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Over a Submerged Permeable Breakwater 
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Abstract 

A set of nonlinear vertically integrated equations has been derived to predict 

the transformation of waves over a submerged permeable breakwater on a one- 

dimensional topography. The square of the relative water depth is assumed to be 

of the same order as the wave height to water depth ratio and a set of second-order 

governing equations which are equivalent to the Boussinesq equations is derived. 

The equations have been applied to simulate non-breaking and breaking wave 

transformations obtained from laboratory experiments, in the latter incorporat- 

ing a model for breaking wave energy dissipation. When breaking is nonexistent 
on the breakwater, the wave height as well as the wave profile is well predicted. 

However, the disintegrating character of the transmitted waves is weakly pre- 

dicted. For breaking transformation, the wave profiles are predicted well prior to 

the lee of the breakwater where disintegration occurs. 

1     Introduction 

In recent years, submerged permeable breakwaters have been constructed in 

coastal zones to provide protection against wave attack. This type of breakwater 

has become popular mainly because of its advantages on aesthetic and environ- 

mental considerations. Submergence below the water surface and the porosity 

of the breakwater cause part of the incident wave energy to pass through the 

structure. Although the structure allows a level of wave transmission into the 

protected zone, it dissipates wave energy considerable enough to protect a beach 

from erosion by generating turbulence in the porous medium and causing the 

waves to break over the structure. 
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A model describing wave transformation is an indispensable tool in coastal 

planning and design. For submerged permeable breakwaters, mathematical mod- 

els have been developed so far on the basis of the linear sinusoidal wave theory 

(Rojanakamthorn et. al., 1980). However, since the nonlinearity of waves cannot 

be neglected on the breakwater, the models must be improved to predict the 

transformation accurately. 

In this paper, a model of wave transformation that considers the nonlinearity 

of the waves, arbitrary bathymetry of the bed and nonlinear wave damping due to 

the porosity of the submerged breakwater is presented. Since the model equations 

are unsteady, they can be applied to irregular waves with suitable boundary 

conditions. 

2    Basic Equations and Boundary Conditions 

SWL ^L 

i   W 

iW   *—• 

Figure 1: Definition of variables 

The region of interest is shown in Figure 1. The depth of the free water layer 

is hx(x) and that of the porous layer is hp{x) = h0(x) - h^x). The horizontal 

and vertical components of fluid particle velocity and pressure are u, w, p in 

the water layer and u„ w„ p, in the porous layer. The subscript s refers to 

seepage quantities representing the flow within the pores only. The water surface 

displacement due to wave motion is r)(x, t). The fluid in the water layer is assumed 

inviscid and Euler's equation of motion in two dimensions are used: 

du du du 1 dp 

dt dx dz p dx 

dw dw dw 1 dp 

at ox dz p oz 

{-hi. <z<n) (1) 

{-hx <z<ri) (2) 

where p is the mass density of water and g the gravitational acceleration. 
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The flow within the porous layer is governed by Euler's equation if proper 

account is taken for the effect of the divergence and convergence of streamlines 

caused by the presence of solid particles and for the loss of momentum caused by 

laminar flow along the granular surfaces and momentum loss through turbulence 

within the pores. The first effect is that of the virtual mass and the second is 

that of friction between the fluid and the grains. For steady flow in large granular 

medium, the drop in piezometric head results from laminar viscous resistance for 

low-velocity flow and a turbulent friction resistance for the high-velocity regime: 

--V(p. + 7z)= •^-«r, + -TLe2|tT.|«, (3) 

where «., = (us,ws),V = (d/dx,d/dz),
,

y the unit weight of water, v the kine- 

matic viscosity of water, Kv the intrinsic permeability, Cf a turbulent friction 

coefficient and e the porosity. The constant Kr (dimension: length2) and the 

coefficient C; are determined from laboratory tests under standard conditions. 

