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Nonlinear Wave Propagation Phenomena in
Left-Handed Transmission-Line Media
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Abstract—This paper introduces nonlinear transmission lines
based on left-handed (LH) media and simulates harmonic gen-
eration and parametric generation in a material that, in two
dimensions, could also focus microwaves. This paper discusses
physical phenomena that lead to and affect self-supporting har-
monic generation and parametric generation in LH nonlinear
transmission-line media and outline advantages of these media
for developing new types of compact and efficient frequency
multipliers and “active lens” devices.

Index Terms—Frequency conversion, left-handed (LH) media,
metamaterials, negative refractive index, nonlinear transmission
line (NLTL), parametric generation.

I. INTRODUCTION

A
RTIFICIAL materials (metamaterials) with simultane-

ously negative permeability and permittivity are also

known as left-handed (LH) materials. LH materials often use

arrays of metallic wires and arrays of split-ring resonators [1] or

planar transmission lines periodically loaded with series capac-

itors and shunt inductors [2], [3]. The unique electrodynamic

properties of these materials, first predicted by Veselago in

1968 [4], include the reversal of Snell’s law, the Doppler effect,

Cherenkov radiation, and they exhibit a negative refractive

index, making them attractive for new types of RF and mi-

crowave components. The most tantalizing of these properties

is the possibility of realizing “perfect” (diffraction-free) lenses

based on their inherent negative index of refraction [5], [3].

The majority of studies of LH media to date are in the linear

regime of wave propagation and have already inspired new types

of microwave devices, such as LH phase shifters [6], LH direc-

tional couplers [7], and leaky-wave antennas [8], [9]. However,

materials that combine nonlinearity with the anomalous disper-

sion exhibited by LH media can give rise to many new and inter-

esting phenomena and applications [10], [11]. Nonlinear wave

phenomena that occur during propagation along the boundary

between right-handed (RH) and LH media, when one or both of

them are nonlinear, have been previously reported in [12]–[15].

In [16], we briefly discussed nonlinear wave phenomena in

the LH material alone, as opposed to wave phenomena that

occur along an LH to RH media interface. Here, we present a

thorough investigation of the basic nonlinear wave propagation

phenomena in LH medium, which is based on the dual of the
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Fig. 1. Equivalent circuit of: (a) LH NLTL and (b) dual RH NLTL.

conventional nonlinear transmission line (NLTL); an LH NLTL

with anomalous dispersion. These phenomena include the gen-

eration of higher harmonics, parametric wave interaction, and

the generation of fractional harmonics. In Section III, we de-

velop an analytical technique for the analysis of harmonic gen-

eration in discrete transmission-line systems and calculate the

third harmonic conversion efficiency for the circuit model of the

LH NLTL described in Section II. Section IV presents the results

of simulations of harmonic generation and parametric genera-

tion and discusses the mechanism of self-supported quasi-phase

matching, which leads to efficient third harmonic generation. A

comparison of LH and RH NLTLs configured as frequency mul-

tipliers is presented and the advantages of LH NLTLs for pro-

viding higher per-stage third harmonic conversion efficiency are

outlined. Additionally, the competition between harmonic gen-

eration, parametric generation, and the generation of fractional

frequencies is discussed. Lastly, in Section V, we discuss the

possibility of the implementation of hybrid LH NLTLs useful

for applications such as frequency multipliers and parametric

generators and amplifiers.

II. MODEL DESCRIPTION

Consider a one-dimensional (1-D) LH NLTL circuit shown in

Fig. 1(a), which is the dual of a conventional RH NLTL shown in

Fig. 1(b). In the linear case, (capacitance per section),

and in the zero loss case, ( and are the

resistances connected in series with capacitance and inductance,

respectively), the dispersion relationship is defined as

(1)

where is the phase shift (in radians) per section and is

the inductance per section. The value corresponds to
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the boundary of the transparency band (the minimal frequency

of the propagating wave, also known as the Bragg cutoff

frequency)

(2)

In the linear limit, the LH circuit under consideration is a

high-pass filter. When is increased, decreases monoton-

ically (anomalous dispersion), thus, the fundamental wave

propagating in this structure is a backward

one (i.e., the phase and group velocities are directed in opposite

directions). This property permits us to refer to this structure as

LH (in Veselago’s terminology [4]).

III. ANALYTICAL CONSIDERATION OF THIRD HARMONIC

GENERATION IN LH NLTL

Let us first consider harmonic generation in LH NLTLs an-

alytically. The approach developed in [17] is applied to derive

an analytical expression for the amplitude of the third harmonic

generated in discrete LH NLTLs.

