenta, and resonance velocities VR in dashed 

line for different energies K = 10 keV (black), 100 keV (blue), 500 keV 

(green), and 2 MeV (red) as functions of frequency ω with the plasma 

frequency ωpe = 4�e
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where m0 is the electron rest mass, and γ is the Lorentz 

factor given by

We have assumed an electron moving along the 

h-axis parallel to the background magnetic field B0 

with a parallel velocity v‖ and a perpendicular veloc-

ity �v⊥ = v⊥exp(iφ) , where a complex number is used to 

represent the phase of the perpendicular velocity vec-

tor v⊥ in the transverse plane. �e background magnetic 

field satisfies ∇ · B0 = 0 , which is written in cylindrical 

coordinates with the axis at the center of the cyclotron 

motion of an electron:

where r is a radial distance from the center of the 

cyclotron motion, and the cyclotron radius is given by 

rc = γ v⊥/�e . Integrating (13) from 0 to rc , we obtain a 

radial component of the background magnetic field at the 

position of the particle:

We assume the wavenumber vector k is in the same 

direction as the background magnetic field B0 , and the 

wave becomes a purely transverse wave with Ew� = 0 

and Bw� = 0 . We decompose v , Bw , and Ew , into compo-

nents parallel and perpendicular to B0 as v = [v�, v⊥e
iφ] , 

Bw = [0,Bwe
iψ ] , and Ew = [0,Ewe

i(ψ−π/2)] , respectively. 

We have expressed the vectors perpendicular to B0 by 

complex numbers. Inserting these elements of vectors 

into (11), we have

where ζ = φ − ψ.

Noting that the amplitude Ew of the wave electric field 

is expressed by the amplitude Bw of the wave magnetic 

field as Ew = (ω/k)Bw , the equation of motion (15) is 

rewritten as

(11)m0

d(γ v)

dt
= −e[Ew + v × (B0 + Bw)],

(12)γ =

[

1 −
v
2
� + v

2
⊥

c2

]−1/2

.

(13)
1

r

∂(rBr)

∂r
+

∂B0

∂h
= 0,

(14)Br = −

rc

2

∂B0

∂h
.

(15)m0

d(γ v�)

dt
= −e(−v⊥Bw sin ζ − v⊥Br),

(16)

m0

d(γ v⊥e
iφ)

dt
= −e

[

(v�Bw − Ew)(sin ζ + i cos ζ )

+v�Br − iv⊥B0

]

e
iφ
,

where we normalize the wave magnetic field as 

�w = eBw⊥/m0 . Separating the real and imaginary parts 

of (16) divided by eiφ , we obtain

and

2.3  Resonance conditions

We take a time derivative of the relative phase angle 

ζ = φ − ψ between the perpendicular velocity v⊥ of a 

particle and the wave magnetic field Bw as observed from 

a frame of reference moving with the parallel velocity v‖ 

of the particle. From (1) and (2), we have

�e resonance condition between the wave and the elec-

tron is given by

Solving for VR , we have

When v� = VR , the electron is at the cyclotron resonance 

with the wave, and it undergoes strong deviation from 

the adiabatic orbit, giving energy to the wave, or receiv-

ing energy from the wave. We have plotted the variation 

of resonance velocities for different energies in Fig.  1. 

�e resonance velocity is also calculated by specifying 

the resonance energy K = (γ − 1)511 keV, which is also 

a function of VR . For a specific value of the perpendicu-

lar velocity v⊥ , we can express VR as an explicit function 

from (7), (12) and (21) as

where ω̃ = ω/�e , ṼR = VR/c , ṽ⊥ = v⊥/c , and 

Ṽp = Vp/c = χξ.

Substituting (19) and (21) into (20), we obtain

(17)
d(γ v�)

dt
= v⊥�w sin ζ −

γ v2⊥

2�e

∂�e

∂h
,

(18)
d(γ v⊥)

dt
=

(ω

k
− v�

)

�w sin ζ +
γ v�v⊥

2�e

∂�e

∂h
,

(19)
dφ

dt
=

1

γ v⊥

(ω

k
− v�

)

�w cos ζ +
�e

γ
.

(20)
dζ

dt
=

dφ

dt
− ω + kv�.

(21)ω − kVR =

�e

γ
.

(22)VR =

(

1 −

�e

γω

)

Vp.

(23)

ṼR =

ω̃2 −

√

ω̃4 + (ω̃2 + Ṽ 2
p )(1 − ω̃2 − ṽ

2
⊥
)

ω̃2 + Ṽ 2
p

Ṽp,
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where θ = k(v� − VR) . For electrons near the cyclotron 

resonance, θ varies with the order of the trapping fre-

quency ωtr , which is derived later as ωtr = χ
√

kv⊥�w/γ  . 

Since χ ∼ 1 and θ ∼ ωtr , we rewrite the equation as

Using (22), we obtain the following condition

which ensures that we can neglect the first term on the 

right-hand side of (24). �e resonance velocity VR takes 

a negative value for electrons with energy less than 100 

keV, and it changes its sign for higher energies, approach-

ing to Vp in the relativistic energy range, as shown in 

Fig.  1. �e condition (26) is well satisfied in the case of 

chorus wave generation due to energetic electrons of 

10 ∼ 100 keV with temperature anisotropy ( T⊥ > T� ) 

and in the case of electron acceleration to MeV energy in 

the magnetosphere, because VR approaches Vp with MeV 

energy. We thus obtain

When θ ≃ 0 , i.e., v� ≃ VR , the first-order phase variation 

becomes very small, and this is the first-order cyclotron 

resonance condition.

When electrons with small pitch angles such as those 

precipitating into the loss cone interact with a very 

large amplitude wave, (26) is not satisfied, resulting in 

anomalous trapping of the electrons transporting them 

from the loss cone to larger pitch angles (Kitahara and 

Katoh 2019). When relativistic electrons at small pitch 

angles interact with electromagnetic ion cyclotron 

(EMIC) waves, effective scattering to lower pitch angles 

and into the loss cone takes place because of the same 

mechanism (Kubota and Omura 2017). �e large pitch 

angle scattering is due to variation of the perpendicular 

velocity v⊥ as indicated by (18). Taking into account the 

variation of v⊥ , Yoon and Bellan (2020) have made an 

elaborate analysis on dynamics of electrons interacting 

with a large amplitude wave with a constat frequency in 

a uniform magnetic field. �ey found significant scat-

tering takes place for particles at low pitch angles near 

a specific gyrophase, which is due to the first terms on 

the right-hand sides of (18) and (19). �e scattering at 

low pitch angles, however, does not contribute much 

(24)
dζ

dt
=

1

γ kv⊥

(

�e

γ
− θ

)

�w cos ζ + θ ,

(25)
dζ

dt
≃ ωtr

[

(

�w

�e

)1/2(
γ kv⊥

�e

)−3/2

cos ζ + 1

]

.

(26)

(

�w

�e

)1/2

≪

(

v⊥

Vp − VR

)3/2

,

(27)
dζ

dt
= θ .

to the formation of the resonant currents exciting cho-

rus emissions. In the following analysis, we assume the 

perpendicular velocity v⊥ is constant for simplicity. 

It should be noted that variation of the perpendicular 

velocity is taken into account in the test particle sim-

ulations (Hiraga and Omura 2020; Hsieh and Omura 

2017, 2018) and all self-consistent simulaitons of cho-

rus and hiss emissions.

Assuming θ = v� − VR ≃ 0 , we take the second-order 

derivative of the relative phase angle ζ as

�e first term on the right hand side of (28) is expanded 

using the equation of motion (17) as

�e second term of (28) is the time variation of the reso-

nance velocity as observed by a particle moving with a 

parallel velocity v‖:

Using the phase relation ∂k/∂t = −∂ω/∂h and the wave 

equation (10), we can expand the time derivative of the 

wave number k in the last term of (30) as

We differentiate the dispersion relation (3) by h to obtain

We have defined the parameter � to incorporate 

the inhomogeneous cold electron density model 

Ne(h) along the background magnetic field line as 

Ne(h) = Ne0�e(h)/�e0 , where Ne0 and �e0 are the cold 

electron density and the electron cyclotron frequency 

at the equator, respectively. We have � = ω/�e for the 

inhomogeneous model (Omura et al. 2009), while � = 1 

for the constant cold electron density model (Omura 

et al. 2008). From (10), (30), (31), and (32), we obtain

(28)
d
2
ζ

dt2
= k

(

dv�

dt
−

dVR

dt

)

.

(29)
dv�

dt
=

�wv⊥

γ
sin ζ −

v�

γ

dγ

dt
−

v
2
⊥

2�e

∂�e

∂h
.

(30)

dVR

dt
=

1

k

(

dω

dt
−

v�

γ

∂�e

∂h
+

�e

γ 2

dγ

dt

)

−
1

k2

(

ω −
�e

γ

)

dk

dt
.

(31)
dk

dt
=

1

Vg

∂ω

∂t
+ v�

∂k

∂h
.

(32)
∂k

∂h
=

1

Vg

∂ω

∂h
− �

χω

2cξ(�e − ω)

∂�e

∂h
.

(33)

dVR

dt
=

�e

kγ 2

dγ

dt
+

1

k

(

1 −
VR

Vg

)(

1 −
v�

Vg

)

∂ω

∂t

−
v�

γ k

[

1 + �
χ2(�e − γω)

2(�e − ω)

]

∂�e

∂h
,
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where we have used the wave equation (10). �e variation 

of the Lorentz factor can be estimated from the variation 

of the kinetic energy K of an electron

From the formula of the relativistic kinetic energy 

K = m0c
2(γ − 1) and Maxwell’s equation Ew = (ω/k)Bw , 

we obtain

where �w is a wave amplitude normalized by the electron 

cyclotron frequency, and it is given by �w = eBw/m0 . 

Substituting (29), (33), and (35) into (28), we obtain the 

second-order nonlinear ordinary differential equaiton of 

the phase angle as seen from the electron:

�e secular term S is the inhomogeneity factor given by

where

and

Here we have defined the trapping frequency 

ωt =
√
kv⊥�w . In the non-relativistic limit of γ = 1 and 

χ = 1 ( Vp ≪ c ), electrons trapped in the wave poten-

tial oscillate with ωt near the stable equilibrium point of 

(ζ , θ) = (π , 0) in a homogeneous medium with S = 0.

We rewrite (27) and (36) as a set of equations describing 

nonlinear motion of a resonant electron under a coherent 

wave as

(34)
dK

dt
= −ev⊥Ew cos

(

ζ +
π

2

)

= ev⊥Ew sin ζ .

(35)
dγ

dt
=

ω�wv⊥

kc2
sin ζ ,

(36)
d
2ζ

dt2
=

ω2
t χ

2

γ
(sin ζ + S).

(37)S = −
1

s0ω�w

(

s1
∂ω

∂t
+ cs2

∂�e

∂h

)

,

(38)s0 =
χv⊥

ξc
,

(39)s1 = γ

(

1 −

VR

Vg

)2

,

(40)

s2 =
1

2ξχ

{

γω

�e

(

v⊥

c

)2

−

[

2 + �
χ2(�e − γω)

�e − ω

]

VRVp

c2

}

.