The investigations of Shuto and Hashimoto (1970) showed that the resistance 

characteristics of steady and oscillatory flows do not significantly differ so that 

Eq.(3) can be applied to wave motion, which is under consideration here. The 

equations of unsteady motion for the porous layer (—h0 < z < —hi) therefore 

become 

(du, dus dus\ ldp,      ev e
2
Cf       r——- 

\ at dx az J        p ox      Kp /j{     
v 

(dw, dws dws\ ldps      ev e
2
Cf       /-——- 

Cr
 [-*- 

+
 

U
'^x~ 

+
 »'•*) 

=
-

g
--pJz-~ X

WS
 ~ 'JK?*'   '       '    

[) 

The effect of the virtual mass is expressed by the inertial coefficient Cr = 1 + 

(1/e — \)CM, where CM is the added mass coefficient. 

For the incompressible fluid assumed here, the divergence of the velocity 

vector, as required by continuity, must vanish: 

du     dm .   , 
_ + _ = 0 (-),,<«<,) (6) 

^+^ = „ ,-„„<,<_.,, m 

The passage of a wave creates oscillatory motion in the two layers.   This 

motion is subjected to the following boundary conditions: 

• At the free surface, the usual dynamic and kinematic boundary conditions 

are enforced: 

p = 0 (z = ri) (8) 

drj        drj 
_ + u__ = w {z = v) (9) 
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• At the bottom of the porous layer, the usual kinematic condition is applied: 

ws + u,~ = 0 (z = -/»„) (10) 

• The pressure and mass flux must be continuous at the water layer-porous 

layer interface, that is, 

interface continuity of pressure: 

p = ps (z = -M (11) 

interface continuity of mass flux: 

w + u_ = e^ + u,_J {z = -h,) (12) 

Equations (1), (2), (4) to (7) govern the unsteady, incompressible fluid motion in 

the water and porous layers subject to the boundary conditions Eqs.(8) to (12). 

3    Nonlinear Equations for One-dimensional Wave Transformation on 

a Porous Bed 

3.1    Assumption 

In theory, the governing equations together with the boundary conditions can 

be solved for the primitive variables u,w,us,w,, p and p3. Since both sets of 

equations are highly nonlinear and involve r\ which is not known a priori, this 

undertaking is a tremendous, if not an impossible, task. In order to reduce the 

number of unknowns in these equations, a vertical integration of the governing 

equations is performed considering the nonlinear nature of the terms. 

Let / be a characteristic length of the wave motion and h a characteristic 

depth giving a characteristic velocity y/gK. Dimensional coordinates are nondi- 

mensionalized by I and h, velocities by \fgh, pressures by pgh and time by l/\fgK 

giving the nondimensional (primed) quantities: 

x' = x/l z'=z/h t' = t/(l/\Jg~h) (13) 

u' ~ u/\Jgh    w' = w(l/h)/\Jgh    u's = us/\Jgh    w's = ws(l/h)/\Jgh     (14) 

p' = p/pgh        p'a = Ps/pgh (15) 

Applying Eqs.(13) to (15) in the momentum equations, the following nondimen- 

sionalized equations of motion along z are obtained: 
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From equation (2), 

(h\
2
 (dw

1
       ,dw>       ,dw'\ _     dp

1 

From equation (5), 

To describe waves in shallow water, the dispersion and nonlinearity should 

be taken into account. As in the case of the Boussinesq equations, the following 

assumption is made: 

u' ~ w' ~ u', ~w'a~w's~ 0(e) ~ (h/l)
2
 ~ <52 (18) 

3.2    First-order Approximation 

To get a first-order formulation of the governing equations, terms of order e2 

and higher in the nondimensional equations of motion are dropped from the 

corresponding dimensional counterparts invoking the assumption Eq.(18). Hence 

Eq.(16) gives the dimensional equation 

0--,-$ (.., 

Integrating from z — r\ to z = z and applying the dynamic free surface condition, 

the last equation becomes 

P = P9(r} - z) (20) 