Nonlinear wave processes in LH NLTLs are governed by

Kirchhoff’s laws, stated here as follows:

(3)

(4)

Here, and are the voltage at the th node and current

through the th inductor, is the voltage across

the th nonlinear capacitor, and is the charge stored in the

th capacitor. In order to simplify the analytical expressions in

this section, we account for the effect of resistance with a

conductance connected in parallel with the capacitors

(not shown in Fig. 1). This produces an equivalent circuit when

the specific frequency represented by the fundamental excitation

is used in the circuit model.

It is assumed that the capacitance possesses a symmetric

nonlinear voltage–charge relationship that can be expanded in a

convergent Taylor’s series

(5)

where since .

One can expand and in a complex Fourier series as

follows:

(6)

and

(7)

where is the lowest frequency sinusoidal component of

and . Eliminating between (3) and (4) and substituting (6)

and (7) into the resulting differential-difference equation yields

(after equating the terms)

for (8)

Equation (8) represents a system of coupled linear difference

equations relating the and coefficients. By substi-

tuting (6) and (7) into (5), and making the assumption that har-

monic voltage terms are small compared with , one finds

that, to third order, these coefficients are also related by

(9)

Thus, the coefficients can be systematically eliminated

between (8) and (9). For and , this procedure leads to

(10)

and

(11)

where

(12)

and

(13)

Equation (10) is the homogeneous discrete wave equation for

the fundamental frequency voltage . This fundamental

voltage wave serves as the “forcing function” for the third

harmonic voltage wave according to (11). Assuming, for

simplicity, that only the positive-traveling fundamental wave is

excited, the solution to (10) has the form

(14)

where is the section number. By substituting (14) into (11),

and solving the resultant inhomogeneous difference equation

for boundary condition , one obtains the third

harmonic amplitude

(15)

where is a “nonlinearity factor” defined by

(16)

and
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(17)

Assuming relatively small losses and

, one finds the following expression for the third harmonic

generation efficiency:

(18)

Here, is a function that depends on the dispersion

characteristics only and determines a maximal conversion effi-

ciency for a given frequency, and is a periodic in space

function, which we call the “coherence function” by analogy

with [17]. and are given by (19) and (20)

(19)

(20)

In (18), we took into account that

(21)

Applying the technique described above to the RH NLTL,

shown in Fig. 1(b), one can show that the expression for

has exactly the same structure as (18) derived for the

LH NLTL, where becomes

(22)

and and are determined by the dispersion equation

for the RH NLTL

(23)

Fig. 2 compares and the magnitude of the phase mismatch

for both an LH and RH NLTL. Although the ana-

lytic expressions for the third harmonic generation efficiency

in both RH and LH NLTLs have a similar structure, the qual-

itative picture of nonlinear wave processes, in general, and of

third harmonic generation, in particular, have many distinctions

in LH NLTLs versus the RH NLTL case. These differences are

the consequences of the anomalous dispersion exhibited by LH

NLTLs.

Third harmonic generation is possible at in the case

of LH NLTLs and at in the case of RH NLTLs,

where is the Bragg frequency in the RH

Fig. 2. (a) Dependence of the function F and (b) magnitude of the phase
mismatch j� �3� j on the relative fundamental frequency for both LH NLTL
(solid line) and RH NLTL (dotted line).

NLTL. Thus, in the case of LH NLTLs, third harmonic genera-

tion is possible in a higher and a wider frequency range than in

RH NLTLs, with all other parameters being the same (see also

Fig. 2).

In the case of RH NLTLs, the value of is small

in the operating frequency range and tends toward zero when

the operating frequency goes to zero ( ). Meanwhile,

so that the combined effect of functions and

is a linear growth, and the optimal length of the NLTL

(i.e., the length required to achieve the maximum value of con-

version efficiency) is determined by the tradeoff between this

linear growth and the exponential decay due to loss along the

line [17]. In the case of an LH NLTL, is large [see

Fig. 2(b)] and so the period of the “coherence function” is short

as is the “coherence length” of the interaction of the funda-

mental wave with its third harmonic, which is defined as

(24)

for consistency with [17]. This gives rise to a highly localized

energy exchange between the fundamental wave and its third

harmonic while propagating along an LH NLTL. From (20), it

is apparent that the maximum amplitude of the third harmonic

is achieved when is a maximum at the end of the line,

therefore, the optimal number of LH NLTL sections is

(25)

Analysis of (18)–(20) indicates that, despite the large phase mis-

match in LH NLTLs, the conversion efficiency can be higher in

the case of LH NLTLs versus RH NLTLs for the case of short

NLTLs. Additionally, the effect of loss can be minimized as

well, again, relative to the RH NLTL case.