(41)
dζ

dt
= θ ,

(42)
dθ

dt
= ω2

tr(sin ζ + S),

where ωtr = ωtχ/
√

γ  . When the right-hand side of (41) 

is zero, i.e., dζ/dt = 0 , the first-order resonance condi-

tion is satisfied. In addition, when the right-hand side of 

(42) is zero, i.e., dθ/dt = d
2ζ/dt2 , the second-order reso-

nance condition is satisfied. When |S| ≤ 1 , the second-

order resonance condition is satisfied at two phase angles 

ζ0 closer to π and ζ1 closer to 0. �e point (ζ0, 0) in the 

ζ − θ phase space is a stable equilibrium point around 

which resonant electrons rotate with the angular fre-

quency ωtr , as shown in Fig. 2. �e other point (ζ1, 0) is 

an unstable equilibrium point called a saddle point. �e 

separatrix between trapped and untrapped resonant elec-

trons originates from this saddle point. Eliminating the 

time variable t from (41) and (42) and integrating them 

by ζ and θ , we obtain

which is the equation for trajectories in the ζ − θ plane. 

Substituting the values at the saddle point into (43), we 

obtain an equation for the separatrix

for ζ1 < ζ < ζ2 , where ζ2 is the phase of the separatrix 

crossing θ = 0 . �e size of the trapping potential changes 

as a function of S (−1 ≤ S ≤ 1) . In terms of the parallel 

velocity v‖ , electrons near the resonance velocity VR can 

be trapped and oscillate around VR with the maximum 

width of the trapping velocity given by Vtr = 2ωtr/k for 

S = 0.

�e separatrix between the trapped electrons and 

untrapped electrons plays a critical role in determining 

the wave growth and damping. �e trapped electrons with 

S = 0 oscillate around (ζ , θ) = (π , 0) forming trajectories 

symmetric around the wave magnetic field. �e symmet-

ric trajectories indicate that the trapped electrons received 

(43)θ2 + 2ω2
tr(cos ζ − Sζ ) = C ,

(44)θs = ±ωtr

√

2[cos ζ1 − cos ζ + S(ζ − ζ1)]

Fig. 2 Nonlinear trapping potential. Trajectories of electrons 

surrounding the nonlinear trapping potential in the velocity phase 

space (ζ , θ) . L = 4.5 , Q = 0.5 , τ = 0.5 , and nh/nc = 2 × 10
−3 (after 

Omura et al. (2008))
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no net energy on average which can be understood by the 

following equations. �e kinetic energy K of an electron is 

given by

We can calculate its variation by taking dot products of v 

and both sides of (11) as

Under the purely transverse electromagnetic wave propa-

gating parallel to the static magnetic field B0 , we obtain

When resonant electrons trapped by the wave poten-

tial are located in the phase range 0 < ζ < π , they are 

accelerated. Since the center of the trapping potential is 

given by the second-order resonance condition, we have 

sin ζ = −S , and (47) is rewritten for trapped resonant 

electrons as

When chorus emissions with a rising-tone frequency are 

generated at the equator and propagate toward higher 

latitudes, we find S < 0 as we see in (37). �erefore, 

trapped electrons are accelerated under most of cho-

rus emissions except for falling-tone emissions near the 

equator, where S can be positive because of a negative 

sweep rate ∂ω/∂t < 0.

3  Evolution of wave �eld due to formation 
of resonant currents

3.1  Distribution functions of energetic electrons

As the velocity distribution function of energetic elec-

trons, we often assume a bi-Maxwellian with Gaussian 

functions of velocity components v‖ and v⊥ which go to 

±∞ . When we consider the relativistic energy range, 

the definition of the velocity distribution as the bi-Max-

wellian becomes inconvenient because of the limitation 

by the speed of light c. To avoid the inconvenience, we 

use a momentum defined by u = γ v in place of a veloc-

ity v . �e range of the momentum is not limited, while 

the dimension is the same as the velocity v because the 

Lorentz factor γ = (1 − c
2/v2)−1/2 is dimensionless. To 

implement the loss cone distribution of energetic elec-

trons trapped by the Earth’s dipole magnetic field, we 

assume a subtracted Maxwellian distribution function at 

the equator given by

(45)K = m0c
2(γ − 1).

(46)
dK

dt
= m0v ·

d(γ v)

dt
= −eE · v.

(47)
dK

dt
= eEwv⊥ sin ζ .

(48)
dK

dt
= −eEwv⊥S.

where ρ ( 0 ≤ ρ ≤ 1 ) and β ( 0 < β < 1 ) specify relative 

height and width of a momentum distribution subtracted 

from a Maxwellian distribution, respectively. With ρ = 1 , 

a complete loss cone is realized. Summers et  al. (2012) 

showed that a bi-Maxwellian distribution function at 

the equator can keep the shape of the bi-Maxwellian dis-

tribution function at a distance away from the equator. 

�erefore, we assume a subtracted Maxwellian distribu-

tion function as a distance h from the equator as

From Liouville’s theorem, we have

Preservation of the first adiabatic invariant and energy 

conservation of an electron give

Substituting (52) and (53) into (51), we obtain

Comparing (50) and (54), and assuming 

Bh = B0(1 + ah
2) , we have

(49)

f (u�,u⊥) =
N0

(2π)3/2Ut�U
2
t⊥(1 − ρβ)

exp

(

−
u2�

2U2
t�

)

·

[

exp

(

−
u2⊥
2U2

t⊥

)

− ρ exp

(

−
u2⊥

2βU2
t⊥

)]

,

(50)

fh(u�h,u⊥h) =
Nh

(2π)3/2Ut�hU
2
t⊥h(1 − ρβh)

exp

(

−
u2

�h

2U2
t�h

)

·

[

exp

(

−
u2

⊥h

2U2
t⊥h

)

− ρ exp

(

−
u2

⊥h

2βhU
2
t⊥h

)]

.

(51)

fh(u�h,u⊥h) = f [u�(u�h,u⊥h, h),u⊥(u�h,u⊥h, h)].

(52)u
2
⊥

=
B0

Bh

u
2
⊥h

,

(53)u
2

� = u
2

�h + (1 −
B0

Bh

)u2⊥h
.

(54)

fh(u�h,u⊥h) =
N0

(2π)3/2Ut�U
2
t⊥(1 − ρβ)

exp

(

−
u2

�h

2U2
t�

)

·

{

exp

[

−

(

1 − B0/Bh

2BhU
2
t�

+
B0

2BhU
2
t⊥

)

u2⊥h

]

− exp

[

−

(

1 − B0/Bh

2BhU
2
t�

+
B0

2βBhU
2
t⊥

)

u2⊥h

]}

.

(55)Ut�h = Ut�,

(56)Ut⊥h = WhUt⊥,
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where

and

For the analysis of the nonlinear trapping and associated 

wave growth at a distance h, a simplified distribution 

function ft(u�,u⊥) with the following form is assumed.

Assuming the total density of the energetic electrons is 

the same with the two distribution functions, we have

Substituting (61) into (62), we obtain

We also assume the equality of the perpendicular 

momentum

Substituting (50) and (61) into (64), we obtain

Using (65), (63), and (58), we can rewrite (61) as

3.2  Resonant currents and wave evolution

Resonant electrons v� ∼ VR are divided into two groups. 

One is trapped resonant electrons inside the nonlinear 

(57)βh =

[

1 +
W

2
h

1 + ah2

(

1

β
− 1

)

]

−1

,

(58)Nh = W
2
h

1 − ρβh

1 − ρβ
N0,

(59)Wh =

(

1 +
ah2

1 + ah2
A0

)−1/2

,

(60)A0 =
U

2
t⊥

U
2
t�

− 1.

(61)ft(u�,u⊥) = K exp

(

−
u2�

2U2
t�h

)

δ(u⊥ − U⊥h).

(62)

∫
ft(u�,u⊥)2πu⊥du⊥du� =

∫
f (u�,u⊥)2πu⊥du⊥du� = Nh.

(63)K =
Nh

(2π)3/2Ut�hU⊥h

.

(64)

∫
u⊥ft(u�,u⊥)2πu⊥du⊥du� =

∫
u⊥f (u�,u⊥)2πu⊥du⊥du�.

(65)U⊥h =

(π

2

)1/2 1 − ρβ
3/2

h

1 − ρβh

Ut⊥.

(66)

ft(u�,u⊥) =
Nh

(2π)3/2Ut�hU⊥h
exp

(

−
u2�

2Ut�h

)

δ(u⊥ − U⊥h).

wave potential described above. �e other is those outside 

the nonlinear potential. �e shape of the trapping poten-

tial in ζ − θ phase space changes as a function of S as we 

have seen above. Trajectories of trapped and untrapped 

resonant electrons become very different because of the 

variation of the resonance velocity, by which the trapped 

electrons are guided, while the untrapped electrons fol-

low adiabatic motion except for the moment crossing the 

resonance velocity. �e difference in the number densi-

ties of the trapped and untrapped resonant electrons give 

rise to a resonant current JR , which is decomposed into JB 

and JE parallel to the wave magnetic field and electric field, 

respectively. �ese currents are calculated by

where f (u�, ζ ,u⊥) is the momentum distribution func-

tion of energetic electrons representing the phase space 

density in the three-dimensional momentum space. �e 

cold electrons supporting the wave propagation is not 

included in the distribution.

From Maxwell’s equations and the equations of motion 

of cold and energetic electrons, we can obtain a set of equa-

tions describing the evolution of electromagnetic wave 

field (Omura et al. 2008).

where µ0 is the magnetic permeability in vacuum. �e 

resonant current JE contributes to the variation of the 

wave amplitude, i.e., wave growth or damping, while JB 

changes the dispersion relation of the wave as a nonlinear 

term that changes the wave frequency. �ese resonant 

currents are initially formed by a triggering wave packet 

with the frequency ω0 and the wave number k which sat-

isfy (3). Namely, we have

Since the spatial structure of the wave phase is imposed 

by the wave packet of the triggering wave, the wave 

number k or the wavelength does not change in a short 

time scale, while the rate of the wave phase variation in 

time or the wave frequency changes in the presence of 

(67)

JB =

∫ ∞

0

∫ 2π

0

∫ ∞

−∞

[−ev⊥ cos ζ ]f (u�, ζ ,u⊥)u⊥du�dζdu⊥,

(68)

JE =

∫ ∞

0

∫ 2π

0

∫ ∞

−∞

[ev⊥ sin ζ ]f (u�, ζ ,u⊥)u⊥du�dζdu⊥,

(69)
∂Bw

∂t
+ Vg

∂Bw

∂h
= −

µ0Vg

2
JE,

(70)c2k2 − ω2
−

ωω2
pe

�e − ω
= µ0c

2k
JB

Bw
,

(71)c
2
k
2

= ω
2
0 +

ω0ω
2
pe

�e − ω0
.
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JB . Denoting the frequency deviation from ω0 as δω , i.e., 

ω = ω0 + δω and assuming δω ≪ ω0 , we expand (70) 

around ω0 to obtain

Differentiating (71) with respect to ω0 , we have

From (72) and (73), we obtain

As we have analyzed the nonlinear motion of resonant 

electrons, the magnitude of the perpendicular veloc-

ity controls the width of the trapping potential and the 

period of the trapping motion. For simplicity of the anal-

ysis, we integrate the distribution function in u⊥ in the 

calculation of the resonant currents by assuming the dis-

tribution is expressed by the following form:

�e average perpendicular momentum U⊥0 is calculated 

by

Substituting (75) into (68), and replacing p(u⊥) with a 

Dirac delta function δ(u⊥ − U⊥0) , we obtain

To realize a loss cone distribution function, we often 

assume a subtracted Maxwellian distribution function 

given by

�e average perpendicular momentum U⊥0 is obtained 

from (76) as

Under the assumption that u⊥ ∼ U⊥0 , formation of the 

resonance current JE and JB is described by the struc-

ture of g(u‖, ζ ) . Since the dynamics of trapped resonant 

(72)

{

2ω0 +

�eω
2
pe

(�e − ω0)
2

}

δω = −µ0c
2k

JB

Bw
.