Similarly, integrating the first-order form of Eq.(5) and invoking the interface 

continuity of pressure and Eq.(24) give 

(21) Ps = pg{ 7]- Z) 

The first-order form of •Eq.(l) reduces to 

du I dp 

~dt
=

~ pdx- 

and, invoking Eq.(20), becomes 

du 

1H
=

~ 

drj 

dx 
(22) 
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Similarly, Eq.(4) reduces to 

p dx Kp 

and, using Eq.(21), gives 

Cr
~dt~ 

drj 

~
9
Tx- 

(23) 

From Eqs.(22) and (23), u and us do not depend on z (at least in the first order). 

The kinematic boundary conditions are utilized after the continuity equa- 
tions have been integrated. In the integration, Liebnitz rule is applied: 

Integrating Eq.(7) from z = — h0 to z = z, the following is obtained: 

d   f
z
 dh0 0=^~/ u,dz + wa\z--^-ua\-ho-ws\-ho 

OX J-h„(x) ox 

From the bottom boundary condition Eq.(10), the last two terms in the right- 

hand side vanish, giving 

w,(z) = -^k(
z
 + />«)] (24) 

Similarly, Eq.(7) is integrated from —h0 to —hi and the bottom kinematic bound- 

ary condition is invoked, giving 

w,-hl + us-hl-~ = ~Tj-[us(h0 - h^} (25) 

Eq.(6) is integrated from —hi to z resulting in 

d .  , .,        . .      / dhi 
= ~dx^

Z
 
+     '* + 

W
^
Z
' ~ [

W
~

hl
 
+
 

U
~

hl
~dx 

From the interface continuity of mass flux and Eq.(25), the parenthesized term 

becomes 

w-hl + u-hi-^-=-—[eu,{h0-hi)} (26) 

Finally, this gives 

w{z)=
-iL

[u{z+h)]
 - iL

[€u
>
ih

° -
hi)]

        
(27) 

Integration of Eq.(6) from —hi to r, gives 

dp (dr, \      (Oh 

Using the free surface kinematic boundary condition and Eq.(26) for the paren- 

thesized terms, the last equation finally yields the continuity equation: 

& 
=
 ~ik

[u{ri+hi)]
 ~ h

[
"
Us{h

° ~
hi)]
 

(28) 
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3.3    Second-order Approximation 

To get a second-order formulation of the governing equations, the results of the 

first-order equations for the vertical velocities and pressures are utilized. Ne- 

glecting terms of 0(e3) and higher in the nondimensional equations and using 

the dimensional counterparts, the following results are obtained: 

Equation (2): 
dw 1 dp 

Using Eq.(27), this becomes 

ldp 

pdz 
9- 

dt 
9
     pdz 

[u(z + ht)} 
dtdx dtdx 

[(eus(h0 - h^] (29) 

Integrating Eq.(29) from z to rj and applying the free surface dynamic boundary 

condition lead to 

p(z) d
2
  r l 

= 9in-z) -7^7  u-{(ri + hxf - {z + hx)
2
} 

p        ' ''       '     dtdx 

Equation (5): 

a
2 

dtdx 
[eus{h0-hi){ri-z)} 

(30) 

a dw, 

dt 
-g- 

1 dps      eu 

p oz      Kp 

The left-hand side is evaluated using the first-order form of w,(z), Eq.(24), re- 

sulting in 

p dz 

rj2 Cj 

=
 
9
-dl^

[C
^

{Z
 
+
 
h

"
)]
-dx- K, 

•us(z + h0) (31) 

Integrating from z to —hi and invoking the interface continuity of pressure and 

Eq.(30), the last equation becomes 

'-(*) g(rj-z) 
d

2 

dtdx 
dv + h)* 

dtdi 
CrfKho-hrf-i^ + z)

2
} 

d_ 

dx 

d
2 

dtdx 

ev u 

KP 2 

[eu,(h0 - h^irj + h^]- 

{{K-htf-iK + z)
2
} (32) 

Equations (30) and (32) highlight the effect of the vertical velocity on the 

pressure distribution. The last four terms in the last equation are due to the 

inclusion of the local vertical velocity in the second-order formulation and show 

that in oscillatory flows where this component is nontrivial, the distribution of 

pressure in both water layer and porous layer is not hydrostatic. 