Furthermore, Fig. 2 shows that there are two frequen-

cies (wavenumbers) when the denominator in (19) van-

ishes and goes to infinity. At these frequencies,

(14)–(20) are no longer valid since our approach assumes that

. Most importantly however, these frequencies
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indicate regions that are potentially promising for efficient

harmonic generation.

Thus, the analysis of the function together with

the magnitude of the phase mismatch (or determined

by phase mismatch “coherence length” ) predicts that the

third harmonic generation in short LH NLTLs can be more effi-

cient than in RH NLTL of the same line length. Although it gives

a clear qualitative scenario of the harmonic generation, our anal-

ysis is not valid for the most interesting practical case of strong

nonlinearity (i.e., a large capacitance ratio) and large amplitude.

To account for all the factors that affect wave propagation phe-

nomena in an LH NLTL, we have carried out detailed computer

simulations. The modeling results are presented in Section IV.

Lastly, we emphasize that the analytical approach introduced

here in the example of third harmonic generation can be easily

applied to either generation of any higher harmonics or genera-

tion of fractional frequencies.

IV. RESULTS OF SIMULATIONS

A. Parameters of LH NLTL Used in Simulations

It is assumed that the nonlinear capacitors

are formed by two back-to-back varactor diodes to pro-

vide symmetric capacitance–voltage characteristics, which can

be expressed as

(26)

The values for the prototype Agilent TC803 hyperabrupt var-

actor diodes pF, V, and

are used. These diodes were chosen because of their high

capacitance ratio V V . The input port of the

LH NLTL is fed by a sinusoid . The amplitude

of the input is chosen such that the voltage drop across the diodes

does not exceed the breakdown voltage V. The circuit

is loaded with resistance ,

which is equal to the generator resistance (unless the

otherwise specified). Simple five- and seven-section LH NLTLs

were simulated with Agilent ADS.

B. Third Harmonic Generation

Fig. 3 plots the conversion efficiency for the generation of the

third and fifth harmonics (i.e., the ratio of the harmonic power

delivered to the load to the input power applied to LH NLTL) for

both the LH NLTL and dual RH NLTL. The modeling results in-

dicate that the generation of higher harmonics is possible within

a limited frequency range.

Fig. 4 shows the dependence of [defined by (20)] at the

end of a five-section LH NLTL on the fun-

damental frequency. For this purpose, the total phase shift of

the fundamental wave and its third harmonic over the entire LH

NLTL has been calculated from the data generated employing

computer modeling. One can see that the maximum third har-

monic generation efficiency at corresponds to the

maximum of the “coherence function” at the output of the LH

NLTL , while the local minima at and

corresponds to the “coherence function” minimum

Fig. 3. Conversion efficiency (%) for the third and the fifth harmonics versus
the relative fundamental frequency for a five-section LH NLTL (solid lines) and
dual five-section RH NLTL (dashed lines).

Fig. 4. Dependence of j�j at the output of a five-section LH NLTL
(j�j = 5j� � 3� j) on the relative fundamental frequency corresponding
to the conversion efficiency data shown in Fig. 3. Insets show the spectra
of the voltage waveform at the output load for the fundamental frequency
! =! = 1:4 and 4:4, corresponding to the edges of the frequency range
under consideration.

( and , respectively). Another local maximum of ef-

ficiency near corresponds to the range where the

denominator of function vanishes. The “coherence function”

in this range is near its minimum as well, thus ultimately re-

stricting conversion efficiency.

On the lower frequency side, the third harmonic genera-

tion region is bounded by the transmission-line Bragg cutoff

frequency (2). The lower left inset in Fig. 4 corresponds to

this case. It shows the spectrum of the voltage waveform at

the output load of the LH NLTL. A fundamental frequency of

generated numerous higher harmonics and the

third harmonic dominates over the fundamental and the other

higher harmonics due to the intensive Bragg reflection of the
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fundamental wave. Thus, LH NLTLs, under certain conditions,

may combine the properties of both a harmonic generator and

a bandpass filter and provide a “pure” third harmonic at the

output of LH NLTL.

A detailed analysis indicates that, within the frequency range

, where the third harmonic conversion effi-

ciency is maximum and , the amplitude of the

voltage oscillations across the nonlinear capacitors varies pe-

riodically from section to section. The period of this variation

is equivalent to two sections of the LH NLTL. The amplitude

is large across odd-spaced capacitors and small

across even-spaced capacitors. This fact cor-

relates well with the period of the “coherence function,” which

requires that the third harmonic amplitude is maximal across

even sections and close to zero across odd ones.