(73)2c2k
∂k

∂ω0
= 2ω0 +

�eω
2
pe

(�e − ω0)
2
.

(74)δω = −

µ0Vg

2

JB

Bw
.

(75)f (u�, ζ ,u⊥) = g(u�, ζ )p(u⊥).

(76)U⊥0 =

∫
∞

0
u⊥p(u⊥)2πu⊥du⊥∫

∞

0
p(u⊥)2πu⊥du⊥

.

(77)JE = eγ −1U2
⊥0

∫ 2π

0

∫ ∞

−∞

g(u�, ζ ) sin ζdu�dζ .

(78)

p(u⊥) =
1

1 − ρβ

[

exp

(

−
u2

⊥

2U2
t⊥

)

− ρ exp

(

−
u2

⊥

2βU2
t⊥

)]

.

(79)U⊥0 =

√

π

2

(

1 − ρβ3/2

1 − ρβ

)

Ut⊥.

electrons is much different from that of untrapped elec-

trons, there occurs a distinct difference in the distri-

bution of trapped electrons. Representing the initial 

distribution of trapped electrons by gt(u‖, ζ ) , we express 

the total distribution function of resonant electrons by

where g0(u‖) is a unperturbed distribution function, and 

Q is the depth of an electron hole due to depletion of 

trapped resonant electrons in the velocity phase space. 

Assuming that gt(u�, ζ ) = G inside the trapping region 

and that gt(u�, ζ ) = 0 outside the trapping region, we 

rewrite (77) as

Similarly we obtain

where

�e constants e and m0 are the absolute value of charge 

and the rest mass of an electron, respectively. �e expres-

sion of J0 is slightly different from that in Omura et  al. 

(2008). �is is because we have assumed the distribution 

function (75) in momentum rather than in velocity. �e 

value G in Omura et  al. (2008) is in velocity, while the 

same G is used as in momentum in Omura et al. (2009) in 

deriving the nonlinear growth rate and the optimum and 

threshold wave amplitudes, which resulted in different 

powers of the Lorentz factor γ in these expressions. �e 

nonlinear growth rates and the threshold wave amplitude 

are derived consistently based on the momentum distri-

bution function in the followings.

In evaluating G, we assume the simplified momentum 

distribution function (66) at the magnetic equator as

where U⊥0 = γV⊥0 , and Ut‖ is the thermal momentum 

in the parallel direction. We have normalized the distri-

bution to the density of hot electrons N0 at the magnetic 

equator. Integrating f over u⊥ , we obtain G of the unper-

turbed distribution function g0(u‖) at the resonance 

velocity VR as

(80)g(u�, ζ ) = g0(u�) − Qgt(u�, ζ ),

(81)

JE = −J0

∫ ζ2

ζ1

[cos ζ1 − cos ζ + S(ζ − ζ1)]
1/2

sin ζdζ .

(82)

JB = J0

∫ ζ2

ζ1

[cos ζ1 − cos ζ + S(ζ − ζ1)]
1/2

cos ζdζ ,

(83)J0 = (2e)3/2(m0k)−1/2γ −1χQGU
5/2
⊥0

B1/2
w .

(84)

f (u�,u⊥) =
N0

(2π)3/2Ut�U⊥0
exp

(

−
u2�

2U2
t�

)

δ(u⊥ − U⊥0),
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To evaluate G at a distance h from the equator, we replace 

N0 with Nh given by (58) and use U⊥h given by (65) in 

place of U⊥0 , respectively. It should be noted that Ut⊥ and 

β vary as functions of h as denoted by Ut⊥h and βh in (56) 

and (57), respectively, while Ut‖ is a constant as indicated 

by (55).

We evaluate the integrals in (81) and (82) numerically, 

and we plot the normalized currents −JE/J0 and −JB/J0 

as functions of S for −1 < S < 0 in Fig.  3. �e maxi-

mum value of −JE/J0 is 0.975 at S = −0.413 , which gives 

JB = −1.3J0 . Since the negative JE causes wave growth, 

we can expect the maximum wave growth at S = −0.4 , 

which can be realized at the equator when we have the 

frequency increase as indicated in (37). Since the nega-

tive JB causes a frequency increase, as shown in (74), we 

can assume an optimum condition for the nonlinear wave 

growth. Namely, when the frequency increase δω takes 

place because of gradual formation of JB over a time TN , 

we have a frequency sweep rate on average specified by

We call the time TN as the nonlinear transition time, and 

compare it with the nonlinear trapping time Ttr by intro-

ducing a parameter τ = TN/Ttr , where the nonlinear 

trapping time is given by

Setting ∂�e/∂h = 0 and S = −0.4 in (37), we have the 

optimum frequency sweep rate for the nonlinear wave 

growth at the equator as

(85)G =
N0

(2π)3/2Ut�U⊥0
exp

(

−
γ 2

V
2
R

2U2
t�

)

.

(86)
∂ω

∂t
=

δω

TN

.

(87)Ttr =
2π

ωtr

=
2π

χ

(

m0γ

kV⊥0eBw

)1/2

.

�e relation between the frequency sweep rate ∂ω/∂t and 

the wave amplitude �w (88) has been confirmed by the 

simulation shown in Fig. 5 and observations (Kurita et al. 

2012; Foster et al. 2017).

3.3  Role of linear growth rates

To initiate the nonlinear wave growth process, we need a 

triggering wave with a finite amplitude greater than the 

threshold amplitude for nonlinear wave growth. �e trig-

gering wave can be generated naturally from the thermal 

fluctuation of electromagnetic field if the linear growth 

rates of whistler mode waves are positive in the presence 

of energetic electrons. We assume a subtracted Max-

wellian distribution function of the energetic electrons 

given by (49). With non-relativistic electrons, the paral-

lel and perpendicular components Ut‖ and Ut⊥ of thermal 

momentum can be regarded as the parallel and perpen-

dicular components of thermal velocity as defined in the 

dispersion solver KUPDAP (Sugiyama et al. 2015). With 

a momentum distribution function of subtracted Max-

wellian distribution function including the bi-Maxwellian 

distribution function as a special case of ρ = 0 with a 

temperature anisotropy Ut⊥ > Ut� , we find the linear 

growth rate becomes positive over a range of frequency 

and corresponding wave number in the quasi-parallel 

direction with its maximum value with the wave number 

vector purely parallel to the background magnetic field, 

as shown in Fig.  4. We assumed a typical plasma fre-

quency as ωpe = 4�ce . With energetic electrons higher 

than 30 keV, the linear growth rate ŴL takes positive val-

ues only in the range below half the cyclotron frequency. 

In the presence of the temperature anisotropy, unstable 

wave modes grow from the thermal fluctuation level. 

Waves near the maximum linear growth rates grow with 

the linear growth rates initially. �e mode with the maxi-

mum linear growth rate forms a coherent wave attaining 

a largest wave amplitude, and it suppresses the growth of 

adjacent wave modes. �e coherent wave becomes a trig-

gering wave for the nonlinear wave growth process.

3.4  Nonlinear growth rate

�e nonlinear wave growth is due to the formation of res-

onant currents through phase organization of resonant 

electrons in the presence of nonlinear trapping potential 

of a coherent triggering wave. �e potential is formed by 

the Lorentz force −eV⊥0 × Bw acting on electrons with 

parallel velocities close to the cyclotron resonance veloc-

ity VR . Although a large U⊥0 makes the trapping potential 

large, the temperature anisotropy of energetic electrons 

(88)
∂ω

∂t
=

0.4s0ω

s1
�w.

1.3

Fig. 3 Resonant currents as function os S. Variation of resonant 

currents JE in solid line and JB in dashed line as functions of 

the inhomogeneity factor S. At S = −0.413 , JE = −0.975J0 and 

JB = −1.3J0 as indicated by dotted lines
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is not directly required for the nonlinear wave growth. 

�is is very different from the linear growth rate which 

requires the temperature anisotropy T⊥ > T� . Even with 

a condition of the negative linear growth rate, we can 

have nonlinear wave growth in the presence of large 

amplitude wave. �e source of energy for the nonlinear 

growth comes from the perpendicular kinetic energy of 

resonant electrons as expressed by (68) for JE . Under a 

coherent triggering wave, resonant electrons are organ-

ized in gyrophase ζ , resulting in a negative JE . Because 

JR · Ew < 0 , the transfer of energy from the resonant 

electrons to the wave field takes place.

We define the nonlinear growth rate based on the 

wave equation (69) describing the evolution of the wave 

amplitude. In a frame of reference moving with the 

group velocity Vg , (69) is rewritten as

where

Assuming an electron hole shown in Fig.  2, we can 

find the maximum value of −JE with S = −0.4 . Since 

−JE/J0 = 0.975 ∼ 1 , we have from (83)

Substituting JE,max with JE in (90), and using (85) for 

the distribution function (84), we obtain the nonlinear 

growth rate

(89)
dBw

dt
= ŴNBw,

(90)ŴN = −

µ0Vg

2

JE

Bw
.

(91)JE,max = −(2e)3/2(m0k)−1/2γ −1χQGU
5/2
⊥0

B1/2
w .

Fig. 4 Linear dispersion relation. Linear dispersion relation of 

a plasma consisting of cold electrons, cold ions, and minor hot 

electrons ( nh/nc = 2 × 10
−3 ). A subtracted Maxwellian for the 

energetic electrons is assumed with β = 0.3 , ρ = 1.0 , Ut� = 0.25c , 

and Ut⊥ = 3.0c . The frequencies and linear growth rates for different 

wave normal directions θ = 0, 15, 30, 45, 60, 75 degrees are shown in 

the same colors, respectively

Fig. 5 Chorus simulation. Electron hybrid simulation of 

whistler-mode chorus emissions. a Dynamics spectra of transverse 

electric field. b Spatial and temporal evolution of wave amplitudes 

Bw of chorus emissions in the early period of the simulation run 

indicated by red arrows. Solid lines show location of the critical 

distance ±hc(t) from the equator, where hc(t) is evaluated from the 

wave amplitude Bw(h, t) averaged over h = −10 ∼ 10c�
−1

e0
 (after 

Katoh and Omura (2011))
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�e parameter ωph is the plasma frequency of hot elec-

trons given by ω2
ph = Nhe

2/(m0ǫ0) , where ǫ0 is the vac-

uum permittivity, and Nh and U⊥h are functions of h 

evaluated by (55) ∼ (60) and (65). �e nonlinear growth 

rate is evaluated at a distance h from the equator by (92). 