Next, in consonance with the vertical integration of the equations for the 

pressures, a depth-integrated horizontal velocity U is defined in the water layer 

such that 

u(x,z,t) = U(x,t) + u*(x,z,t) (33) 
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u = — f udz (34) 

and w* is the horizontal velocity deviation along the vertical and is 0(s
2
). The 

velocity u can then be expanded as a power series in the parameter e, 

From Eq.(34), 

where 

u(x, z,t) = eui(x,<) + e2w2(a;, z, ^) + s3
u3(x, ztt) + ... 

U = £«! + e2w2 + e3«3 + . •. 

(35) 

(36) 

Ul = 
1      n 

ii + ?7 J-hi 
uidz... 

The terms following eui in Eq.(36) are of 0(e3) and higher and may be dropped 

out giving 

U ss eu! (37) 

Returning to the governing equations with Eqs.(35) and (37), the terms on the 

left-hand side reduce to the following: 

du_dU_ 

dt ~ dt 

du     „dU 

dx dx 

+ 0(e
3
) + ... 

+ 0{e
l
) + ... 

w— = 0(e3) + ... 
dx 

Substitution of these equations into Eq.(l), with the third-order and higher terms 

neglected, leads to the following: 

dU_     rjdU___\^P_ 

dt dx p dx 
(38) 

where the overbar represents an averaging over the relevant depth. With the 

pressure p dependent on z and the left-hand side of Eq.(38) expressed in terms of 

depth-averaged values, Eq.(30) for the pressure p(z) is differentiated with respect 

to x, depth-averaged evaluating all integrals, then substituted in the last equation. 

This finally gives the horizontal momentum equation in the water layer: 

dU_       dU_ __  dr]_       d
3
    W 

dt
+

    dx ~    
9
dx 

+
 didx

2
 [J 

U, in Eq.(39) defined as 

U, 

(rj + hj + 
d

3 
eU. 

dtdx
2
 L 2 -^(A.-AiXf + Ai)    (39) 

i    r
hi 

i—r /    
u

> dz (40) 
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was obtained from a similar development for the porous layer. Parallel develop- 

ments for the terms on the left-hand side of Eq.(4) using Eq.(40) give, to second 

order, 

Cr' at 
+
 ' dx 

I dp, _ zv_ 

p dx      Kp 

e
2
C 

=\J
u2

s + •
2

* (41) 

Using Eq.(32) for p,(z), the right-hand side of Eq.(41) is evaluated, integrating 

all terms with overbars. This finally gives the horizontal momentum equation in 

the porous layer: 

Cr' dt 
+
 
u
' dx dx     dtdx

2 

U 
{v + hi)' + 

+- 
a3 

\dx
2 

'dx
2 

[eU1(h0-h1)(r, + h1)} + 
a

3 

dtdx
2 

CrUs 
(h0 - /ii): 

e
2
C 

Ly/uf+w?u, (42) 

The momentum equations (39) and (42) and the depth-integrated continuity 

equation (28), comprise a second-order formulation of the transformation of a 

surface disturbance in a depth-varying region with a porous layer, taking into 

account the effect of vertical acceleration, finiteness of the surface displacement 

and the momentum loss in the porous layer. 