This self-induced periodicity of the voltage amplitude across

the nonlinear capacitors leads to a periodic variation of the

capacitance along the line. Due to the strong nonlinearity

(large capacitance ratio), this periodicity results in a consid-

erable change of the dispersion characteristics and enables

quasi-phase matching of the fundamental wave and its third

harmonic. This would otherwise be impossible in the linear

limit (our analytic formula (18) does not take this effect into

account). Thus, we have the possibility of self-supporting third

harmonic generation over a wide frequency range. This self-in-

duced quasi-phase-matching effect allows the amplitude of the

third harmonic, at the points corresponding to the maximum of

“coherence function,” to grow from one maximum to the next

along the line and, thus, enhances the conversion efficiency.

Computer simulations of harmonic generation in LH NLTLs

of different lengths (i.e., different numbers of stages) have

shown that the conversion efficiency grows with the LH NLTL

length, and finally saturates due to the transmission line loss.

However, the 3-dB operating bandwidth decreases because

becomes more sensitive to variation in the fundamental

frequency with the increase of . The maximum conversion

efficiency generally takes place when , and

self-induced periodicity occurs.

Simulations have also shown that, under certain conditions,

the self-induced periodicity may provide quasi-phase matching

of the fundamental wave with some other th higher harmonic

in a such a way that this th harmonic will dominate over other

higher harmonics in the spectrum of the waveform at the LH

NLTL output.

The conversion efficiency does not go to zero when the “co-

herence function” vanishes (when is or ) due to the

variation of the phase shift per section along the line, imparted

by the strong nonlinearity.

In summary, the analytical formulas obtained in Section III

allow to us explain the basic features of the frequency depen-

dence of the third harmonic conversion efficiency and will be

useful for future optimization of the parameters of LH NLTLs.

Simulation also predicts self-supported third harmonic genera-

tion in the case where .

Furthermore, the periodicity (or discreteness) of the LH

NLTL is essential for harmonic generation. The periodicity

is inherent to realizable LH NLTLs. Harmonic generation in

Fig. 5. Spectrum of the voltage waveform at the output load of an LH NLTL
corresponding to the maximum of third harmonic conversion efficiency at the
fundamental frequency ! =! = 2:89 (from [16]). The original waveform
is shown in the inset with solid line (dashed line shows voltage waveform at the
input).

quasi-homogeneous LH materials, however, like those using ar-

rays of metallic wires and split-ring resonators [1], [5] requires

loading them periodically with nonlinear components.

Fig. 5 shows the spectrum of the voltage waveform at the

load, corresponding to the maximum third harmonic conver-

sion efficiency. The inset compares the original waveform with

the waveform at the input. The fifth harmonic conversion effi-

ciency is 1% so the power conversion into the third harmonic

is very efficient (approximately 19%), and generation of higher

harmonics is suppressed.

For comparison, Fig. 3 shows the third harmonic generation

efficiency in a dual RH NLTL of the same length (same number

of sections) and based on the same varactor diodes. The third

harmonic generation efficiency in the LH NLTL is higher

(19% versus 14%), occurs at higher frequencies (maximum

at versus ), and has a wider 3-dB

operating bandwidth (60% versus 30%). The third harmonic

conversion efficiency in the LH NLTL is of the same order as

that which can be obtained using a conventional periodically

loaded NLTL exhibiting normal dispersion (of the low-pass

filter type) [18], [19], but the required transmission line length

is shorter for the LH NLTL, thus, the per section efficiency is

higher.

C. Parametric Generation in LH NLTL

The decrease in the third harmonic generation efficiency at

the higher frequency boundary is related to other mechanisms

of frequency conversion. One of these is the instability known

as parametric generation of traveling waves [20]. It is known

that parametric generation and amplification in dispersionless

RH NLTLs is suppressed by shock-wave formation [21], [22].

The impossibility of shock waves in LH NLTLs gives rise to
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Fig. 6. Parametric generation: spectrum of the waveforms at the loads
R =Z = 1 connected at the input and output of a seven-section LH NLTL
(V = 2 V, ! =! = 2:64).

a variety of parametric processes that compete with harmonic

generation.