�e Lorentz factor γ is calculated for the trapped reso-

nant electrons from (12) with v� = VR and v⊥ = U⊥h/γ.

(92)

ŴN =
Qω2

phVg

2γUt�

(

ξ

ω�w

)1/2(
χU⊥h

πc

)3/2

exp

(

−
γ 2V 2

R

2U2
t�

)

.
The nonlinear growth rate is a function of the wave 

amplitude �w(= eBw/m0) , while the linear growth rate 

is a constant for a specific set of parameters regardless 

of the wave amplitude. In Fig. 6a, both linear and non-

linear growth rates are plotted for three different cold 

plasma densities as specified by the plasma frequen-

cies ωpe/�e = 2, 4, 8 , while the density of energetic 

electrons is assumed to be constant as ωph = 0.1789 

corresponding to nh/nc = 2 × 10
−3 in the case of 

ωpe = 4�e . The energetic electrons form a subtracted 

Maxwellian distribution functions given by (49) with 

β = 0.3 , ρ = 1.0 , Ut� = 0.25c , and Ut⊥ = 0.3c . The non-

linear growth rates are calculated for optimum ampli-

tudes in solid lines and for threshold amplitudes in 

dashed lines, which are plotted in Fig. 6a. Derivations 

of threshold and optimum amplitudes are given in the 

following subsections. The linear growth rates plot-

ted in dash-dot lines are much smaller than the non-

linear growth rates. Peaks in both linear and nonlinear 

growth rates shift to the lower frequency ranges with 

higher plasma densities.

3.5  Absolute instability

As we have seen in (10), the frequency of the wave 

packet is constant in the frame of reference moving 

with the group velocity. �e frequency only changes 

near the equator where we can have large −JB/Bw 

inducing the frequency deviation δω given by (72). 

�e wave amplitude Bw should increase to form a new 

wave packet. Expressing the derivative dBw/dt in (89) in 

terms of temporal and spatial derivatives and normal-

izing the wave amplitude, we have

To have the wave growth locally, i.e., an absolute instabil-

ity, we need ∂�w/∂t > 0 . We obtain from (93)

where we have assumed that the chorus wave packet 

propagates in the positive h direction, i.e., Vg > 0.

Frequency variation is only possible at the time of 

localized wave generation before the wave number struc-

ture in space is formed over a distance much greater than 

a spatial scale of the nonlinear resonant current. Once 

the wave number structure is given it becomes difficult 

to change the frequency from the value determined by 

the cold plasma dispersion relation. �erefore, the chorus 

emission with substantial frequency variation is only pos-

sible by the localized absolute instability rather than the 

convective instability.

(93)
∂�w

∂t
+ Vg

∂�w

∂h
= ŴN�w.

(94)
ŴN

Vg
�w >

∂�w

∂h
,

Fig. 6 Nonlinear wave growth theory. a Linear growth rates (dash–

dot lines) and nonlinear growth rates at the threshold amplitudes 

(dashed lines) and the nonlinear growth rates at the optimum 

amplitudes (solid lines). A subtracted Maxwellian for the energetic 

electrons is assumed with β = 0.3 , ρ = 1.0 , Ut� = 0.25c , and 

Ut⊥ = 3.0c . b Optimum and threshold amplitudes in solid and 

dashed lines for different values of the plasma frequency. ωpe = 2, 

4, 8 �e in blue, green, and red, respectively. The plasma frequency 

of hot electrons is kept constant as ωph = 0.1789 corresponding to 

nh/nc = 2 × 10
−3 for ωpe = 4�e
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3.6  Optimum wave amplitude

As the wave grows at a frequency of the largest linear 

growth rate, the wave becomes coherent suppressing the 

growth of other waves around the frequency. Once the 

wave amplitude exceeds a threshold amplitude for an 

absolute nonlinear instability, the wave amplitude grows 

with frequency increasing monotonically at the equator 

(Omura et  al. 2009). �e nonlinear wave growth stops 

near the optimum wave amplitude (Omura and Nunn 

2011) and then decreases gradually to the level of the 

threshold amplitude, resulting in a short subpacket of a 

chorus wave element.

We evaluate JB expressed by (82) with S = − 0.4 for the 

maximum JE , which gives JB = −1.3J0 , as shown in Fig. 3. 

Namely, we have

Substituting (95) into (74), and using (85) and (87), we 

calculate the frequency sweep rate δω/TN due to forma-

tion of JB over the nonlinear transition time given by (87).

Equating (86) and (88), we obtain an amplitude at which 

the optimum condition for nonlinear wave growth is sat-

isfied. Solving for Bw , we obtain the normalized optimum 

wave amplitude �̃op as

where �̃op = �op/�e0 = Bw/B0 , ω̃ph = ωph/�e0 , 

Ũt� = Ut�/c , and Ṽp = Vp/c = χξ . We can apply the 

same logic to derive the optimum amplitude for the non-

linear wave growth due to an enhancement of trapped 

resonant electrons forming a positive JB producing a fall-

ing tone emission (Omura et al. 2015a). We represent an 

electron enhancement forming an electron hill by a nega-

tive value of Q . �erefore, we use the absolute value of Q 

in (97).

Using the optimum wave amplitude, we can rewrite the 

nonlinear transition time in a normalized form

Over the period of TN a subpacket grows and then damps 

out over nearly the same period of TN . �e subpacket 

(95)JB = −1.3(2e)3/2(m0k)−1/2γ −1χQGU
5/2
⊥0

B1/2
w .

(96)

δω

TN
=

1.3QVg

4τUt�

π−5/2

(

ωphU⊥0χ

γ c

)2

exp

(

−
γ 2V 2

R

2U2
t�

)

.

(97)

�̃op =0.8π−5/2 |Q|ṼpṼg

τ ω̃

Ũ⊥0

Ũt�

ω̃2
ph

·

(

1 −
ṼR

Ṽg

)2

exp

(

−
γ 2Ṽ 2

R

2Ũ2
t�

)

,

(98)TN�e0 = 2πγ τ

(

ξ

χŨ⊥0ω̃�̃op

)1/2

.

propagates away from the equator interacting with coun-

ter streaming resonant electrons in the downstream of 

the wave propagation. �e gyro-phases of the resonant 

electrons are modulated by the wave with frequencies 

higher than that of the original triggering wave. �e 

phase-modulated resonant electrons carry the informa-

tion of the new wave packet by forming spatial structure 

with wavenumber k of the newly generated wave. �e 

electrons move upstream, and generate a new triggering 

wave with the higher frequency in the upstream from the 

equator. �e new wave triggers another cycle of the non-

linear wave growth, which is repeated to produce succes-

sive subpackets. �rough the repetition of the subpacket 

formation, the wave frequency gradually increases, form-

ing a rising-tone chorus element consisting of a series of 

subpackets.

An example of simulations generating chorus emis-

sion is shown in Fig. 5. �is is a simulation by an elec-

tron hybrid code where cold electrons are treated as a 

fluid and hot energetic electrons are treated as parti-

cles undergoing cyclotron motion under a dipole mag-

netic field (Katoh and Omura 2006). Figure  5a shows 

the frequency spectra of the wave electric field and 

the theoretical sweep rate, in black solid line, obtained 

from (88) with instantaneous wave amplitude in the 

simulation.

3.7  Critical distance

Near the magnetic equator, the inhomogeneity factor S is 

determined by the frequency sweep rate, which is nearly 

constant through propagation of the wave packet away 

from the equator. Since the dipole magnetic field is approx-

imated by a parabolic function �e = �e0(1 + ah
2) with 

a = 4.5/(LRE)
2 , where LRE represents the distance from 

the center of the Earth in the equatorial plane. �e gradient 

of the magnetic field increases as a linear function of the 

distance h. We define the critical distance hc at which the 

first term and the second term of S given by (37) become 

equal (Omura et  al. 2009). Equating the two terms and 

using (88), we obtain

�e black solid lines in Fig.  5b indicate the critical dis-

tances in the simulation by Katoh and Omura (2011). �e 

critical distance varies as a function of the wave ampli-

tude �w0 at the generation region near the equator. Inside 

the critical distance, triggering of nonlinear wave growth 

due to frequency variation is possible, and the region 

within the critical distance can be regarded as the gen-

eration region of subpackets forming chorus emissions. 

�e critical distance is used in identifying the dominant 

(99)hc =

s0ω�w0

5cas2�e0

.
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term of the inhomogeneity factor S as discussed in the 

following subsection.

3.8  Convective wave growth

As a chorus sub-packet propagates away from the equa-

tor, it undergoes convective wave growth due to formation 

of an electron hole. At a distance much greater than hc in 

the downstream, we can neglect the first term on the right-

hand side of equation (37). Assuming the optimum wave 

growth condition S = −0.4 , we obtain

�e ideal condition for convective wave growth can be 

realized if the wave amplitude increases as a linear func-

tion of h. Assuming the optimum condition is maintained 

even at a shorter distance h ( h < hc ), we find the gradi-

ent of the wave amplitude

�e gradient of the wave amplitude is a condition for the 

optimum convective wave growth. �e convective wave 

growth reaches a saturation when the flux of resonant 

electrons decreases as the absolute value of resonance 

velocity |VR| increases.

More quantitative evaluation of the wave growth in space 

may be made by finding a steady state solution of (93). 

Assuming ∂�w/∂t = 0, we have

where we define the convective nonlinear growth rate 

ŴN/Vg . From (92), we have

where ω2
ph = Nhe

2/(m0ǫ0) and other variables are func-

tions of h. Since the group velocity decreases in the fre-

quency rage above 0.25 �e , as shown in Fig. 1, waves at 

higher frequencies undergo larger convective growth.

3.9  Threshold wave amplitude

Substituting the gradient of the wave amplitude (101) to 

the condition for the absolute instability (94), we obtain 

the condition for the absolute instability, i.e., triggering of 

the nonlinear wave growth process as

where

(100)�w =

cs2

0.4s0ω

∂�e

∂h
=

5cas2�e0

s0ω
h.

(101)
∂�w

∂h
=

5cas2�e0

s0ω
.

(102)
∂�w

∂h
=

ŴN

Vg
�w,

(103)

ŴN

Vg
=

Qω2
ph

2γUt�

(

ξ

ω�w

)1/2(
χU⊥h

πc

)3/2

exp

(

−
γ 2V 2

R

2U2
t�

)

,

(104)�̃w0 > �̃th,

where s2 is given by (40) with v⊥/c = Ũ⊥0/γ . �e param-

eters with tilde are normalized values as used in (97). �e 

parameter of the parabolic magnetic field is normalized 

as ã = ac
2/�2

e0
 . �e wave amplitudes and frequencies 

are normalized by �e0 as �̃th = �th/�e0 and ω̃ = ω/�e0 . 