Under ordinary conditions, W, in Eq.(42) is much less than Ut. By invoking 

the assumption that H/h <C 1 and noting that the interface and impermeable 

boundaries are rigid and that the porous layer has a homogeneous makeup, the 

second-order formulation can be simplified to the following set of nonlinear equa- 

tions: 

'    S
+
^ 

+
 ^

+
^« = ° 

ehphi d
3
Us dU_        dU_       drj     h\ d

3
U 

dt 
+

    ~dx~ 
+

 
g
dx~~~3dtdx

2 2    dtdx
2 0 

(43) 

(44) 

Cr 

dUt + udU1 

dt        ' dx 
+  g 

dr\     h\ d
3
U 

dx      2 dtdx
2 

ev d
2 

—~ + ehph! 
dtdx

2 

0 (45) 

These equations can be applied in determining the wave field for progressive 

and oscillatory waves. Although wave motion is usually characterized by period- 

icity, this property is not a prerequisite in applying the equations since the time 

dimension has been explicitly included. Hence, these equations can be applied to 

both regular and irregular waves with suitable boundary conditions. 
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The assumption of order (h/l)
2
 in the nondimensionalized velocities pre- 

cludes the application of the equations in deep water. In addition, consideration 

of the nonlinearity of the boundary conditions for the free surface conforms ap- 

proximately to the region where finiteness of wave height is important. Therefore, 

the region of validity of the equation falls approximately where the cnoidal wave 

theory is valid. Lastly, the equations are applicable in a region where the only 

energy loss is through friction in the porous layer. When breaking is present, the 

additional energy dissipation must be considered. 

4    Breaking Wave Transformation 

Wave breaking usually occurs on the breakwater upslope resulting in dissipation 

of wave energy. The amount of energy dissipated by this phenomenon has been 

related to the mass flux rate across a vertical section beyond the breaking point. 

For a submerged permeable breakwater, considering that the mass flux is due to 

flow across both water and porous layers, the energy dissipated is accounted for 

by adding an energy dissipation term per unit mass, fpU in the water layer and 

JD^US in the porous layer, to the left-hand sides of Eqs.(44) and (45). 

The dissipation function ff> (dimension: time-1) for breaking on a sloping 

impermeable bed has been given by Watanabe and Dibajnia (1988). Recognizing 

the points of departure of the breaking dissipation over a submerged porous 

breakwater from that over an impermeable bed, the dissipation function was 

modified as 

fD = aDtM{}\&[IEK (46) 

where ap = 2.5, tan/?' is the effective bottom slope at the breaking point, 

h[ = hi + ehp, <p = \f]\lh'v <pr = 0.4(|f?|//ii)6, <p, = 0.5(0.57 + 5.3 tan/?')- The 

subscript b indicates values at the breaking point. \fj\ is the effective amplitude 

defined as \f\\ = 0.50(r]c — rjt) where r\c and r/( are the surface displacements of the 

crest and trough, respectively. A breaking criterion based on the experiments of 

Rojanakamthorn et. al. (1990) was used to locate the breaking point. 

5    Application and Results 

In applying Eqs.(43) to (45) within a region where structures are present, the 

waves reflected from the structure are subtracted through the offshore boundary 

by considering an appropriate boundary condition. For one dimension, this is 

expressed by 

r](x0,t + dt) = rn{x0,t + dt) + [r](x0 + C0dt,t) - r]j(x0 + C„dt,t)] (47) 

where C is the celerity, subscript / refers to a prescribed incident wave and o 

refers to the offshore location. At the onshore boundary, complete transmission 
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of the transformed wave is enforced through the radiation condition: 

= -CD — 
dx 

(48) 

where the subscript D refers to the onshore location. The velocity U is similarly 

prescribed. 

2.0' 3.01 4.01 

Figure 2: Submerged permeable breakwater 

Equation (43) to (45) have been discretized for numerical computation us- 

ing an eight-point finite-difference computational module on a staggered mesh. 

Calculation was carried out from still water conditions alternately for the ve- 

locities and rj. The equations were tested for the case of monochromatic wave 

propagation on a horizontal bottom without any porous body by comparing with 

a theoretical solution for the spatial and temporal profiles of rj. Calculation gives 

profiles that conform very well with those given by the second-order cnoidal wave 

theory. 