The high-frequency fundamental (pump) wave with fre-

quency and wavenumber generates two other waves

having frequencies and . This is

illustrated in Fig. 6. Since , we refer here

to waves and as, respectively, Stokes and anti-Stokes

waves by analogy with nonlinear optics [23]. The anti-Stokes

wave at propagates in the opposite direction relative to the

fundamental (pump) wave and the Stokes waves. A peak at

in the spectrum of the input waveform can be seen, while it is

absent at the output. Otherwise, the peak corresponding to the

Stokes wave is larger at the output. The backward-propa-

gating, parametrically generated anti-Stokes wave enables

internal feedback and we, therefore, have a similar situation to

backward wave parametric generation [20], [24]. The interac-

tion of the fundamental wave and Stokes wave also lead

to generation of a co-propagating wave at .

The anomalous dispersion of LH medium allows for the phase

matching of the fundamental and the parametrically generated

waves so that the “coherence length” of the nonlinear parametric

processes described above is large. The amplitude of the para-

metrically generated waves is predicted to grow with distance

and they should compete with harmonic generation in the case

of longer lines.

The waveform evolution in an LH NLTL has many similari-

ties with the competition between resonant excitations and non-

linear parametric interactions recently discussed in nonlinear

optics (see [25]).

Fig. 7. Generation of fractional frequencies: spectrum of the waveform at the
load R =Z = 1 connected at the output of seven-section LH NLTL (V =

4:25 V, ! =! = 8:3).

D. Generation of Fractional Frequencies and Other Regimes

of Operation of LH NLTLs

Another interesting possibility enabled by the interplay of

anomalous dispersion and nonlinearity is the generation of frac-

tional frequencies by high-frequency fundamental waves. This

generation of fractional frequencies becomes possible when the

frequency of the fundamental wave exceeds . Anomalous

dispersion allows phase matching of the fundamental wave with

frequency and wavenumber with one of its fractional

harmonics having frequency and wavenumber

( is the integer number) so that the LH NLTL

can function as a frequency divider. One can apply the analysis

of Section III to show that the “coherence length” between the

fundamental wave and a wave at some fractional frequency can

be very long, as determined by

(27)

Fig. 7 shows the spectrum of the voltage waveform at the output

port of a seven-section LH NLTL. The fundamental wave

effectively generates three other waves having frequencies

and .

Under some conditions, LH NLTLs exhibit mixed behavior

when parametrically generated waves start generating har-

monics and vice versa. Parametric generation can be stimulated

by harmonics of the fundamental wave resulting in a very

complicated spectrum of the voltage waveform at the output.

The upper inset in Fig. 4 gives an example of such behavior.

One can find peaks related to parametric generation, higher

harmonics, and fractional harmonics. Small peaks near the

fundamental frequency and its higher harmonics (Fig. 5) also

result from parametric generation. Thus, LH NLTLs can be

operated in numerous regimes and switching between different

regimes can be accomplished by changing the amplitude or

frequency of the input signal.

Unlike in the case of generation of higher harmonics, the peri-

odicity (discreteness) is not essential for either parametric gen-

eration or generation of fractional frequencies, both of which

can also be observed in homogeneous LH nonlinear medium.
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Finally, we note that all the qualitative considerations

presented here are valid for second harmonic generation

in LH NLTLs periodically loaded with biased diodes ex-

hibiting asymmetric capacitance–voltage characteristics. The

preference given to third-order nonlinearity (symmetric ca-

pacitance–voltage characteristics) arises from the fact that

two-dimensional (2-D) and three-dimensional (3-D) structures

can be more easily realized if they do not require biasing.

V. COMMENTS ON THE PHYSICAL IMPLEMENTATION

OF LH NLTLs

LH NLTLs can be fabricated by replacing the linear capaci-

tors in the transmission-line LH medium discussed in [2], [6],

and [7] with surface mount varactor diodes (e.g., by Agilent var-

actor diodes).

Depending on the amplitude and frequency of the input

signal, hybrid LH NLTLs can be operated as frequency mul-

tipliers, parametric generators (amplifiers), or generators of

fractional frequencies. The mode of operation is determined

by the parameters of the LH NLTL and can be controlled

electronically by varying the amplitude and frequency of the

input drive signal. Mixed modes of operation are also possible

under appropriate conditions.

Assuming to be 50 , one can solve for the circuit

parameters specified in Section IV-A, arriving at the value

for line impedance and Bragg cutoff frequency

GHz. According to the results of the simulations in

Section IV, the maximum of the third harmonic conversion

efficiency should be achieved when a fundamental 3.7-GHz

75-mW input signal is applied at the input of LH NLTL. The

expected resulting power of the third harmonic delivered to the

load is 14 mW. We anticipate submitting a paper describing

physical design of an LH NLTL and measurements of harmonic

generation in the nearest future.