�e velocity and momentums are normalized by the 

speed of light c as ṼR = VR/c and Ũ⊥0 = U⊥0/c . In 

Fig.  6b, we plot the optimum wave amplitude in solid 

lines and the threshold amplitude in dashed lines for 

different values of the plasma frequency ωpe/�e = 2 

(blue), 4 (green), and 8 (red) with the same parameters 

of energetic electrons assumed in the linear and nonlin-

ear growth rate calculation in Fig. 6a. �e optimum wave 

amplitude becomes higher in the lower frequency range 

with higher plasma frequencies.

When a triggering wave with a constant frequency ω0 

and with an amplitude greater than the threshold ampli-

tude (105) is present at the equator, there occurs an elec-

tron hole forming the resonant current JB (< 0) causing 

an frequency increase by δω given by (72). �e frequency 

increase makes the electron hole asymmetric with a finite 

S, resulting in the resonant current JE (< 0) causing wave 

growth at a fixed position, i.e., an absolute instability. �e 

wave amplitude grows locally with the increased frequency 

forming a new wave packet detached from the triggering 

wave. �e amplitude reaches the optimum wave ampli-

tude (97). �e wave amplitude cannot grow much greater 

than the optimum value, because the nonlinear growth 

rate becomes smaller with a larger amplitude. �e dynam-

ics of the resonant electrons also causes saturation of the 

nonlinear wave growth because of entrapping of reso-

nant electrons into the wave potential filling the electron 

hole. When the wave amplitude is growing locally there 

occurs efficient entrapping of resonant electrons because 

of enlargement of the trapping wave potential. �e trapped 

electrons contribute to saturation of the wave amplitude 

by receiving energy from the wave. After the saturation, 

the wave amplitude gradually decreases, because the phase 

organized untrapped electrons move to an opposite phase 

resulting in a positive JE . �e subpacket with an increased 

frequency ω0 + δω propagates to the downstream under-

going the efficient convective wave growth.

3.10  Chorus equations

�e nonlinear growth process as an absolute instabil-

ity can be described by the following set of equations 

obtained by normalizing the wave amplitude at the equa-

tor �w0 in (88) and the frequency ω in (93) as in (97).

(105)

�̃th =
100π3γ 4ξ

ω̃ω̃4
ph(χŨ⊥0)5

(

ãs2Ũt�

Q

)2

exp

(

γ 2Ṽ 2
R

Ũ2
t�

)

,
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and

where s0, s1, and s2 are calculated from (38), (39), and (40) 

with v⊥/c = Ũ⊥0/γ , respectively. We call these equations 

as “chorus equations”, and we tried a simple numeri-

cal integration of the equations, as presented in Fig.  6 

of Omura et  al. (2009). We find a monotonic increase 

of the wave amplitude and frequency, in which the fre-

quency increases rapidly like an exponential function 

contrary to observed chorus emissions. As it has been 

reported by Santolik et  al. (2014), chorus wave packets 

consist of many subpackets. An example of a chorus ris-

ing-tone emissions is shown in Fig. 7. A rising-tone ele-

ment of Fig.  7a is expanded in time, and instantaneous 

amplitudes and frequencies calculated from wave forms 

of the perpendicular wave magnetic field are plotted in 

Fig.  7b, c. We simulated the variation the wave ampli-

tude and frequency using the chorus equations, as shown 

in Fig. 8. We integrated the equations using the param-

eters used in the calculation of the linear and nonlinear 

growth rates in Fig. 6. When the wave amplitude reached 

the optimum wave amplitude, we reversed the sign of 

the first term of (107) which corresponds to the resonant 

current JE . As the wave amplitude damps to a level below 

�th + 0.3(�w0 − �th)(rand) , where (rand) is a uniform 

random number ( 0 ∼ 1 ), we reversed the sign again, 

and the wave starts to grow. �e process of wave growth 

and damping is repeated until the frequency reaches 

0.65�e . We have introduced some randomness assum-

ing that there exist fluctuations of the electromagnetic 

fields which are radiated from counter-streaming ener-

getic electrons, which are modulated in their wave phases 

through interaction with foregoing waves. �e result is 

plotted in Fig. 8. �e observed wave amplitudes of sub-

packets in Fig.  7a are greater than those of the mod-

eled wave amplitudes shown in Fig. 8b. �is is probably 

because of the convective wave growth from the source 

to the spacecraft. 

3.11  Formation of chorus element

In the model of nonlinear wave growth presented 

above, we assumed nonlinear wave growth takes place 

at the equator. As we find in Fig.  5b, formation of 

each subpacket takes place at different places around 

(106)
∂ω̃

∂ t̃
= 0.4

s0

s1
ω̃�̃w0

(107)

∂�̃w0

∂ t̃
=Ṽg





Qω̃2
ph

2γ Ũt�

�

ξ�̃w0

ω̃

�1/2�

χŨ⊥0

π

�3/2

· exp

�

−
γ 2Ṽ 2

R

2Ũ2
t�

�

−
5s2ã

s0ω̃

�

,

the equator. A wave packet produced by the trigger-

ing of the nonlinear wave growth is relatively short 

and the frequency increase is only by a small incre-

ment given by δω , i.e., the frequency ω1 = ω0 + δω . 

�e wave packet propagates away from the triggering 

point with a wave number k1 undergoing the convec-

tive nonlinear wave growth due to the electron hole 

in the velocity phase space. �e wave packet with k1 

interacts with counter streaming resonant electrons 

going around the electron hole as untrapped resonant 

electrons. �e amplitude of the wave packet reaches a 

substantially large amplitude. �e counter streaming 

untrapped resonant electrons going though the elec-

tron hole are organized in phase with the wave number 

of the wave packet k1 . It is noted that the frequency of 

a wave packet moving with the group velocity does not 

change in the absence of the resonant current as indi-

cated by (10). �e group of electrons in resonance with 

the wave packet are strongly modulated in gyro-phase 

with a wave number k1 . �e phase-modulated electrons 

move to the upstream region keeping the information 

of the new wave number k1 . �ese electrons can work 

as an antenna which can radiate a helical wave with a 

new frequency ω1 that satisfies the local dispersion rela-

tion with the wave number k1 . �e helical wave works 

as a new triggering wave for the next cycle of the non-

linear wave growth. �e triggering process is repeated 

sequentially with slightly different frequencies. A model 

of the subpacket formation has been proposed based on 

the chorus equations integrated repeatedly at slightly 

different positions moving to the upstream region 

gradually. �e model has reproduced the observed fea-

ture that the wave frequency drops between subpack-

ets (Hanzelka et  al. 2020). �e tendency for points of 

the subpacket formation to shift to the upstream from 

the equator is often found in the simulation suggesting 

the sequential triggering as suggested by the model, but 

this is not always the case in the particle simulations, as 

presented in Fig. 3 of Hikishima et al. (2009).

In each process of the nonlinear wave growth, the 

wave amplitude saturates around the optimum wave 

amplitude. �erefore the spectrum of the chorus emis-

sion near the equator follows the profile of the optimum 

wave amplitude as a function of frequency. �e opti-

mum amplitude decreases at higher frequencies. When 

the optimum amplitude becomes less than the threshold 

amplitude, the nonlinear wave growth cannot take place. 

�e frequency range of chorus emissions is determined 

from the relation of the optimum and threshold ampli-

tudes. Since the threshold amplitude also decreases at 

higher frequency in most cases, the highest frequency 

of chorus elements is determined by another mecha-

nism such as the cyclotron damping near the electron 



Page 16 of 28Omura  Earth, Planets and Space           (2021) 73:95 

cyclotron frequency. �e formation process suggested 

above is confirmed by an observation of chorus emissions 

by THEMIS spacecraft (Kurita et al. 2012). �e process is 

also confirmed by simulation studies, as shown in Fig. 6 

of Katoh and Omura (2013), and Fig.  3 of Katoh and 

Omura (2016).

3.12  Plasmaspheric hiss

�e threshold amplitude �th for the nonlinear wave 

growth strongly depends on the gradient of the mag-

netic field as we find a2 in (105). Katoh and Omura (2013) 

studied the effect of the gradient of the magnetic field on 

generation process of chorus and broadband hiss-like 

Fig. 7 Chorus observation. Chorus emissions and sub-packet structures of a single element observed by Van Allen Probe A (after Foster et al. 

(2017))
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emissions. For the small gradient case, the threshold 

amplitude becomes very low, and there arises a big gap 

between the optimum and threshold amplitudes allowing 

the nonlinear wave growth process occurs in wide range 

of the amplitudes and frequencies. In the simulations by 

the electron hybrid code (Katoh and Omura 2007), we 

find broadband hiss-like emissions for the small gradient 

case, in which we find many rising-tone emissions and 

some falling-tone emissions with shorter duration peri-

ods being generated. With larger gradient, the threshold 

amplitude becomes greater than the optimum amplitude, 

and generation of rising-tone emissions are suppressed.

�e generation of these emissions with frequency vari-

ation is due to a coherent wave that modify the velocity 

distribution function F(v‖) with its wave potential formed 

at the cyclotron resonance velocity VR as we studied in the 

previous sections. Depending on the numbers of trapped 

and untrapped resonant electrons, we have either an elec-

tron hole or an electron hill as shown in Fig.  9a. When 

we have depletion of trapped electrons, an electron hole 

is generated, and we find more resonant electrons in the 

direction of the wave magnetic field vector Bw , which 

gives rise to a negative JB inducing the frequency increase 

as indicated by (74). As the frequency increases, the abso-

lute value of the resonance velocity decreases shifting to 

the higher density part of the velocity distribution func-

tion making the hole deeper. Because of the rising-tone 

frequency, the shape of the electron hole is distorted, as 

shown in Fig. 9b, which make the perpendicular velocities 

of the untrapped resonant electrons gathered in the direc-

tion of the wave electric field vector Ew , resulting in a nega-

tive JE for the wave growth. On the other hand, when we 

have enhancement of trapped electrons, an electron hill is 

formed, and we find more resonant electrons in the oppo-

site direction of Bw giving rise to a positive JB inducing the 

frequency decrease. As the frequency decreases, the abso-

lute value of the resonance velocity increases shifting to the 

lower density part of the distribution function. �e elec-

tron hill formed by the trapped resonant electrons is more 

enhanced with a less number of untrapped resonant elec-

trons outside the trapping wave potential. Because of the 

distortion of the trapping potential due to the frequency 

decrease, the perpendicular velocities of trapped electrons 

are in the direction of Ew forming a negative JE for the wave 

growth. �erefore, the velocity distribution function F(v‖) 

is unstable in the presence of the coherent wave both for 

rising-tone and falling-tone triggered waves. As we have 

studied the convective wave growth, rising-tone emis-

sions have a better chance of the wave growth because of 

the increasing gradient of the magnetic field in the down-

stream from the equator.