Laboratory experiments were performed to examine the applicability of the 

nonlinear model to predicting wave transformation over a submerged permeable 

breakwater. The set-up is given in Fig. 2. One of the gauges was located 

beyond the structure to describe the disintegrated wave. In the calculations the 

properties of the fluid and porous material were: v = 1.3 x 10_6m2/s, e — 0.44, 

Kp = 2.06 x 10-8m2, Cs = 0.428, g = 9.8m/s2 and Cr = 1.0. The porosity was 

measured directly in the laboratory and Kp and Cj are fixed by the size of the 

gravel used. 

Figures 3 and 4 show the comparison of the wave profiles at different loca- 

tions when no breaking was observed anywhere in the wave flume. In Fig. 3, the 

relative depth of submergence H/yc is 0.29 and the relative depth h/L offshore 

is 0.073. It can be seen that the weak disintegration at the breakwater lee is pre- 

dicted by the second-order equations. Using the nonlinear incident wave based 

on the experiments for the offshore boundary condition leads to a large reflection 
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0.02 

0.01 

0.02 

-0.01 

-0.01 

Station 1: OFFSHORE 
T= 2.03s    h = 0.194m    H = 0.0116m 

H/yc = 0.29      ,,'h/L = 0.073 

Station 2: 2.85m UPSLOPE 

Station 3: 3.25m CREST 1 

Station 4: 3.80m CREST 2 

Figure 3: Wave Profiles (Case 1, Non-breaking transformation) 

from the breakwater (Station 2) and a secondary peak at the first crest station. 

In Fig. 4, the water depth was reduced so that H/yc becomes large, leading to 

a strong disintegration leeward. Although the high-frequency components of the 

disintegrated wave are not reproduced, the general pattern is predicted by the 

second-order equations. 

For breaking transformation, the dissipation function is evaluated at all 

points beyond the breaking point using Eq.(46). Figure 5. shows a comparison 

of the wave profiles from calculation and experiments for a short period incident 

wave. The breaking point was located at x — 2.95m in both calculation and 

experiment. For this case, the wave height was increased so that H/yc — 0.99 and 

h/L = 0.136. It is evident that the model predicts the wave height distribution 

well. However, the second-order equations fail to yield the secondary component 

of the transmitted wave at the lee. 
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Station 1: OFFSHORE 
T = 2.01s    h = 0.174m    H = 0.0125m 

H/yc = 0.625 h/L = 0.066 

Station 2: 2.85m UPSLOPE 

Station 3: 3.25m CREST 1      i 
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Station 5 : 4.20m LEE            : 
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I   V*\Xi^                w'vQ^^                 V'^'&Qs 

— EXPERIMENT —    CALCULATION 

TIME   (s) 

Figure 4: Wave Profiles (Case 2, Non-breaking transformation) 

6    Conclusions 

1. Basic equations of nonlinear wave transformation over a porous layer are 

derived. 

2. For non-breaking transformation on the submerged permeable breakwater, 

the equations predict the wave height and the profile well. However, the 

disintegrating characteristic of the transmitted waves is weakly predicted 

by the second-order equations. 

When Hi/yc is less than about 0.29, the agreement is good while for higher 

ratios, the agreement is not good especially at the breakwater lee. 

3. For breaking transformation, the wave profiles are predicted well prior to the 

region leeward of the breakwater where the waves disintegrate. Although 

the wave profile is not reproduced so well after breaking, the wave height 

distribution is predicted fairly well by the present model of wave breaking. 
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0.03 
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—   0.01 
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~~ 0 
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-0.02  .. 
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\ r W, /v y^ A/^ ftjA A y^, «/i A/^ ^>A 
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-    EXPERIMENT ~>    CALCULATION 
3 4 5 
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Figure 5: Wave Profiles (Breaking transformation) 
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