In addition to the higher conversion efficiency and broader

operating frequency range mentioned in Section IV, the design

of frequency multiplier based on LH NLTLs have some advan-

tages over conventional periodically loaded RH NLTLs from

a design perspective. They are more compact since the length

of the section in practice is determined by the diode package

size, and this size can be very small. They can also be low

loss since less diodes are required to achieve the same value of

conversion efficiency. Furthermore, at some parameters (when

and and where is the frequency of

the fundamental input signal and is the velocity of light in free

space), LH NLTLs can be the waveguide for the fundamental

input signal and a leaky-wave antenna [8], [9] for the generated

third harmonic, thus, significantly simplifying the radiation of

the generated power.

VI. CONCLUSION

This paper has demonstrated a diversity of nonlinear wave

phenomena in LH NLTLs, including harmonic generation

and parametric generation of traveling waves, and their com-

petition. Our simulations demonstrate efficient harmonic

generation along LH NLTLs. Harmonic generation is possible

over a significantly wider operating frequency range and at

relatively higher frequencies in comparison with the dual con-

ventional low-pass filter NLTL. Furthermore, LH NLTLs are

predicted to have advantages from the design perspective since

we have more freedom to optimize parameters, being much less

restricted by the host waveguide structure than in the case of

RH periodically loaded NLTLs. Extending these results for 1-D

LH NLTL to higher dimensions would enable combining har-

monic generation in LH NLTL media with focusing, due to the

negative refractive index of 2-D or 3-D LH transmission-line

media. This may lead to the development of highly efficient

and powerful frequency multipliers. The parametric generation

and amplification that generally accompany harmonic genera-

tion in LH NLTLs will be of interest for building “active” or

“amplifying” super lenses based on LH nonlinear medium and

provide a means to compensate for the inherent LH medium

loss, which is a current challenge for existing LH materials.

ACKNOWLEDGMENT

The authors thank D. Yavuz for his useful comments, and

C. Paulson, A. Bettermann, and A. Karbassi, for careful reading

and editing of this paper’s manuscript.

REFERENCES

[1] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S.

Schultz, “Composite medium with simultaneously negative perme-

ability and permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184–4187, May

2000.

[2] G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, “Planar negative re-

fractive index media using periodically L–C loaded transmission lines,”
IEEE Trans. Microw. Theory Tech., vol. 50, no. 12, pp. 2702–2712, Dec.

2002.

[3] A. Grbic and G. V. Eleftheriades, “Overcoming the diffraction limit with

a planar left-handed transmission-line lens,” Phys. Rev. Lett., vol. 92, no.

11, p. 117 403-1, Mar. 19, 2004.

[4] V. G. Veselago, “The electrodynamics of substances with simultane-

ously negative values of " and �,” Sov. Phys.–Usp., vol. 10, no. 4, pp.

509–514, Jan.–Feb. 1968.

[5] R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of

a negative index of refraction,” Science, vol. 292, pp. 77–79, Apr. 2001.

[6] M. Anioniades and G. V. Eleftheriades, “Compact linear lead/lag meta-

material phase shifters for broadband applications,” IEEE Antennas

Wireless Propag. Lett., vol. 2, no. 7, pp. 103–106, 2003.

[7] C. Caloz, A. Sanada, and T. Itoh, “A novel composite right-/left-handed

coupled-line directional coupler with arbitrary coupling level and broad

bandwidth,” IEEE Trans. Microw. Theory Tech., vol. 52, no. 3, pp.

980–992, Mar. 2004.

[8] L. Liu, C. Caloz, and T. Itoh, “Dominant mode leaky-wave antenna with

backfire-to-endfire scanning capability,” Electron. Lett., vol. 38, no. 23,

pp. 1414–1416, Nov. 2002.

[9] A. Grbic and G. V. Eleftheriades, “Experimental verification of back-

ward-wave radiation from a negative refractive index metamaterial,” J.

Appl. Phys., vol. 92, no. 10, pp. 5930–5935, Nov. 15, 2002.

[10] A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, “Nonlinear properties of

left-handed metamaterials,” Phys. Rev. Lett., vol. 91, no. 3, p. 037 401-1,

Jul. 18, 2003.

[11] C. Caloz, I. H. Lin, and T. Itoh, “Characteristics and potential appli-

cations of nonlinear left-handed transmission lines,” Microwave Opt.

Technol. Lett., vol. 40, no. 6, pp. 471–473, Mar. 2004.