In the plasmasphere, the ratio of the electron plasma 

frequency ωpe to the electron cyclotron frequency �e is 

much increased to 15–25, while the ratio is 2–5 outside the 

plasmasphere. �e ratio controls the frequency range over 

which the nonlinear wave growth takes place, as shown 

Fig. 8 Chorus model. Formation of sub-packets of a single chorus 

emission at the equator with V⊥0 = 0.45c and Ut� = 0.25c
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in Fig. 10a. �e frequency range over which the optimum 

amplitude (solid line) is greater than the threshold ampli-

tude (dashed line) shifts to the lower frequency range as 

the plasma frequency increases ( ωpe/�e = 5, 15, 25 ). We 

plot frequencies in Hz assuming the electron cyclotron 

frequency fce = 9 kHz. �e large ωpe/�e makes the fre-

quency ranges of the nonlinear wave growth much lower 

(< 0.1�e) . As we have seen in the case of hiss-like emis-

sions, we can have formation of many sub-packets at the 

same time and the same position, when the threshold 

amplitude is much smaller than the optimum wave ampli-

tude. �e nonlinear transition time for formation of the 

resonant currents, which is calculated from the optimum 

wave amplitude, becomes shorter as the plasma frequency 

increases, as shown in Fig.  10b. �is suggests the time 

scales of the generation of hiss waves are shorter than those 

of chorus emissions.

Initially we may need a seed wave that may grow from 

the linear instability or external sources such as whistlers or 

chorus coming from the outside of the plasmasphere. Once 

the nonlinear wave growth is initiated by a triggering wave, 

triggering of short wave packet expands over the entire fre-

quency range over which the optimum amplitude is greater 

than the threshold amplitude. Because of the concurrent 

triggering, the wave frequency spectra look like noisy inco-

herent waves. �e frequencies of these sub-packets are 

usually well separated each other so that their wave poten-

tials do not overlap in the velocity phase space. Using the 

cyclotron resonance condition (21), we can calculate the 

minimum frequency separation �ω corresponding to twice 

of the trapping velocity Vtr as

From the resonance condition (21), we have

Using Vtr = 2ωtr/k and (109), we obtain

When the frequencies of two wave packets adjacent in 

frequency are separated much greater than �ω , which 

we call the separability condition, the resonant interac-

tion of each of the waves with energetic electrons is not 

affected by other waves. �e interaction is the same as in 

(108)�ω =

(

dVR

dω

)

−1

(2Vtr).

(109)
dVR

dω
=

1

k
+

1

k2

(

�e

γ
− ω

)

V
−1
g .

(110)

�ω = 4ωtr

{

1 + χ2

(

�e

γω
− 1

)[

ξ2 +
�e

2(�e − ω)

]}

−1

.

Fig. 9 Triggering of rising and falling tone emissions. Velocity 

distribution function unstable to a coherent triggering wave. a 

Variation of resonance velocities of rising-tone and falling tone 

emissions. b Electron hole and hill in the velocity phase space giving 

growth to rising-tone and falling-tone emissions (after Omura et al. 

(2015a))
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the case of a single wave interacting with energetic elec-

trons. Using the optimum wave amplitude, we calculated 

�ω for different ωpe/�e , as plotted in Fig. 10c. �e band-

width in Fig.  3b of Omura et  al. (2015a) was calculated 

with the threshold wave amplitude, showing that the sep-

arability condition is well satisfied at the moment of trig-

gering of the nonlinear wave growth.

3.13  Particle simulation of hiss emissions

A particle simulation has been conducted by using a 

particle code that was studied for chorus simulations 

(Hikishima et  al. 2009) with the plasma frequency 

ωpe = 15�e0 (Hikishima et  al. 2020). �e simulation 

reproduced the generation process of hiss emissions, 

as shown in Fig.  11. �e simulation was started with 

electromagnetic thermal noise due to limited num-

ber of super particles representing the dense cold elec-

trons and energetic hot electrons with the density ratio 

Fig. 10 Properties of hiss emissions based on nonlinear wave 

growth theory. a Optimum (solid lines) and threshold (dashed 

lines) amplitudes, b nonlinear transition time TN with τ = 0.5 , and 

c bandwidth as coherent waves for different cold plasma densities 

specified by the electron plasma frequency fpe normalized by the 

cyclotron frequency fce = 9 kH

Fig. 11 Particle simulation of hiss emissions. a Dynamics frequency 

spectra of waves propagating forward in the direction of the 

magnetic field at positions h = −100, 0, 50, 100 c�−1

e0
 at the initial 

phase of the simulation ( t = 0 ∼ 8 × 10
4 �−1

e0
 ). The equator is 

at h = 0 . b Spatial and temporal evolution of transverse wave 

amplitudes Bw of waves propagating forward (right panel) and 

backward (left panel) along the magnetic field line for an short time 

interval t = 4.35 ∼ 4.60 × 10
5 �−1

e0
 (after Hikishima et al. (2020))
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nh/nc = 4 × 10
−4 . Hot electrons have a temperature ani-

sotropy given by thermal momentums Ut� = 0.25c and 

Ut⊥ = 0.4c with β = 0.3 for the subtracted-Maxwellian 

distribution at the equator. �e transverse waves in the 

simulations are separated into forward and backward 

waves based on their spatial helicity as whistler-mode 

waves. Figure 11a shows the initial phase of the genera-

tion process where waves are gradually excited because 

of the positive linear growth rate and subsequent non-

linear wave growth process with frequency variations. 

Small scale structures with rising-tone and falling-tone 

frequencies grow concurrently at different frequencies. 

At a position h = 100c�
−1

e0
 away from the equator, the 

nonlinear convective growth makes the wave packet 

significantly larger than those near the equator. �e 

generation of the wave packets, which we call hiss ele-

ments, continues for a long time, as shown in Fig. 11b. 

�e spatial and temporal profile of hiss elements during 

a relatively short period of 4.35 ∼ 4.60 × 10
5
�

−1

e0
 . We 

find many discrete hiss elements propagating with differ-

ent group velocities corresponding to different wave fre-

quencies. We can understand that hiss emission consists 

of many discrete wave packets (hiss elements), which of 

them are undergoing the nonlinear wave-particle inter-

action as we find in the generation process of chorus 

emissions.

3.14  Coherency and incoherency

Coherency is defined in different ways in different cases. 

In the case of a wave particle interaction, the interaction 

is called coherent when particles interact with a wave 

having a smooth variation of the amplitude and the wave 

phase. Even with two waves whose resonance veloci-

ties are well separated in the velocity phase space as we 

assumed in the separability condition of hiss elements, 

the interaction is coherent when the particles interact 

with one of the waves at a time. Particles interacting with 

a single wave undergo nonlinear trapping motion when 

the parallel velocity of a particle is within the range of 

trapping velocity from the resonance velocity

�e velocity range shown above is the width of the trap-

ping wave potential in the velocity phase space, which 

we call the trapping region. When |v� − VR| ≫ Vtr , a 

particle hardly feels the effect of the wave, undergoing 

an adiabatic motion with very small perturbation. When 

resonance velocities of the two waves are close to each 

(111)VR − Vtr < v� < VR + Vtr.

other, the trapping regions of the waves overlap. �e par-

ticle motion becomes chaotic when it is under the direct 

influences of two waves with different frequencies. �e 

particle motion becomes incoherent with the wave struc-

tures. In this case, we describe the wave-particle inter-

action as incoherent, when there occurs overlapping of 

trapping potentials in the velocity phase space. �e trap-

ping velocity Vtr of a whistler mode waves in the paral-

lel propagation depends on both wave amplitude Bw and 

perpendicular velocity of a resonant electron v⊥ , because 

the trapping potential is formed by the Lorentz force 

−ev⊥ × Bw . �erefore, the coherency of the cyclotron 

wave-particle interaction also depends on the particle 

property v⊥ . In the quasi-linear diffusion theory, many 

waves forming a band of wave spectra are assumed, and 

the waves are incoherent for resonant electrons because 

of overlapping of trapping potentials of the waves.

4  Oblique whistler mode wave-particle interaction
4.1  Dispersion relation and group velocity of oblique 

whistler‑mode wave

As the wave packet propagates away from the equa-

tor, the wave normal angle becomes gradually oblique 

because of the curvature of the magnetic field. �e cold 

plasma dispersion relation of an oblique whistler mode 

wave is given from the Appleton–Hartree equation 

(e.g., Helliwell (1993)) as

where X = ω2
pe/ω

2 , Y = �e/ω , and θ is the angle between 

the background magnetic field and the wave vector. We 

take the direction of the ambient magnetic field in the 

z-direction, keeping the wave number vectors in the 

plane formed by x and z axes, as shown in Fig. 12a. We 

assume that the plasma density and the magnetic field are 

constant in time, namely, ∂X/∂t = 0 , and ∂Y /∂t = 0 . In 

the absence of nonlinear resonant currents, we assume 

D(ω, kz , kx) = 0 is always satisfied for all combina-

tions of ω , kz , and kx . In observing chorus emissions at a 

fixed position in space, we find ∂ω/∂t  = 0 , then we have 

∂kz/∂t  = 0 and ∂kz/∂t  = 0 to make propagation of the 

wave possible with D = 0 . �erefore, we have

(112)

D(ω, kz , kx) =
c2(k2z + k2x )

ω2
− 1

+
2X(1 − X)

2(1 − X) − Y 2 sin 2θ ± Y
√

Y 2 sin 4θ + 4(1 − X)2 cos 2θ
= 0,
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Noting that ω , kz,  and   kx are defined as derivatives of 

the wave phase ψ as ω = ∂ψ/∂t , kz = −∂ψ/∂z , and 

kx = −∂ψ/∂x , respectively, we find by changing the 

order of differential operations

Multiplying (113) by ∂ω/∂D , and substituting (114), we 

obtain

We define the parallel and perpendicular components of 

the group velocity V g as Vg‖ and Vg⊥ . Since the frequency 

is constant in the frame of reference moving with the 

group velocity, we have

(113)
∂D

∂t
=

∂D

∂ω

∂ω

∂t
+

∂D

∂kz

∂kz

∂t
+

∂D

∂kx

∂kx

∂t
= 0.

(114)
∂kz

∂t
= −

∂ω

∂z
,

∂kx

∂t
= −

∂ω

∂x
.

(115)
∂ω

∂t
−

(

∂D

∂kz

∂ω

∂D

)

∂ω

∂z
−

(

∂D

∂kx

∂ω

∂D

)

∂ω

∂x
= 0.

Comparing (115) and (116), we obtain

�e lengthy derivatives of D in (117) are presented in 

Appendix A of Hsieh and Omura (2017), where “ YYω ” 

in Equation A21 needs to be replaced by “ 2YYω ”. Using 

(117), we can calculate θgB , angle of group velocity V g 

with respect to the background magnetic field, as a func-

tion of frequency ω for different wave normal angles θ , as 

plotted in Fig. 13a.