[12] A. M. Belyantsev and A. B. Kozyrev, “RF oscillation generated by an

electromagnetic shock wave in coupled transmission lines with anoma-

lous and normal dispersion,” Tech. Phys., vol. 46, no. 7, pp. 864–867,

2001.



KOZYREV AND VAN DER WEIDE: NONLINEAR WAVE PROPAGATION PHENOMENA IN LH NLTL MEDIA 245

[13] A. B. Kozyrev, “The structure of a shock electromagnetic wave syn-

chronous with several waves propagating in coupled transmission lines

with different types of dispersion,” Tech. Phys., vol. 47, no. 2, pp.

272–274, 2002.

[14] A. M. Belyantsev and A. B. Kozyrev, “Reversed Doppler effect under

reflection from a shock electromagnetic wave,” Tech. Phys., vol. 47, no.

11, pp. 1477–1480, 2002.

[15] I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, A. A. Zharov, A. D.

Boardman, and P. Egan, “Nonlinear surface waves in left-handed mate-

rials,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.,

vol. 69, p. 16 617-1, Jan. 2004.

[16] A. B. Kozyrev and D. van der Weide, “Nonlinear transmission lines in

left-handed media,” in IEEE MTT-S Int. Microwave Symp. Dig., 2004,

pp. 317–320.

[17] K. S. Champlin and D. R. Singh, “Small-signal second-harmonic gen-

eration by a nonlinear transmission line,” IEEE Trans. Microw. Theory

Tech., vol. MTT-34, no. 3, pp. 351–353, Mar. 1986.

[18] J.-M. Duchamp, P. Ferrari, M. Fernandez, A. Jrad, X. Melique, J. Tao,

S. Arscott, D. Lippens, and R. G. Harrison, “Comparison of fully

distributed and periodically loaded nonlinear transmission lines,” IEEE

Trans. Microw. Theory Tech., vol. 51, no. 4, pp. 1105–1116, Apr. 2003.

[19] M. J. W. Rodwell, S. T. Allen, R. Y. Yu, M. G. Case, U. Bhattacharya, M.

Reddy, E. Carman, M. Kamegawa, Y. Konishi, J. Pusl, R. Pullela, and J.

Esch, “Active and nonlinear wave propagation devices in ultrafast elec-

tronics and optoelectronics,” Proc. IEEE, vol. 82, no. 7, pp. 1035–1059,

Jul. 1994.

[20] A. S. Gorshkov, G. A. Lyakhov, K. I. Voliak, and L. A. Yarovoi, “Para-

metric generation in anomalously dispersive media,” Physica D, vol.

122, pp. 161–177, 1998.

[21] R. Landauer, “Shock waves in nonlinear transmission lines and their

effect on parametric amplification,” IBM J., vol. 4, pp. 391–401, 1960.

[22] , “Parametric amplification along nonlinear transmission line,” J.

Appl. Phys., vol. 31, no. 3, pp. 479–484, Mar. 1960.

[23] A. Yariv, Quantum Electronics. New York: Wiley, 1988.

[24] S. E. Harris, “Proposed backward wave oscillation in the infrared,” Appl.

Phys. Lett., vol. 9, no. 3, pp. 114–116, Aug. 1, 1966.

[25] R. Frey, “Suppression of the medium excitation in resonant nonlinear

optics,” Opt. Commun., vol. 89, no. 5–6, pp. 441–446, May 15, 1992.

Alexander B. Kozyrev was born in Gorky (now
Nizhny Novgorod), Russia, in 1971. He received the
Diploma degree (with distinction) in radiophysics
and electronics from Nizhny Novgorod State Uni-
versity, Nizhny Novgorod, Russia, in 1993 and
the Ph.D. degree (Candidate of Science degree in
physics and mathematics) from the Institute for
Physics of Microstructures, Russian Academy of
Sciences (RAS), Nizhny Novgorod, Russia, in 2001.

From 1993 to 1994, he was with the Institute of
Applied Physics, RAS. In 1994, he joined the Insti-

tute for Physics of Microstructures, RAS. Since 2003, he has been a Research
Associate with the University of Wisconsin-Madison. His research interests in-
clude wave-propagation phenomena in NLTLs and their applications in mi-
crowave electronics, LH metamaterials, ultrafast phenomena in semiconductors,
and semiconductor heterostructures.

Daniel W. van der Weide (S’86–M’86) received the
B.S.E.E. degree from the University of Iowa, Iowa
City, in 1987, and the Master’s and Ph.D. degrees
in electrical engineering from Stanford University,
Stanford, CA, in 1989 and 1993, respectively.