4.2  Decomposition of oblique wave

We can write down an oblique whistler-mode wave 

by the following vector relations (Bell 1984; Nunn and 

Omura 2015; Omura et al. 2019). �e wave electric field 

is expressed by

and the wave magnetic field is given by

(116)
∂ω

∂t
+ Vg�

∂ω

∂z
+ Vg⊥

∂ω

∂x
= 0.

(117)

Vg� = −
∂D

∂kz

(

∂D

∂ω

)−1

, Vg⊥ = −
∂D

∂kx

(

∂D

∂ω

)−1

.

(118)Ew = exE
w
x sinψ − eyE

w
y cosψ + ezE

w
z sinψ ,

Fig. 12 Vector relations of oblique whistler-mode wave. a 

Configuration of vectors of the oblique whistler mode waves 

interacting with a resonant electron. b Wave vectors of right-hand 

circularly polarized wave (in red) and left-hand circularly polarized 

wave (in blue) in a plane perpendicular to the background magnetic 

field (after Omura et al. (2019))

Fig. 13 Properties of oblique whistler-mode waves. a Angles of 

group velocity vector Vg as functions of frequency for different wave 

normal angles [after Hsieh and Omura (2017)]. b Difference of phase 

velocity and group velocity as functions of frequency ω and the wave 

normal angle θkB (after Hsieh and Omura (2018))
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where ex , ey , and ez are unit vectors in the directions of x, 

y, and z, axes, respectively. We assume Ew
x  , Ew

y  , Ew
z  , Bw

x  , 

Bw
y  , and Bw

z  are positive amplitudes of the electromag-

netic wave fields in the x, y, and z directions, which satisfy 

the cold plasma dispersion relation. �ese amplitudes 

are expressed as functions of the wave magnetic field 

amplitude Bw as derived in the Appendix B of Hsieh and 

Omura (2017). �e wave phase ψ is given by

where ω , kx , and kz are the angular frequency, perpendic-

ular wave number, and parallel wave number of the wave, 

respectively. �e signs of the components of the wave 

field are determined based on Maxwell’s equations:

where k = (kx, 0, kz) . From (121), we obtain the relations 

among each component of the wave field as

�ese relations satisfy the equation:

We calculate the Poynting flux P = Ew × Bw/µ0 to find 

the flow direction of the wave energy. Each component of 

P = (Px,Py,Pz) is given by

Since Pz > 0 , the Poynting vector is directed toward the 

positive direction of the background magnetic field. �e 

sign of Px changes depending on the wave normal angle 

θ and the wave phase ψ . Averaging over the one cycle of 

the wave phase, Px takes a finite value that depends on θ , 

while Py becomes zero on average over ψ . �is is consist-

ent with the fact that the group velocity remains on the 

(119)Bw = exB
w
x cosψ + eyB

w
y sinψ − ezB

w
z cosψ ,

(120)ψ = ωt − kxx − kzz + const.,

(121)k × Ew = ωBw,

(122)Bw
x =

kz

ω

Ew
y ,

(123)Bw
y =

1

ω
(kzE

w
x − kxE

w
z ),

(124)Bw
z =

kx

ω

Ew
y .

(125)Ew · Bw = 0

(126)Px =

[

Ew
y B

w
z cos

2ψ − Ew
z B

w
y sin

2ψ

]

/µ0,

(127)Py =
[

(Ew
z B

w
x + Ew

x B
w
z ) sinψ cosψ

]

/µ0,

(128)Pz =

[

Ew

x B
w

y sin
2ψ + Ew

y B
w

z cos
2ψ

]

/µ0.

plane formed by the wave magnetic field and the wave 

normal vector.

�e perpendicular fields  of the  electromagnetic wave 

at an oblique angle represented by Ew⊥ and Bw⊥ defined 

above are decomposed into two circularly polarized waves 

as shown in Fig. 12b. �e amplitudes of the two circularly 

polarized waves are given by

�e field vectors of the R-mode wave are given by

while the vectors of the L-mode are given by

Both (ER,BR) and (EL,BL) satisfy (121) and (125). From 

the variation of the wave phase ψ , we can understand 

ER and BR are a circularly polarized wave rotating in 

the same direction of electron cyclotron motion, and 

they can be in resonance with electrons with the effect 

of Doppler shift and the relativistic effect that makes the 

frequency of the cyclotron motion smaller.

To express all electromagnetic field components in 

terms of the wave magnetic field, we define the ratios of 

the wave electric field to the wave magnetic field as

Using (121) and (135), we solve for the parallel compo-

nent Ew
z  and Bw

z  , and we obtain

where Vp� = ω/kz.

An oblique whistler-mode wave is decomposed into 

three electromagnetic waves, i.e., a circularly polar-

ized R-mode wave (ERe
i(ψ−π/2),BRe

iψ ) , and a circularly 

(129)Ew
R =

Ew
x + Ew

y

2
, Ew

L =

Ew
y − Ew

x

2
,

(130)Bw
R =

Bw
x + Bw

y

2
, Bw

L =

Bw
x − Bw

y

2
.

(131)ER = Ew
R [ex sinψ − ey cosψ],

(132)BR = Bw
R [ex cosψ + ey sinψ],

(133)EL = Ew
L [ex sin (−ψ) − ey cos (−ψ)],

(134)BL = Bw

L
[ex cos (−ψ) + ey sin (−ψ)].

(135)UR = E
w
R /Bw

R , UL = E
w
L /Bw

L .

(136)E
w
z =

kz

kx

[

(UR − Vp�)B
w
R − (UL − Vp�)B

w
L

]

,

(137)B
w
z =

kx

ω
(URB

w
R + ULB

w
L ),
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polarized L-mode wave (ELe
i(−ψ−π/2),BLe

−iψ ) , and 

another wave (Ew
z sinψ ,−Bw

z cosψ) in the parallel 

direction.

4.3  Oblique wave‑particle interaction

Substituting these waves into the right hand sides of the 

equations of motions (15) and (16), we obtain

where ζR = φ − ψ and ζL = φ + ψ . When the wave 

amplitudes Bw

R
 and Bw

L
 are much smaller than the back-

ground magnetic field B0 , (140) is simplified as

�e wave phase ψ observed by an electron with a phase φ 

is given by

where ψB is the wave phase at the center of the cyclotron 

motion given by ψB = ωt − kzz + const. , rc is the cyclo-

tron radius given by rc = γ v⊥/�e , and β = kxrc . Because 

of the perpendicular wave number kx , the wave phase 

changes through the cyclotron motion around the guid-

ing center. We expand the relative phase variation using 

the Bessel functions Jn(β).

Shifting the index n + 1 to n in the summation and taking 

the imaginary parts, we have

Similarly we have

(138)d(γ v�)

dt
=

e

m0

[

v⊥B
w
R sin ζR + v⊥B

w
L sin ζL − E

w
z sinψ

]

−
γ v2⊥

2B0

dB0

dz
,

(139)
d(γ v⊥)

dt
=

e

m0

[

(UR − v�)B
w
R sin ζR + (UL − v�)B

w
L sin ζL

]

+
γ v⊥v�

2B0

dB0

dz
,

(140)
dφ

dt
=

e

γm0

[

UR − v�

v⊥

B
w
R cos ζR +

UL − v�

v⊥

B
w
L cos ζL − B

w
z cosψ + B0

]

,

(141)
dφ

dt
=

�e

γ
.

(142)
ψ = ωt − kzz − kxrc sin φ + const. = ψB − β sin φ,

(143)e
iζR = e

i(φ−ψB)
e
iβ sin φ

= e
i(φ−ψB)

∞∑

n=−∞

Jn(β)einφ
=

∞∑

n=−∞

Jn(β)ei(n+1)φ−ψB .

(144)sin ζR =

∞∑

n=−∞

Jn−1(β) sin (nφ − ψB).

Substituting (144), (145), and (146) into (138) and (139), 

we obtain

where

and ζn is the generalized phase defined by ζn = nφ − ψB , 

which plays an important role in the nonlinear theory 

of the oblique whistler mode wave-particle interaction. 

Using the approximated equation (141), we take the time 

derivative of the generalized phase:

(145)sin ζL = −

∞∑

n=−∞

Jn+1(β) sin (nφ − ψB),

(146)sinψ = −

∞∑

n=−∞

Jn(β) sin (nφ − ψB).

(147)
d(γ v�)

dt
=

1

kz

∞∑

n=−∞

ω2
t,n sin ζn −

γ v2⊥

2B0

dB0

dz
,

(148)
d(γ v⊥)

dt
=

1

kz

∞∑

n=−∞

ω2
s,n sin ζn +

γ v⊥v�

2B0

dB0

dz
,

(149)

ω2
t,n =

ekz

m0

[

v⊥B
w
R Jn−1(β) − v⊥B

w
L Jn+1 + Ew

z Jn
]

,

(150)

ω2
s,n =

ekz

m0

[

(UR − v�)B
w
R Jn−1 − (UL − v�)B

w
L Jn+1

]

,

(151)
dζn

dt
= n

dφ

dt
−

dψB

dt
=

n�e

γ
− ω + kzv�.
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�e first-order resonance condition dζn/dt = 0 gives the 

resonance velocity for the n-th order resonance:

We can rewrite (151) as

We calculate the second-order time derivative of ζn to 

analyze the nonlinear orbit of an electron nearly satisfy-

ing the first order resonance condition v� ∼ VR,n.

where we have assumed the first order resonance con-

dition v� = VR,n . To obtain the derivatives on the right 

hand side of (154), we calculate the variation of kinetic 

energy K of an electron as

where we expanded the phases by (144), (145), and (146). 

We obtain the time derivative of the Lorentz factor γ

where

4.4  Nonlinear dynamics at n‑th resonance

We focus on the dynamics of an electron in the n-th 

resonance with the wave, i.e., v� ∼ VR,n , and the wave 

amplitude is not extremely large so that the effects of 

the adjacent resonances n ± 1 are negligible. Since most 

of the variations of the kinetic energy are due to the n-th 

order resonance, we have from (147) and (156)

Similarly we obtain from (148)

(152)VR,n =

ω

kz

(

1 −

n�e

γω

)

.

(153)
dζn

dt
= kz(v� − VR,n).

(154)
d
2
ζn

dt2
= kz

(

dv�

dt
−

dVR,n

dt

)

,

(155)

dK

dt
= −eE · v = −e(Ew

z v� sinψ − Ew
R v⊥ sin ζR − Ew

L v⊥ sin ζL)

= e

∞
∑

n=−∞

[

v�E
w
z Jn(β) + v⊥E

w
R Jn−1(β) − v⊥E

w
L Jn+1(β)

]

sin ζn,

(156)
dγ

dt
=

∞∑

n=−∞

�d,n sin ζn,

(157)

�d,n =
e

c2m0

[

v�E
w
z Jn(β) + v⊥E

w
R Jn−1(β) − v⊥E

w
L Jn+1(β)

]

.

(158)
dv�

dt
=

1

γ

(

ω2
t,n

kz
− v��d,n

)

sin ζn −
v
2
⊥

2�e

d�e

dz
.

We decompose the time variation of the n-th resonance 

velocity into several derivatives of variables in (152) as

We assume quasi-parallel propagation sin2� ≪ 1 , where 

� is a wave normal angle given by � = tan
−1(kx/kz) , 

under which the cold plasma dispersion relation remains 

basically the same as that of the parallel propagation. We 

have

From (32) and (10), we obtain

Substituting (156), (158), (160), (161), and (162) into 

(154), and setting v� = VR,n , we obtain the second-order 

derivative of the phase ζn as

where

Kinetic energy variation of energetic electrons trapped 

by the wave through the n-th resonance is given by the 

(159)

dv⊥

dt
=

1

γ

(

ω2
s,n

kz
− v⊥�d,n

)

sin ζn +
v�v⊥

2�e

d�e

dz
.

(160)

dVR,n

dt
=

1

kz

(

dω

dt
−

nv�

γ

∂�e

∂z
+

n�e

γ 2

dγ

dt

)

−
1

k2z

(

ω −
n�e

γ

)

dkz

dt
.

(161)
dω

dt
=

(

1 −
v�

Vg�

)

∂ω

∂t
.

(162)

dkz

dt
=

1

Vg�

(

1 −
v�

Vg�

)

∂ω

∂t
−

�v�χω

2cξ(�e − ω)

∂�e

∂z
.

(163)
d
2ζn

dt2
= �2

t,n(sin ζn + Sn),

(164)�2
t,n =

1

γ
(ω2

t,n − ω�d,n),

(165)

Sn = −
1

�2
t,n

{

(

1 −
VR,n

Vg�

)2
∂ω

∂t

+

[

ωv2⊥

2�eVp�
−

n

γ
VR,n

(

1 +
�χ2[�e − (γ /n)ω]

2(�e − ω)

)

]

∂�e

∂z

}

.
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following equation obtained from (155) and (165) under 

the second-order resonance condition sin ζn + Sn = 0.

For all possible resonances with the oblique whistler 

mode wave ( n = −∞ ∼ ∞ ), this equation is valid as far 

as |Sn| ≤ 1 , while most of the acceleration is due to reso-

nances with n = −1 ∼ 2 as presented in test particle sim-

ulations by Hsieh and Omura (2017). �is is also because 

the term in Sn containing n/γ becomes large for a large 

number n except for relativistic electrons with a large 

γ . �e energy variation of resonant electrons trapped 

by the wave potential is due to the frequency variation 

∂ω/∂t and the gradient of the magnetic field. Compar-

ing simulation runs between purely parallel propagation 

and gradual oblique propagation, there occur significant 

differences in the trajectories of energetic electrons espe-

cially with energies greater than several hundred keV. 

As shown by numerical Green’s functions (Omura et al. 

2015b) in Fig. 14, we find that the acceleration efficiency 

(166)
dKn

dt
= −m0c

2
�d,nSn.

of Landau resonant ( n = 0 ) electrons is very high in com-

parison with the cyclotron resonant ( n = 1 ) electrons. 

However, most of the acceleration is due to the perpen-

dicular electric field rather than the parallel electric field 

even in the Landau resonance (Hsieh and Omura 2017; 

Omura et al. 2019). �e Green’s function is calculated by 

tracing dynamics of 28,800 electrons in a chorus wave 

model with frequency variation from 0.2�e to 0.5�e . In 

the oblique propagation the wave normal angle gradually 

changes from 0 to 60 degrees as the chorus wave packet 

propagates from the equator to higher latitudes.

4.5  Nonlinear damping at half the cyclotron frequency

In the case of quasi-parallel propagation, the group 

velocity and the phase velocity become equal near half 

the cyclotron frequency, in which the Landau resonance 

becomes significant because both waves and resonant 

electrons see stationary phases and the wave amplitude. 

Using (112) and (117), we calculate �V = |Vp� − Vg�| 

as a function of frequency ω and wave normal angle 

θkB . When �V ∼ 0 , the wave phase in the wave packet 

Fig. 14 Trajectories of trapped resonant electrons. Acceleration of electrons through nonlinear trapping by a chorus wave with the wave normal 

angle parallel (a, c) and oblique (b, d) to the background magnetic field. In a, b, resonance velocities for n = 0, 1, 2 resonances are plotted in 

dash-dot lines ( ω = 0.5�e ) and dotted lines ( ω = 0.2�e ). Going through the resonances, colors of the trajectories changes from black to blue, red, 

and green, corresponding to n = 0, 1, 2 resonances. The numbers next to the branches of the Green’s functions represent the n-th resonances (after 

Hsieh and Omura (2018))
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becomes stationary, and electrons moving with velocities 

close to the parallel phase velocity Vp‖ can be trapped by 

the wave potential. �erefore, a very effective wave-par-

ticle interaction can take place for the Landau resonance 

near half the cyclotron frequency. We assume a chorus 

wave packet generated near the equator and propagat-

ing to higher latitudes. �e wave normal angle of chorus 

waves is nearly zero near the equator, and it gradually 

becomes oblique through propagation because of the 

curvature of the background magnetic field. Hsieh and 

Omura (2018) has conducted test particle simulations to 

find formation of resonant current through Landau res-

onance, and found JR · Ew > 0 . �e resonant current is 

due to nonlinear trapping of Landau resonant electrons 

in a wave potential formed by the parallel electric field 

component Ew‖ and v⊥ × BR . Because of the frequency 

sweep rate ∂ω/∂t > 0 and the gradient of the background 

magnetic field ∂�e/∂z > 0 in (165), we have a negative 

inhomogeneity factor Sn < 0 , which distorts the wave 

potential shifting the stable equilibrium point to a phase 

giving −eER · v⊥ > 0 for a stably trapped resonant elec-

tron. �e trapped electrons are accelerated effectively 

especially at half the local cyclotron frequency where the 

phase velocity and the group velocity are nearly equal 

for the quasi-parallel propagation. �e wave packet 

with a frequency close to half the cyclotron frequency 

gives energy to the resonant electrons, undergoing the 

decrease of the wave amplitude. Since the damping 

takes place locally at half the cyclotron frequency along 

the magnetic field line, the frequency of the most effec-

tive  damping increases as the wave packet moves away 

from the magnetic equator. �e damping along the mag-

netic field line results in formation of a gap between the 

lower-band and upper-band chorus emissions. �e for-

mation of the gap is schematically illustrated in Fig. 2 of 

Yagitani et al. (2014).

As another possible mechanism to generate upper-

band chorus emissions, a nonlinear wave process called 

the lower band cascade has been studied by observations, 

simulation, and theory (Gao et al. 2018). When the wave 

amplitudes of the lower-band chorus emissions become 

very large, the proposed nonlinear process may take 

place, while the nonlinear damping process at half the 

cyclotron frequency takes place as far as a coherent wave 

propagates obliquely with a small wave normal angle.

5  Summary and discussion
�e following topics have been clarified along with the 

derivation of the formulas that have not been published 

previously.

• �e condition for resonant electrons to be free from 

the anomalous trapping at lower pitch angles is given 

by (26).

• �e adiabatic variation of a subtracted-Maxwellian 

momentum distribution function is described by 

(54)–(60), which can be applied for the calculation of 

the nonlinear growth rate at a position away from the 

equator.

• �e inhomogeneity factor Sn given by (165) for the 

n-th resonance in the oblique propagation is derived 

under the assumption of quasi-parallel propagation. 

�e formula of Sn contains the frequency sweep rate 

as observed at a fixed point and the gradient of the 

magnetic field. Along with the second-order reso-

nance condition, we have obtained the formula for 

acceleration of trapped resonant electrons through 

the n-th resonance.

• �e nonlinear growth rates, optimum wave ampli-

tude, threshold wave amplitude, and chorus equa-

tions in the previous publications contained incon-

sistent powers of the Lorentz factor γ , and these 

formulas are corrected.

�e theoretical developments presented in this paper are 

based on our analyses of simulations reproducing cho-

rus and hiss emissions, and they are mostly confirmed by 

the observations. In the simulations Maxwell’s equations 

are solved along with the calculation of particle dynam-

ics under the self-consistent electromagnetic fields. 

Principles of these electromagnetic processes are sim-

ple, and the nonlinear dynamics of resonant particles in 

a coherent wave potential is well understood. However, 

the combination of the nonlinear trajectories of energetic 

particles and the generation process of new wave fields 

with varying frequency and wave numbers involves rapid 

variation of the wave phase and amplitudes, and they are 

still difficult to be understood completely. In this respect, 

some of the equations that we obtained, such as the cho-

rus equations, are still phenomenological, and they do 

not describe the detailed physical processes of the wave 

generation.

�e gradient of the background magnetic field controls 

the threshold wave amplitude, and the size of the non-

linear interaction region around the magnetic equator. 

A very efficient convective wave growth occurs with a 

balance of the growing wave amplitude and the increas-

ing gradient of the magnetic field. �e mechanism works 

for electron holes with depletion of trapped resonant 

electrons in the velocity phase space, which originally is 

formed at the moment of wave packet generation with 

rising-tone frequency. �erefore, we have more observa-

tions of rising tone emissions in the magnetosphere. We 

occasionally observe falling-tone emissions which are 
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generated by an electron hill formed by trapped electrons 

in the velocity phase as demonstrated by simulations 

(Nunn and Omura 2012; Nogi et al. 2020). However, we 

have not obtained the threshold wave amplitude for the 

generation of falling-tone emissions.

One of the elements that makes the analyses difficult is 

the electromagnetic fluctuations in the simulation as well 

as in the real plasma environment in the magnetosphere. 

Since the nonlinear wave growth process is induced by a 

finite amplitude wave above the threshold level, the wave 

growth from the thermal fluctuations to the threshold 

amplitude should be evaluated properly. However the 

level of electromagnetic fluctuations is also contributed 

by energetic electrons being injected. Studies on the ther-

mal fluctuations in simulations and in the real plasma 

environment are necessary. In the magnetosphere, exter-

nal waves such as whistlers and those from VLF trans-

mitters on the ground, or waves from other parts of the 

magnetosphere may work as triggering waves for the 

nonlinear process. Active wave transmission from space-

craft near the magnetic equator would be very ineresting 

and useful for better understanding of the nonlinear trig-

gering process of chorus emissions.

Chorus emissions are generated by electrons with 

energy of 10 - 100 keV in the Earth’s magnetosphere, pre-

cipitating them into the polar atmosphere, while electrons 

at higher energy ranges are accelerated efficiently to MeV 

energy contributing to rapid formation of the outer radia-

tion belt (Omura et  al. 2015b; Kubota and Omura 2018; 

Hsieh et al. 2020). �ese interesting physical processes of 

relativistic electron acceleration are not included in the 

present paper. Rapid variations of the radiation belts are 

also due to occurrence of  EMIC emissions with rising-

tone frequency variations (Omura and Zhao 2012, 2013). 

�e mechanism of the EMIC emissions is nearly the same 

as chorus emissions (Omura et al. 2010; Shoji and Omura 

2013). A summary report on nonlinear processes of rela-

tivistic electrons and EMIC waves is left as a future work.
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