He held summer positions with the Lawrence-Liv-
ermore National Laboratory and Hewlett-Packard,
and full-time positions with Motorola as an Engineer
and the Watkins-Johnson Company as a Member of
the Technical Staff. From 1993 to 1995, he was a
Post-Doctoral Researcher with the Max-Planck-In-

stitut für Festkörperforschung (Solid State Research), Stuttgart, Germany,
after which he joined the Department of Electrical and Computer Engineering,
University of Delaware, as an Assistant and Associate Professor and Director
of the Center for Nanomachined Surfaces. In 1999, he joined the Department
of Electrical and Computer Engineering, University of Wisconsin–Madison, as
an Associate Professor. From 2002 to 2004, he was a University of Wisconsin
Vilas Associate. He was the Principal Investigator on a 2003 Air Force Office
of Scientific Research (AFOSR) Multiuniversity Research Initiative (MURI)
overseen by Lt. Col. G. Pomrenke entitled, “Nanoprobe Tools for Molecular
Spectroscopy and Control.” His current research involves ultrafast electronics,
1-D electron systems, and the application of high-frequency techniques in
biotechnology.

Dr. van der Weide was the recipient of the National Science Foundation
(NSF) CAREER and PECASE Awards in 1997 and the Office of Naval
Research (ONR) Young Investigator Program Award in 1998.


	toc
	Nonlinear Wave Propagation Phenomena in Left-Handed Transmission
	Alexander B. Kozyrev and Daniel W. van der Weide, Member, IEEE
	I. I NTRODUCTION

	Fig.€1. Equivalent circuit of: (a) LH NLTL and (b) dual RH NLTL.
	II. M ODEL D ESCRIPTION
	III. A NALYTICAL C ONSIDERATION OF T HIRD H ARMONIC G ENERATION 

	Fig. 2. (a) Dependence of the function $F_{A}$ and (b) magnitude
	IV. R ESULTS OF S IMULATIONS
	A. Parameters of LH NLTL Used in Simulations
	B. Third Harmonic Generation


	Fig.€3. Conversion efficiency (%) for the third and the fifth ha
	Fig.€4. Dependence of $\vert \phi \vert$ at the output of a five
	Fig.€5. Spectrum of the voltage waveform at the output load of a
	C. Parametric Generation in LH NLTL

	Fig.€6. Parametric generation: spectrum of the waveforms at the 
	Fig.€7. Generation of fractional frequencies: spectrum of the wa
	D. Generation of Fractional Frequencies and Other Regimes of Ope
	V. C OMMENTS ON THE P HYSICAL I MPLEMENTATION OF LH NLTLs
	VI. C ONCLUSION
	D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and 
	G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, Planar negati
	A. Grbic and G. V. Eleftheriades, Overcoming the diffraction lim
	V. G. Veselago, The electrodynamics of substances with simultane
	R. A. Shelby, D. R. Smith, and S. Schultz, Experimental verifica
	M. Anioniades and G. V. Eleftheriades, Compact linear lead/lag m
	C. Caloz, A. Sanada, and T. Itoh, A novel composite right-/left-
	L. Liu, C. Caloz, and T. Itoh, Dominant mode leaky-wave antenna 
	A. Grbic and G. V. Eleftheriades, Experimental verification of b
	A. A. Zharov, I. V. Shadrivov, and Y. S. Kivshar, Nonlinear prop
	C. Caloz, I. H. Lin, and T. Itoh, Characteristics and potential 
	A. M. Belyantsev and A. B. Kozyrev, RF oscillation generated by 
	A. B. Kozyrev, The structure of a shock electromagnetic wave syn
	A. M. Belyantsev and A. B. Kozyrev, Reversed Doppler effect unde
	I. V. Shadrivov, A. A. Sukhorukov, Y. S. Kivshar, A. A. Zharov, 
	A. B. Kozyrev and D. van der Weide, Nonlinear transmission lines
	K. S. Champlin and D. R. Singh, Small-signal second-harmonic gen
	J.-M. Duchamp, P. Ferrari, M. Fernandez, A. Jrad, X. Melique, J.
	M. J. W. Rodwell, S. T. Allen, R. Y. Yu, M. G. Case, U. Bhattach
	A. S. Gorshkov, G. A. Lyakhov, K. I. Voliak, and L. A. Yarovoi, 
	R. Landauer, Shock waves in nonlinear transmission lines and the
	A. Yariv, Quantum Electronics . New York: Wiley, 1988.
	S. E. Harris, Proposed backward wave oscillation in the infrared
	R. Frey, Suppression of the medium excitation in resonant nonlin



